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\S 1. Introduction.

Let $(\Omega, F, P)$ be a probability space with an increasing family $\{F_{l} ; t\geqq 0\}$ of
$sub-\sigma$-algebras of $F$ and let $W(t)$ be a d-dimensional Brownian motion process
adapted to $F_{l}$ . Then, we consider, on the Euclidean d-space $R^{d}$ , the system of
the stochastic differential equations;

(1.1) $dX^{\epsilon}(t)=b(X^{\epsilon}(t))dt+\epsilon^{1/2}\sigma(X^{\epsilon}(t))dW(t)$ , $X^{\epsilon}(O)=x\in R^{d}$ ,

where $\epsilon>0$ is a small parameter, $b(x)=(b_{i}(x))_{i=1,\cdots,d}$ is a d-vector function and
$\sigma(x)=(\sigma_{ij}(x))_{i.j=1,\ldots d}$ is a $d\times d$-matrix function. Throughout the paper we assume
that $b(x)$ and $\sigma(x)$ satisfy a local Lipschitz condition with respect to $x\in R^{d}$ .

We shall study the behavior of $X^{\epsilon}(t)$ as $\epsilon\rightarrow 0$ . This behavior will depend

on the behavior of solutions of the dynamical system;

(1.2) $dX^{0}(t)=b(X^{0}(t))dt$ , $X^{0}(0)=x\in R^{d}$ ,

The system (1.1) can be considered as a small random perturbation of (1.2),

with randomness expressed by a diffusion term $\epsilon^{1/2}\sigma dW$. Set $a(x)=\sigma(x)\sigma^{*}(x)$ ,

where the *means transpose. When $a(x)$ is uniformly elliptic and bounded,

Freidlin and Wentzell [2] and also Friedman [3] obtain the large deviation
principle for $X^{\epsilon}(t)$ . The former assumes the boundedness condition on $b(x)$ and
$\sigma(x)$ together with a global Lipschitz condition in $R^{d}$ . The latter assumes the
boundedness condition on $a(x)$ and $b(x)$ together with a global Holder condition
with exponent $0<\alpha\leqq 1$ in the whole space $R^{d}$ . Recently, under the positive
definiteness condition on $a(x)$ , Stroock [6] shows the large deviation principle,

only assuming that $b(x)$ and $\sigma(x)$ satisfy a global Lipschitz condition in $R^{d}$ .
The first purpose of this paper is to obtain a large deviation principle for

$X^{\epsilon}(t)$ under a satisfaction of some growth restriction on $b(x)$ and $\sigma(x)$ . The
most illustrative application is Theorem 3.1 with Example 2.1. It asserts that,

in the problem of large deviations, the classical condition of linear growth in
the phase variable of the coefficients can be weakened by allowing a logarithmic
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factor.
Next, let $f(u)$ and $g(u)$ be scalar functions wnich satisfy a local Lipschitz

condition with respect to $u\in R^{1}$ , and introduce the function

$F(u)=\int_{0}^{u}f(s)ds$ .

Then, we consider the following systems of the two-dimensional stochastic dif-
ferential equations;

$X^{\epsilon}(t)=(X_{1}^{\epsilon}(t), X_{2}^{\epsilon}(t))$ ,

(1.3) $\left\{\begin{array}{l}dX_{1}^{\text{\’{e}}}(l)=[X_{2}^{\epsilon}(l)-F(X_{1}^{\epsilon}(t))]dl,\\dX_{2}^{\epsilon}(t)=-g(X_{1}^{\epsilon}(t))dt+\epsilon^{l,2}dw(l),\end{array}\right.$

$X^{\epsilon}(0)=x\in R^{2}$ ,

$\tilde{X}^{\epsilon}(t)=(\tilde{X}_{1}^{\epsilon}(t),\tilde{X}_{2}^{\epsilon}(t))$ ,

(1.4) $\left\{\begin{array}{l}dX_{1}^{\epsilon}(l)=[X_{2}^{\epsilon}(t)-\epsilon F(X_{1}^{\epsilon}(t))]dt,\\d\tilde{X}_{2}^{\text{\’{e}}}(l)=-g(\tilde{X}_{1}^{\epsilon}(t))dt+\epsilon^{1/2}dw(t),\end{array}\right.\sim\sim$

$\tilde{X}^{\epsilon}(0)=x\in R^{2}$ ,

where $w(t)$ is a one-dimensional Brownian motion process adapted to $F_{\iota}$ . The
solutions of (1.3) and (1.4) can be regarded respectively as the responses of the
harmonic oscillators of the Li\’enard type

(1.3) de $+f(u)\dot{u}+g(u)=\epsilon^{1/2}\dot{w}$

and

(1.4) ii $+\epsilon f(u)\dot{u}+g(u)=\epsilon^{1/2}\dot{w}$

with damping $f$ and restoring force $g$ to the (formal) white noise $\dot{w}$ , where the
dotted notation stands for the symbolic derivative $d/dt$ . The second purpose
of this paper is to get large deviation results for solutions of (1.3) and (1.4).

The results of Theorem 4.1 and Theorem 5.1 generalize the estimates of
Dubrovskii [1] which treats a special case of (1.3) with $f\equiv 0$ and $g$ satisfying

a global Lipschitz condition in $R^{1}$ . We note that (1.3) and (1.4) contain the
oscillator of the Van Der Pol type;

$f(u)=u^{2}-1$ , $g(u)=u$ ,

where the deterministic system has a stable limit cycle in the Li\’enard plane
$(u, v)$ with

$v=\dot{u}+F(u)$ or $v=\dot{u}+\epsilon F(u)$ .
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In accordance with Stroock [6, p. 23] and Varadhan [7, p. 3] we give the
following definitions.

DEFINITION 1.1. Let $X$ be a complete separable metric space with Borel
field $\mathscr{Q}$ . We say that the function $I:X\rightarrow[0, \infty]$ is a rate function if

(i) $ I\not\equiv\infty$ ,

(ii) $I$ is lower semi-continuous,
(iii) for any $1\geqq 0,$ $\{x;I(x)\leqq l\}$ is compact.

DEFINITION 1.2. A family $\{\mu^{\epsilon} ; \epsilon>0\}$ of probability measures on (X, $\mathscr{Q}$ ) is
said to satisfy the large deviation principle with a rate function $I$ if

(1.5) $\lim_{\epsilon\rightarrow}\sup_{0}\epsilon$ Iog $\mu^{\epsilon}(C)\leqq-\inf_{x\in C}I(x)$

for all closed sets $C$ in $X$, and

(1.6) $\lim_{\epsilon\rightarrow}\inf_{0}\in\log\mu^{\epsilon}(\mathcal{G})\geqq-\inf_{x\in 9}I(x)$

for all non-empty open sets $\mathcal{G}$ in $X$. When $X$ is a metric space with metric $\rho$ ,
we shall use the equivalent estimates later on:
(I) for any $\delta>0,$ $\gamma>0$ and $s_{0}>0$ there exists an $\epsilon_{0}>0$ such that

$\mu^{\epsilon}\{y;\rho(x, y)<\delta\}\geqq\exp\{-\frac{1}{\epsilon}(I(x)+\gamma)\}$

for all $\epsilon\leqq\epsilon_{0}$ and all $x\in\Phi(s_{0})$ , where $\Phi(s)=\{x;I(x)\leqq s\}$ ;

(II) for any $\delta>0,$ $\gamma>0$ and $s>0$ there exists an $\epsilon_{0}>0$ such that

$\mu^{\epsilon}\{y;\rho(y, \Phi(s))\geqq\delta\}\leqq\exp\{-\frac{1}{\epsilon}(s-\gamma)\}$

for all $\epsilon\leqq\epsilon_{0}$ , where $\rho(y, \Phi(s))=\inf_{x\in(s)}\rho(y, x)$ .

