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UNIVERSAL TRANSITIVITY OF CERTAIN CLASSES OF
REDUCTIVE PREHOMOGENEOUS VECTOR SPACES
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Shin-ichi KASAI

Introduction.

Let k£ be a field of characteristic zero. Let G be a connected k-split linear
algebraic group, p: G—GL(X ) with X=Aff" a k-homomorphism. If there
exists a Zariski-dense p(é)-orbit Y, we say that (5, o, X) is a prehomogeneous
vector space (abbrev. P.V.). When each irreducible component is castling
equivalent to a non-trivial reduced irreducible prehomogeneous vector space or
each irreducible component is a regular prehomogeneous vector space, we have
completed a classification of reductive prehomogeneous vector spaces over a
complex number field C (see [4], [6)).

Put G::p(Cv). Let [ be the number of G(k)-orbitsin Y (&), i.e., [=|G(E)\Y (k)].
We say that Y is a universally transitive open orbit if [=|G(E)\Y(k)|=1 for
all & satisfying H'(k, Aut(SL,))=0, i.e., there exists a nonsplit quaternion k-
algebra. This condition is satisfied by every local field 2 other than C. Ac-
tually our classification depends on the transitivity of G(k) on Y (k) for just one
k satisfying H'(k, Aut(SL,))#0 (see Remarks 2.13 and 3.5). In and [2],
all irreducible regular prehomogeneous vector spaces with universally transitive
open orbits are classified. In [10], we have classified simple or 2-simple pre-
homogeneous vector spaces with universally transitive open orbits.

In this paper, we shall classify reductive prehomogeneous vector spaces
with universally transitive open orbits when each irreducible component is
castling equivalent to a non-trivial reduced irreducible prehomogeneous vector
space or each irreducible component is a regular prehomogeneous vector space.

This paper consists of the following three sections.

§1. Preliminaries.

§2. Reductive P.V.’s with universally transitive open orbits: the case I.

§3. Reductive P.V.’s with universally transitive open orbits: the case Il

The results are given in Theorems .11, and Corollary 2.12,
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§1. Preliminaries.

PROPOSITION 1.1. We have (=1 for (G, p:@ps XiDX,) if and only if (1)
[=1 for (5, 01, X)) and (2) [=1 for (H, p:|n, X.) where H is a generic isotropy
subgroup of (6, p1, X1).

PROOF. See Proposition 1.5 in [10]. Q.E.D.

COROLLARY 1.2. Assume that (=1 for (5, 01, X1) and (H, ps| go, Xo) where
H® is the connected component of a generic isotropy subgroup H of (5, P1, X1
Then we we have (=1 for (5, 0:Pp. XiPXo).

REMARK 1.3. Assume that [=1 for (G, p, X). Then [=1 for (5, g, X)
with §(G)Dp(G).

PROPOSITION 1.4. The number (=|G(E)\Y (k)| is invariant under a castling

transformation.

PROOF. See [2]. Q.E.D.

THEOREM 1.5. ([1], [2]) A regular irreducible P.V. has a universally trans-
itive open orbit (i.e. |=1) if and only if it is castling equivalent to one of the
following P.V.'s.

(1.1) (HXGL(n), pQA,) where p is an n-dimensional irreducible representation
of H.

(1.2) (GL@2m), A,) with m=2.

(1.3) (Sp(n)XGL@2m), A,QA,) with n=2m.

(1.4) (GLA)xS0@2n), A,RQRA,) with n=2.

(1.5) (GLQ)XSpin(7), A,Qspin rep.).

(1.6) (GLQQ)XSpin(9), A,RQspin rep.).

1.7) (Spin(10)X GL(2), half-spin rep.QA,).

(1.8) (GLQ)XE;, 4,Q4,).

THEOREM 1.6. Any non-regular irreducible P.V., which is not castling
equivalent to (Sp(n)XGL(2), A,Q2A4,), has the universally transitive open orbit.

PROOF. See Corollary 3.22 in [107. Q.E.D.
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§2. Reductive P.V.’s with unveirsally transitive open orbits: the case I.
In this section, we shall consider the case when each irreducible component

is castling equivalent to a non-trivial reduced irreducible P. V.

