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ON THE NEUMANN PROBLEM FOR SOME LINEAR
HYPERBOLIC SYSTEMS OF SECOND ORDER

By

Yoshihiro SHIBATA

Abstract. It is obtained the unique existence theorem of solutions
to the mixed problem for linear hyperbolic systems of second order
with inhomogeneous Neumann boundary condition. And, it is in-
vestigated that the constants appearing in the first energy inequality
depend essentially only on #'*#-norms (0<p<1) of coefficients of
operators.

§1. Introduction.

Let £ be a domain in n-dimensional Euclidean space R™ having a boundary
I’ which is a C~ and compact hypersurface. Throughout this paper except §8,
we assume that n=2. Let x=(x,, -+, x,) represent points of R™ and { a time
variable. For differentiations we use the symbols 9,=d/0¢ and 9;,=d/dx;. In
this paper, we consider the following problem : ‘

(PO[al=aa+H, 30,4+ A, 3a=F in [0, TIX2,
(N) Q)[@]=B(t, 3"+ Ht, x)d,i=g on [0, TIxT,
a0, x)=1dto(x), 8,80, x)=1k(x) in 2,

where H(t, 3'), A(t, 32) and B(, 3') are mXm matrices of differential operators
of the forms:

(1.1.a) H(, 0“)Y0=2Ht, x)o;o+H"*(t, x)v,
(L.1.b) A(t, 0®)o=—0;(A%*(t, x)d;0)+ A% ¢, x)d,0+ A*'(t, x)¥,
(L.1.c) B(, d")o=v(x)A%(, x)d;5+ B¢, x)d.+B"*'(t, x)v,
9="%vy, -, vm) (*M means the transposed vector or matrix of M).
Here and hereafter, the summation convention is understood and in the sum-

mation the subscripts and superscripts 7, 7/, 7, j/ (resp. p, p’, q, ¢’ ; resp. a, a’, b)
take all values 1 to n (resp. 1 to n—1; resp. 1 to m). The v;(x) are real
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valued functions in CF5(R") such that v(x)=(v,(x), ---, ¥(x)) represents the unit
outer normal to I” at x&I'. Put

HY ¢, x)=(H*"¢, x)), A't, x)=(4'"@, x)), A", x)=(A*1, x)),
B(t, x)=(B'"(¢, x))

for £=0,1, ---, n+1, (=1, -+, n+1, 7, j=1, ---, n. The subscript a and super-
script b denote the row and column, respectively. If @ satisfies (N), then we
say that # is a solution to (N) with initial data #,, #,, right member f and
boundary data g.

The purpose of this paper is to prove the unique existence theorem of solu-
tions to (N) under suitable conditions and to investigate how constants appearing
in energy inequalities depend on the coefficients of the operators P(¢t) and Q(t).
The latter is quite important in proving the existence theorem of solutions to
quasilinear operators (cf. Shibata and Shibata-Nakamura [11]). If we con-
sider 3-dimensional elasticities, in many cases the equations of motions are
described by 3X3 quasilinear hyperbolic systems of 2nd order with Neumann
boundary conditions (cf. [11]). And then, the linearized problems are described
by (N). It is one of the reasons why we must consider the system of 2nd
order.

In case that m=1 (i.e., scalar operator case), lkawa [2, 3], Miyatake [6]
and Yagi proved the unique existence theorem of solutions. Especially,
Miyatake [6] gave a necessary and sufficient condition for L*-wellposedness.
Ikawa treated the case where the inequality:

(1.2) vi(x)H'(t, x)+Ht, x)=6 on [0, TIXI",

is valid for some constant ¢>0. Roughly speaking, his method was as follows.
First, using the Hille-Yoshida theorem, he proved the unique existence theorem
when the coefficients of operators are independent of ¢#. Secondly, he derived
the energy inequalities by the usual energy method. Finally, by Cauchy’s zigzag
line method, he proved the unique existence theorem in time dependent case.
To show the convergence of Cauch’s zigzag line and the uniqueness of solutions,
the energy inequalities play an essential role. In this manner, it is sufficient to
assume that the coefficients are in 32
In case where

(1.3) vi(x)H'(¢, x)+H(t, x)=0  on [0, TIXI’

and the boundary data g=0, Miyatake first got the energy inequalities and
the unique existence theorem of solutions to (N). Roughly speaking, his method
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of getting energy inequalities was as follows. Making Laplace transform in ¢
and Fourier transform in tangential variables near the boundary and using
simple localizations, he got some kind of a priori estimate with zero initial data
by the method of finding so called the operator @ for P (this @ of course differs
from our boundary operator Q). This method was first developped by Kreiss
and Sakamoto to get a priori estimate for the general hyperbolic mixed
problem under the uniform Lopatinski condition. And then, in the similar man-
ner to Sakamoto [9], first by a priori estimate mentioned above and Riesz’s
representation theorem he got the unique existence theorem of solutions with
zero initial data; secondly, using solutions with zero initial data, he obtained
the usual energy inequalities. Furthermore, using the existence theorem with
zero initial data and energy inequalities he proved the unique existence theorem.
In his method, the theory on L2%-boundedness of pseudo-pifferential operators
played an essential role. Thus, he must assume that the coefficients of the
operators are sufficiently smooth, for example in $#°. To remove the smooth-

ness assumptions on the coefficients of the operators, to the auther it seems that
more delicate discussions are needed.

