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ON LORENTZ MANIFOLDS WITH ABUNDANT ISOMETRIES

By

Hiroo MATSUDA

0. Introduction.

Let $M$ be an n-dimensional Lorentz manifold with metric $\langle, \rangle$ of signature
$(--, +, \cdots +)$ . Then there is no r-dimensional isometry group whose isotropy
subgroup at every point is compact for $n(n-1)/2+1<r\leqq n(n+1)2(c.f.$ , [5],

Proposition). In [6], we determined n-dimensional Lorentz manifolds $M$ which
admit an $n(n-1)/2+1$-dimensional isometry group with compact isotropy sub-
group at every point for $n\geqq 4$ .

The first purpose of this note is to determine simply connected $M$ admitting
an $n(n-1)/2$-dimensional isometry group with compact isotropy subgroup at
every point for $n\geqq 4$ (see \S 2). We will prove the following Theorem A.

THEOREM A. Let $(M, \langle, \rangle)$ be a simply connected n-dimensional Lorentz

manifold admitting a connected n(n-l)/2-dimensional isometry group with compact
isotropy subgroup at every point in $M(n\geqq 4)$ . Then $M$ is isometric to the warped
product manifold $(I\times N, -dt^{2}+\phi(t)ds_{N}^{2})$ where I is an open interval and $N$ is the
simply connected $(n-1)$-dimensional Riemannian manifold with metric $ds_{N}^{2}$ of con-
stant curvature and $\phi(t)$ is a positive function on $I$.

For isometry groups whose dimension are less than $n(n-1)/2$ , we will have
the following proposition in \S 1.

PROPOSITION 1.1. If $n\geqq 6$ , there is no r-dimensional isometry group with
compact isotropy subgroup at every point for $(n-1)(n-2)/2+3\leqq r\leqq n(n-1)/2-1$ .

In view of Proposition 1.1, it is natural to ask which Lorentz manifold of
dimension $n$ admits an $(n-1)(n-2)/2+2$-dimensional isometry group with
compact isotropy subgroup. The second purpose of this note is to determine
simply connected manifold $M$ admitting an isometry group of dimension
$(n-1)(n-2)/2+2$ with compact isotropy subgroup at every point (see \S 3). We
will prove the following Theorem B.
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THEOREM B. Let $(M, \langle, \rangle)$ be a simply connected n-dimensional Lorentz
manifold adimitting a connected $(n-1)(n-2)/2+2$-dimensional isomery group with
compact isotropy subgroup at every point $(n\geqq 6)$ . Then $(M, \langle, \rangle)$ must be one
of the following:

(1) $(L^{2}\times V^{n-1}, ds_{L}^{2}+ds_{V}^{2})$ ;
(2) $(L^{2}\times E^{n-1}, -dt^{2}+ds^{2}+\exp(-2c_{0}t-2c_{1}s)ds_{E}^{2})(c_{0}$ and $c_{1}$ are some constants

such that $c_{0}\neq 0$ or $c_{1}\neq 0$);

(3) $(U^{2}\times V^{n-2}, ds_{0}^{2}+ds_{V}^{2})$ ;
(4) $(U^{2}\times E^{n-2}, ds_{0}^{2}+f^{2}ds_{E}^{2})$ ( $f=y^{-c_{2}},$ $c_{2}$ is a non-zero constant);

(5) $(U^{2}\times V^{n-2}, ds_{\kappa}^{2}/\alpha^{2}+ds_{V}^{2})$ ( $\alpha$ is a non-zero constant);

(6) $(U^{2}\times E^{n-2}, ds_{\kappa}^{2}/\beta^{2}+h^{2}ds_{E}^{2})$ ( $h=(\beta y)^{-c_{3}},$ $c_{3}$ and $\beta$ are non-zero constants);

If $n=9$ , then the following additional case is possible:
(7) $(R\times E^{8}, -dt^{2}+\exp(-2c_{4}t)ds_{E}^{2})$ ( $c_{4}>0$ : a constant).

Here $(L^{2}, ds_{L}^{2})$ is the 2-dimensional Minkowski space, $(E^{m}, ds_{E}^{2})$ the m-
dimensional Euclidean space and $(V^{n-2}, ds_{V}^{2})$ the simply connected $(n-2)-$

dimensional Riemannian space of constant curvature. Further, $(U^{2}, ds_{\iota}^{2})$ is the
upper half-space $U^{z}=\{(x, y);y>0\}$ with metric $-2dxdy/y^{2}$ (when $\kappa=0$)

$\kappa(dx^{2}-dy^{2})/y^{2}$ (when $\kappa=1$ or $-1$ ).

REMARK 0.1. The space (6) with $c_{3}=1$ is the upper half-space $U^{n}=$

$\{(x_{1}, \cdots, x_{n});x_{n}>0\}$ with constant curvature 1 or $-1$ according to $\kappa=1$ or $-1$

respectively. The space (7) is isometric to the 9-dimensional upper-half space
with constant curvature $c_{4}^{2}$ by the transformation

$R\times E^{8}\ni(t, x_{1}, \cdots, x_{8})\rightarrow(x_{1}, \cdots, x_{8}, e^{c_{4^{l}}}/c_{4})\in U^{9}$ .
For these spaces, see [4] and [8].

The space (4) with $c_{2}=1$ is the upper half-space with constant curvature $0$ .
Throughout this note, we shall be in $C^{\infty}$-category and manifolds shall be

connected, unless otherwise stated.

1. Preliminaries.

Let $(M, \langle, \rangle)$ be an n-dimensional Lorentz manifold with metric $\langle, \rangle$ of
signature $(--, +, \cdots +)$ . Let $G$ be a connected isometry group of $(M, \langle, \rangle),$ $H_{0}$

the isotropy subgroup of $G$ at a point $0\in M$ and $G(0)$ the G-orbit of $0$ . Then
the linear isotropy subgroup $\tilde{H}_{0}=\{dh;h\in H_{0}\}$ acting on $T_{0}M$ is a closed sub-
group of $0(1, n-1)=\{A\in GL(n, R);{}^{t}ASA=S\}$ , where $S$ is the matrix
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$\left\{\begin{array}{llll}-1 & & & \\ & 1 & & \\ & & . & 1\end{array}\right\}$ .

If $H_{0}$ is compact, $H_{0}$ is conjugate to a subgroup of $O(1)\times O(n-1)(c.f.,$ $[10$ ,
p. 335]).

LEMMA 1.2. If $\dim H_{0}=(n-1)(n-2)/2$ and $H_{0}$ is compact, then $\dim G(0)\leqq 1$

$or\geqq n-1$ for $n\geqq 3$ .

PROOF. Since $\tilde{H}_{0}$ is compact and of dimension $(n-1)(n-2)/2=\dim(O(1)\times$

$O(n-1)),\tilde{H}_{0}$ contains the connected component $1\times SO(n-1)$ of $O(1)\times 0(n-1)$ .
Thus $T_{o}M$ is naturally decomposed into the direct sum of l-dimendional and
$(n-1)$-dimensional subspaces which are $\tilde{H}_{o}$-invariant and irreducible. On the
other hand, $T_{o}(G(0))$ is also $\tilde{H}_{o}$-invariant. Therefore we have $\dim T_{o}(G(0))\leqq 1$

or $\geqq n-1$ .

PROOF OF PROPOSITION 1.1. Let $G$ be a connected isometry group of
dimension $r$ . Assume that $(n-1)(n-2)/2+3\leqq r\leqq n(n-1)/2-1$ . Then, $\dim H_{o}=$

$\dim G-\dim(G/H_{o})=\dim G-\dim G(0)\geqq(n-2)(n-3)/2+1$ . Since $H_{0}$ is compact,

we can regard $\tilde{H}_{0}$ as a subgroup of $0(1)\times 0(n-1)$ . If $n-1\neq 4$ , there is no k-
dimensional subgroup of $0(n-1)$ for $(n-2)(n-3)/2<k<(n-1)(n-2)/2$ . There-
fore $\dim H_{o}=(n-1)(n-2)/2$ so that we have $3\leqq\dim G(0)\leqq n-2$ . This contradicts
Lemma 1.2.