THEOREM 2.1. ([4]) Let (G, p, V) be an indecomposable reductive P.V.
Assume that each irreducible component of (G, p, V) is castling equivalent to a
non-trivial reduced irreducible P. V. If (G, p, V) does not contain an irreducible
P. V. with |22, then it is castling equivalent to one of the following P.V.’s.

(i)

(2.1) (GLQA)*XSL@2m+1), A+ A,) with m=2.

(2.2) (GL(Q)®*XSpin(8), half-spin rep.+vector rep.).

(2.3) (GLQ)*xSpin(10), half-spin rep.+vector rep.).

(2.4) (GLQA)*xSpin(10), even half-spin rep.+even half-spin rep.).

(2.5 (GLA®*XxSp(n)xSL(m), 4,Q1+4,QA,) with nzm=1.

(2.6) (GLA®XSp(n)XSL2m++1), A'QA,+1RQA,) with 2n>2m+1=5.

2.7 (GLA»XSp(n)XSLEZm+1), (/11+A1)®1+/11®A1) with n=z2m-+1=1.

(i)

2.8)  (GLA:*XSp(n)XSL2m—+1)xXSp(n"), 4,QARQ1+1Q4,QA,) with 2n, 2n'>
2m+1=5.

2.9) (GLA)*XSp(n)XSLB)xSp(n"), /,RQA,Q1+1QAFRA,).

(2.10) (GL)*XSp(n) X SLB)XSp(n"), 4;QIQL+A:QARQ1+1QAFRA,).

(2.11) (GLA*XSp(n)XSp(n"yx SL(3) X Sp(m),
(4:Q1+1Q4)R4RL+1QLRAF R 4.

(2.12) (GLA)*XSp(n)xSp(n")x SL(3)XSp(m),
(A:R1+1Q4)Q A4:Q1+1Q1(AFPR A, +1Q A1)

(2.13) (GLQ)*XxSp(n)xSp(n")xSp(n”) X SL(3) X Sp(m),
(4:Q1R1+1R04,:Q1+1R1R 4)Q 4 RL+1R1RIRAF R A1) .

(iii)

(2.14) (GLAYXSLEZm)XSp(n)xSL2m’+1), 4,Q4,R1+1R4,R4,)

with n=2m, 2m’'+1=2.
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(2.15) (GL(1)*XSL2m)XSp(n) X SLB)XSp(n’),
A,RA,QIR1+1R4,Q4,R1+1R1RQ A, A;) with n=2m=2.

(2.16) (GLA)*XSLE2m—+1)XSp(n)XSL2)XSp(n")XSL(2m’'+1),
4,Q4,Q1R1R1+1Q 4, 4:R1R1+1Q1R 4, 4,:Q1 +1R1R1Q 4,&Q A1)
with n=22m+1=21 and n'=22m’+1=1.

(2.17) (GLA)Y*XSL@2m~+1)XSp(n) X SL(2)XSp(n")y X SL(3) X Sp(n”),
A,R4,Q1R1IR1IR1+1R4,:QA,RIRQIR1 +1R1RA4,RA,R1R1
+1RIRIRA,R4,RQL+1RIRIRIR AR A,) with n=2m+1=1.

(2.18) (GL(1)*XSLE@m+1)xSp(n)XSL2)XSp(n")XSp(n”)XSL2m’'+1)
XSL(2m”+1),

(A4, Q4:R1+1Q4:QA4)RIR1IR1IR1 +1RQ1RQ A, (A4, R1+1Q 4,)RLR1
+1Q1R1RA(4:Q1Q4,Q1+1Q4:Q1Q 4,))
with n=22m+1=21, n’22m’+1=1 and n”=2m”+1=1.

(2.19) (GLQ)XSL@)XHyX - X H; |
AQTRIRQ -+ RL+1QTRIR -+ QL+ -+ +1Q) - QLR7y))
where (Hj, ;) 1= j<i) is one of (SL2n+1), 4,) (n=2), (Sp(n), A,)(n=2)
and (Spin(10), half-spin rep.).