The originalities of this paper are as follows.

1° The operators are systems of second order.

2° It is assumed that the coefficients of operators are in $? while the boundary
condition is inhomogeneous and is assumed.

3° It is proved that the constants in first energy inequalities depend essentially
only on the B'*#-norms of coefficients of the operators (0<u<1).

Even in the case that m=1 (scalar operator case), under 2° the unique existence

theorem of solutions to (N) and the assertion 3° do not follow immediately from
results due to Miyatake [6]. We need other ideas.

The paper is organized as follows. In §2, we explain the basic notations
and introduce assumptions, and then the main results are stated. In §§3 and
4, we make preparations for proving the existence theorem of solutions to
operators satisfying (1.2) rather than This existence theorem plays an
important role in proving the existence theorem and energy inequalities of the
original problem. The discussions in §§3 and 4 are essentially the same as in

Ikawa [3]. In §5, we show some kind of a priori estimate with zero initial data
in the spirits of Kreiss [4], Sakamoto and Miyatake [6]. In §6, the first

energy inequality is obtained under the assumption that initial data are zero.
In §7, the usual energy inequalities and the existence theorem of (N) are ob-
tained. In §8, in the case where n=1 we prove the unique existence theorem
of solutions to (N) and obtain the energy inequalities.



152 Yoshihiro SHIBATA

§2. Notations, assumptions and main results.

First, we explain basic notations used throughout the paper. We always
assume that functions are real-valued, except for §5 and Appendix. Let §%%,
3.7, 8.5 be Kronecker’s delta symbols, i.e., 6*F=§,"=08..=1 and §*f=4§,°=
9.5=0 for a#B. Let G be a domain in R". By |-|l¢ we denote the usual L
norm for scalar functions defined on G. For any integer L=0, scalar functions

u, v and vector-valued functions #, ¥, put
#-0=Sgva, | 41" =24, [813=Slal3, (u, vIo=] u(xi()ds,
(#, D)6=2(Uq, Voo, lull=lulle, l@l=l#le, (u, v)=(u, v)a,
(&, 9)=(i, D)o, <u, v>:Sru(x)v(x)de (dS;: the surface element of I").

(i, T>=SWta, Vo), 0502a="10%0%u,, -, 320%un), DFu=(3'0%u ; b+ |a|=L),
Diu=(0%2u; k+|a|<L), 0*u=0%u; |a|=L), d*u=(@%u; |a| <L),
Dri=(D*uy; a=l, -, m), D*a=(D*u,; a=1, ---, m),

ta=(0 uy; a=1, -, m), Fa=3"us; a=1, -, m).

The HX(G) denote the usual Sobolev spaces over G with norms ||dfulg. The
HEY(G)X --+ X HXG) denote Sobolev spaces for vector valued functions and for
the sake of simplicity we denote them also by HX(G). Let G’ be a set in R*
(k=1) and X, Y represent points of R*. For any integer /=0 and ¢<(0, 1),
put

|Ulw,1,60= 2 sup [(@*u)X)|  (here, 0°=(0/0.X,)" --- (3/0X,)**),

|la|sl XeG’

|4, 140,00 =|Ulwe 1,60+ 2] sUD @) X)— @)V

laj=l X,YEqG’ IX—Yla
X+Y

For any matrix U=(Ug?), put |Ule, 14+r.¢ =2 1U %l w, 145, ¢ (0<k<1). Since I is
a C= and compact hypersurface, we may assume that there exist finite numbers

of open sets ©,(=1, ---, N) integers d(l) (1=d(/)<n), ¢,>0 and C> functions
Y4’ such that OLHFZ{xERndeU):pL(x’), Ix’l<0‘L} where x'=(x1, o, Xdc-1,
Xdwr+1, 5 Xz). We may also assume that

2.1 ON2CT{xER™ | xar<px'), |x'|<a.}.

Put OUx)=x,, 1Sk=<d(D—1; Qi (x)=x,, dD+1I=Sk=n; OL(x)=p(x)—Xaw>
Define the map @,(x) by @,(x)=(DPx), ---, PL(x)). We may assume that the @,
are C=-diffeomorphisms of @, onto Q(¢;) and that @,(0,NL2)=0%(g,), Where
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Qe )={y=01, =, yER Y |=|(y1, =+, Yo-DI<0y, | ¥al <o}, QF(a)={yE
R%||y'| <0y, yo<o,} and R?={y=R"|y,>0}. Let ¥, be the inverse maps of

@,. Let ¢, k=0, 1, -+, N, be functions having the following properties:
(2.2.2) G, =C3(Q)

(2.2.b) 0, =C0), =1, -, N,

(2.2.¢) S gin=1 on 2.

Let ¢i, (=1, ---, N, be functions in C%(O;) such that
(2.2.d) oi(x)=1 on supp ¢; .

For any real number r+0, put
N
=2 10+, #=E, -, Ean),

where v,(¥)=ul (y’, 00)¢: ¥ (»’, 0)) and the 9,(§’) denotes the Fourier trans-
form of v;. Put

udi=<u, u>, <iy),=2<Kuqyz,
H™(I'y={u (resp. @&)|<u), (resp. <{@)>,)<oo}.