The following remark follows from Freidlin and Wentzell [2, pp. 84-85].

REMARK 1.1. When $I(x)$ is a rate function on $X,$ $(1.5)$ is equivalent to (II)

and also (1.6) is equivalent to $(I)_{eq}$ .

\S 2. Explosion and upper bound of solutions.

Here we evaluate the asymptotic probability with which the solutions of
(1.1), (1.3) and (1.4) leave the bounded domain. For this purpose we treat the
general form of the system;

(2.1) $dX^{\epsilon}(t)=b^{\epsilon}(X^{\epsilon}(t))dt+\epsilon^{1/2}\sigma(X^{\epsilon}(t))dW(t)$ , $X^{\epsilon}(O)=x\in R^{d}$ ,
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where $b^{\epsilon}(x)=(b_{i}^{\epsilon}(x))_{i=1,\cdots,d}$ is a d-vector function depending on $\epsilon>0$ and satisfy-
ing a local Lipschitz condition with respect to $x\in R^{d}$ . Denote by $L^{\epsilon}$ the dif-
ferential generator associated with (2.1), $i$ . $e.$ ,

(2.2) $L^{\epsilon}=\sum_{i=1}^{d}b_{i}^{\epsilon}(x)\frac{\partial}{\partial x_{i}}+\frac{1}{2}\epsilon\sum_{i,j=1}^{d}a_{ij}(x)\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}$ ,

where $a(x)=(a_{ij}(x))_{i.j=1,\cdots,d}$ is defined by $a(x)=\sigma(x)\sigma^{*}(x)$ . We shall use the
following notations. For $x\in R^{d}$ and $y\in R^{d}$ , let $\langle x, y\rangle$ be the inner product of
$x$ and $y$ and let $|x|$ be the Euclidean norm of $x$ . For a $d\times d$-matrix $M=$

$(m_{ij})_{i.j,\cdots.d}$ , define $|M|=(\sum_{i.j=1}^{d}m_{ij}^{2})^{1/2}$ . Denote by $C^{2}(R^{d})$ the family of scalar

functions which are twice continuously differentiable with respect to $x\in R^{d}$ .
For the future use we give the following theorem.

THEOREM 2.1. Let $X^{e}(t)$ be the solution of (2.1) with the initial state $X^{\epsilon}(O)$

$=x\in R^{d}$ , and let $e^{\epsilon}(x)$ be the explosion time of $X^{\epsilon}(t)$ . Suppose that there exist
positive constants $c$ and $r$ and that there exist a non-negative function $V\in C^{2}(R^{d})$

and a non-decreasing differentiable function $\beta:[0, \infty$ ) $\rightarrow[0, \infty$ ), satisfying the fol-
lowing conditions;

(2.3) $\sup_{0<\epsilon\leq 1}L^{\epsilon}V(x)+\frac{1}{2}|\sigma^{*}(x)gradV(x)|^{2}\frac{1}{1+\beta(V(x))}$

$\leqq c\beta(V(x))$ for all $|x|\geqq r$ ,

where $L^{\epsilon}$ is defned by (2.2),

(2.4) $ V_{R}\equiv\inf_{|x|zR}V(x)-\infty$ as $ R\rightarrow\infty$ ,

(2.5) $\int_{0}^{\infty}\frac{du}{1+\beta(u)}=\infty$ .

Then, for each $0<\epsilon\leqq 1$ we have

$P(e^{e}(x)=\infty)=1$ for all $x\in R^{d}$ .

Further, let us assume $ v_{r}\equiv$

$\sup_{x1\leq r,0^{1}<\epsilon\leq 1}L^{\epsilon}V(x)<\infty$
.

Then, for each $T>0$

(2.6) $\lim_{R\sim\infty}\lim_{\epsilon\rightarrow}\sup_{0}\in\log P(\sup_{0\leq t\leq T}|X^{\epsilon}(t)|\geqq R)=-\infty$ .

PROOF. For any constant $\lambda>0$ , set $H(x)=\exp\{\lambda k(V(x))\}$ , where

$k(v)=\int_{0}^{v}\frac{du}{1+\beta(u)}$ . Then, a simple calculation yields
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$L^{\epsilon}H(x)=L^{\text{\’{e}}}V(x)\frac{\lambda}{1+\beta(V(x))}H(x)$

$+\frac{1}{2}\epsilon|\sigma^{*}(x)gradV(x)|^{2}\frac{\{-\lambda\beta^{\prime}(V(x))+\lambda^{2}\}}{\{1+\beta(V(x))\}^{2}}H(x)$

$\leqq\frac{\lambda}{1+\beta(V(x))}[L^{\epsilon}V(x)+\frac{1}{2}\epsilon|\sigma^{*}(x)gradV(x)|^{2}\frac{\lambda}{1+\beta(V(x))^{a}}]H(x)$

for all $x\in R^{d}$ , since $\beta^{\prime}\geqq 0$ by the assumption. Now, take $\lambda=1/\epsilon$ with $0<\epsilon\leqq 1$ ,

so that

(2.7) $L^{\epsilon}H(x)\leqq\frac{1}{\epsilon}\frac{1}{1+\beta(V(x))}$

$\times[L^{\epsilon}V(x)+\frac{1}{2}|\sigma^{*}(x)gradV(x)|^{2}\frac{1}{1+\beta(V(x))}]H(x)$

for all $x\in R^{d}$ . Combine (2.7) with (2.3) and notice that $\beta/(1+\beta)\leqq 1$ . Then,
under our assumptions, we have

$L^{\epsilon}H(x)\leqq\frac{1}{\epsilon}\tilde{c}(1+H(x))$ for all $|x|\geqq r$

with a constant $\tilde{c}>0$ being independent of $\epsilon$ . Define $\tilde{H}(x)=1+H(x)$ . Then,
(2.4) and (2.5) imply that $\inf_{|x|\geq R}\tilde{H}(x)\rightarrow\infty$ as $ R\rightarrow\infty$ . Moreover, $\tilde{H}(x)$ satisfies

(2.8) $L^{\epsilon}\tilde{H}(x)\leqq\frac{1}{\epsilon}\tilde{c}\tilde{H}(x)$ for all $|x|\geqq r$ .

This inequality, as follows from Narita [5, pp. 397-398], leads us to non-occur-
rence of the explosion for any initial state in $R^{d}$ . Put $\tau_{R}^{\epsilon}=\inf\{t;|X^{\epsilon}(t)|\geqq R\}$

if such a time exists, and let $\tau_{R}^{\epsilon}=\infty$ otherwise. For each $t\geqq 0$ , set $t_{R}^{\epsilon}=t\wedge\tau_{R}^{\epsilon}$ ,

where $a\wedge b$ stands for the smaller of $a$ and $b$ . Apply Ito’s formula concerning
stochastic differentials to $X^{e}(t)$ and $\tilde{H}(x)$ . Then, since we can choose $\tilde{c}$ by the
assumption $ v_{r}<\infty$ so that (2.8) may hold for every $x\in R^{d}$ , we have

$E[\tilde{H}(X^{\epsilon}(t_{R}^{\text{\’{e}}}))]\leqq\tilde{H}(x)+\frac{1}{\epsilon}\tilde{c}\int_{0}^{l}E[\tilde{H}(X^{\epsilon}(s_{R}^{\epsilon}))]ds$ ,

where $s_{R}^{\epsilon}=s\wedge\tau_{R}^{\epsilon}$ . So, the Gronwall-Bellman inequality yields

$E[\tilde{H}(X^{\epsilon}(t_{R}^{\epsilon}))]\leqq\tilde{H}(x)\exp(\frac{1}{\epsilon}\delta t)$ .