(2.20) (GLQ)*+**X(G'XSL(2))X(H,X --- X Hy),

(prt+ - + )RR -+ QL+1RARQ(TRLR) -+ QL+ -+ +1R -+ R1R74))

where (GL(1)*XG’"XSL(2), p1+ -+ +p) is one of (2.14) with m=1, (2.15)
with m=1, (2.16), (2.17) and (2.18), and (H;, t;)A1<j<i) is one of
(SL2n+1), A;)(n=2), (Sp(n), A)(n=2) and (Spin(10), half-spin rep.).

PROPOSITION 2.2. We have (=1 for P.V.s in (i), i.e., 2.1)~Q2.7) in
Theorem 2.1,

Proor. By [10], we obtain our assertion. Q.E.D.

PROPOSITION 2.3. We have [=1 for P.V.s in (ii), i.e., (2.8)~(2.13) in
[Theorem 2.1.

Proor. By Corollary 3.8 in [10], we have [=1 for (2.8) (resp. (2.9), (2.10),
(2.11), (2.12), (2.13)) if and only if (=1 for (GL(1)*XSL(2m++1), A,+ A,) (resp.
(GL(1)! X SL(3), AX+ Af*), (GL(l)’XSL(3), A¥+ A+ ApO%), (GL(1)*XSL(3),
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¥ A%+ AF), (GLL)*XSLE), A%+ A+ (A¥+4)), (GLA)*XSL@M), AT+ A%
+ A%+ A80%)). Hence we obtain our assertion by [10]. Q.E.D.

PROPOSITION 2.4. We have |=1 for a P.V. (2.14) in Theorem 2.1.

Proor. By Corollary 3.8 in [10], we have [=1 for a P.V. (2.14)=
(Sp(n)X(GL2m)XGL2m’+1)), A, Q(A,R1+1R4,)) if and only if [=1 for
(GL2m)XGL2m'+1), 4,Q1+A4,RQ4,+1R4,). Since an irreducible P.V.
(GL(2m), A,) has a universally transitive open orbit and a generic isotropy sub-
group of (GL(2m), A,) is isomorphic to Sp(m), it is enough to show that
(Spm)XGLCm'+1), 4,QA,+1RQ4,) has a universally transitive open orbit.
By Proposition 4.4 in [10], we may assume that 2m>2m’+1. Then, by
Corollary 3.8 in [10], it has a universally transitive open orbit if and only if
(GL@2m’+1), A,+A,) has a universally transitive open orbit. By the proof of
Proposition 2.15 in [10], we have (=1 for (GL(2m'+1), A+ 4,). Q.E.D.

PROPOSITION 2.5. We have [=1 for a P.V. (2.15) in Theorem 2.1.

ProOF. By Corollary 3.8 in [10], we have (=1 for a P.V. (2.15) if and
only if (=1 for (GL(1)*XSL2m)XSp(n) X SL3), A:QA,RQ1+1Q4A,QRQA,+1R1RQAy).
By the same argument as in the proof of lPrbposition 2.4, it is equivalent to
say that [=1 for a P.V. (GL3)XGLQ), (Ay+ A)RQ1+ A,R4,)=(GLE)XGL(1),
QA +144y)) (if m=2), (SL2)XGL3)XGL(1), (A1®/11+1®Az)®1+1®/1f®/11)
(if m=1 and n=3), (GL1)XSL2)XSp(2)XGLEB)XGL(1), 4,Q4,Q4,Q1Q1+1R1
RARARQL+1RQIRQIRA*R A,) (if m=1 and n=2). By Lemma 2.2 in [10], we
have [=1 for (GL(3)XGL(1), A*Q(1+1+4,)). By the proof of Proposition 2.4,
(SL2)XGL(3), 4,QA,+1R4,) has a universally transitive open orbit, and the
GL(3)-part of its generic isotropy subgroup is locally isomorphic to
{[ 0. gﬁ (T)]} Thus we have (=1 for (SL2)XGLB)XGLQ), (4®4+1R4)R1