For any non-negative integer s and an interval I of R, put

N
|u|w,s,1xr-__’§ lviloe,s,IxB(aL):

where vi(t, y)=¢1 ¥ (y’, Mult, T(y’, 0)) and B(e,)={y’'€R"'||y’|<e:}. For
a matrix (U, put |Ulew s 1xr=21Uo’|«, s, 1xr. For any interval I of R and a
Banach space X, CX(I; X) denotes the set of all X-valued continuous functions
in I having all derivatives <L continuous in I. When I is bounded, CL(J; X)
is equipped with uniform topology, i.e., what u, converges to » in CX(I; X)
as k—oo means that sup{||lu,(s)—u(s)|x; s€I}—0 as k—oc where |-||x denotes
the norm of X. Put EX(/, G)=L(_Iﬂ0 CYI; HEXG)), EX(I)=EL(I; Q) and EL"(I, I")
= zé) CYI; H=*Y(I")). p always refers to a very small positive number (<(0, 1)).

For any intervals I and J of R, put

n . n+1 n |
ﬂ],J(O):.Z lA”!oo,o,[xQ_"'kiZi ]Aklcn,o.Ix.Q"'_zg IH‘LIOO,O,JXQ

1, j=1

n+1
+IHn+1IW,O.IXQ+|Holw.0.JxP+k§ lBklw.O,IxP’
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n n )
Hr,o)= B 1A e, 1eat 33 T H o g st | HO g e+ B e, 1
n . n+1 v
+tz=}1 lBtloo,r,IxI"‘f‘kgl |A lw,o,lx!2+|Hn+1|°°,o.Ix97 1§T<2,
n , n )
ﬁiz,.l(z)':i j2=1 IA’jloo.z,zx.Q—f'ig | H |, 14, s x2F+ | H |0, 14 . 5T

n+l1 n+l1
+ 2 1B e 2 1A o, 1ot | H ™ s 10

For the sake of simplicity, we put H()=Hg r(r) and MHr(¥)=Ho, 13,05, 7+3(7)
with some fixed £>0.

C=C(-+--- ) denotes a constant depending essentially only on the quantities
appearing in parentheses. In a given context, the same letter C will generally
be used to denote different constants depending on the same set of arguments.

Now, we introduce the assumptions.

(A.1) The A%’ and H:,® are in 3* (Rx2); H**';®> and A'® in 8" (RX2);
H°:® and B';® in 8 (RXI) for ¢, j=1, ---, n, [=1, -+, n+1, and a, b=
1, -, m.

(A.2) A %t, x)=06"0,°> and other functions all vanish for |¢|>T, with some
T>0.

(A.3) tAY(, x)=A%{t, x), ‘H(t, x)=H'¢, x), *H¢, x")=H¢, x’), ‘B, x)=
— B¥(t, x’) for any (t, x)€RX 2 and (¢, x’)eRxI.

(A.4) There exist constants d, and 6,>0 such that
(A, -)0sm, 0y3)+<BXt, -)0:@, #)>=20,(0"%|*—0,|#|*
for any #€ H¥f2) and t<R.

(A.5) wvi(x)B(t, x)=0 for all (¢, x)eRXI.

(A.6) The inequality: (vy(x)H(t, x)+H'¢, x))p-9=0, holds for any constant
vector ’=R™ and t=R.

Now, we introduce compatibility conditions. Put
H®(to, Ya(x)=0i[H(t, 0" )(x)]| =, »
AD(ty, M a(x)=0iLAt, 0*)a(x)] | c=c, »
BO(ty, 0M)a(x)=0i[ B(t, 0")a(x)]| =, -

For k=0, we define #,+.(x) successively by

@23 A=, D)= FOHOO, a2 +ADO, P



On the Neumann problem 155

DEFINITION 2.1. Let L be an integer =2. We shall say that #,, #,, f

-

and g satisfy the compatibility condition of order L—2 if
é(?){B‘”(O, 011 (x)+ (0, HO)O, %) x41-21(x)}=(0(2)O0, x) on I
for k=0, 1, .-, L—-2.
Now, we state our main results.

THEOREM 2.2. Assume that n=2. Let T>0. Assume that (A.1)-(A.6) are
valid. 1° If w,= H¥Q), a,=H\(R), F=C¥[0, T]1; LX), g=CX[0, T]; H'¥2))
and the compatibility condition of order 0 is satisfied, then there exists a unique
solution a<E*[0, T]) of (N) with initial data #, w#,, right member f and

=

boundary data g. 2° Let p be a small positive number (0, 1). Put
t
e, ﬁ)=So{llP(S)[ﬁ(S, Q1P +H<Qs)Lacs, -)Dirtds.
Then, there exists a constant C=C(d,, 0, I, H(1+p))>0 such that for any te

[0, T] and as E*[0, T]) the following three estimates hold:
(@) lla.a, HI*+lak, Hlier=2e°{]0,a(0, )I*+[#0, )I3w+CEE, @)},

(b) S:<asﬂ(5; -)>El/2ds§CeC‘{||5‘a(0, INE+EE, @)},

(¢) lo.at, HI*+Nact, Hiw=e® {10,400, H>+[#0, 3w}
+Ce®{|D*a0, H|*+&@, a)} e, a)®.
Here, the norm ||-|ls¢> will be defined in (3.30.a) of §3 below.