Put $\tilde{H}=1+H$. Then
$E[\tilde{H}(X^{\epsilon}(t_{R}^{\epsilon}))]\geqq E[H(X^{\epsilon}(t_{R}^{\epsilon}));\tau_{R}^{\epsilon}\leqq t]$

$\geqq\exp\{\frac{1}{\epsilon}k(V_{R})\}P(\tau_{R}^{\epsilon}\leqq l)$ ,
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where $V_{R}=\inf_{|x|\geq R}V(x)$ . Accordingly, we get

$P(\tau_{R}^{e}\leqq t)\leqq\exp\{-\frac{1}{\epsilon}k(V_{R})+\frac{1}{\epsilon}\tilde{c}t\}[1+\exp\{\frac{1}{\epsilon}k(V(x))\}]$ .

Since $\log(1+t)\leqq\log 2t$ for $t\geqq 1$ , we see
$\epsilon\log P(\tau_{R}^{\epsilon}\leqq t)\leqq-k(V_{R})+\tilde{c}t+\epsilon\log 2+k(V(x))$ ,

and so
$\lim_{\epsilon\rightarrow}\sup_{0}\in\log P(\sup_{0\leq s\leq t}|X^{\epsilon}(s)|\geqq R)\leqq-k(V_{R})+\tilde{c}t+k(V(x))$ .

Since $ k(V_{R})\rightarrow\infty$ as $ R\rightarrow\infty$ by (2.4) and (2.5), we obtain (2.6) and complete the
proof.

REMARK 2.1. When $b^{\epsilon}(x)\equiv b(x)$ and $\sigma(x)\equiv 0,$ $(2.3)$ becomes

$(\#)$ $ V_{(1.2)}^{\prime}\equiv$ $\sum_{ia1}^{e}b_{i}(x)\frac{\partial V}{\partial x_{i}}\leqq c\beta(V(x))$ for all $|x|\geqq r$ .
Then, the condition $(\#)$ together with (2.4) and (2.5) gives the existence of the
global solution of the dynamical system (1.2) (see LaSalle and Lefschetz [4; \S 24,
Chap. 4]).

REMARK 2.2. In particular, we notice that for the function $V(x)=|x|^{2}$ ,
$L^{\epsilon}V(x)$ has the form

$L^{\epsilon}V(x)=2\langle x, b^{\epsilon}(x)\rangle+\epsilon|\sigma(x)|^{2}$ .
Hence the condition (2.3) holds for $V(x)=|x|^{2}$ , once the following inequality is
satisfied:

(2.9) $\sup_{0<\epsilon\leq 1}2\langle x, b^{\text{\’{e}}}(x)\rangle+|\sigma(x)|^{2}+2|\sigma^{*}(x)x|^{2}\frac{1}{1+\beta(|x|^{2})}$

$\leqq c\beta(|x|^{2})$ for all $|x|\geqq r$ .
Replacing $b^{\epsilon}(x)$ of (2.9) by $b(x)$ , we apply Theorem 2.1 to to the system

(1.1) and get the following result.

COROLLARY 2.1. Let $X^{\epsilon}(t)$ be the solution of (1.1) with the initial state $X^{\epsilon}(O)$

$=x\in R^{d}$ , and let $e^{\epsilon}(x)$ be the explosion time of $X^{\epsilon}(t)$ . Suppose that there exist
positive constants $c$ and $r$ and that there exists a non-decreasing differentiable
function $\beta:[0, \infty$ ) $\rightarrow[0, \infty$ ), satisfying the following condition;

(2.10) $2\langle x, b(x)\rangle+|\sigma(x)|^{2}+2|\sigma^{*}(x)x|^{2}\frac{1}{1+\beta(|x|^{2})}\leqq c\beta(|x|^{2})$ for all $|x|\geqq r$,

where $\beta$ satisfies (2.5). Then, for each $0<\epsilon\leqq 1$ we have

$P(e^{\epsilon}(x)=\infty)=1$ for all $x\in R^{d}$ .
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Moreover, for each $T>0$

$\lim_{R\rightarrow\infty}\lim_{\epsilon\rightarrow}\sup_{0}\in\log P(\sup_{0\leqq t\leqq T}|X^{\epsilon}(t)|\geqq R)=-\infty$ .

EXAMPLE 2.1. Suppose that

(2.11) $|b(x)|^{2}+|\sigma(x)|^{2}\leqq K\lambda(|x|^{2})$ for all $|x|\geqq r$

with some constants $K>0$ and $r>0$ , where $\lambda(u)=(1+u)\log(1+u^{1/2})$ . Then,
(2.10) holds with the function $\beta(u)=u+\lambda(u)$ . Therefore, the condition (2.10)

corresponds to a generalization of (2.11) which is a restriction on growth of the
coefficients in Yershov [8, Theorem 5.2].

In the following we consider the systems (1.3) and (1.4). Define the matrix
$\sigma$ and the Brownian motion process $W(t)$ by

$\sigma=(00$ $01$ and $W(t)=\left(\begin{array}{l}w_{0}(t)\\w(t)\end{array}\right)$ ,

where $w_{0}(t)$ is a (dummy) Brownian motion process which is independent of
$w(t)$ . Then, (1.3) and (1.4) can be written respectively as the following forms;

(2.12) $dX^{e}(t)=b(X^{\text{\’{e}}}(t))dt+\epsilon^{1/2}\sigma dW(t)$ , $X^{\epsilon}(O)=x\in R^{2}$ ,

(2.13) $d\tilde{X}^{\text{\’{e}}}(t)=b^{\epsilon}(\tilde{X}^{\epsilon}(t))dt+\epsilon^{1/2}\sigma dW(t)$ , $\tilde{X}^{\epsilon}(0)=x\in R^{2}$ ,

where for $x=(x_{1}, x_{2})\in R^{2},$ $b(x)$ and $b^{\epsilon}(x)$ are given by

$b(x)=\left(\begin{array}{l}x_{2}-F(x_{1})\\-g(x_{1})\end{array}\right)$ and $b^{\epsilon}(x)=\left(\begin{array}{l}x_{2}-\epsilon F(x_{1})\\-g(x_{1})\end{array}\right)$ .

We shall need the following assumption.

ASSUMPTION 2.1. $(A_{1})$ $ug(u)>0$ for all $u\neq 0$ ,

(A) $-g(u)F(u)\leqq\alpha(1+G(u))$ for all $u\in R^{1}$

with a constant $\alpha>0$ and

(A) $ G(u)\rightarrow\infty$ as $|u|\rightarrow\infty$ ,

where $G(u)=\int_{0}^{u}g(s)ds$ .
We shall use the function

(2.14) $V(x)=G(x_{1})+x_{2}^{2}/2$ for $x=(x_{1}, x_{2})\in R^{2}$ .
Denote by $L^{\epsilon}$ the differential operator associated with (2.12) or (2.13), and con-
sider $L^{\epsilon}V(x)$ for the function $V(x)$ defined by (2.14). Then, by Theorem 2.1
we get the following result.
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COROLLARY 2.2. Under Assumption 2.1, denote solutions $X^{\epsilon}(t)$ of (1.3), $\tilde{X}^{\epsilon}(t)$

of (1.4), by the same symbel $Y^{\epsilon}(t)$ , and let $e^{\epsilon}(x)$ be the explosion time of $Y^{\epsilon}(t)$

with the initial state $Y^{\epsilon}(O)=x\in R^{2}$ . Then, for each $0<\epsilon\leqq 1$ we have

$P(e^{\epsilon}(x)=\infty)=1$ for all $x\in R^{2}$ .
Moreover, for each $T>0$

$\lim_{R\rightarrow\infty}\lim_{\epsilon\rightarrow}\sup_{0}\in\log P(\sup_{0\leq t\leq T}|Y^{\epsilon}(t)|\geqq R)=-\infty$ .

\S 3. Large deviation principle for non-degenerate diffusions.