REMARK 1.3. There exist 5-dimensional Lorentz manifolds $M$ admitting
a $9(=(5-1)(5-2)/2+3)$-dimensional isometry group $G$ with compact isotropy
subgroup. For example, let $M$ be a product manifold $R\times C^{2}$ with metric
$-dt^{2}+ds_{E}^{2}$ and $G=R\times G^{\prime}$ where $ds_{E}^{2}$ is the Euclidean metric of $C^{2}$ and $G^{\prime}$ is
the matrix group consisting of all matrices of the form

$\left\{\begin{array}{ll}A & \tau\\ 0 & 1\end{array}\right\}$ , where $A\in U(2),$ $\tau\in C^{2}$ .

Then $\dim G=9$ and the isotropy subgroup at the origin is $U(2)$ which is compact.

2. The case where $\dim G=n(n-1)/2$ .
Let $G$ be a connected isometry group of dimension $n(n-1)/2$ with compact

isotropy subgroup $H_{x}$ at every point $x\in M$. Then $\tilde{H}_{x}$ is conjugate to a sub-
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group of $0(1)\times 0(n-1)$ , so that we have $\dim H_{x}\leqq(n-1)(n-2)/2$ . On the other
hand, $\dim H_{x}\geqq\dim G-\dim M=(n-1)(n-2)/2-1$ . Thus we have $\dim H_{x}=$

$(n-1)(n-2)/2$ or $(n-1)(n-2)/2-1$ . For $n-1\neq 4,$ $O(n-1)$ contains no proper
closed subgroup of dimension $>(n-2)(n-3)/2$ other than $SO(n-1)(c.f.,$ $[2,$ $p$ .
48]). Thus, when $n-1\neq 4$ , $\dim H_{x}=(n-1)(n-2)/2$ . For $n-1=4$ , $O(n-1)$

contains no subgroups of dimension $5=(5-1)(5-2)/2-1$ ($c.f.,$ $[1$ , p. 347]).

Thus, for $n\geqq 4$ , we have $\dim H_{x}=(n-1)(n-2)/2$ , so $\tilde{H}_{x}$ contains the connected
component 1X $SO(n-1)$ of $O(1)\times O(n-1)$ . Therefore, $T_{x}M$ is naturally de-

composed into the direct sum of l-dimensional and $(n-1)$-dimensional subspaces

which are $\tilde{H}_{x}$ -invariant and irreducible. On the other hand, $T_{x}(G(x))$ is $\tilde{H}_{x^{-}}$

invariant and of dimension $n-1$ . Thus we have irreducible decomposision
$T_{1}(x)+T_{x}(G(x))$ of $T_{x}M$ by the linear isotropy representation of $H_{x}$ on $T_{x}M$.
Since $H_{x}$ is compact, the restriction $\eta$ of the metric of $M$ to $T_{x}(G(x))$ is
positive definite, zero or negative definite by the Schur’s lemma. Since $n-1\geqq 3$ ,

$\eta$ must be positive definite. Therefore we have

LEMMA 2.1. Each orbit $G(x)(x\in M)$ is a spacelike hypersurface.

Since $\tilde{H}_{x}$ contains lx $SO(n-1)$ , we have $\langle T_{1}(x), T_{x}(G(x))\rangle=0$ so that $T_{1}(x)$

is timelike. Let $\xi(x)$ be a unit timelike vector belonging to $T_{1}(x)$ .

LEMMA 2.2. If $M$ is time-orientable, then the vector field $\xi(p);=dg(\xi(x))$

$(p=gx, g\in G)$ is well-defined on $G(x)$ and G-invariant and it is extended to the
vector field on $M$.

PROOF. The first part of this Lemma is proved by the same method as
the proof of Lemma 2 in [6]. Since $M$ is time orientable, there exists a unit
timelike vector field $\zeta$ on $M$. Then we can extend $\xi$ on $M$ so as to be
$\langle\xi, \zeta\rangle<0$ .

From now on, we assume that $M$ is time-orientable. We note that $G$ acts

effectively on $G(x)$ . In fact, if $g\in G$ acts on $G(x)$ trivially, we have $dg|T_{x}G(x)$

$=id$ . and $dg(\xi(x))=\xi(x)$ , so that $dg=id$ . on $T_{x}M=R\{\xi(x)\}+T_{x}G(x)$ . There-
fore $g=id$ . on $M$. Furthermore we note that each G-orbit $G(x)$ is isometric
to $E^{n-1},$ $S^{n-1},$ $P^{n-1}$ or $H^{n-1}$ , because the $(n-1)$-dimensional Riemannian mani-
fold $G(x)$ admits an isometry group $G$ of maximum dimension $n(n-1)/2$ .

LEMMA 2.3. Each integral curve $0$] $\xi$ is a geodesic.

PROOF. Let $X$ be an arbitrary fixed non-zero vector in $T_{x}M$ such that
$\langle\xi(x), X\rangle=0$ . Since $\tilde{H}_{x}$ contains 1X $SO(n-1)$ and $n-1\geqq 3$ , there exists $h\in H_{x}$
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such that $dh(X)=-X$ and $dh(\xi(x))=\xi(x)$ . We have $\langle\nabla_{\xi}\xi, X\rangle=\langle dh(\nabla_{\xi}\xi), dh(X)\rangle$

$=-\langle\nabla_{\xi}\xi, X\rangle$ so that we $have.\langle\nabla_{\xi}\xi, X\rangle=0$ . Since $X$ is an arbitrary vector
orthogonal to $\xi$ and $\langle\nabla_{\xi}\xi, \xi\rangle=(1/2)\xi\langle\xi, \xi\rangle=0$ , we have $\nabla_{\xi}\xi=0$ . Thus each
integral curve of $\xi$ is a geodesic.

LEMMA 2.4. $\nabla_{x}\xi=\lambda(\pi(X))X$ for any $X$ such that \langle X, $\xi\rangle$ $=0$ where $\pi$ is the
natural projection of the tangent bundle: $TM\rightarrow M$ and $\lambda$ is a function on $M$ which
is constant on each G-orbit.

The proof of Lemma 2.4 is similar to that of Lemma 8 in [6].

LEMMA 2.5. The l-form $\omega$ defined by $\omega(X)=\langle X, \xi\rangle$ is closed.

PROOF. The l-form $\omega$ is G-invariant and so $ d\omega$ is G-invariant (especially,
$H_{x}$ -invariant). Since $\tilde{H}_{x}$ contains $1XSO(n-1)$ and the linear isotropy represent-
ation of $H_{x}$ on $T_{x}(G(x))$ is irreducible, we have $d\omega=0$ .

PROOF OF THEOREM A. $M$ is time-orientable, because $M$ is simply connected.
Since $\omega$ is a closed l-form from Lemma 2.5, there exists a smooth function
$f:M\rightarrow R$ such that $ df=\omega$ . Let $\gamma_{p}(t)$ be an integral curve of $\xi$ such that
$\gamma_{p}(0)=p$ . Then we can see $f(\gamma_{p}(t))=-t+f(p)$ . We may assume that $f(M)$ is
some open interval containing $O\in R$. Let $N$ be a connected component of
$f^{-1}(0)$ . Then we have $N=G(0)$ for some $0\in N$. For each $x\in N$, let $I_{x}$ be the
domain of $\gamma_{x}$ . Since $\xi$ is G-invariant on $N=G(0)$ , for any $p,$ $q\in N$, we have
$I_{p}=I_{q}$ which is denoted by $I$ . Then the Theorem A will follow immediately

from the next Lemma 2.6 and Lemma 2.7.

LEMMA 2.6. The map $F:I\times N\rightarrow M$ defined by

$F(t, x)=Expt\xi(x)=\gamma_{x}(t)$

is a diffeomorphism.