THEOREM 2.3. Assume that n=2. Let T>0 and L be an integer =3. In
addition to (A.1)-(A.6), we assume that A.”*= B[O, T1x9); H%?, At e
B0, TIX2); H'.®, B* e 8X[0, TIXI). If asHYQ), msH"(Q), Je
CE-X[0, T1; LX) NEL-X[0, T]), g =CE[0, T1; HV*I'NNE*Y*[0, T1; I')
and the compatibility condition of order L—2 are satisfied, then the solution @ of
(N) with initial data ., #,, right member f and boundary data g belongs to
EX[0, TD.

Finally, we shall prove that what coefficients are defined for all {€R im-
poses no restrictions on us in some sense. We can extend coefficients as follows.

LEMMA 2.4. Let T and £>0. Let At,®, H'2, A%, Bt i, j=1, -, m,
[=0,1, ---, n+1, k=1, ---, n+1, a, b=1, ---, m, be functions satisfying the fol-
lowing properties :
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(a.1) Al be a¥[0, T1x2), H.be 3[—k, T+r]x2),
Ao, Akbe @'([0, TIXQ), H.be 8*([—«k, T+elxD),
B e a%[0, TI1xI).
@.2) A, x)=A%¢, x), tH@, x\)=H, x), *H¢, »)=H, x),
tBit’, x\=—Bit’, x') for any (¢, x)=[0, T1x 2, (t’, x)[—&, T+x]X 4.
¢, xYe[—k, T+x]xI" and (', x)<[0, TI1xT.
(a.3) There exist constants 0, and 0,>0 such that
(A2, )00, Osit)+<BXE, -)ouit, #>=38,)10")>—(3./2)l|l*
for any s H¥ ) and t<[0, T].

(a.4) The inequality: (v(x)H'(t, x)+H¢, x))i-4=0, holds for any
(t, x)e[—k, T+&]1X1I" and constant vector a<=R™.

(a.5) vi(x)Bit, x)=0 for any (t, x)&[0, TIxTI.
Here, we have put
Avi=(A%,7), H=(Ht2), A*=(A*2), B*=(B*.).
Then, there exist At,7°, H'.b, A*.%, B*.® which satisfy (A.1)-(A.6) and have the
following properties :
A, x)=At I, x), HR G, 0)=H, x), AR, x)=A%0¢, x),
HoXt, x)=H°2¢, '), B¥ (¢, x)=B*(, x")
for any (t, x)€[0, T1X 2 and (t, x")[0, TI1x 1.

Let Hp(r) be the bound for functions with tilde defined in the same manner
as Mr(r) (cf. Notation). Then, there exists a C=C(T, I') such that

(2.4)

(2.4) Mr)SCHM(r)

for r=0 and 1<r<2.

Proof. By Lions’ method, we shall extend functions. Let ¢()=C>(R) so
that 0=<¢ <1, ¢@)=1 for t<T/3 and =0 for ¢t>2T/3. Take a,=I+1, /=0, 1,2
and choose b, so that é bi(—a)t=1 for k=0, 1,2, i.c., by=6, by=—8, b=3.
For any function f defined on [0, T], put

4t D=¢Wf(t, x) for t20 and = S b(—abf(—ad, x) for <0,

@, x)=A—¢t)f(, x) for t<T and ——é b[A—P)f(-, x)AT—a,t—T))
for t>T.
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And then, set E(f)¢, x)=f*(, x)+ (¢, x). Given t<0 (resp. t>T), by the
mean value theorem we have .
dea {(E(At, ), - )0 Uy, aiua)+<E(§ia’b)(t: )0 Uy, Ua)}
<(AY(ty, )ik, Oyit)+<B(to, -)0s11, @)
—C(D)ltlresp. |T—11) 33 18.A7]w 07210
+ 3 1D B oo 13|,
where t,=0 (resp. t,=T). Here, we have used (3.9)-(3.11) in §3 below. By
(a.3) we have that there exists a £/>0 such that
0% {(E(At o )8, )0jus, itta) +<E(B )2, )ditts, Uad}=25,]0"0]—8.]]°

for any te[—«’, T+«’] and a= H* Q). Put k”=min(k, £’). Choose p(t)=C7(R)
so that 0=<p<1, p(t)=1 for te[—k"/2, T+("/2)] and =0 for t<—£” or t>
T+k”. Put

Aft, x)=p(t)E(AaXt, x)+28,(1—p(t))8"8,°

HiXt, x)=p®O)H¢t, x), H° (¢, x)=p0H ¢, x),

H™ 1t x)=pMEH1.2)t, x), A*t, x)=p@)EA* )¢, x),
B* (¢, x)=p(MEB*)t, x).

Then, these functions without tildes satisfy all desired properties, which com-
pletes the proof of the lemma. '

§3. Preliminaries.

First, we shall discuss the boundary value problem for A(t, 0*) and B(t, o)
in 2, t being regarded as a parameter ; secondly we shall derive an existence
theorem for P(t,) and Q(¢,) with coefficients freezed at t=t,=[0, T]. First of
all, we shall give three lemmas. The first one is well-known (cf. Hé6rmander

[1, §2.5]).

LEMMA 3.1. There exists a C=CI") such that
(1) |<u, VO SCUD1 V> for any usHY¥I") and ve H-V¥(I"),
(i) <udi)eZClo'u|  for any us HY(Q).

LEMMA 3.2. Let a(x)e ‘(") and u(x)eHY*I'). Then, there exists a
C=C(I") such that
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auy 2 =Cla ey, <UDz,
where |alw, i, r= 23 |bilw, 1.8, B(¥NV=GF(y’, Na@ (y’, 0))).