Let us consider the system (1.1), and denote by $X^{\epsilon}(t, x)$ the solution $X^{\epsilon}(t)$

of (1.1) with the initial state $X^{\epsilon}(O)=x\in R^{d},$ $i.e.$ ,

$X^{\epsilon}(t, x)=x+\int_{0}^{l}b(X^{\epsilon}(s, x))ds+\epsilon^{1/2}\int_{0}^{t}\sigma(X^{\epsilon}(s, x))dW(s)$ .

Also, consider the solution $X^{0}(t)$ of the system (1.2), $i$ . $e.$ ,

$X^{0}(t)=x+\int_{0}^{t}b(X^{0}(s))ds$ .

REMARK 3.1. Assume the same conditions as in Theorem 2.1 except that
$b^{\epsilon}(x)$ is replaced by $b(x)$ . Then, Theorem 2.1 and Remark 2.1 imply that both
$X^{\epsilon}(t, x)$ and $X^{0}(t)$ become global solutions.

Hereafter, by $C([0, \infty);R^{d})$ (resp. $C([0,$ $T];R^{d})$) we denote the space of
all continuous functions $\phi(t),$ $ 0\leqq t<\infty$ (resp. $0\leqq t\leqq T$ ), with range in $R^{d}$ . By
$C_{K}^{\infty}(R^{d})$ we shall denote the family of scalar functions which are infinitely dif-
ferentiable with respect to $x\in R^{d}$ , having compact support. The main result
of this section is the following theorem.

THEOREM 3.1. Under the same assumption as in Corollary 2.1, set $a(x)=$

$\sigma(x)\sigma^{*}(x)=(a_{ij}(x))_{i.j=1\ldots..d}$ , and suppose that $a(x)$ is positive definite for all $x\in R^{d}$

and that $a_{ij}\in C^{2}(R^{d})$ for all $i,$ $j=1,$ $\cdots,$
$d$. Let $X^{\epsilon}(t, x)$ be the solution $X^{\epsilon}(t)$ of

(1.1) with the initial state $X^{\epsilon}(O)=x\in R^{d}$ , and let $P_{x^{\epsilon}}$ be the probability measure
induced by $X^{\epsilon}(\cdot, x)$ on $C([0, \infty);R^{d})$ . Define $I_{x,T}^{a,b}$ on $C([0, T];R^{d})$ by

(3.1) $I_{x.T}^{a,b}(\phi)=\frac{1}{2}\int_{0}^{T}\langle\dot{\phi}(t)-b(\phi(t)), a^{-1}(\phi(t))(\dot{\phi}(t)-b(\phi(t)))\rangle dt$

if $\phi(0)=x$ and $\phi|_{[0.T]}$ is absolutely continuous,

$ I_{x}^{a};_{T}^{b}(\phi)=\infty$ otherwise.

Then, $I_{x}^{ab}:r$ is a rate function. Moreover, for each $T>0$ and $x\in R^{d},$ $\{P_{x^{\epsilon}} ; \epsilon>0\}$

on $C([0, T];R^{d})$ satisfies the large deviation principle with respect to $I_{x}^{ab}:r$ .
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PROOF. Take a non-negative function $\eta\in C_{K}^{\infty}(R^{d})$ such that

$\eta(y)=1$ for $|y|\leqq 1$ , $\eta(y)=0$ for $|y|\geqq 2$ ,

satisfying $0\leqq\eta(y)\leqq 1$ for all $y\in R^{d}$ . For each $R>0$ , set $\eta_{R}(y)=\eta(y/R)$ , and
define $a_{R}(y)$ and $b_{R}(y)$ by

$a_{R}(y)=\eta_{R}(y)a(y)+(1-\eta_{R}(y))I$ and $b_{R}(y)=\eta_{R}(y)b(y)$ ,

where $I$ is the identity matrix. Then, we see that $a_{R}(y)$ is positive definite for
all $y\in R^{d}$ . The $(i, j)$-element $a_{R,ij}$ of $a_{R}$ belongs to $C^{2}(R^{d})$ for all $i,$ $j=1,$ $\cdots,$

$d$

and

$\sup_{y\in R}\sup_{i.j.k.l}d|\frac{\partial^{2}a_{R,ij}}{\partial y_{k}\partial y_{l}}|\leqq M_{R}$

with a constant $M_{R}>0$ depending on $R$ . Thus, $a_{R}$ has a unique non-negative
square root $\sigma_{R}$ which satisfies a global Lipschitz condition with respect to $y\in R^{d}$

(see Friedman [3, p. 129]). Combining this with the fact that $b_{R}(y)$ satisfies a
global Lipschitz condition with respect to $y\in R^{d}$ , we see that there exists a
pathwise unique solution $X^{\epsilon.R}(\iota, x)$ of the system (1.1) with $b=b_{R}$ and $\sigma=\sigma_{R}$ ,

starting from $x\in R^{d}$ . Denote by $P_{x^{\epsilon R}}$
, the probability measure induced by

$X^{\epsilon,R}(\cdot, x)$ on $C([0, \infty);R^{d})$ . Then, as follows from Stroock [6, p. 85], { $P_{x^{\epsilon R}},$ ;
$\epsilon>0\}$ on $C([0, T];R^{d})$ satisfies the large deviation principle with a rate func-
tion $I_{x}^{a_{R_{\dot{T}}}b_{R}}$ , where $I_{x}^{a_{R_{\dot{T}}}b_{R}}$ is defined by (3.1) with $a=a_{R}$ and $b=b_{R}$ . In the fol-
lowing let $x\in R^{d}$ and $T>0$ be arbitrary and be fixed. For $\omega\in C([0, \infty);R^{d})$ ,

set
$\zeta_{R}=\inf\{t;|\omega(t)|\geqq R\}$

and denote by $M_{T}$ the a-algebra generated by $\{\omega(t);0\leqq t\leqq T\}$ . Then, we first
notice that

(3.2) $P_{x^{\epsilon R}},(A\cap\{\zeta_{R}\geqq T\})=P_{x^{\epsilon}}(A\cap\{\zeta_{R}\geqq T\})$ for any $A\in M_{T}$

and that

(3.3) $I_{x.\dot{T}}^{a_{R}b_{R}}(\phi)=I_{x}^{ab}:\tau(\phi)$ for any $\phi\in C([0, T] ; R^{d})$ satisfying $\Vert\phi$ I $T\leqq R$ ,

where $\Vert\phi\Vert_{T}=\sup_{os\iota\leq T}|\phi(t)|$ . For the proof of Theorem, we have only to show

that $ I_{x}^{ab}:\tau$ satisfies (iii) of Definition 1.1 and that $\{P_{x^{\epsilon}} ; \epsilon>0\}$ satisfies (1.5) and
(1.6) of Definition 1.2. Using the estimate of Corollary 2.1, we can proceed the
proof as in the proof of Stroock [6, p. 87].