LEMMA 2.7. The map $F:(I\times N, -dt^{2}+\phi(t)ds_{N}^{2})\rightarrow(M, \langle, \rangle)$ is an isometry,

where the metric $ds_{N}^{2}$ on $N$ induced from $\langle, \rangle$ and $\phi(t)=\exp 2(\int_{0}^{l}\lambda(s)ds)$ .

The proof of Lemmas 2.6 and 2.7 is similar to that of Lemmas 5 and 9 in
[6].
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3. The case where $\dim G=(n-1)(n-2)/2+2$ .
We assume that $\dim G=(n-1)(n-2)/2+2$ and $H_{x}$ is compact for every

point $x\in M$.

PROPOSITION 3.1. $G$ acts transitively on $M$ for $n\geqq 4$ and $n\neq 5$ .

PROOF. Assume that $G$ does not act transitively on $M$. Then $\dim G(0)\leqq$

$n-1$ for some $0\in M$. Hence $\dim H_{0}\geqq\dim G-(n-1)=(n-2)(n-3)/2+1$ . By the
same method as in the proof of Proposition 1.1, we can see that $\dim H_{o}=$

$(n-1)(n-2)/2$ . Hence $\dim G(0)=2$ which contradicts the Lemma 1.2.

REMARK 3.2. In the Proposition 3.1, we cannot remove the condition that
the isotropy subgroup at every point is compact. In fact, let $M$ be the Lorentz
manifold $R\times N$ with metric $dt^{2}+ds_{N}^{2}$ , where $(N, ds_{N}^{2})$ is the $(n-1)$-dimensional
de-Sitter space and $G$ be the group $R\times G^{\prime}$ where $G^{\prime}$ is the matrix group of the
form

$[(1/a)\chi$ $-\chi A^{\chi}$ $(1+a^{2}-|\chi^{A_{|^{2})/(2a)}^{l}}(1-a^{2}+|\chi|^{2})/(2a)(1/a)\chi$ $A\in SO(n-2)a>0,x\in R^{n-2}$

,

$G^{\prime}$ is the connected subgroup of the proper Lorentz group $SO^{+}(1, n-1)$ acting
on $N$ $(c.f. [7])$ . Then $G$ is an $(n-1)(n-2)/2+2$-dimensional isometry group
which has noncompact isotropy subgroups and does not act on $M$ transitively
(see \S 4).

REMARK 3.3. There exists a 5-dimensional Lorentz manifold $M$ aditting an
$8(=(5-1)(5-2)/2+2)$-dimensional isometry group $G$ with compact isotropy
subgroup such that $G$ does not acts transitively on $M$. In fact, take the space
in Remark 1.3 as $M$ and set $G=1\times G^{\prime}$ ( $G^{\prime}$ is the same as in Remark 1.3).

Then $G$ is not transitive on $M$.

From now on, we assume $n\geqq 6$ . Set $H=H_{0}$ for some $0\in M$. By Proposition
3.1, we have $\dim H=(n-2)(n-3)/2$ . Since $H$ is compact and connected, $\tilde{H}$ is
conjugate to a subgroup of $SO(l)XSO(n-1)$ so that we can regard $\tilde{H}$ as an
$(n-2)(n-3)/2$-dimensional subgroup of $SO(n-1)$ . In the case $n-1\neq 8$ , a
$(n-2)(n-3)/2$-dimensional subgroup $\tilde{H}$ of $SO(n-1)$ leaves one and only one 1-
dimensional subspace of $R^{n-1}$ invariant. In the case $n-1=8$ , we have either
$\tilde{H}=SO(7)$ (which leaves one and only one l-dimensional subspace of $R^{8}$ invari-
ant) or $\tilde{H}=Spin(7)$ with spin representation (see Kobayoshi [2, p. 49]).
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Let $\mathfrak{g}$ and $\mathfrak{h}$ be the Lie algebras of $G$ and $H$ respectively. By the use of
an $Ad(H)$-invariant positive definite inner product on $\mathfrak{g}$ whose existence is
guaranteed by the compactness of $H$, we have a decomposition $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$ (direct

sum) of $\mathfrak{g}$ such that $[\mathfrak{h}, \mathfrak{m}]\subset \mathfrak{m}$ . Let $\pi:G\rightarrow G/H$ be the natural projection.
We identify the tangent space $T_{o}M$ and $\mathfrak{m}$ by $ d\pi$ . The Lorentz inner product
on $T_{o}M$ induces the Lorentz inner product $\langle$ , $\rangle_{m}$ on $\mathfrak{m}$ so that $d\pi:\mathfrak{m}\rightarrow T_{o}M$ is
a linear isometry. Then the linear isotropy group $\tilde{H}$ acting on $T_{o}M$ corresponds

to $Ad(H)$ on $\mathfrak{m}$ by means of $ d\pi$ . We note that the inner product $\langle$ , $\rangle_{\mathfrak{m}}$ is
$Ad(H)$-invariant. We define the Lorentz inner product $B$ on $\mathfrak{g}$ so that

$B(\mathfrak{h}, \mathfrak{m})=0$ , $B|_{\mathfrak{m}}=\langle, \rangle_{\mathfrak{m}}$

and $B|_{\mathfrak{h}}$ is positive definite. We extend $B$ to the G-left invariant Lorentz
metric on $G$ which is denoted by the same letter $B$ . Then $(G, B)$ is a Lorentz
manifold and $\pi:G\rightarrow G/H=M$ is the semi-Riemannian submersion (for the defini-
tion of the semi-Riemannian submersion, see O’Neill [9, p. 212]).

The structure of $\mathfrak{g}$ for $n-1\neq 8$ . We assume $n-1\neq 8$ . Since $Ad(H)$ is
compact and $\dim Ad(H)=(n-2)(n-3)/2$ , $Ad(H)$ acts on $\mathfrak{m}$ as $I_{2}\times SO(n-2)$ .
Then $\mathfrak{m}$ decomposes naturally into 2-dimensional subspace $\mathfrak{m}_{2}$ and $(n-2)$ .

dimensional subspace $\mathfrak{m}_{1}$ such that $Ad(H)|_{\mathfrak{m}_{2}}=id$ . and $Ad(H)|_{\mathfrak{m}_{1}}=SO(n-2)$.
Using Schur’s lemma, we have that $\mathfrak{m}_{1}$ is spacelike. Furthermore, we $hav\epsilon$.
$\langle \mathfrak{m}_{1}, \mathfrak{m}_{2}\rangle_{\mathfrak{m}}=0$ so that $\mathfrak{m}_{2}$ is timelike. Thus we have a decomposition $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}_{1}+$

$\mathfrak{m}_{2}$ such that
$[\mathfrak{h}, \mathfrak{m}_{1}]\subset \mathfrak{m}_{1}$ , $[\mathfrak{h}, \mathfrak{m}_{2}]=\{0\}$ .

LEMMA 3.4. $[\mathfrak{m}_{2}, \mathfrak{m}_{1}]$ is either $\{0\}$ or $\mathfrak{m}_{1}$ . More precisely, there exists a
linear map $L:\mathfrak{m}_{2}\rightarrow R$ such that $[A, X]=L(A)X$ for any $A\in \mathfrak{m}_{2}$ and any $X\in \mathfrak{m}_{1}$ .
Here $L$ is either zero or onto map.

