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REAL HYPERSURFACES WITH PARALLEL RICCI
TENSOR OF A COMPLEX SPACE FORM

By
U-Hang Kr*

Introduction.

A Kaehlerian manifold of constant holomorphic sectional curvature c¢ is
called a complex space form, which is denoted by M,(c). The complete and
simply connected complex space form consists of a complex projective space
P,C, a complex Euclidean space C, or a complex hyperbolic space H,C,
according as ¢>0, ¢=0 or ¢<0. The induced almost contact metric structure
of real hypersurfaces of M,(¢) will be denoted by (J, g, P).

Many subjects for real hypersurfaces of a complex projective space have
been studied by Cecil and Ryan [1], Kimura [8], [9], Kon [10], Maeda [13],
Okumura [15], Takagi [16], [17], and so on. One of those, done by

Kimura, asserted the following interesting result.

THEOREM K ([9]). There are no real hypersurfaces of P,C with parallel
Ricci tensor on which the structure vector P is principal.

On the other hand, real hypersurfaces of a complex hyperbolic space H,C
have also been investigated from different points of view and there are some
studies by Chen [2], Chen, Ludden and Montiel [3], Montiel [12] and Montiel
and Romero [14]. In particular, it is proved in the following fact:

THEOREM M. There are no Einstein real hypersurfaces in H,C.

A Riemannian curvature tensor is said to be harmonic if the Ricci tensor
S is of Codazzi type. Although the concept is closely related to a parallel
Ricci tensor, it was shown by Derdzinski and Gray that it is essentially
weaker than the latter one. Nakagawa, Umehara and the present author [6]
proved that there exist infinitely many hypersurfaces with harmonic curvature
and non-Ricci parallel in a Riemannian space form.

Recently, some studies about the non-existance for real hypersurfaces with
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harmonic curvature of P,C (resp. H,C) have been made by Kwon and Nakagawa
(resp. Kim [7]). Their results are following :

THEOREM KNK. There are no real hypersurfaces with harmonic curvature
of M,(c), c#0 on which the structure vector is principal.

The main purpose of the present paper is to improve [Theorem K and
KNK, and study also real hypersurfaces with harmonic curvature of
a complex space form M,(c), ¢c#+0. We shall prove the followings:

THEOREM A. There are no real hypersurfaces with parallel Ricci tensor of
a complex space form My(c), ¢+0.

THHOREM B. There are no real hypersurfaces with harmonic curvature of
M,(c), c#0 satisfying one of the following conditions:

(1) P is an eigenvector corresponding to the Ricci tensor, (2) the number of
Ricci curvatures does not exceed 2.

1. Preliminaries.

We begin by recalling fundamental formulas on real hypersurfaces of a
Kaehlerian manifold. Let N be a real 2n-dimensional Kaehlerian manifold
equipped with a parallel almost complex structure F' and a Riemannian metric
tensor G which is F-Hermitian, and covered by a system of coordinate neigh-
borhoods {U; x4}. Let M be a real hypersurface of N covered by a system of
coordinate neighborhoods {V; y*} and immersed isometrically in N by the
immersion 7: M—N. Throughout the present paper the following convention
on the range of indices are used, unless otherwise stated:

A, B, -=1,2,-,2n;4, j, ~=1,2, , 2n—1.

The summation convention will be used with respect to those system of indices.
When the argument is local, M need not be distinguished from 7(M). Thus,
for simplicity, a point p in M may be identified with the point #(p) and a
tangent vector X at p may also be identified with the tangent vector 7,(X) at
i(p) via the differential 74, of /. We represent the immersion 7 locally by
x4=x4(y") and B;=(B#) are also (2n—1)-linearly independent local tangent
vectors of M, where B#=0;x4 and 0;=0/dy’. A unit normal C to M may then
be chosen. The induced Riemannian metric g with components g;; on M is
given by g;;=G(Bj, B;) because the immersion is isometric.