Proof. Interpolating the two inequalities: <au)¢=<|a|w,o, r<uds and <au);<
Cla|w 1, r<{u);, we get the lemma.

LEMMA 3.3. Let G be a domain in R and P**7%x) functions in CXG). Put
PU(x)=(P*(x)) where the superscripts a and b denote the row and column,
respectively. Assume that there exist d,, d,>0 such that

(3.1.2) (PY99;it, 0:it)g=d,||0" al|*—d.| & |* for any asC%(G)
and that

(3.1.b) tPii(x)=P’(x) for any i, j=1, -+, n and xG.
Then,

(3.2) Pi(x)€&manszd, €% 9|

f07’ any XEG, E=($1, Tt En)ERn and 77:(771’ R 771’&)6127"‘-

Proof. Let x,=G, §=R™ and n<R™ be taken arbitrary. For any ¢>0,
let us choose 0>0 so that
3.3) | Pieid(x)—Pie?®(x)| <o and xG

provided that |x—x,|<<d. Choose I(x)eC> so that suppXC{xsR"||x—x,| <0}
(CG) and put #@(x)='nlexp(v—1 x-&)R]X(x) for any large R. By (3.1) and
(3.3) we have

Pe2(g)| Rpamebid | 14() 1 *dx+nams 102) 1 dx ]

z(di—o)|Rr1g 1] 1w rdx+ 1917 1001 x |~ dal 1] 1ao17d .

Dividing by R? and letting R—oco, we have from the arbitrariness of
choice of a.

Now, we shall discuss boundary value problem in £ with parameter t<
[0, 77:

(3.4) Alt, ®a+Aa=1¢, ) in 8, B@, dYa=g, -) on I,

where 4, is a constant determined in (3.18) below. By using local coordinate
systems defined in §2, we can write for 2= H*2) and 3 H*(Q)



On the Neumann problem

(3.5) (Bi¢, )o:i, 7}>=k§1 SRn_lgbk(y', 0)2Bit, ¥w(y’, 0)Y4:(y’, 0)
T (y", 0)-V (5, 0)]:(3")dy’

where

(3.6) G(=6:T ), Ti=a@ (), V()= :(»)), 8=0/3y,
Yi(y)=(00%/0x)¥ (¥, jk(yl)=[i§ (09%/0x )W x(y’, 0))*12.

Note that

(3.7.2) dS:=J(y"dy’,

(3.7.b) vi(0)=Y 4y, 0/J:(3")  (cf. (2.1)),

for any x=¥,(y’, 0)e0,NI". By (A.6)

(3.8) Bi¢, T(y’, 0)Y (y’, 0)=0 for (y’, 0)eB(o,:) .

Substituting [3.8) into [3.5) and integrating in y,, we have

(3.9) (BUt, -)o:#, v>=3,(t, &, 0)+C.\(, @, D)

where

(3.10) QFE, y)=Bt, Ts(y’, MY R (),  p=1, -, n—1,

GlLa) 8 2 0)=3] HOUQHE y5T:0)8V40)

T =@ BT BTy,
GILL) &t 0)=F| (G0 y KT Vo)

T —@ONQEE, 3)304() Ty .

159

By the assumption: !B+ B‘=0 on RXI’, we see that ‘Q?+Q?=0, which implies

that

(3.12) B, @, D)=28,@, b, @) for any @, € H(2).
Obviously, by Schwarz’s inequality we have

(3.13) |C\(@, @, 9)| <Cu(L)|o*all| 9]l .

In the same manner, we can write

(3.14) (B@, )i, 0>=B,(t, &, D)+C:(¢, @, D),

where

G15.2) 8, @, 0)=—3| g0)BE Taly’, MT)-:Ts0Na(2)dy,
A
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(3.15.b)  Cuft, #, ﬁ)z—-ﬁ{g S P NBE, Uiy’ T () V s (3")d y
Rn

k=1
+

+SR¢¢%(”B“’ Uy, 003,049V 4(0)4(3)d 3}
By Schwarz’s inequality we have
(3.16.2) 1Co(t, @, D) | <CuD)o*alllll,
(3.16.b) | B(t, @, D)| =CHD)|%||0'D] .
Let us define the sesquilinear form A(t, -, -) associated with by
(3.17) A@, a, 9)=(A"(t, -)0;&, 0:0)+((A’(t, -)o;+A™*'(t, -)a, D)
+au(d, D)+ 2 (Bult, &, O+Cilt, 4, 9)  for @, ISH'R).

By (A.4), [3.9), (3.13), (3.16) and Schwarz’s inequality we have
(3.18.a) | AG, @, )| SCH(1)|o @l llo's] ,
(318.b) J(t, 12; ﬂ’)galnala“z ’

provided that 2,=0,+0,+CH(1)’(07;'+1) with some constant C>0. Here, we
have used the fact that H*f) is dense in HY(2). From a point of view of
(3.18), the well-known Lax and Milgram theorem yields that for any fe L)
and g= HV¥[I") there exists a unique solution #< H'(2) of variational equation:

(3.19) A, @, 9)=(Ff, D)+<g, >
for any s H*(£2). In particular, by (3.18.b) and
(3.20) 18 ) <OT'CAMIF | +<8D1s2}-

In view of and (3.14), if we can prove that #< H({), then by integra-
tion by parts we see that # is a solution of in strong sense. In proving
that 2= H*Q), we adopt a well-known method. Namely, the boundary is
straightened locally and difference quotients are used. For a large 4,>0, put

(3.2 A, 9, w)=(PH(¢, -)d59, 01w)
+(QF(@, -)049, 0pw)' —(QF(E, -)039, 0,1) +4(@, W)’

for any @, we H'(R}?) such that suppd, supp WCQ*(g,). Here, we have put
(,)=(, ez and

(3.22) P, »)=A"7(t, TrONY 120V :(3).