PROOF. For any fixed $A\in \mathfrak{m}_{2}$ , we define a linear map $f_{A}$ : $\mathfrak{m}_{1}\rightarrow \mathfrak{g}$ by
$f_{A}(X)=[A, X](X\in \mathfrak{m}_{1})$ . Let $p_{0},$ $p_{1}$ and $p_{2}$ be orthogonal projection from $\mathfrak{g}$ to
$\mathfrak{h},$

$\mathfrak{m}_{1}$ and $\mathfrak{m}_{2}$ respectively. Since $\mathfrak{h},$
$\mathfrak{m}_{1}$ and $\mathfrak{m}_{2}$ are $Ad(H)$-invariant and $Ad(h)f_{A}$

$=f_{A}Ad(h)$ for any $h\in H$, we have

$(*)$ $p_{i}f_{A}Ad(h)=Ad(h)p_{i}f_{A}$ for any $h\in H(i=0,1,2)$ .
Step 1. We claim $[\mathfrak{m}_{2}, \mathfrak{m}_{1}]\subset \mathfrak{h}+\mathfrak{m}_{1}$ . Since $Ker(p_{2}f_{A})$ is $Ad(H)$-invariant by

$(*)$ and the adjoint representation of $H$ on $\mathfrak{m}_{1}$ is irreducible, we have $Ker(p_{2}f_{A})$

$=\{0\}$ or $\mathfrak{m}_{1}$ . Suppose $Ker(p_{2}f_{A})=\{0\}$ for some $A\in \mathfrak{m}_{2}$ . Then $p_{2}f_{A}$ : $\mathfrak{m}_{1}\rightarrow \mathfrak{m}_{2}$ is
injective so that $\dim Im(p_{2}f_{A})=n-2>2=\dim \mathfrak{m}_{2}$ . Hence we have $Ker(p_{2}f_{A})=\mathfrak{m}_{1}$
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for any $A\in \mathfrak{m}_{2}$ , that is, $[\mathfrak{m}_{2}, \mathfrak{m}_{1}]\subset \mathfrak{h}+\mathfrak{m}_{1}$ .
Step 2. We claim $[\mathfrak{m}_{2}, \mathfrak{m}_{1}]\subset \mathfrak{m}_{1}$ . By the same procedure as that of Step

1, we have $Ker(p_{0}f_{A})=\{0\}$ or $\mathfrak{m}_{1}$ . Suppose $Ker(p_{0}f_{A})=\{0\}$ for some $A\in \mathfrak{m}_{2}$ .
Then $\dim p_{0}f_{A}(\mathfrak{m}_{1})=n-2$ . We can verify easily that $p_{0}f_{A}(\mathfrak{m}_{1})$ is ideal in $\mathfrak{h}$ .
On the other hand, there is no ideal of dimension $n-2$ in $\mathfrak{h}=@o(n-2)$ . Hence
we have $Ker(p_{0}f_{A})=\mathfrak{m}_{1}$ for any $A\in \mathfrak{m}_{2}$ , that is $[\mathfrak{m}_{2}, \mathfrak{m}_{1}]\subset \mathfrak{m}_{1}$ .

Step 3. By the above discussion, $f_{A}$ is a linear map from $\mathfrak{m}_{1}$ into itself
and commutes with the action of $Ad(H)=SO(n-2)$ on $\mathfrak{m}_{1}$ . Hence there exists
linear map $L:\mathfrak{m}_{2}\rightarrow R$ such that $[A, X]=L(A)X(A\in \mathfrak{m}_{2}, X\in \mathfrak{m}_{1})$ .

LEMMA 3.5. $[\mathfrak{m}_{1}, \mathfrak{m}_{1}]\subset \mathfrak{h}$ .

PROOF. Let $p_{0},$ $p_{1}$ and $p_{2}$ be maps as in the proof of Lemma 3.4. Given
orthonormal vectors $X$ and $Y$ in $\mathfrak{m}_{1}$ , there exists $h\in H$ such that $Ad(h)=id$ .
on $\mathfrak{m}_{2}$ and $Ad(h)X=-X,$ $Ad(h)Y=Y$ (for, $n-2\geqq 4$). Then we have

$p_{2}[X, Y]=Ad(h)p_{2}[X, Y]=p_{2}[Ad(h)X, Ad(h)Y]$

$=-p_{2}[X, Y]$

which implies $p_{2}[X, Y]=0$ . Hence $p_{2}[\mathfrak{m}_{1}, \mathfrak{m}_{1}]=\{0\}$ . Let express $p_{1}[X, Y]$ as
$aX+bY+cZ$ , where $Z$ is a unit vector orthogonal to $X$ and $Y$ . Since $n-2\geqq 4$ ,

there exists $h^{\prime}\in H$ such that $Ad(h^{\prime})=id$ . on $\mathfrak{m}_{2}$ and $Ad(h^{\prime})X=-X,$ $Ad(h^{\prime})Y=$

$-Y$ , $Ad(h^{\prime})Z=-Z$ . The equality $Ad(h^{\prime})p_{1}[X, Y]=p_{1}Ad(h^{\prime})[X, Y]$ implies
$p_{I}[X, Y]=0$ . Thus we have $[\mathfrak{m}_{1}, \mathfrak{m}_{1}]\subset \mathfrak{h}$ .

From the same method as in Kobayashi and Nagano [3, p. 212], we have

LEMMA 3.6. $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]\subset \mathfrak{m}_{2}$ .

From Lemma 3.6, there exists a basis $\{e_{0}, e_{1}\}$ of $\mathfrak{m}_{2}$ such that $B(e_{0}, e_{0})=-1$ ,
$B(e_{1}, e_{1})=1$ and $B(e_{0}, e_{1})=0$ , and there exist constants $a$ and $b$ such that
$[e_{0}, e_{1}]=ae_{0}+be_{1}$ . Then there are the following four possibilities:

CASE I: $[e_{0}, e_{1}]$ is a zero vector ( $i.e.,$ $\mathfrak{m}_{2}$ is commutative);

CASE II: $[e_{0}, e_{1}]$ is a non-zero null vector ( $i$ . $e.,$ $a\neq 0,$ $b=\delta a$ , where $\delta^{2}=1$);

CASE III: $[e_{0}, e_{1}]$ is a spacelike vector $(i.e., b^{2}-a^{2}=\alpha^{2}, \alpha>0)$ ;
CASE IV: $[e_{0}, e_{1}]$ is a timelike vector $(i.e., b^{2}-a^{2}=-\alpha^{2}, \alpha>0)$ .
There exists a basis $f_{0},$ $f_{1}$ such that

in case II,

$B(f_{0}, f_{0})=0=B(f_{1}, f_{1})$ , $B(f_{0}, f_{1})=-1$ , $[f_{0}, f_{1}]=f_{1}$ ,

in case III,
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$B(f_{0}, f_{0})=-1$ , $B(f_{1}, f_{1})=1$ , $B(f_{0}, f_{1})=0$ and $[f_{0}, f_{1}]=\alpha f$ ,

in case IV,

$B(f_{0}, f_{0})=1$ , $B(f_{1}, f_{1})=-1$ , $B(f_{0}, f_{1})=0$ and $[f_{0}, f_{1}]=\alpha f_{1}$ .

In case I, we denote $e_{0}$ and $e_{1}$ by $f_{0}$ and $f_{1}$ respectively. Hereafter, in any
cases, we consider $f_{0}$ and $f_{1}$ instead of $e_{0}$ and $e_{1}$ . Furthermore, in any cases,
we denote $L(f_{0})$ and $L(f_{1})$ by $c_{0}$ and $c_{1}$ respectively where $L$ is the linear map
in Lemma 3.4.

LEMMA 3.7. In cases Il, III, and IV, we have $c_{1}=0$ .

PROOF. Let $X$ be a non-zero vector belonging to $\mathfrak{m}_{1}$ . By the Jacobi’s
identity

$[f_{0}, [f_{1}, X]]=[[f_{0}, f_{1}],$ $X$ ] $+[f_{1}, [f_{0}, X]]$ ,

we have $c_{0}c_{1}X=\beta c_{1}X+c_{0}c_{1}X$ ( $\beta=1$ or $\alpha$ ) so that we have $c_{1}=0$ .