For the unit normal C to M, the following representations are obtained in
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each coordinate neighborhood:
(1.1) FBiZ./?BiH‘PiC ’ FC_—_—p"B,-,

where we have put J;=G(FBj, B;) and p,=G(FB;, C), p* being components
of a vector field P associated with P; and J;;=J%g,.. By the properties of the
almost Hermitian structure F, it is clear that J;; is skew-symmetric. A tensor
field of type (1, 1) with components J? will be denoted by J. By the properties
of the almost complex structure F, the following relations are then given:

JiJt==0t+pip*, pJr=0, p,Ji=0, pip'=l,

that is, the aggregate (J, g, P) defines an almost contact metric structure.
Denoting by V; the operator of van der Waerden-Bortolotti covariant differenti-
ation formed with g;;, the equations of Gauss and Weingarten for M are
respectively obtained:

(1.2) V,-Bi=hﬁc, VjC:—‘h;B-r,

where h;; are components of a second fundamental form ¢, A=(h% which is

related by h;;=hjg,; being the shape operator derived from C. We notice
hear that hj; is symmetric. By means of and the covariant derivatives
of the structure tensors are yielded:

(1.3) ViJin=—hjipn+hpmp:, VNipi=—h; J3.
In the sequel, the ambient Kaehlerian manifold N is assumed to be of
constant holomorphic sectional curvature ¢ and real dimension 2n, which is

called a complex space form and denoted by M,(c). Then the components of
the curvature tensor K of M,(c) take the following form:

KDCBA:'E—(GDAGCB—GDBGCA+FDAFCB—FDBFCA_—ZFDCFBA)'
Thus, the equations of Gauss and Codazzi for M are respectively obtained:

(1-4) Rkjih':‘%(gkhgji“gjhgki+jkh ]ji"‘]jn jki—zjkj]ih)+hkhhji_"hjhhki ’

(L.5) vkhﬁ—vjhkF&(pkfﬁ—pjfki——Zpifkj),

where R, are the components of the Riemannian curvature tensor R of M.

To be able to write our formulas in a convention form, the components
X7 of a tensor field X™ and a function X,, on M for any integer m(=2) are
introduced as follows:

Xp=X X Xin-t, Xp=5XF.
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In our notation, the Gauss equation (1.4) implies
(1.6) Su=-g1@n+1)gs—3p,pe} +hhy—hi,

where S;; denotes components of the Ricci tensor S of M, and h the trace of

the shape operator A.

REMARK 1. We notice here that the structure vector P cannot be parallel
provided that ¢#0. In fact, if P is parallel along M, then the second equation
of becomes h,,J5=0. Thus, it is not hard to see that h;;=hp;p,; because
of properties of the almost contact metric structure. Hence it follows that

thji—_—(vk h)pjpi, which together with give
T (bu Jui= D Jei=20: Jo)= (Tah)p;—(Tsh)pa} .

By transvecting p®J*/, we have ¢(n—1)=0. Thus the assumption c¢#0 will
produce a contradiction.

2. Real hypersurfaces with harmonic curvature.

Let M be a real hypersurface with harmonic curvature of a complex space
form M,(c), ¢#0, that is, the Ricci tensor S satisfies V,S;;=V;S;;. Then, we
easily, using the second Bianchi identity, see that the scalar curvature » of M
is constant everywhere. Moreover, the Ricci formula for S;; gives rise to

VkaSjt-:VjViSmk—ijkrs’{—ijirSz,
which together with the first Bianchi identity and the Ricci formula imply that
2.1) RurirSi+ Ry jirSn+Rjmi»SE=0,

where S?=S;;g%", g’/* being the contravariant components of g;.. Therefore,

it follows that
JHRyjinSHA2] *RyminSF=0

and hence, in consequence of (1.4),

(= nt3 )eSs0 Tt ASer Ji—(r— A J = DS 18 =2 S T

+2hs hiy ] *S5—2h ks, JTSE=0,
where we have put A,=S;p’p’. By the way, the last two terms of this

reduces to _%ij(hrtpt)hisjrs by virtue of [1.6). Accordingly we have

Sir J5—@n—3)S;; Ji—(r—A)J1s—St- 07D Ji+2p; JH—3h e pthis J7p ;=0
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because of the fact that ¢+0 is assumed, which implies