Noting that the Jacobian of the map ¥, is 1 and changing the variables in the
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right hand-side of (3.21), by (A.4), (3.9)-(3.11) and (3.13) we see that there exist
A, and ¢,>0 depending only on 4, d, and I’ such that

(3.23) A, 9, D)=y 0l k7

for any #€ HY(R?) with supp sCQ*(¢,) and k=1, ---, N (34,9=(810, ---, 037, 9)).
Choose ¢}, 67>0 so that ¢;/<eg,<a, and supp ¢:(T . (Y)NC{yER"||y’'| <0k,
o1 <ok}, supp ¢ (T (v)CT{yER"||y’|<ai, |y.1<o%}. For any h#0 such
that |h|<min(g,—o%, ok —af), put [@W],={w(y+he,)—w(y)}/h where e,=
o, -, 0, L,0,:,0), p=1, -, n—1 1If we put 9:(3)=¢(3»)a¥ (), then by

p-th

and (3.21) we see that
(3.24) A4 10, D FE, N+HCEE, 1 +CA, HANNE @] }I5 ] a7

for any @we=HY(R?) with supp wC{ysR?||y’'| <o}, y»<o:}. Here, we have
used the fact that [|[[@]1xllz2 <10, 2. Putting w=[9,]» in (3.23), by [3.23) we
have.

(3.25) 13500 JallanSCA, 81, BN FE, HIH<EE, D1 +CHAD]F R},

which implies that 0,9, H'(R?), p=1, .-, n—1. By we see that
P?™ is non-singular. In fact, for any 9=C%5(Q*(s,)) we have

(Pit, )00, 879) =(A(t, -)0;Wr, 0:5) (W x(x)=0(D(x)))
=010 1|1*— 01| @, ||* = 201 10" 0| s — 02 | 5| &7
where ¢,=C([")>0. Applying impliés that
(3.26) P, y)5:62¢:0:In €1

for any &=(&,, -+, &,)€R™ and y=Q*(o,), where I, is the m X m identity matrix.
In particular, from this it follows that PZ"(¢, y) is non-singular for any y&
Q*(a ).

Since # satisfies in the distribution sense as follows from noting
that the coefficient of the second derivative of @, with respect to y, is P;",
we see directly that 0%°0,/0y2< L*(R?) and then obtain

lﬁzllaﬁkllnzéc(ﬂ 31, 8L+ MON{ I F(E, +<CEE, I re+ClU1))3 ]}

By easier arguments, we can also get the interior regularity of #, i.e.,
i s H(L) and

103(pei)| SC(T", 8,y BN F(E, I +ClMD)F a1}

la)=2

Recalling that 4,(v)=¢,@ «(3))a@ .(y)) and (2.2.c), we have that zc H*f) and
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(3.27) 8IS CUT, 8y, o)1+ HON T, +<8t, D1p+CHD) T al}.

Since # depends actually on ¢, we now prefer to write #=#a(, x). Then,

by and (3.27) we get
182, -)—d%at’, H=<C@, &, ', HH{IFE, H)—F&, )l
4B, V=B, Dt It—t'| |52, ).

From this it follows that 2=C%[0, T]; H¥Q)) if feC*[0, T]; L¥f2)) and ge
C[0, T]; HY¥I")). In the same manner, we can get the differentiabilities of
higher order of @ with respect to ¢t and x under the suitable assumptions of
differentiabilities of f, Z and the coefficients of A(t, 0*) and B(¢, d").

Summing up, we have obtained

THEOREM 3.4. Assume that (A.1)-(A.5) are valid. 1° Let A, be the same
constants as in (3.18). Then, for any fEC"([O, T]; LX) and g=C%[0, T];
HY¥(I") (3.4) admits a unique solution #<=C*[0, T]; H*2)) satisfying (3.20) and
3.27). 2° Let L and K be integers =0. In addition to (A.1)-(A.5), we assume
that A *eCK([0, T]; 8L+(2)), B*,eCk([0, T]; 8L+\(I"), A*.<CX([0, T];
BYD)) for i, j=1, ---, n, k=1, -, n+1 and a, b=1, ---, m. If f=CK([0, T];
HY(Q)), g=Ck([0, T]; H:+/2(I)), then a<CX([0, T]; H:+*Q)).

Now, we shall consider the following problem :

P(t)La(t, x)]=f(t, x) in [t, I1XQ, Qt)[at, x)]=0 on [t, t,Jx T,
a(t, x)=to(x), 0.4(t,, x)=d,(x) in Q.