Determination of $M$ for $n-1\neq 8$ . Since $M$ is simply connected, $H$ is
connected so that $Ad(H)$ acts on $\mathfrak{m}_{2}$ as the identity transformation. Therefore
we have

LEMMA 3.8. For each $f_{u}\in \mathfrak{m}_{2}(u=0,1)$ , the vector field $\xi_{u}$ defined by

$\xi_{u}(p):=dgd\pi(f_{u}(e))$ $(p=g(0), g\in G)$

is well-defined on $M$ and G-invariant where $e$ is the identity in $G$ .

We have the following formulas $(**)$ according to the above each case $ 1\sim$

IV:

CASE I. $\nabla_{\xi_{u}}\xi_{v}=0,$ $\nabla_{X}\xi_{u}=-c_{u}X(u, v=0,1)$ ;
CASE II. $\nabla_{\xi_{0}}\xi_{0}=-\xi_{0},$ $\nabla_{\xi_{0}}\xi_{1}=\xi_{1},$ $\nabla_{\xi_{1}}\xi_{0}=0$ ,

$(**)$ $\nabla_{\xi_{1}}\xi_{1}=0$ , $\nabla_{X}\xi_{0}=-c_{0}X$ , $\nabla_{X}\xi_{1}=0$ ;

CASES III and 1V. $\nabla_{\xi_{0}}\xi_{0}=0,$ $\nabla_{\xi_{0}}\xi_{1}=0,$ $\nabla_{\xi_{1}}\xi_{0}=-\alpha\xi_{1}$ ,

$\nabla_{\xi_{1}}\xi_{1}=-\alpha\xi_{0}$ , $\nabla_{X}\xi_{0}=-c_{0}X$ , $\nabla_{X}\xi_{1}=0$ .
Here $X$ is any vector field orthogonal to $\xi_{0}$ and $\xi_{1}$ and $\nabla$ is the Levi-Civita
connection of the Lorentz metric $\langle, \rangle$ on $M$.

By the G-invariance of $\xi_{u}$ and the above formulas, we have

LEMMA 3.9. (1) In the cases I and II, the integral curve of $\xi_{1}$ is a complete
geodesic.
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(2) In the cases $I,$ $III$ and IV, the integral curve of $\xi_{0}$ is a complete geodesic.

By the similar way as the proof of Lemma 2.5, we have

LEMMA 3.10. (1) In the cases $I,$ $III$ and IV, the l-form $\omega_{0}$ on $M$ defined
$by$

$\omega_{0}(X):=\langle X, \xi_{0}\rangle$

is G-invariant and closed.
(2) In the cases I and II, the l-form $\omega_{1}$ on $M$ defined by

$\omega_{1}(X);=\langle X, \xi_{1}\rangle$

is G-invariant and closed.

Now we will determine $G/H=M$ in each cases I, II, III and IV.

CASE I. Lemma 3.10 implies that there exist smooth functions $\psi_{0}$ and $\psi_{1}$

such that $d\psi_{u}=\omega_{u}(u=0,1)$ . Since $\xi_{0}$ and $\xi_{1}$ are G-invariant, there exist 1-
parameter groups of transformation $\phi_{t}^{0}$ and $\phi_{s}^{1}$ generated by $\xi_{0}$ and $\xi_{1}$ respec-
tively. We can verify easily that for $p\in M$,

$(\#)$ $\left\{\begin{array}{l}\psi_{0}(\phi_{t}^{0}(p))=-t+\psi_{0}(p), \psi_{0}(\phi_{s}^{l}(p))=\psi_{0}(p),\\\psi_{1}(\phi_{t}^{0}(p))=\psi_{1}(p), \psi_{1}(\phi_{s}^{I}(p))=s+\psi_{1}(p).\end{array}\right.$

Let $M_{1}^{o}$ be a connected component of $M_{1}=\{p\in M;\psi_{0}(p)=\psi_{1}(p)=0\}$ . Then $M_{1}^{0}$

is a connected $(n-2)$-dimensional closed submanifold of $M$. Furthermore $M_{1}^{0}$

is spacelike, because $\xi_{0}$ and $\xi_{1}$ are orthogonal to $M_{I}$ .

LEMMA 3.11. The map $F$ : RX $R\times M_{1}^{o}\rightarrow M$ defined by

$F(t, s, x)=\phi_{l}^{0}(\phi_{s}^{1}(x))$

is a diffeomorphism, and $M_{1}=M_{1}^{o}$ is simply connected.

PROOF. Suppose that $F(t, s, x)=F(t^{\prime}, s^{\prime}, x^{\prime})$ . Then, from $(\#)$ , we have
$t=t^{\prime}$ and $s=s^{\prime}$ . Therefore we have $\phi_{t}^{0}(\phi_{s}^{1}(x))=\phi_{l}^{0}(\phi_{i}^{1}(x^{\prime}))$ so that we have $x=x^{\prime}$ .
Thus $F$ is injective. It is clear that $F$ is smooth. Setting $N=F(R\times R\times M_{1}^{o})$ ,

then $N$ is open in $M$. It remains to be shown that $N$ is closed in $M$. Suppose
that $\{F(t_{k}, s_{k}, x_{k})=p_{k}\}$ is a sequence converging some point $q$ in $M$. Since
$\iota_{k}=-\psi_{0}(p_{k})$ and $s_{k}=\psi_{1}(p_{k})$ , we have $t_{k}\rightarrow t_{0}:=-\psi_{0}(q)$ and $s_{k}\rightarrow s_{0}:=\psi_{1}(q)$ as
$ k\rightarrow\infty$ . Since $x_{k}=\phi_{-s_{k}}^{1}(\phi_{-t_{k}}^{0}(p_{k}))$ converges $x_{0}$ $;=\phi_{-s_{0}}^{1}(\phi_{-t_{0}}^{0}(q))$ as $ k\rightarrow\infty$ and $M_{1}^{0}$ is
closed, $x_{0}$ belongs to $M_{1}^{o}$ so that $q=\phi_{t}^{0_{0}}(\phi_{s_{0}}^{1}(x_{0}))$ belongs to $N$. Thus $N$ is closed.
Thus we have $N=F(R\times R\times M_{1}^{0})$ .



On Lorentz manifolds with abundant isometries 123

REMARK 3.12. For each $(a, b)\in R\times R,$ $M_{1}(a, b):=\{p\in M;\psi_{0}(p)=a, \psi_{1}(p)=b\}$

is a simply connected $(n-2)$-dimensional spacelike submanifold of $M$.

LEMMA 3.13. For each $(a, b)\in R\times R,$ $M_{1}(a, b)$ is congruent to $M_{1}=M_{1}(0,0)$

in $M$.

PROOF. Since $G$ acts on $M$ transitively, for some point $p$ in $M_{1}(a, b)$ there
exists $g\in G$ such that $g(0)=p(0\in M_{1})$ . Then we have $g(M_{1})\subset M_{1}(a, b)$ . In fact,

for each point $q\in g(M_{1})$ , there exists a smooth curve $\tilde{c}:[0,1]\rightarrow g(M_{1})$ such that
$\tilde{c}(O)=p$ and $\tilde{c}(1)=q$ . Put $c;=g^{-1}\tilde{c}$ . Then $c$ is a smooth curve in $M_{1}$ , so we
have $\psi_{0}(c(s))=0=\psi_{1}(c(s))$ for any $s\in[0,1]$ . Therefore we have

$(d\psi_{u}/ds)(\tilde{c}(s))=\langle\xi_{u}(\tilde{c}(s)),\tilde{c}(s)\rangle=\langle dg\xi_{u}(c(s)), dg\dot{c}(s)\rangle$

$=\langle\xi_{u}(c(s)),\dot{c}(s)\rangle=(d\psi_{u}/ds)(c(s))=0$ $(u=0,1)$ .
Thus we have $\psi_{0}(q)=a$ and $\psi_{1}(q)=b$ so that we have $g(M_{1})\subset M_{1}(a, b)$ . Since
$g(M_{1})$ is open and closed in $M_{1}(a, b)$ , we have $g(M_{1})=M_{1}(a, b)$ .