Let $\mathcal{G}$ be any open set in $C([0, T];R^{d})$ . Then, we can see

(3.4) $\lim_{\text{\’{e}}\rightarrow}\inf_{0}\in\log P_{x^{\epsilon}}(\mathcal{G})\geqq:\tau$
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if we can obtain the following estimate:

(3.4) $\lim_{\epsilon\rightarrow}\inf_{0}\in\log P_{x^{\text{\’{e}}}}(\mathcal{G})\geqq-I_{x,^{\prime}T}^{ab}(\tilde{\phi})$

for all $\emptyset\in C([0, \infty);R^{d})\cap \mathcal{G}$ satisfying $\tilde{\phi}(0)=x$ . So, we show (3.4). In fact,
for such a $\tilde{\phi}$ we can choose $R>0$ so that $\Vert\tilde{\phi}\Vert_{T}<R$ and then set $B_{R}=$

$\{\phi;\Vert\phi\Vert_{T}<R\}$ . Apply the large deviation principle with respect to the family
$\{P_{x^{\epsilon R}}, ; \epsilon>0\}$ . Then, by (3.2) and (3.3) we have

$\lim\inf\in\log P_{x^{\epsilon}}(\mathcal{G})\geqq\lim_{\epsilon\rightarrow}\inf_{0}\in\log P_{x^{\epsilon}}(\mathcal{G}\cap B_{R})$

$=\lim_{\epsilon\rightarrow}\inf_{0}\epsilon\log P_{x^{\epsilon R}}\cdot(\mathcal{G}\cap B_{R})$

$\geqq-\inf_{\phi\in \mathcal{G}_{\cap}B_{R}}I_{x}^{a_{R_{T^{\prime}}}b_{R}}(\phi)$

$=-$ $\inf$ $I_{x}^{ab}:\tau(\phi)$

$\phi\in \mathcal{G}\cap B_{R}$

$\geqq-I_{x}^{ab}:\tau(\phi)$ ,

and hence we get (3.4). We next show that $I_{x}^{a}$ ; satisfies (iii) of Definition 1.1.
Apply the estimate of Corollary 2.1 to $X^{\epsilon}(t, x)$ . Then, for any $ l<\infty$ we can
find an $R>0$ so that

(3.5) $\lim_{\epsilon\rightarrow}\sup_{0}\in\log P_{x^{\epsilon}}((\overline{B}_{R})^{c})<-1$ .

Combining this with (3.4), we have

$\inf$ $I_{x}^{ab}:\tau(\phi)>l$ ,
$\phi\in(B_{R})^{c}$

and so $\{\phi;I_{x.T}^{a,b}(\phi)\leqq l\}\subseteqq\overline{B}_{R}$ . This relation and (3.3) yield

$\{\phi;I_{x}^{ab}:\tau(\phi)\leqq l\}=\{\phi;I_{x.\dot{T}}^{a_{R}b_{R}}(\phi)\leqq l\}\cap\overline{B}_{R}$ .

Since $I_{x}^{\alpha_{R_{T^{\prime}}}b_{R}}$ is a rate function, the latter set of the above equation is compact

in $C([0, T];R^{d})$ , which implies the compactness of the former set.
Finally, let $C$ be any closed set in $C([0, T];R^{d})$ and let $ l<\infty$ be arbitrary,

and choose $R$ so as (3.5) holds. Then, by (3.2) and (3.3) we see

$\lim_{\epsilon\rightarrow}\sup_{0}\in\log P_{x}^{\epsilon}(C)\leqq\lim_{\epsilon\rightarrow}\sup_{0}\in\log\{P_{x^{\epsilon R}},(C\cap\overline{B}_{R})+P_{x^{\epsilon}}((\overline{B}_{R})^{c})\}$

$\leqq\{-\inf_{\phi\in C\cap\overline{B}_{R}}I_{x}^{a_{R_{T^{\prime}}}b_{R}}(\phi)\}(-l)$

$\leqq-$ [ $\{\inf_{\phi\in C}I_{x}^{ab}:\tau(\phi)\}$ A 1],

where $s\vee t=\max\{s, t\}$ and $s\wedge t=\min\{s, t\}$ . Passing to the limit as $ l\rightarrow\infty$ in the
above equation, we obtain
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$\lim_{\epsilon\rightarrow}\sup_{0}\in\log P_{x^{\epsilon}}(C)-\inf_{\phi\in C}I_{x}^{ab}(\phi)$ .

Hence the proof is completed.

The following theorem deals with a slight generalization of Theorem 3.1.

THEOREM 3.2. Under the same assumption as in Theorem 3.1, suppose that
$b^{s}(x)=(b_{i}^{\epsilon}(x))_{i=1,\ldots,d}$ satisfies (2.9) and that $b_{i}^{\epsilon}(x)\rightarrow b_{i}(x)$ uniformly in all $x\in R^{d}$ as
$\epsilon\rightarrow 0$ . Denote by $\tilde{X}^{\epsilon}(t, x)$ the solution $X^{\epsilon}(t)$ of (2.1) with the initial state $X^{\epsilon}(O)=$

$x\in R^{d}$ and let $\tilde{P}_{x^{\epsilon}}$ be the probability measure induced by $\tilde{X}^{\epsilon}(\cdot, x)$ on $C([0, \infty);R^{d})$ .
Then, for each $T>0$ and $x\in R^{d},$ $\{\tilde{P}_{x}^{\epsilon} ; \epsilon>0\}$ on $C([0, T];R^{d})$ satisfies the large
deviatian principle with a rate function $ I_{x}^{ab}:\tau$ of (3.1).

PROOF. Freidlin and Wentzell‘s theorem [2, p. 154] states that the above
Theorem 3.2 holds for bounded smooth $a_{ij}$ and $b_{i}^{\epsilon}$ . Noting that (2.6) holds under
(2.9) we can prove Theorem 3.2 in the same way as the proof of Theorem 3.1.

\S 4. 0scillators of the Li\’enard type.

Before proceeding to the systems (1.3) and (1.4) we shall need some pre-
parations. Let $C([0, T];R^{1})$ be the space of all continuous functions
$\psi:[0, T]\rightarrow R^{1}$ , and set

$C_{0}^{T}=\{\psi\in C([0, T];R^{1});\psi(0)=0\}$ .
Let $f(u)$ and $g(u)$ be functions which satisfy a local Lipschitz condition with
respect to $u\in R^{1}$ . For any $x=(x_{1}, x_{2})\in R^{2}$ and $T>0$ , we consider a solution of
the following system;

(4.1) $\left\{\begin{array}{l}\phi_{1}(t)=x_{1}+\int_{0}^{t}[\phi_{2}(s)-F(\phi_{1}(s))]ds,\\\phi_{2}(t)=x_{2}-\int_{0}^{t}g(\phi_{1}(s))ds+\psi(t), 0\leqq t\leqq T,\end{array}\right.$

associating with each function $\psi\in C_{0}^{T}$ , where $F(u)=\int_{0}^{u}f(s)ds$ . When (4.1) has a
unique solution, we shall use the following notations and definition.

NOTATION 4.1. For $x=(x_{1}, x_{2})\in R^{2}$ and $T>0$ , define an operator $A=A(x, T)$

on $C_{0}^{T}$ by $ A\psi=\phi$ , where $\phi=(\phi_{1}, \phi_{2})$ satisfies (4.1). Define $cW=\wp(x, T)=A[C_{0}^{T}]$ ,

which denotes the set of all admissible paths initiating from $x$ .
Set $A=A^{F,g}$ and $\wp=\wp^{F.g}$ , in case we need to emphasize that the system

(4.1) depends on the functions $F$ and $g$ .

DEFINITION 4.1. Define the functional on $q\nu(x, T)$ as follows;
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$S_{x.T}^{f,g}(\phi)=\frac{1}{2}\int_{0}^{T}[\frac{d^{2}\phi_{1}(t)}{dt^{2}}+f(\phi_{1}(t))\frac{d\phi_{1}(t)}{dt}+g(\phi_{1}(t))]^{2}dt$

if $\phi=(\phi_{1}, \phi_{2})\in W(x, T),$ $\phi$ is absolutely continuous

and the integral exists,

$ S_{x}^{fg}:\tau(\phi)=\infty$ otherwise.