In what follows, ?,, ¢, and ¢, always refer to any fixed times in [0, T] such
that ¢,<t,. In this section, we shall employ essentially the same arguments as
in lkawa [3, §2]. Since we would like to make the paper self-contained and
Ikawa did not treat the case where operators are systems (he treated the case
where m=1 and (1.2) is valid), we prove all lemmas briefly, below. Let H*(Q)
X H*-1(2), k=1, be Hilbert spaces equipped with norms:

(3.29) NUlE=1l0*olI*+ 0% &, ||*
for U=(tko, #,)EH*Q)XH*"'(2). Put
(3.30.3) (12, ﬁ)g(z)z(Aij(t, ’)ajﬂ, aiﬁ)+gl(t: 22) ﬁ)+ —@z(t, 72, i}\'

+$2(t) ‘D; ﬁ)+22(ﬁ, ij) ’
(3.30.b) (U, W acty=—(dko, Do)gcer+(8;, D),

(3.30.¢) Nallgcr=(&, #)sc, U Ecr=(U, Vdacy -



On the Neumann problem 163

Here, U=(i,, #,) and V=(3,, 0,)= H'(2)X L¥2) and 1, is a constant determined
in (3.31) below. By and (A.2) we know that (, ), and (, ), are bili-
near forms. By (3.13), (3.16) and (A.4), we have

(3.31.2) min(l, IDNVIES U s = CA+ AV,
(3.31.b) dulld*alt < llall§ e < C(1+M(1)))|0 |2

for any Ve H' ()X L*(Q), a=H'(2) and t<[0, T], provided that
(3.31.¢) A2:=0,+20,+(C.M(1)/d,)?

with some C>0. Let 4(¢) denote the Hilbert space H(2)XL%Q) equipped
with inner product (, )« Put

(3.32.2) AW U=(iy, —H(, 0")i,— A(t, 3*)it,),
(3.32.b) Bt)U=DB(, d"i,+H¢, x)i,,
for U=(it,, #t,)= H¥(2)X H(2).

LEMMA 3.5. Assume that (A.1)-(A.6) are valid. Then, there exists a C=
C(0,, 05, HM(1)) such that

(3.33) (ABOU, Dawr+ (U, AQ D) scer <CIU %o
for any Uedt)={UsH Q)X H(2)| 3t)U=0 on I'}.
Proof. Noting that ‘H’=H’ and ‘A*/=A’%, by integration by part we have
(3-34) (H(t; al)ﬁl, 171)=<(”jHj)121; 721>+((Hn+l—‘ajHj)721: 721):
(3-35) (A, az)ﬁo: a1)=_<ViAijajao, 721>+(Aijaj720, aiﬁl)‘*‘((Aiai‘*‘AnH)uo; iy).
By (3.14), (3.34) and (3.35) we have
(3.36) (AU, Vacry=—Lv;H'+H%it,, @t,)+<{B({)U, i,>
‘—'((Hn+1—ajHj)121, ﬁl)—((Aja,--i—A"“)iZo, 121)+22(121, 720)
_-cl(ty 120; ﬁl)_CZ(t: 720’ 121)+$2(t: 721; 720)-

Since B(1)U=0 and since {(v;H’+ H%ia,, i,>=0 as follows from (A.6), applying
(3.13) and (3.16) and using and (3.31l.a) we have the lemma.

COROLLARY 3.6. Assume that (A.1)-(A.6) are valid. Let C be the same
constant as in Lemma 3.5. Then,

(3.37) (A= AUl sy 2 (1 2] =OllUllsece
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for any |21 >C ane U<D(t). Here, 1 is the identity operator.

Proof. By Lemma 3.5, we have
|(AL—= A Ull%cer= (A= AU, A=A Vs e
(1212 = 12IO1U % 2 (1 2] —=CP+CU A —ON Ul o -
This implies provided that || >C.

LEMMA 3.7. Assume that (A.1)-(A.6) are valid. Then, there exists a C=
C(dy, 85, M(1))>0 such that for any A>CA—A() is a bijective map of D(t) onto
H(t). If we denote its inverse by (Al— A(t))™!, then

(3.38) 1A= A@) ' Ul iy =@A—=C) Ul seeer  for 2>C and U< D).

Proof. In view of [Corollary 3.6, it suffices to prove the bijectiveness.
Namely, given SV=(4,, #,)< 4(t) we shall prove a unique existence of U=
(tho, #,)ED() such that (AA—A@)U=<V. If we use the relation of first com-

ponents, i.e., Ai,—i#,=b, we can rewrite the relation of second components as
follows:

(3.39.2) A(t, 3+ AHE, )i+ A%a,=f in Q

where fz:)‘—}—H(t, Mo+ A0, L¥R). If we use the relation: Ada,—i#,=v, again,
we see that the condition: U< 9D(t) means that

(3.39.b) B(t, 0")i,+AH(t, x)it,=g on I’

where g=H(t, x)i,= H'(2). Thus, to prove the lemma it suffices to prove that
there exists a constant C such that for any A>C the boundary value problem
(3.39) always admits a unique solution #,=H*£). To solve (3.39) let us intro-
duce sesquilinear form A4 ; associated with (3.39) as follows:

A, @, 9)=(AY(t, -)0,i, 0.0)+((AXE, -)o:+ A", - )i, 9)
+ 3B, @, D+CA, 7, D)+IHE, 33, 9)
FACHOE, )i, B>+ A%, D).
By (3.34) and (A.5) we have
ACH(t, aYya, a)+AKH@, )i, ay=—ACHD)|a]*.

By (A.4), [3.9), (3.31), (3.16) and Schwarz’s inequality we see that there exists
a C=C(d;, 9., M(1)>0 such that for any A>C and ac H'(2)

Ax(t, @, #)=0d, /10" al®.
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Employing the same arguments as in the proof of [Theorem 3.4, we see that
(3.39) admits a unique solution #,= H* ) for any A>C, which completes the
proof.