LEMMA 3.14. $M_{1}$ is a homogeneous Riemannian manifold.

PROOF. For any $p,$ $q\in M_{1}$ , there exists $g\in G$ such that $g(p)=q$ . By the
same method as in the proof of Lemma 3.13, we can see that $g|_{M_{1}}$ is an iso-
metric transformation of $M_{1}$ .

Set $G_{1}$ $:=\{g\in G;gM_{1}=M_{1}\}$ . Then $G_{1}$ is a Lie subgroup of $G$ . We can
verify that $H$ is included in $G_{1}$ by the same discussion as in the proof of Lemma
3.13. Furthermore, $G_{1}$ acts on $M_{1}$ effectively. Thus $\dim G_{1}=\dim M_{1}+\dim H=$

$(n-1)(n-2)/2$ . Therefore the simply connected $(n-2)$-dimensional Riemannian
manifold $M_{1}$ admitting an isometry group $G_{1}$ of maximum dimension
$(n-1)(n-2)/2$ is isometric to $S^{n-2},$ $H^{n-2}$ or $E^{n-2}$ .

LEMMA 3.15. The map

$F:(R\times R\times M_{1}, -dt^{2}+ds^{2}+\exp(-2c_{0}t-2c_{1}s)ds_{M_{1}}^{2})-(M, \langle, \rangle)$

is an isometry where $ds_{M_{1}}^{2}$ is the metric of $M_{1}$ .

PROOF. Let (V, $\Phi=(t_{2},$
$\cdots,$ $t_{n-1})$ ) be a local coordinate around a point $p$ in

$M_{1}$ . Then $(R\times R\times V, id\times\Phi=(t, s, t_{2}, \cdots, t_{n-1}))$ is a \llcorner local coordinate around
$(a, b, p)$ in $R\times R\times M_{1}$ . Put $\tilde{V}$

$:=F(R\times R\times M_{1})$ and define $\tilde{\Phi};V\rightarrow R^{n}$ by
$(id\times\Phi)\circ F^{-1}$ . Then (V, $\tilde{\Phi}=(x_{0},$

$x_{1},$ $\cdots$ , $x_{n-1}$ )) is a local coordinate around $\tilde{p}=$

$F(a, b, p)$ in $M$. Since $[\xi_{0}, \xi_{1}]=0$ , we can see $dF(\partial/\partial t)=\partial/\partial x_{0}=\xi_{0}$ and $dF(\partial/\partial s)$

$=\partial/\partial x_{1}=\xi_{1}$ . Furthermore we have $dF(\partial/\partial t_{j})=\partial/\partial x_{j}(j=2, \cdots , n\cdot-1)$ . We can
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also see that $\langle\partial/\partial x_{u}, \partial/\partial x_{j}\rangle=0(u=0,1)$ . In fact

$\langle\partial/\partial x_{u}, \partial/\partial x_{j}\rangle=\langle\xi_{u}, dF(\partial/\partial t_{j})\rangle=(\partial/\partial t_{j})(\psi_{u}(F(t, s, x))$

$=\left\{\begin{array}{l}(\partial/\partial t_{j})(-t)=0\\(\partial/\partial t_{j})(s)=0\end{array}\right.$ $(u=1)(u=0)$

Since $\nabla_{X}\xi_{u}=-c_{u}X(u=0,1)$ for any $X$ orthogonal to $\xi_{0}$ and $\xi_{1}$ , we have

$\partial/\partial t\langle\partial/\partial t_{i}, \partial/\partial t_{j}\rangle=-2c_{0}\langle\partial/\partial t_{i}, \partial/\partial t_{j}\rangle$

and
$\partial/\partial s\langle\partial/\partial t_{i}, \partial/\partial t_{j}\rangle=-2c_{1}\langle\partial/\partial t_{i}, \partial/\partial t_{j}\rangle$

so that we have

$\langle\partial/\partial t_{i}, \partial/\partial t_{j}\rangle=\exp(-2c_{0}t-2c_{1}s)g_{ij}(t_{2}, \cdots , t_{n-1})$ .
Thus we have

$F^{*}\langle, \rangle=-dt^{2}+ds^{2}+\exp(-2c_{0}t-2c_{1}s)ds_{M_{1}}^{2}$ .

LEMMA 3.16. If $M_{1}$ is $H^{n-2}$ or $S^{n-2}$ , then $c_{0}=c_{1}=0,$ $i$ . $e.$ , the metric of
$RXRXM_{1}$ is a product metric.

PROOF. Since, for each $(a, b)\in R\times R,$ $M_{1}(a, b)$ is isometric to $M_{1}$ by
Lemma 3.13, the scalar curvature $S(a, b)$ of $M_{1}(a, b)$ coincides with the scalar
curvature $S(O, 0)$ of $M_{1}$ which is non-zero. On the other hand, we have
$S(a, b)=\exp(-2c_{0}a-2c_{1}b)\times S(0,0)$ by Lemma 3.15. Since $a$ and $b$ are arbitrary,
we have $c_{0}=c_{1}=0$ .

We notice that, in the case $M_{1}=E^{n-2}$ , there are two cases (1) $c_{0}=c_{1}=0$

and (2) $c_{0}\neq 0$ or $c_{1}\neq 0$ .
Summing up, in the case I, $(M, \langle, \rangle)$ must be one of the following:
(i) $(L^{2}\times M_{1}, ds_{L}^{2}+ds_{M_{1}}^{2})$ where $(L^{2}, ds_{L}^{2})$ is the 2-dimensional Minkowski

space and $(M_{1}, ds_{M_{1}}^{2})$ is a simply connected $(n-2)$-dimensional Riemannian mani-
fold of constant curvature;

(ii) $(R^{2}\times E^{n-2}, -dt^{2}+ds^{2}+\exp(-2c_{0}t-2c_{1}s)ds_{E}^{2})$ where $c_{0}\neq 0$ or $c_{1}\neq 0$ .

CASE II. Since $\omega_{1}$ is closed, there exists a smooth function $\psi_{1}$ : $M\rightarrow R$ such
that $d\psi_{1}=\omega_{1}$ . Define the vector field $\eta$ on $M$ by $\eta(p):=\exp(-\psi_{1}(p))\xi_{0}(p)$

$(p\in M)$ .

LEMMA 3.17. The l-form $\tilde{\omega}_{0}$ defined by $\tilde{\omega}_{0}(X):=\langle\eta,$ $X$ ) is closed so that
there exists smooth function $\tilde{\psi}_{0}$ \ddagger $M\rightarrow R$ such that $d\tilde{\psi}_{0}=\tilde{\omega}_{0}$ .
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PROOF. Since $ d\tilde{\omega}_{0}(X, Y)=\langle\nabla_{X}\eta, Y\rangle-\langle\nabla_{Y}\eta, X\rangle$ for any vector fields $X$ and
$Y$ , we can verify that $\tilde{\omega}_{0}$ is closed by formulas $(**)$ .

Since $\xi_{0}$ is G-invariant, there exists the l-parameter group of transform-
ations $\phi_{s}^{0}$ generated by $\xi_{0}$ . Let $c_{p}(t)$ be the integral curve of $\xi_{1}$ through a point
$p\in M$. From the G-invariance of $\xi_{1},$ $c_{p}(t)$ is defined for any $t\in R$ . Define the
vector field $\zeta$ on $M$ by $\zeta(q)=\exp(\psi_{1}(q))\xi_{1}(q)(q\in M)$ . Let $\phi_{l}^{1}$ be the l-parameter
group of transformations generated by $\zeta$ . Then we have $\phi_{l}^{1}(p)=c_{p}(\exp(\psi_{1}(p))t)$

so that $\phi_{l}^{1}$ is complete. Noting that $[\xi_{0}, \zeta]=0$ , we have $\phi_{s}^{0}\phi_{l}^{1}=\phi_{t}^{1}\phi_{s}^{0}$ . We can
verify the following:

$\tilde{\psi}_{0}(\phi_{s}^{0}(p))=\tilde{\psi}_{0}(p)$ , $\tilde{\psi}_{0}(\phi_{l}^{1}(p))=-r+\tilde{\psi}_{0}(p)$ ,

$\psi_{1}(\phi_{s}^{0}(p))=-s+\psi_{1}(p)$ , $\psi_{1}(\phi_{t}^{1}(p))=\psi_{1}(p)$ for $p\in M$ .
Let $M_{1}^{0}$ be a connected component of $M_{1}$ $:=\{p\in M;\tilde{\psi}_{0}(p)=\psi_{1}(p)=0\}$ . Then $M_{1}^{o}$

is an $(n-1)$-dimensional closed submanifold of $M$. Furthermore $M_{1}^{o}$ is space-
like, because $\xi_{0}$ and $\xi_{1}$ are orthogonal to $M_{1}^{o}$ .