0, 0, &
+1Q®A4*¥RA4,). Also, by [Proposition 2.4, we have (=1 for (GL(1)XSL(2)XSp(2)

XGL(3), 4,Q4,RQ4,RQ1+1R1R4,@A4,), and the GL(3)-part of its generic

—-a, B, T
isotropy subgroup is locally isomorphic to {[ 8, %, O]} Thus we have [=1
, U, &
for (GL)XSL2)XSp2)XGLB)XGL(1), 4,R4,R34,Q1R1+1R1RA,QA,:RL+
IRIRLIRQAXR A,). Q.E.D.

LEMMA 2.6. We have =1 for a P. V. (GL1?XHXSL(2), pQr+1Q4,) if
and only if =1 for a P. V. (GL(1)*XHXSL(2)XSp(n)XSL2m+1), pQrRIQL+
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PROOF. By calculations similar to the proof of Lemma 2.7 in [10], we
obtain that a generic isotropy subgroup of (Sp(n)XGL(2m), A,RQA,) is isomorphic
to {([‘g g], tA-t); ASSp(m), BESHn—m)}=Spim)x Sp(n—m) (cf. p.101 in
[13]). Thus, by Proposition 1.1, we have (=1 for a P.V. (GL(1)*XHXSL(2)
XSp(n)XSL2m+1), pQrRIR1+1RQ4:RA4A,Q1+1RQ1R4,Q4;) if and only if
[=1 for a P.V. (GL(1)XHXSL@2)XSp(n—1)XGL2m+1), 4,QpRrR1IRQ1+1RQ
1Q(4,RQ14+1R4,)R4,). By Corollary 3.8 and Lemma 4.3 in [10], a P.V.
(GL1)X HXSL@2)XGL2m+1)XSp(n—1), 4,QpRt@1R1+1R1RQ(4:QR 4, @1 +1
RA,RA4,)) has a universally transitive open orbit if and omnly if a P.V.
(GLAL)X HXSL(2)XGL2m+1), 4,QpRtR1+1R1R4,Q4,+1RQ1RQ1RA;) has a
universally transitive open orbit. By Proposition 4.4 in [10], it is equivalent
to say that a P. V. (GL(1)*X HXSL(2), pQ&7+1R®4,) has a universally transitive
open orbit. Hence we obtain our assertion. Q.E.D.

PROPOSITION 2.7. We have =1 for a P.V.’s (2.16) and (2.18) in Theorem
2.1.

Proor. By Theorem 2.19 in [10], a P.V. (GL(1)*XSL(2), A,+A,) (resp.
(GL(1)*XSL(2), A,+A,+ A))) has a universally transitive open orbit, and hence,
by Lemma 2.6, we have (=1 for (2.16) (resp. (2.18)). Q.E.D.

PROPOSITION 2.8. We have (=1 for a P. V. (2.17) in Theorem 2.1.