3hrephis J7+(2n—1)S,.p¢ J5=0.
Thus, the last equation can be written as
2.2)  Cn=3){S; Ji—(SerPND; Ji} —Sir J5+(S7:dVP: J5+r—A)J;:=0,
from which, taking the symmetric parts,

Sie Jit+Sir J5=Ser (05 Ji+0: T3
Hence, the relationship (2.2) turns out to be

2(n—D{S;r Ji—(SerpNp;s J i} +(— A)J;=0.

Transforming this by Ji and utilizing properties of the almost contact metric
structure, it is reduced to

2.3)  2n—D{S;ji—p:iS;rp"—1;Si:p"} —(r— A)g i+ {r+@2n—3) A} p;p.=0,
which implies immediately that
2.49) 2(n—1)(S;—2A4,+AD=0r—A:)?,
where A,=S%p7pt.
PROPOSITION 2.1. Let M be a real hypersurface with harmonic curvature of

a complex space form My,(c), ¢c#0. If the structure vector P is an eigenvector
of the Ricci tensor, namely, if

(25> SijTZAlpj’
then M is Ricci parallel.

PrROOF. By means of [2.5), the relationship (2.3) reduces to
(2.6) 2n—=1)S;i—(r—ANgu+{r—2n—1)A} p;0:=0,
which implies
(2.7) 2(n—1)S%—{r+@2n—3)A:}S;i+A:(r— A, g;:=0.

Differentiating covariantly, we find
(2.8) 2(n—DVS;+ N ADgji—@2n—DN A)D;b:

+{r—Cn—1AH{N:p P+ ap)ps}=0

because the scalar curvature » is constant. Since the Ricci tensor S is of
Codazzi type, it is seen that
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2.9  (VeAdg;i—VAD8k—@n—D{NVe ADp;—N;A0D e} bs
+{r—@n—1)A e p;—Vp)Di+ s p)p;—N;p)p et =0.
If we transvect this with g%, then we obtain
VA, —Q2n—1)(p"V, A)Dprt+{r—Cn—1A:} p'V, =0

and hence p'V,A;=0. Thus, it follows that V,A,+{r—Q2n—1)A,}p"V,p.=0.
Transvecting (2.9) with p7p? and taking account of the last equation, we can
verify that A, is constant everywhere. Therefore, by differentiating
covariantly, we find

2(n—1)V, S5 — {r+2n—3)A,}V.S;=0,
which shows that S%; is of Codazzi type. Thus, the Ricci tensor S is parallel

because the scalar curvature of M is constant (see Umehara, Theorem 1.3 of
[19]). This completes the proof of Proposition 2.1\

REMARK 2. If the structure vector P is principal, that is, A4, p"=ap; we
can see from that P is the eigenvector of the Ricci tensor and hence the
Ricci tensor is parallel.

Now, transforming (2.3) by Si, we obtain

(2.10) 2(n—1){S3—(Seep* NS5 )= DSk p7} —(r—ADS
+{r+@2n—3)A:} p;S:-p7=0,

which enables us to obtain

@n—1)St,p"—{r+@n—3)As}Si,p"p;—(2(n—1)S3, p7
—{r+@2n—3)A,}S;-p"p.=0.

Thus, it is seen that

(2.11) 2(n—1)S%,.p"—{r+@2n—3)A,}Ss . p"=C(n—1)A:— A {r+2n—3)A:})p:.