LEMMA 3.18. The map $F:R\times R\times M_{1}^{o}\rightarrow M$ defined by

$F(t, s, x)=\phi_{t}^{1}\phi_{s}^{0}(x)$ for $(t, s, x)\in R\times R\times M_{1}^{o}$

is a diffeomorphism, and $M_{1}=M_{1}^{0}$ is simply connected.

The proof is similar to that of Lemma 3.11.

REMARK 3.19. For each $(a, b)\in R\times R,$ $M_{1}(a, b):=\{p\in M;\tilde{\psi}_{0}(p)=a, \psi_{1}(p)=b\}$

is a simply connected $(n-2)$-dimensional spacelike submanifold of $M$.

The following two Lemma 3.20 and 3.21 are proved by the same method
as in Lemma 3.13 and 3.14 respectively.

LEMMA 3.20. For each $(a, b)\in R\times R,$ $M_{1}(a, b)$ is congruent to $M_{1}$ in $M$.

LEMMA 3.21. $M_{1}$ is a homogeneous Riemannian manifold.

Set $G_{1}$ $:=\{g\in G;g(M_{1})=M_{1}\}$ . Then we also have that $G_{1}$ is a closed Lie
subgroup of $G$ and includes H. $G_{1}$ acts effectively on $M_{1}$ so that $M_{1}$ is $S^{n-2}$ ,
$H^{n-2}$ or $E^{n-2}$ .

LEMMA 3.22. The map $ F:(R\times R\times M_{1}, -2\exp(-s)dtds+\exp(-2c_{0}s)ds_{M_{1}}^{2})\rightarrow$

$(M, \langle, \rangle)$ is an isometry.
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PROOF. As in the proof of Lemma 3.15, we take a local coordinate (V, $\Phi=$

$(t_{2}, \cdots, t_{n-2}))$ around a point $p$ in $M_{1}$ and a local coordinate $(\tilde{V},\tilde{\Phi}=(x_{0},$
$x_{1},$

$\cdots$ ,

$x_{n-1}))$ around a point $F(a, b, p)$ in $M$. Then we can see $dF(\partial/\partial t)=\partial/\partial x_{0}=$

$\exp(-s)\xi_{1},$ $dF(\partial/\partial s)=\partial/\partial x_{1}=\xi_{0}$ and $dF(\partial/\partial t_{i})=\partial/\partial x_{i}(i=2, \cdots, n-1)$ at $(t, s, p)$

$\in R\times R\times M_{1}$ . Furthermore, we can see
$\partial/\partial s\langle\partial/\partial r_{i}, \partial/\partial t_{j}\rangle=-2c_{0}\langle\partial/\partial t_{i}, \partial/\partial t_{j}\rangle$

and
$\partial/\partial t\langle\partial/\partial t_{i}, \partial/\partial t_{j}\rangle=0$ $(i, j=2, \cdots, n-1)$

so that we have

$\langle\partial/\partial t_{i}, \partial/\partial t_{j}\rangle=\exp(-2c_{0}s)g_{ij}(t_{2}, \cdots, t_{n-1})$ .

Uhus we have

$F^{*}\langle, \rangle=-2\exp(-s)dtds+\exp(-2c_{0}s)ds_{M_{1}}^{2}$ .
We also have the following Lemma 3.23 by the same method as in the

case I.

LEMMA 3.23. If $M_{1}$ is $S^{n-2}$ or $H^{n-2}$ , then $c_{0}=0$ .

We note that the space $(R\times R, -2\exp(-s)dtds)$ is isometric to the upper
half-space $U^{2}=\{(x, y);y>0\}$ with flat metric $-2dxdy/y^{2}$ by the transformation
$(t, s)\rightarrow(x, y)=(t, \exp(s))$ .

Thus, in case II, $M$ must be one of the following:
(iii) $(U^{2}\times M_{1}, -2dxdy/y^{2}+ds_{M_{1}}^{2})$ where $(M_{1}, ds_{M_{1}}^{2})$ is a simply connected

$(n-2)$-dimensional Riemannian manifold of constant curvature;
(iv) $(U^{2}\times E^{n-2}, -2dxdy/y^{2}+(1/y)^{2c_{0}}ds_{E}^{2})$ .

REMARK 3.24. When $c_{0}=1$ , the space (iv) is the n-dimensional upper half-
space $U^{2}=\{(x_{1}, \cdots, x_{n}):x_{n}>0\}$ with flat metric

$(1/x_{n}^{2})(-2dx_{n-1}dx_{n}+dx_{1}^{2}+\cdots+dx_{n-2}^{2})$ .

CASE III and IV. Since $\omega_{0}$ is closed by Lemma 3.10, there exists a smooth
function $\psi_{0}$ : $M\rightarrow R$ with $d\psi_{0}=\omega_{0}$ . Put $\eta(p)=\exp(-\kappa\alpha\psi_{0}(p))\xi_{1}(p)$ where
$\kappa=\langle\xi_{1}, \xi_{1}\rangle$ ( $i$ . $e.,$ $\kappa=1,$ $-1$ in the cases III, IV respectively). Define a l-form
$\tilde{\omega}_{1}$ by $\tilde{\omega}_{1}(X)=\langle X, \eta\rangle$ . Then we have the following Lemma by the same method
as in Lemma 3.17.

LEMMA 3.25. $\tilde{\omega}_{1}$ is a closed l-form so that there exists a smooth function
$\tilde{\psi}_{1}$ : $M\rightarrow R$ with $d\tilde{\psi}_{1}=\tilde{\omega}_{1}$ .
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Since $\xi_{0}$ is G-invariant, there exists the l-parameter group of transformations
$\phi_{l}^{0}$ generated by $\xi_{0}$ . Let $c_{p}(s)$ be an integral curve of $\xi_{1}$ through a point $p\in M$.
Then, for each point $p\in M,$ $c_{p}(t)$ is defined for any $t\in R$, because of the G-
invariance of $\xi_{1}$ . Define the vector field $\zeta$ on $M$ by $\zeta(p)=\exp(\kappa\alpha\psi_{0}(p))\xi_{1}(p)$

$(p\in M)$ . Let $\phi_{g}^{1}$ be the l-parameter group of transformations generated by $\zeta$ .
Then we have $\phi_{l}^{1}(p)=c_{p}(\exp(\kappa\alpha\psi_{0}(p))s)$ so that $\phi_{s}^{1}$ is complete. Noting $[\xi_{0}, \zeta]$

$=0$, we have $\phi_{t}^{0}\phi_{s}^{1}=\phi_{s}^{1}\phi_{t}^{0}$ . We can verify the following:

$\psi_{0}(\phi_{l}^{0}(p))-\kappa t+\psi_{0}(p)$ , $\psi_{0}(\phi_{s}^{1}(p))=\psi_{0}(p)$

$\tilde{\psi}_{1}(\phi_{t}^{0}(p))=\tilde{\psi}_{1}(p)$ , $\tilde{\psi}_{1}(\phi_{s}^{1}(p))=\iota s+\tilde{\psi}_{1}(p)$ .
Let $M_{1}^{o}$ be a connected component of $M_{1}$ $:=\{p\in M;\psi_{0}(p)=\tilde{\psi}_{1}(p)=0\}$ . Then

by the same procedure as in the case II, we have Lemmas 3.26, 3.27, 3.29, 3.30
and Remark 3.28.