ProoF. By Lemma 2.6 and Corollary 3.8 in [10], we have (=1 fora P.V.
(2.17) if and only if (=1 for (GL(1)*XSL2)XSp(n")XSL(3), 4,Q1R1+A4,R4,R
1+1QA4,QA,+1R1RQA%). By the proof of it is enough to show
that (=1 for a P.V. (GL(1)XSL@2)XGLB)XGL(1), 4,QA4:QIR1+1R(A,RA,+
1R A)R1+1RIRQ AR A,) (f n=3), (GLA)XGLA)XSL2)XSp(2)XGL(B)XGL(1),
A:R1Q4,:Q1RQ1R1+H1Q(A4,R4,Q A4, R1RN+1R1R A4:R4,Q1+1QLRIRQ AR A1)
(if n=2). By the proof of [Proposition 2.5, (SL(2)XGL(@3)XGL(l), (4,RA4,+1
RA)RQL+1RQA¥RA,) and (GLA)YXSLR2)XSp2)XGLB)XGL(1), 4,Q4,Q4,R1
R1+1R1RA4,RA4,RQ1+1R1R1®A*R A,) have universally transitive open orbits,
and the SL(2)-parts of its generic isotropy subgroups are locally isomorphic to
SO(2). Thus we have [=1 for (GL(1)XSL2)XGLB)XGL(1), 4,Q4,R1R1+1R
AR, +1RA)R1+1R1RQA¥R A4;,) and (GLAYXGLQ)XSL2)XSp2)xX GL(3)X
GL(1), 4,Q1Q4,R1RQ1R1+1R(4,@ 4, 4,Q1R1+1RQ1R4,Q 4:RQ1 + IQIRQL®
AR A4). Q.E.D.
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LEMMA 2.9. We have [=1 for a P. V. (GLQ)***X(G' X SL2)) X (H, X -+ X H;),
(p1F - +0.)R0E - Q@) + (1R 4R R1IQ) - RI+1RQ7.RLQ) -+ QL+ -+ +1Q
< Q@LQ7y) if and only if (=1 for a P.V. (GL(1)*XG’'XSL(2), p:+ - +ps),
where (H;, v;) 1<7<4) is one of (SL2n+1), 4,) (n=2), (Sp(n), 4) (n=2) and
(Spin(10), half-spin rep.).

PrROOF. We have [=1 for irreducible P.V.’s (SL2n+1)XGL(2), 4,RA4,)
(Sp(n)XGL(2), A4,QA4,) and (Spin(10)}XGL(2), half-spin rep.®4,), and each
GL(2)-part of its generic isotropy subgroup contains SL(2) (see [13]). Hence,
by Proposition 1.1 and [Corollary 1.2, we obtain our assertion. Q.E.D.

PROPOSITION 2.10. We have (=1 for P.V.’s (2.19) and (2.20)

PrROOF. By Propositions 2.4, 2.5, 2.7, and Lemma 2.9, we obtain our
assertion. Q.E.D.

THEOREM 2.11. Let (G, p, V) be an indecomposable reductive P. V. Assume
that each irreducible component of (G, p, V) is castling equivalent to a non-trivial
reduced irreducible P.V. Then we have (=1 for (G, p, V) if and only if
(G, p, V) does not contain any irreducible P. V. with =2, namely, it is castling
equivalent to one of P.V.’s (2.1)~(2.20) in Theorem 2.1.

PrROOF. By Propositions 2.2, 2.3, 2.4, 2.5, 2.7, 2.8, and Theorem 2.1,

we obtain our assertion. Q.E.D,

COROLLARY 2.12. Let (G, p, V) be a regular indecomposable reductive P. V.
with a universally transitive open orbit. If each irreducible component of
(G, p, V) is castling equivalent to a non-trivial reduced irreducible P.V., then
(G, p, V) is castling equivalent to one of the following P.V.’s.

(1) (GLQ):?*XSp(n)XSL2m+1), 4,Q1+4,QA4,) with n=2m+1=1.

(2) (GLQ)*xSpin(8), half-spin rep.+vector rep.).

(3) (GLQ)*XSpin(10), half-spin rep.+vector rep.).

4) (GLQ1)>*XSpin(10), even half-spin rep.+-even half-spin rep.).

(5) (GL(1)*XSL2)XHX -+ XH;, 4,Q(r,:Q1R -+ R + 1Q7.Q1K -+ QL1+ -+
+1® - Q1Rry)), where (Hj, t;) (1<j<i) is one of (Sp(n), Ay) (n=2) and
(Spin(10), half-spin rep.).

REMARK 2.13. In [2], it is proved that, for (GL(7), 4,), Y(k) is G(k)-
transitive for any local field % other than R. And, (GL(7), 4,) is the only one
irreducible P.V. which depends on the transitivity of G(k) on Y (k) for just one
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k satisfying H'(k, Aut(SL,))#0. In our case I, there is not any P.V. satisfying
such condition. Because, in our classification [4], no P.V. contains an irreduci-
ble component which is castling equivalent to (GL(7), A,).

§3. Reductive P.V.’s with universally transitive open orbits: the case II.