Making use of the last equation, turns out to be

(2.12) 2(n—1){S5: —(Ssp"NSer PN —(r—A)Sj+pp;0.=0,

where p=A,r—A,)—2(n—1)(A,—A?. Transforming [(2.12) by S} and utilizing
(2.3), (2.11) and [2.12), we get

(2.13) 4n—1’S};—4(n—D{r+(n—2)A,}S3
+{r—A)r+@Un—5)A,)—4(n—1*(A.— AD}S;i—p(r— A1) g =0,

or, equivalently
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(S o5 0 2n—1)St = 2Sur+prgr =0,

where we have put A=r+(2n—3)A,;. Thus the minimal polynomial for S tells
us that there exist at most three Ricci curvatures of M: (r—A,)/2(n—1),
(A£+D)/4(n—1), where

(2.14) D={r—(2n—1)A,}*+16(n—1)*(A.—

And their multiplicities are respectively denoted by 2n—1—4—4, 7, and 4.
Therefore the scalar curvature » of M satisfies

We also have

A(n—1)*Sy= g (B + D)okt +5 23/ Dbt +(r— AP @n—1—4— ),

which together with [(2.4), (2.14) and [2.15) imply that
(2.16) (As—ANH(L+4,—2)=0.

Now, suppose that the number of distinct Ricci curvatures does not exceed
2. Then we can easily see that A,=A?} because of [2.15). Thus, it follows
that S;,p"=A.p;.

According to Proposition 2.1, we have

PROPOSITION 2.2. Let M be a real hypersurface with harmonic curvature of
a complex space form M,(c), c#0. Then the number of distinct Ricci curvature
is at most 3. In particular, it does not exceed 2, then M is Ricci parallel.

3. Real hypersurfaces with parallel Ricci tensor.

In this section we devote to investigate the real hypersurfaces with parallel
Ricci tensor of a complex space form M,(c), ¢#0. Since the Ricci tensor S is
assumed to be parallel, we have (2.13) and hence

4(n—12S;—4(n—1)rS;—4(n—1)(n—2)S, A, +r(r— A2 +4(n—1)rA,(r— A,)
+2(n—1r(A,— A} —2(n—1)2n—1)A:(A;— AD—2n—1) A\(r — A, )=
which together with yield

1
—2(“71—__—1)—(7’*1‘11)34-2(71 —1)A}+3rA,(r—A)—32n—3)S,A4,—37S,

+4(n—1)S;=0.
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Thus, A, is a root of the cubic equation with constant coefficients because S;
is constant for each number 7. Accordingly A, is constant. By the definition
of A,, it is not hard to see that

3.1) Sirp Ve p™=0

because the Ricci tensor is parallel. By differentiating (2.3) covariantly, we find

3.2) 2n—1{(Ved)Ssrp" +Nep)Sir p™+ DS e Ve p™+10;S:: Ve b7}
={r+2n—3)AHNp)D:+N:p)b;}.

If we apply p’ to this and sum for j, and make use of [3.1), we obtain

2(n—1)S:,; Vi p"™=(r— AV ps.

Thus, turns out to be
(Vep)Ssrp™+(Nep)Ser p"=A1(p:iVsp s+ DN D1

Transvecting the last equation with S{p® and utilizing [3.1), we get

3.3) (A,— ANV p:=0

By means of Remark 1, it follows that A,=A? and hence S;,p"=A,p;. There-
fore, the relationship (2.3) is reduced to

2(n—1)S;i=(r—A)Ngii—{r—Cn—1)A:} p;p:.
The Ricci tensor of M being parallel, it is seen that
{7’—(271'—l)Al}(inkpj‘*‘pjvkpi):O

and hence r—(2n—1)A,=0. Thus, M is Einstein. But, there are no Einstein
real hypersurfaces of M,(c), ¢#0 because of [Theorem K and _ M (see
also [10]). Hence [Theorem| A is completely proved.

PROOF OF THEOREM B. Due to [Theorem| A, [Proposition 2.1 and [Proposition|
2.2.

By means of [2.16), Theorem| A and [Proposition 2.2, it is clear that 4=¢=1.
Therefore we can state the following fact:

REMARK 3. Let M be a real hypersurface with harmonic curvature of
M,(c), ¢#0. Then M has three distinct Ricci curvatures: (r—A,)/2(n—1),
(A++/D)/4(n—1), A—~+/D)/4n—1) with multiplicities 2n—3, 1, 1 respectively.
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