ON THE EXISTENCE OF A STRAIGHT LINE

By
Fumiko Ohtsuka

§ 1. Introduction.

Let M be a connected, complete, non-compact, oriented and finitely connected Riemannian 2 -manifold. The total curvature of such an M is defined to be an improper integral of the Gaussian curvature G with respect to the volume element of M and expressed as $C(M)=\int_{M} G d_{M}$. The influence of total curvature of such an M have been investigated by many people. The pioneering work on total curvature was done by Cohn-Vossen in [1], which stated that if M admits total curvature, then $C(M) \leqq 2 \pi \chi(M)$, where $\chi(M)$ is the Euler characteristic of M. He also proved in [2] that if a Riemannian plane M (i.e. M is a complete Riemannian manifold homeomorphic to \boldsymbol{R}^{2}) admits total curvature and if there exists a straight line on M, then $C(M) \leqq 0$. It is known that this is generalized as follows. (Confer section 4 in [4].); Let M have only one end. If such an M admits total curvature and if M contains a straight line, then $C(M) \leqq$ $2 \pi(\chi(M)-1)$.

It is natural to consider whether the converse of the fact mentioned above is true or not. In this paper, we shall prove the following theorem.

Theorem. Let M be a connected, complete, non-compact, oriented and finitely connected Riemannian 2-manifold having one end. If M admits total curvature which is smaller than $2 \pi(\chi(M)-1)$, then M contains a straight line.

In the case where $C(M)=2 \pi(\chi(M)-1)$, it is not always that M contains a straight line. In section 4, we shall show an example of a C^{2}-surface M whose total curvature is equal to 0 and on which there are no straight lines. Finally we shall note that if M has more than one end, then it is obvious that M contains a straight line.

§ 2. Preliminaries.

This section is devoted to introduce some definitions and the properties used throughout this paper.

From completeness and non-compactness of M, through every point on M there is at least a ray $\gamma:[0, \infty) \rightarrow M$, where it is a unit speed geodesic satisfying $d\left(\gamma\left(t_{1}\right), \gamma\left(t_{2}\right)\right)=\left|t_{1}-t_{2}\right|$ for all $t_{1}, t_{2} \geqq 0$, and d is the distance function induced from the Riemannian metric on M. A unit speed geodesic $\gamma: \boldsymbol{R} \rightarrow M$ is called a straight line if $d\left(\gamma\left(t_{1}\right), \gamma\left(t_{2}\right)\right)=\left|t_{1}-t_{2}\right|$ for all $t_{1}, t_{2} \in \boldsymbol{R}$. From now on, geodesics are assumed to be unit speed unless otherwise mentioned. By definition, M is said to be finitely connected if it is homeomorphic to be a compact 2-manifold (without boundary) with finitely many point removed. The number of these points removed is equal to the number of ends on M.

For a point p on M let M_{p} and S_{p} be the tangent space to M at p and the unit circle of M_{p} centered at the origin. S_{p} is equipped with the natural measure which is induced from the Riemannian metric on M. Let $A(p)$ be the set of all unit vectors tangent to rays emanating from p. Then the following lemma is known. (Confer section 4 in [4].)

Lemma 1. Let M be a connected, complete, non-compact, oriented and finitely connected Riemannian 2-manifold having one end. If M admits total curvature and if $D \subset M$ is a domain bounded by two rays emanating from a point $p \in \partial D$ such that any ray starting from p dose not intersect D and if $M \backslash D$ is homeomorphic to a closed half-plane, then

$$
C(D)=2 \pi(\chi(M)-1)+\Varangle(u, v),
$$

where $u, v \in A(p)$ are tangent to the rays lying in the boundary of D.

§ 3. Proof of Theorem.

First we consider the case that $\int_{M} G_{-} d_{M}>-\infty$, where $G_{-}=\min (G, 0)$. We put $\varepsilon=\{2 \pi(\chi(M)-1)-C(M)\} / 2>0$. Then there exists a compact set $K \subset M$ such that

$$
\begin{aligned}
& \int_{K} G_{-} d_{M}<\int_{M} G_{-} d_{M}+\varepsilon \text { and } \\
& M \backslash K \text { is homeomorphic to } S^{1} \times[0, \infty),
\end{aligned}
$$

where S^{1} denotes a unit circle. For an arbitrarily point p on $M \backslash K$, we shall show that there exists a ray emanating from p which intersects with the interior of K.