NOTATION 4.2. Define

$\Vert x\Vert=|x_{1}|+|x_{2}|$ for $x=(x_{1}, x_{2})\in R^{2}$ ,

$\Vert\phi\Vert_{t}=\sup_{0\leq s\leq t}\Vert\phi(s)\Vert$ for $\phi\in C([0, T];R^{2})$

and
$\Vert\psi\Vert_{t}=\sup_{0\leq sst}|\psi(s)|$ for $\psi\in C_{0}^{T}$ ,

where $t\leqq T$ . Further, define

$|\phi(t)|=(\phi_{1}(t)^{2}+\phi_{2}(t)^{2})^{1/2}$ for $\phi=(\phi_{1}, \phi_{2})\in C([0, T];R^{2})$ ,

where $t\leqq T$ .
REMARK 4.1. Suppose that $F(u)$ and $g(u)$ satisfy a global Lipschitz condi-

tion with respect to $u\in R^{1}$ . Then, both (1.3) and (4.1) have unique solutions
denoted by $X^{\epsilon}(t)$ and $\phi(t)$ respectively, and $X^{\epsilon}(t)$ has the form

$X^{\epsilon}=A(\epsilon^{1/2}w)$ .
Further, the operator $A$ is continuous from $(C_{0}^{T}, \Vert\cdot\Vert_{t})$ to $(q\mu, \Vert\cdot\Vert_{l})$ , having its
inverse $A^{-1}$ . Therefore, according to Freidlin and Wentzell [2, p. 81] and
Varadhan [7, p. 5], Schilder’s theorem of the large deviation for the Wiener
measure with covariance $\epsilon\min\{s, t\}$ can be transferred to the probability mea-
sure corresponding to $X^{\epsilon}$ .

Dubrovskii [1] treats the special case of the system (1.3) when $f\equiv 0$ and $g$

satisfies a global Lipschitz condition in $R^{1}$ by using the method referred in
Remark 4.1. Unfortunately, we cannot proceed as in Remark 4.1 because the
operator $A$ may not be continuous in general. So we take a truncation proce-

dure in order to get around this difficulty.

For each $R>0$ , let $\eta_{R}(u)$ be a smooth function on $R^{1}$ such that

$\eta_{R}(u)=1$ for $|u|\leqq R$ , $\eta_{R}(u)=0$ for $|u|\geqq 2R$

satisfying $0\leqq\eta_{R}(u)\leqq 1$ for all $u\in R^{1}$ . Now, set

$f_{R}(u)=\eta_{R}(u)f(u)$ , $g_{R}(u)=\eta_{R}(u)g(u)$ and $F_{R}(u)=\int_{0}^{u}f_{R}(s)ds$ .

Then, since $F_{R}(u)$ and $g_{R}(u)$ satisfy a global Lipschitz condition with respect to
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$u\in R^{1}$ , there exist pathwise unique solutions of the systems (4.1) and (1.3) with
$\{F, g\}$ replaced by $\{F_{R}, g_{R}\}$ , initiating from $x\in R^{2}$ , which are denoted by $\phi^{R}(t)$

and $X^{\epsilon,R}(t)$ respectively. First, define the function $\phi(t)$ by

$\phi(t)=\phi^{R}(t)$ for $t<t_{R}$ , $R=1,2,$ $\cdots$ ,

where $t_{R}=T\wedge\inf\{t;|\phi^{R}(t)|\geqq R\}$ . Hereafter we call $\phi(t)$ a solution of (4.1). In
general, $\phi(t)$ may not be continued to $t=T$ . The following lemma assures us
that $\phi(t)$ can be continued to $t=T$ for each $T>0$ under the assumption below
and hence the existence-and-uniqueness for the solution of (4.1) holds on every
finite interval $[0, T]$ .

We shall need the following assumption.

ASSUMPTION 4.1.
$g(u)^{2}\leqq\beta(1+G(u))$ for all $u\in R^{1}$ with a constant $\beta>0$,

where $G(u)=\int_{0}^{u}g(s)ds$ .
The folloing functions satisfy Assumption 4.1;

$g(u)=u$ , $g(u)=|u|^{n}$ sgn $(u)$ with $0<n<1$ .
LEMMA 4.1. Let Assumption 2.1 and Assumption 4.1 hold. Then, for any

$x=(x_{1}, x_{2})\in R^{2}$ and $T>0$ , each solution of (4.1) can be continued to $t=T$.
PROOF. To the contrary, we assume that (4.1) has a solution $\phi(t)=$

$(\phi_{1}(t), \phi_{2}(t))$ defined on $[0, T_{0}$ ) and satisfying

$\lim_{t\uparrow T_{0}}|\phi(t)|=\infty$ for some $T_{0}<T$ .

Here by $||$ we mean the usual Euclidean norm. In the following we take such
a solution $\phi(t)$ on $[0, T_{0}$ ) and evaluate $V(\phi(t))$ , where $V$ is the function defined
by (2.14).

Observe the first equation of (4.1), so that

$dG(\phi_{1}(t))=g(\phi_{1}(t))(\phi_{2}(t)-F(\phi_{1}(t)))dt$ .
Notice that $2ab\leqq a^{2}+b^{2}$ for $a\in R^{1}$ and $b\in R^{1}$ . Then, $(A_{2})$ of Assumption 2.1
yields

$g(\phi_{1}(t))(\phi_{2}(t)-F(\phi_{1}(t)))\leqq\frac{1}{2}\{g(\phi_{1}(t))^{2}+\phi_{2}(t)^{2}\}+\alpha(1+G(\phi_{1}(t)))$ .
Next, apply the Schwarz inequality to the second equation of (4.1), so that

$\frac{1}{2}\phi_{2}(t)^{2}\leqq\frac{3}{2}[x_{2}^{2}+\{\int_{0}^{l}g(\phi_{1}(s))ds\}^{2}+\psi(t)^{2}]$
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$\leqq\frac{3}{2}[x_{2}^{2}+t\int_{0}^{t}g(\phi_{1}(s))^{2}ds+\psi(t)^{2}]$ .

Then, Assumption 4.1 together with the fact that $G\leqq V$ yields the following
inequalities;

(4.2) $G(\phi_{1}(t))\leqq c_{1}(T_{0})+c_{2}\int_{0}^{t}V(\phi(s))ds$

for all $0\leqq t<T_{0}$ with some constants $c_{1}(T_{0})>0$ depending on $T_{0}$ and $c_{2}>0$ ,

(4.3) $\frac{1}{2}\phi_{2}(t)^{2}\leqq d_{1}(T_{0})+d_{2}(T_{0})\int_{0}^{l}V(\phi(s))ds$

for all $0\leqq t<T_{0}$ with some constants $d_{1}(T_{0})>0$ and $d_{2}(T_{0})>0$ depending on $T_{0}$ .
Taking the sum of (4.2) and (4.3), we get

$V(\phi(t))\leqq k_{1}(T_{0})+k_{2}(T_{0})\int_{0}^{t}V(\phi(s))ds$

for all $0\leqq t<T_{0}$ with some constants $k_{1}(T_{0})>0$ and $k_{2}(T_{0})>0$ depending on $T_{0}$ .
By the Gronwall-Bellman inequality we have

$ 0\leqq V(\phi(t))\leqq k_{1}(T_{0})\exp\{k_{2}(T_{0})t\}<\infty$ for all $0\leqq t<T_{0}$ ,

which is a contradiction. Hence the proof is completed.

REMARK 4.2. The oscillator of the Van Der Pol type with $f(u)=u^{2}-1$ and
$g(u)=u$ satisfies Assumption 2.1 and Assumption 4.1, and hence Lemma 4.1 is
applicable for the oscillator.

NOTATION 4.3. Let $R>0$ be arbitrary and be fixed. For $x=(x_{1}, x_{2})\in R^{2}$

and $T>0$ , define an operator $A^{R}=A^{R}(x, T)$ on $C_{0}^{T}$ by $A^{R}(x, T)=A^{F_{R}gR}(x, T)$

and set $q\gamma^{R}=\psi^{R}(x, T)=A^{R}[C_{0}^{T}]$ .