LEMMA 3.26. $M_{1}^{o}$ is a connected $(n-2)$-dimensional spacelike closed sub-

manifold of $M$.

LEMMA 3.27. The map $F:R\times R\times M_{1}^{0}\rightarrow M$ defined by

$F(t, s, x)=\phi_{s}^{1}\phi_{t}^{0}(x)$ for $(t, s, x)\in R\times R\times M_{1}^{0}$

is a diffeomorphism, and $M_{1}=M_{1}^{o}$ is simply connected.

REMARK 3.28. For each $(a, b)\in R\times R$, $M_{1}(a, b):=\{p\in M;\psi_{0}(p)=a$ ,
$\tilde{\psi}_{1}(p)=b\}$ is a simply connected $(n-2)$-dimensional spacelike submanifold of $M$.

LEMMA 3.29. For each $(a, b)\in R\times R,$ $M_{1}(a, b)$ is congruent to $M_{1}$ in $M$.

LEMMA 3.30. $M_{1}$ is a homogeneous Riemannian manifold.

By the same method as in the case II, $M_{1}$ is isometric to $S^{n-1},$ $H^{n-1}$ or
$E^{n-2}$ . We also have following Lemmas 3.31 and 3.32.

LEMMA 3.31. The map
$F:(R\times R\times M_{1}, -\kappa(dt^{2}-\exp(-2\alpha t)ds^{2})+\exp(-2c_{0}t)ds_{M_{1}}^{2})\rightarrow(M, \langle, \rangle)$

is an isometry.

LEMMA 3.32. If $M_{1}=S^{n-2}$ or $H^{n-2}$ , then $c_{0}=0$ .

We note that $(R\times R, -\kappa(dt^{2}-\exp(-2\alpha t)ds^{2})$ is isometric to ($U^{2}=\{(x, y)$ ;
$y>0\},$ $ds_{\kappa}^{2}=\kappa(dx^{2}-dy^{2})/(\alpha y)^{2})$ by the transformation $(t, s)\rightarrow(x=s, y=\exp(\alpha t)/\alpha)$ .
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Thus, in case III, $(M, \langle, \rangle)$ must be one of the following:
(v) $(U^{2}\times M_{1}, ds_{+1}^{2}/\alpha^{2}+ds_{M_{1}}^{2})$ ;
(vi) $(U^{2}xE^{n-2}, ds_{+1}^{2}/\alpha^{2}+(1/\alpha y)^{2c/\alpha}ds_{B}^{2})$ ,

and in case IV, $(M, \langle, \rangle)$ must be one of the spaces
(vii) $(U^{2}\times M_{1}, ds_{-1}^{2}/\alpha^{2}+ds_{M_{1}}^{2})$ ,
(viii) $(U^{2}\times E^{n-2}, ds_{-1}^{2}/\alpha^{2}+(1/\alpha y)^{2c/a}ds_{E}^{2})$ ,

where $(M_{1}, ds_{M_{1}}^{2})$ is a simply connected $(n-2)$-dimensional Riemannian manifold
of constant curvature.

The case $n=9$ . When $n-1=8,\tilde{H}$ is isomorphic to $SO(7)$ or Spin(7) which
has a spin representation. When $H$ is isomorphic to $SO(7)$ , the argument is
the same as in the case $n-1\neq 8$ . Therefore it is enough to deal with the case
that $H$ is isomorphic of $S\mu n(7)$ .

Since $\tilde{H}$ is conjugate to the subgroup Spin(7) of $SO(8)$ , there exists a time-
like G-invariant vector field $\xi$ on $M$ with $\langle\xi, \xi\rangle=-1$ .

By the same method as the proof of Lemma 2.5, we have

LEMMA 3.33. The l-form $\omega$ defined by $\omega(X)=\langle\xi, X\rangle$ is G-invariant and
closed so that threre exists a smooth function $f:M\rightarrow R$ with $ df=\omega$ .

The G-invariance of $\xi$ implies the completeness of $\xi$. There exists the 1-
parameter group of transformations $\phi_{t}$ generated by $\xi$ . Then we have $f(\phi_{t}(p))$

$=-t+f(p)(t\in R, p\in M)$ . Put $N=\{p\in M;f(p)=0\}$ . Then a connected com-
ponent $N^{o}$ of $N$ is a connected closed 8-dimensional spacelike hypersurface of
$M$. By the similar way as in the case I, $N^{o}$ is a homogeneous Riemannian
manifold admitting an isometry group $G^{\prime}$ $:=\{g\in G;g(N^{0})=N^{0}\}$ of dimension
$8(8-1)/2+1=29$ which acts effectively on $N^{o}$ and includes $H$. Then, by the
theorem in [8], $N^{o}$ is isometric to $E^{8}$ and $G^{\prime}=Spin(7)R^{8}$ (a semi-direct product).

We have $\nabla_{X}\xi=-cX$ for any $X$ orthogonal to $\xi$ where $c$ is a constant. In fact,

Stnn(7) acts transitively on $S^{7}:=\{Z\in T_{x}M;\langle Z, \xi\rangle=0, \langle Z, Z\rangle=1\}$ so that the
proof is the same as in [6, Lemma 8]. We also have that the map $F:R\times N^{o}$

$\rightarrow M$ defined by $F(t, x)=\phi_{t}(x)$ for $(t, x)\in R\times N^{o}$ is a diffeomorphism and the
map $F:(R\times N^{o}, -dt^{2}+\exp(-2c)ds_{N^{O}}^{2}\rightarrow(M, \langle, \rangle)$ is an isometry.

4. Final Comment.

In connection with Remark 3.2, we must correct some parts in the previous
paper [6]. There are some ambiguous stataments in [6]. In the Theorem,
the statement “whose isotropy subgroup is compact” should be “whose isotropy
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subgroup at every point is compact”. The statement $H$ is compact” that

precedes Lemma 1 should be $H$ is compact at every point”. We cannot remove the

condition that the isotropy subgroup at every is compact, by the following example.

EXAMPLE. Let $M$ be the n-dimensional de-Sitter space $S_{1}^{n}=\{(u_{0}, u_{1}, \cdots, u_{n})$

$\in R^{n+1},\cdot-u_{0}^{2}+u_{1}^{2}+\cdots+u_{n}^{2}=1\}$ and $G$ the matrix group of the form

$[_{(1-a^{2}-|\chi^{A_{|^{2})/(2a)}^{t}}}^{(a_{(1/a)\chi}^{2}}1++|\chi|^{2})/(2a)$ $-\chi A\chi$ $(1+a^{2}-|\chi^{A_{|^{2})/(2a)}^{l}}(1-a^{2}+|\chi|^{2})/(2a)(1/a)\chi$ $A\in SO(n-1^{n})^{-1}a>0,x\in R$

($c.f.$ , Remark 3.2). Then, for every point $p$ in $S_{1}^{n}$ such that $u_{0}+u_{n}>0$ (resp.

$<0)$ , the G-orbit of $p$ is $U^{+}=\{(v_{0}, \cdots, v_{n})\in S_{1}^{n} ; v_{0}+v_{n}>0\}$ (resp. $U^{-}=\{(v_{0}, \cdots, v_{n})$

$\in S_{1}^{n}$ ; $v_{0}+v_{n}<0$ }) and the isotropy subgroup at $p$ is compact. But, for every
point $q$ in $S_{1}^{n}$ such that $u_{0}+u_{n}=0$, the G-orbit of $q$ is a lightlike hypersurface

of $S_{1}^{n}$ and the isotropy subgroup at $q$ is non-compact.
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