Now, we suppose that such a ray dose not exists. Let Ω denote the set of all elements $(u, v) \in A(p) \times A(p)$. Note that Ω is not empty from the nonemptiness of $A(p)$ and is closed on $S_{p} \times S_{p}$ from the closedness of $A(p)$. Then
there exists the element (u, v) of Ω satisfying

$$
\Varangle(u, v) \leqq \Varangle\left(u^{\prime}, v^{\prime}\right) \quad \text { for all }\left(u^{\prime}, v^{\prime}\right) \in \Omega,
$$

where the angle is measured with respect to the domain containing K. It should be noted that if $u=v$, then the angle is understood as $\Varangle(u, v)=2 \pi$. Let E be a component containing K and bounded by $\gamma_{u}([0, \infty))$ and $\gamma_{v}([0, \infty))$, where γ_{u} is a ray with initial vector $\gamma_{u}{ }^{\prime}(0)=u$. From Lemma 1, we have

$$
C(E)=2 \pi(\chi(M)-1)+\Varangle(u, v)>2 \pi(\chi(M)-1) .
$$

On the other hand, we have

$$
\begin{aligned}
& \int_{K} G_{+} d_{M} \leqq \int_{E} G_{+} d_{M} \leqq \int_{M} G_{+} d_{M} \\
& \int_{E} G_{-} d_{M} \leqq \int_{K} G_{-} d_{M}<\int_{M} G_{-} d_{M}+\varepsilon
\end{aligned}
$$

where $G_{+}=\max (G, 0)$ and last inequality is due to the construction of K. Hence

$$
C(E)<C(M)+\varepsilon<2 \pi(\chi(M)-1) .
$$

This is a contradiction. Therefore there exists a ray emanating from p which intersects with the interior of K.

Let $\left\{p_{j}\right\}$ be the sequence of points on $M \backslash K$ such that $\left\{d\left(p_{j}, K\right)\right\}$ is a monotone divergent sequence. As is shown above, for each j there exists a ray γ_{j} emanating from p_{j} which intersects with the interior of K. Since K is compact there exists a subsequence $\left\{\gamma_{k}\right\}$ of $\left\{\gamma_{j}\right\}$ such that γ_{k} converges to a straight line as k tends to infinity.

Next we consider the case that $\int_{M} G_{-} d_{M}=-\infty$. Since M admits total curvature, $\int_{M} G_{+} d_{M}<\infty$. We can choose the positive number ε satisfying $\varepsilon>\int_{M} G_{+} d_{M}$. Then there exists a compact set $K \subset M$ such that

$$
\begin{aligned}
& \int_{K} G_{-} d_{M}<2 \pi(\chi(M)-1)-\varepsilon \quad \text { and } \\
& M \backslash K \text { is homeomorphic to } S^{1} \times[0, \infty) .
\end{aligned}
$$

In the sequel similarly as the privious case we can prove the existence of a straight line passing through K. Thus the proof of Theorem is complete.

§ 4. Example.

We shall construct a C^{2}-surface M in E^{3} whose total curvature is equal to 0 and on which there are no straight lines. The construction is carried out as follows. Consider the C^{2}-function $f:(-\infty, 1] \rightarrow[0, \infty)$ defined by

$$
\begin{array}{ll}
f(x)=x^{4}-\left(x^{2} / 2\right)+1 & \text { for } x \leqq 0, \\
f(x)=\left(1-x^{2}\right)^{1 / 2} & \text { for } 0 \leqq x \leqq 1 .
\end{array}
$$

Then M is defined as a surface of revolusion around the x-axis whose generating line is the graph of f in the $(x z)$-plane. It is easy to see that $C(M)=0$. Next we shall see that there are no straight lines on M. Let $K=\{(x, y, z) \in$ $M \mid x \geqq-1 / 2\}$. Since the boundary of K is a closed geodesic, it is obviously that there are no straight lines passing through any point on K. Furthermore there are no straight lines on $M \backslash K$. In fact, suppose that there exists a straight line α on $M \backslash K$. Then α divides M into two components $M_{1} \supset K$ and M_{2}. Now, it has already been proved by Cohn-Vossen in [2] that $C\left(M_{1}\right) \leqq 0$ and $C\left(M_{2}\right) \leqq 0$. In particular, $C\left(M_{2}\right)<0$ because the Gaussian curvature is negative on $M \backslash K$. Hence $C(M)=C\left(M_{1}\right)+C\left(M_{2}\right)<0$. This is a contradiction.

References

[1] Cohn-Vossen, S., Kürzeste Wege und Totalkrümmung auf Flächen, Compositio Math. 2 (1935), 63-133.
[2] Cohn-Vossen, S., Totalkrümmung und Geodätische Linien auf einfach zusammenhängenden offenen volständigen Flächensträcken, Recueil Math. Moscow 43 (1936), 139-163.
[3] Shiga, K., A relation between the total curvature and the measure of rays, Tôhoku Math. J., 36 (1984), 149-157.
[4] Shiohama, K., An integral formula for the measure of rays on complete open surfaces, J. Differential Geometry 23 (1986), 197-205.

Department of Mathematics
Faculty of Science
Ibaraki University
Mito, Ibaraki, 310, Japan