REMARK 4.3. The solution $X^{\text{\’{e}}.R}(t)$ of the system (1.3) with $F=F_{R}$ and $g=g_{R}$

can be expressed by $X^{\text{\’{e}},R}=A^{R}(\epsilon^{1/2}w)$ . The operator $A^{R}$ is continuous from
$(C_{0}^{T}, \Vert\cdot\Vert_{l})$ to $(W^{R}, \Vert\cdot\Vert_{t})$ , and also $A^{R}$ is invertible such that

$[(A^{R})^{-1}\phi](t)=\phi_{2}(t)-x_{2}+\int_{0}^{t}g_{R}(\phi_{1}(s))ds$ for any $\phi=(\phi_{1}, \phi_{2})\equiv\phi^{R}\in W^{R}$ .

Now, we proceed as in Freidlin and Wentzell [2, Chap. 3].

DEFINITION 4.2. Define the action functional on $C_{0}^{T}$ for the Wiener process
as follows;

$I_{T}^{w}(\psi)=\frac{1}{2}\int_{0}^{T}\{\frac{d\psi(t)}{dt}\}^{2}dt$ if $\psi$ is absolutely continuous
and the integral exists,
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$ I_{T}^{w}(\psi)=\infty$ otherwise.

Further, define the action along $\phi\equiv\phi^{R}\in\eta\mu^{R}$ by

$S_{x,T}^{R}(\phi)=I_{T}^{w}(A^{R}(x, T)^{-1}\phi)$ for $\phi\equiv\phi^{R}\in?i^{1^{R}}(x, T)$ .
In terms of Definition 1.1, $I_{T}^{w}$ is a rate function on $C_{0}^{T}$ . Substituting the

expression for $(A^{R})^{-1}$ and noting that

$d\phi_{1}(t)/dt=\phi_{2}(t)-F_{R}(\phi_{I}(t))$ for $\phi=(\phi_{1}, \phi_{2})\in W^{R}(x, T)$ ,

we find that

(4.4) $S_{x,T}^{R}(\phi)=S_{x}^{fg}:\tau(\phi)$ with $f=f_{R}$ and $g=g_{R}$

whenever $\phi=(\phi_{1}, \phi_{2})\in q\mu^{R},$ $\phi$ is absolutely continuous and the integral exists.

THEOREM 4.1. Under Assumption 2.1. and Assumption 4.1, let $X^{\epsilon}(t, x)$ be
the solution $X^{\epsilon}(t)$ of (1.3) with the initial state $X^{\epsilon}(O)=x\in R^{2}$ , and let $P_{x^{\epsilon}}$ be the
probability measure induced by $X^{\epsilon}(\cdot, x)$ on $C([0, \infty);R^{2})$ . Then, the function
$ S_{x}^{fg}:\tau$ given by Definition 4.1 is a rate function. Moreover, for each $T>0$ and
$x\in R^{2},$ $\{P_{x^{\epsilon}}|_{q\mu} ; \epsilon>0\}$ satisfies the large deviation principle with respect to $ S_{x}^{fg}:\tau$ .

PROOF. For any $a\geqq 0$ , put

$\Phi_{a}(x, T)=\{\phi\in\psi(x, T);S_{x}^{fg}:\tau(\phi)\leqq a\}$

and consider $\phi=(\phi_{1}, \phi_{2})\in\Phi_{a}(x, T)$ . Then, $\phi$ is absolutely continuous and

$\int_{0}^{T}|\ddot{\phi}_{1}(t)|^{2}dt\leqq B$ ,

where $B$ is a constant independent of $\phi$ . If $0\leqq t<t+h\leqq T$ , then
$\phi=(\phi_{1}, \phi_{2})\in\Phi_{a}(x, T)$ satisfies

$|\phi_{i}(t+h)-\phi_{i}(t)|=|\int_{t}^{t+h}\dot{\phi}_{i}(s)ds|\leqq\sqrt{h}\{\int_{t}^{l+h}|\dot{\phi}_{i}(s)|^{2}ds\}^{I/2}$

for $i=1,2$ . Notice that $\phi=(\phi_{1}, \phi_{2})$ is absolutely continuous and that
$\dot{\phi}_{1}(s)=\phi_{2}(s)-F(\phi_{1}(s))$ , so that

$|\dot{\phi}_{1}(s)|^{2}\leqq 2\{ |\dot{\phi}_{1}(s)-\dot{\phi}_{1}(0)|^{2}+|\dot{\phi}_{1}(0)|^{2}\}$

$=2\{|\int_{0}^{s}\ddot{\phi}_{1}(r)dr|^{2}+|\dot{\phi}_{1}(0)|^{2}\}$

$\leqq 2\{s\int_{0}^{s}|\ddot{\phi}_{1}(r)|^{2}dr+|\dot{\phi}_{1}(0)|^{2}\}$

and also $|\dot{\phi}_{2}(s)|^{2}=|\ddot{\phi}_{1}(s)+f(\phi_{1}(s))\dot{\phi}_{1}(s)|^{2}$ . Thus, we get

$|\phi_{i}(t+h)-\phi_{i}(t)|\leqq\sqrt{h}B^{\prime}$ for $i=1,2$ if $\phi=(\phi_{1}, \phi_{2})\in\Phi_{a}(x, T)$ ,
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where $B^{\prime}$ is a constant independent of $\phi$ . Namely, $\Phi_{a}(x, T)$ is a class of equi-
continuous functions. These functions are also uniformly bounded since $\phi(0)=x$

belongs to some bounded set in $R^{2}$ . Therefore, the compactness of $\Phi_{a}(x, T)$

follows from the lemma of Ascoli-Arzela, and hence $S_{x}^{fg}:r$ is a rate function.
In order to prove (1.6) for $P_{x^{\epsilon}}|_{q\nu}$ we notice that $(\varphi, \Vert\cdot\Vert_{t})$ is a metric space,

and then by Remark 1.1 we have only to prove the following estimate;
for any $\delta>0,$ $\gamma>0$ and $a>0$ there exists an $\epsilon_{0}>0$ such that

(4.5) $P_{x}^{\epsilon}(\Vert X^{\epsilon}-\phi\Vert_{T}<\delta)\geqq\exp\{-\frac{1}{\epsilon}(S_{x}^{fg}:r(\phi)+\gamma)\}$

for all $\epsilon\leqq\epsilon_{0}$ and all $\phi\in\Phi_{a}(x, T)$ .
Choose $R_{0}>0$ so that $\Vert\phi\Vert_{T}<R_{0}$ . By the estimate of Corollary 2.2, for any $1>0$

we can find an $R_{1}>0$ so that for all $R>R_{1}$

$\lim_{\epsilon\rightarrow}\sup_{0}\in\log P(\sup_{0\leq t\leq T}|X^{\epsilon}(t)|\geqq R/\sqrt{2})<-1$ .

Thus, for every $\gamma>0$ and $\epsilon$ sufficiently small, we have

$\epsilon\log P(\sup_{0\leq l\leq T}|X^{\epsilon}(t)|\geqq R/\sqrt{2})<-l+\gamma$ ,

and so

(4.6) $P(\sup_{0\lessgtr t\leq T}|X^{\epsilon}(t)|\geqq R/\sqrt{2})<\exp\{-\frac{1}{\epsilon}(1-\gamma)\}$ .

Put $R^{\prime}=\max\{R_{0}, R_{1}\}$ and then consider any $R$ such that $R>R^{\prime}$ . Let $X^{\epsilon.R}(t)$

be the solution of (1.3) with $F=F_{R}$ and $g=g_{R}$ , and let $P_{x^{\epsilon R}}$. be the probability
measure induced by $X^{\epsilon,R}(t)$ initiating from $x\in R^{2}$ . Let $\delta>0$ be arbitrary and
observe that

$\{\Vert X^{\epsilon}-\phi\Vert_{T}<\delta\}\supseteqq\{\Vert X^{\epsilon}-X^{\epsilon.R}\Vert_{T}<\frac{\delta}{2},$ $\Vert X^{\text{\’{e}}.R}-\phi\Vert_{T}<\frac{\delta}{2}\}$ .