In this section, we shall consider the case when each irreducible component

is a regular P.V.

PROPOSITION 3.1. We have [=1 for a P. V. (GL(1)*XG’XSL(2), p1+ - +ps)
if and only if =1 for a P.V. (GLQ)**'X(G’'XSL2))XH, (p:+ -+ +p»)R1+
(1R A)Rr), where (H, t) is one of (SL(2), A,), (Sp(n), A,) (n=2) and (Spin(10),
half-spin rep.).

PrROOF. By [Theorem 1.5, irreducible P.V.’s (SL(2)XGL(2), 4,Q4,),
(Sp(n)XGL(2), 4,4,) and (Spin(10) X GL(2), half-spin rep.®4,) have universally
transitive open orbits, and each GL(2)-part of its generic isotropy subgroup

contains SL(2) (see [13]). Hence, by [Proposition 1.1] and [Corollary 1.2, we

obtain our assertion. Q.E.D.

PROPOSITION 3.2. We have (=1 for a P. V. (GL(1)*XH, p,+ - +p4) if and
only if =1 for a P.V. (GLQL)***X HXSL(n), (o1+ - +p2)R@L+1tQRA,), where t
is an n-dimensional irreducible representation of a connected semi-simple algebraic
group H satisfying the following condition: there is a simple normal algebraic
subgroup K of H such that | x#1 and p:|x*1 for some i (1<i<k).

PrROOF. Since an irreducible P.V. (HXGL(n), t®4,) (degr=n) has a uni-
versally transitive open orbit and a generic isotropy subgroup of it is ismorphic
to H, we obtain our assertion by [Proposition 1.1 and Corollary 1.2. Q.E.D.

PROPOSITION 3.3. We have (=1 for a P.V. (GL(1)**XHXSL(n), (0,+ -
+0)RL+7®A,) if and only if =1 for a P. V. (GL(1)***X HXSL(n), cQ1+1Q
A,), where (GL(1)* X H, o) is a direct sum of (GL(1)*}XH’, p,+ - +ps) anda P. V.
(GLQ)*XH”, psert -+ +pr) t=k—s=1) with =1 and © is an n-dimensional
irreducible representation of H satisfying the following condition : there is a simple
‘normal algebraic subgroup K” of H” such that t|gx-+1 and e;| x-#1 for some i
(s+1=i<k).

PROOF. By Proposition 3.2, we obtain our assertion. Q.E.D.
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THEOREM 3.4. Let (G, p, V) be an indecomposable reductive P.V. with a
unmiversally transitive open orbit. If all irreducible components of (G, p, V) are
regular P.V.’s, then (G, p, A) is obtained from the following P.V.'s (1)~(9) by
a finite number of transformationsin Propositions 3.1, 3.2, 3.3 and castling trans-
formations (see Theorem 2.5 in [5]).

(1) (HXGL(n), pQA,) where p is an n-dimensional irreducible representation
of H.

(2) (GL(2m), A5) with m=2.

3) (Sp(n)XGL2m), 4,RQA4,) with n=2m.

(4) (GLQ)XS0@2n), A,Q4,) with n=2.

(B) (GLQ)XSpin(7), A,Qspin rep.).

(6) (GLQ)XSpin(9), 4,Qspin rep.).

(7)) (Spin(10)XGL(2), half-spin rep.QA,).

8) (GL()XE,, 4,Q4,).

9 (GL()*xSpin(8), half-spin rep.+vector rep.).

Proor. By Theorem 2.5 in and [Theorem 1.5, Propositions 2.2, 8.1,
B.2, B.3, we obtain our assertion. Q.E.D.

REMARK 3.5. In our case II, there are P.V.’s which depend on the trans-
itivity of G(k) on Y (k) for just one % satisfying H'(k, Aut(SL,;))#0. We can
obtain a such P.V. from (GL(7), 4;) and P.V.’s (1)~(9) in by
same procedures as in Because (GL(7), ;) is the only one regular
irreducible P.V. which depends on the transitivity of G(%k) on Y (k) for just
one k satisfying H (%, Aut(SL,))+0.
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