Then, we obtain

(4.7) $P(\Vert X^{\text{\’{e}}}-\phi\Vert_{T}<\delta)\geqq P(\Vert X^{\epsilon.R}-\phi\Vert_{T}<\frac{\delta}{2})-P(\Vert X^{\epsilon}-X^{\epsilon.R}\Vert_{T}\geqq\frac{\delta}{2})$ .

Since $\Vert\phi\Vert_{T}<R^{\prime}<R$ , the definition of $F_{R}$ and $g_{R}$ implies that

$F(\phi_{1})=F_{R}(\phi_{1})$ and $g(\phi_{1})=g_{R}(\phi_{1})$ for such a $\phi=(\phi_{1}, \phi_{2})$ ,

and hence $\phi\in W^{R}(x, T)$ . Moreover, it follows from (4.4) that

$S_{x}^{fg}:\tau(\phi)=S_{x.T}^{R}(\phi)$ for $\Vert\phi\Vert_{T}<R$ .
Since $F_{R}$ and $g_{R}$ satisfy a global Lipschitz condition in $R^{1}$ , by Remark 1.1 we
can get
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(4.8) $P(\Vert X^{\epsilon,R}-\phi\Vert_{T}<\frac{\delta}{2})\geqq\exp\{-\frac{1}{\epsilon}(S_{x,T}^{R}(\phi)+\gamma)\}$

$=\exp\{-\frac{1}{\epsilon}(S_{x}^{fg}:\tau(\phi)+\gamma)\}$ .

On the other hand, we have $X^{g}=X^{\text{\’{e}},R}$ on $\Vert X^{\epsilon}\Vert_{T}<R$ and

$\{\Vert x\Vert\geqq R\}\subseteqq\{|x|\geqq R/\sqrt{2}\}$ for $x=(x_{1}, x_{2})\in R^{2}$ ,

where $|x|=(x_{1}^{2}+x_{2}^{2})^{I/2}$ . Then, it holds

$P(\Vert X^{\epsilon}-X^{\epsilon.R}\Vert_{T}\geqq\frac{\delta}{2})$

$=P(\Vert X^{\epsilon}-X^{\epsilon,R}\Vert_{T}\geqq\frac{\delta}{2},$ $\Vert X^{\epsilon}\Vert_{T}<R)+P(\Vert X^{\epsilon}-X^{\epsilon,R}\Vert_{T}\geqq\frac{\delta}{2},$ $\Vert X^{\epsilon}\Vert_{T}\geqq R)$

$\leqq P(\Vert X^{\epsilon}\Vert_{T}\geqq R)$

$\leqq P(\sup_{0\leqq t\xi T}|X^{\epsilon}(t)|\geqq R/\sqrt{2})$ .

Apply (4.6) to the last term of the above equation. Then we get

(4.9) $P(\Vert X^{e}-X^{\epsilon,R}$ I $T\geqq\frac{\delta}{2})<\exp\{-\frac{1}{\epsilon}(l-\gamma)\}$ .

Combining (4.9) and (4.8) with (4.7), we obtain

$P(\Vert X^{\epsilon}-\phi\Vert_{T}<\delta)\geqq\exp\{-\frac{1}{\epsilon}(S_{x}^{fg}:\tau(\phi)+\gamma)\}-\exp\{-\frac{1}{\epsilon}(l-\gamma)\}$ .

Let $1\uparrow\infty$ in the above equation. Then we get (4.5).

In order to prove (1.5) for $P_{x^{\epsilon}}|_{\psi}$ we consider the opposite inequality and
follow the same argument as in the preceding procedure. Then, for $P_{x^{\epsilon}}|_{\psi}$ , we
can obtain the equivalent estimate (II) introduced by Remark 1.1, completing
the proof.

\S 5. Oscillators with damping multiplied by $\epsilon$ .
Here we treat the system (1.4) and establish the same result as in Theorem

4.1. For this purpose, let us consider the systems (1.3) and (4.1) with $F\equiv 0$ ,
which have unique solutions under Assumption 2.1 and Assumption 4.1 on $g$,
since Corollary 2.2 and Lemma 4.1 hold. For each $x\in R^{2}$ and $T>0$ , define $\subseteq W=$

$cW(x, T)$ by $\zeta W=W^{F,g}(x, T)$ with $F\equiv 0$, and then define the functional $\tilde{S}_{x,T}^{g,}$ on
$\tilde{\psi}$ as follows;
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(5.1) $\tilde{S}_{x,T}^{g}(\phi)=\frac{1}{2}\int_{0}^{T}[\frac{d^{2}\phi_{1}(t)}{dt^{2}}+g(\phi_{1}(t))]^{2}dt$

if $\phi=(\phi_{1}, \phi_{2})\in\tilde{\psi}(x, T),$ $\phi$ is absolutely continuous
and the integral exists,

$\tilde{S}_{x,T}^{g}(\phi)=\infty$ otherwise.

Further, define $CW^{R}=\tilde{\psi}^{R}(x, T)$ by $C\overline{W}^{R}=C\tilde{W}^{F.g}(x, T)$ with $F\equiv 0$ and $g=g_{R}$ , and put

(5.2) $\tilde{S}_{x.T}^{R}(\phi)=\tilde{S}_{x.T}^{g}(\phi)$ with $g=g_{R}$ .
Then, we obtain the following theorem.

THEOREM 5.1. Under Assumption 2.1 and Assumption 4.1 on $g$ , let $\tilde{X}^{\epsilon}(t, x)$

be the solution $\tilde{X}^{\epsilon}(t)$ of (1.4) with the initial state $\tilde{X}^{\epsilon}(0)=x\in R^{2}$ , and let $\tilde{P}_{x^{\epsilon}}$ be the
probability measure induced by $\tilde{X}^{\epsilon}(\cdot, x)$ on $C([0, \infty);R^{2})$ . Then, for each $T>0$

and $x\in R^{2},$ $\{\tilde{P}_{x^{\epsilon}}|_{\tilde{q\nu}} ; \epsilon>0\}$ satisfies the large deviation principle with a rate func-
tion $\tilde{S}_{x.T}^{g}$ defined by (5.1).

PROOF. Let $X^{\epsilon.R}(t)$ be the solution of (1.3) with $F\equiv 0$ and $g=g_{R}$ , and let
$\tilde{X}^{\epsilon.R}(t)$ be the solution of (1.4) with $F=F_{R}$ and $g=g_{R}$ , initiating from the same
state $x\in R^{2}$ . Denote by $P_{x}^{\epsilon,R}$ and $\tilde{P}_{x^{\epsilon R}}$, the probability measures induced by $X^{\epsilon,R}$

and $\tilde{X}^{\epsilon,R}$ on $C([0, \infty);R^{2})$ , respectively. Then, we can proceed as follows:
Step 1. For each $T>0$ there exists a constant $K(T, R)>0$ depending on $T$

and $R$ such that

(5.3) $P(\Vert\tilde{X}^{\epsilon.R}-X^{\epsilon,R}\Vert_{T}\leqq\epsilon K(T, R))=1$ .
Step 2. Since Theorem 4.1 applies to $P_{x^{\epsilon R}}$, except that $\{S_{x}^{fg}:\tau’\psi\}$ is replaced

by $\{\tilde{S}_{x.T}^{Rc}\overline{W}^{R}\}$ , (5.3) implies that $\{\tilde{P}_{x^{\epsilon S}}\cdot|_{q\tilde{\nu}^{R}} ; \epsilon>0\}$ satisfies the large deviation
principle with respect to $\tilde{S}_{x.T}^{R}$ , where $\tilde{S}_{x.T}^{R}$ is given by (5.2).

Step 3. The proof of the theorem from Step 2 is quite analogous as the
proof of Theorem 4.1, and we omit the details.
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