To apply the well-known Hille-Yoshida theorem, the rest of out task is to
prove that 9(¢) is dense in 4 (¢). For this we need the following.

LEMMA 3.8. Assume that (A.1)-(A.5) are valid. Then, for any integer (=1
and g€ HYI"), there exists a #'e H*Q) such that
(3.40) B(t, oYal=g and @'=0on I,
(3.41) lo'at|=1/1.

Proof. Let P{(t, y) be the same functions as in Note that P"(t, v)

is non-singular for any y=Q*(g.), and then (PF™(t, y))™'is also in B*(RXQ*(a,)).
Choose p(s)eCH(R) so that p(s)=1 for |s|=1/2 and =0 for |[s|=1. Put

Uer(3)=—=320(Ry ) PE™t, 9} 823V (3"

for sufficiently large R, where g,(y")=¢i(y’, 0¥ (¥, 0)) (cf. (3.6)). Then, we
see easily that

(3.42.2) Ur(y)E HY(R?), supp U rC{yER"||y,1 <R, y'EB(a4)'},
(3.42.b) | 1950 erll an S CCHAKEN R,
(3.42.c) 0, U r(y’, O)=—{P2™¢, y', 00} ' 8:(y") ("),
(3.42.d) 3,0 r(y’, 0)=U,r(y’, 0)=0  for p=1, -+, n—1.
N

Put @,r(x)=U,r(P:(x)) for x=0O, and =0 for x&0,. Set #f(x)= } it ().
By (2.2.¢), (3.8), (3.42.c) and (3.42.d) we have

a
I

B(t, P)aRx)= 3 {ve A°7 €, Ualy', O 545", 0
+ B, Wiy, O, 00+ B, Ua(y's O Taa()] gy
= 31 2:0)= 3 $0BW=E()  for xeT.

Thus, by (3.42.b) and (3.42.d) we see easily that #® satisfies desired properties
with suitable choice of sufficiently large R.

LEMMA 3.9. Assume that (A.1)-(A.5) are valid. Then, D(t)is dense in H(t).

Proof. Put Hi={acs H*Q)|B({, d)a=0on I'}. Note that HiXC()yTa(t).
Since C3(R2) is dense in L), it suffices to prove that H§ is dense in H'(Q).
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Given ¢>0 and 2 HY(R2), we choose 3= H(2) so that

(3.43) o a—d)||<e/2.
By we know that there exists a w< H*) such that
(3.44) l6'wll<e/2 and B(t, 8")w=B(t, ¢")d on I".

Thus, combining (3.43) and [(3.44) implies that 9—@w< HE and that

0" (a—(—w))l <e.
which completes the proof.
In view of Lemmas and 8.9, an application of the Hille-Yoshida theorem
(cf. Tanabe [12, Theorem 3.22]) yields the following.

THEEOREM 3.10. Assume that (A.1)-(A.6) are valid. Let t,, t,, t,=[0, T]
such that t,<t,. Then, for any U,=9D(t,) and F(t)=C'([t,, t.]; H(L,)) there exists
a unique UR)=C[t,, t,]; HENNC ([, t.]; H(L)X H(R)) such that

(3.45) %ﬂ(t)zJ(to)‘{J(t)+€f(t) and UR)ED(t,)  for any tEt,, t,],

qj(tl)ZQJo .

If we put Ue=(ito, %) and F(t)=(0, f(¢, -)), then the first component of
U(t) of [Theorem 3.10 is a solution of (3.28). Namely, we have proved

THEOREM 3.11. Assume that (A.1)-(A.6) are valid. Let t,, t,, t,=[0, T]
such that t,<t,. If #,=H¥Q), a,c H(Q), feC [t t.]; LXR)) and

(3.46) B(t,, 0")i,+ H(to, x)@t,=0 on I,

then there exists a unique solution w< E*[t,, t,]) of the equations (3.28).

§4. A proof an existence theorem.

In this section, under the assumptions that some kinds of estimates are
valid we shall prove an existence theorem which can be applied to the case
where the operator P(t) satisfies (1.2) rather than [1.3). Throughout this sec-
tion, it is assumed that the following two inequalities are valid:

(E.1) For any T>0, there exists a C,(T)=1 such that

ID'at, HI*<C(D{ID a0, )|?

+{ (P@as, HI+HQEAs, D), 05T,
for any T,=(0, T] and @< EX[0, T,]).
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(E.2) For any T >0, there exist constants C,(T), Ci«(T)=1 such that
lo.at, HI*+lalt, iy =(exp C(T)t—t,))

x{1dcacts, D +at, liap+CaD) |, (IPELaGs, 11

+HQUITu(s, Dipds}, tistst,
for any t,, t,, t,=[0, T] (t,<t,) and @< E¥[t,, t,]).
In what follows, as Gronwall’s inequality we always refer to the following
inequality.
Gronwall’s inequality: Let a(t) and b(t) be in C([a, B]) such that a(t), b(t)=0
and b(t) is non-decreasing in [a, 1. If a(t)gcgia(s)ds+b(t) for any te[a, B]
with some constant ¢>0, then a(t)<(exp c(t—a))b(t) for any t<[a, B].

First, we derive the estimates for second derivatives from (E.1) and (E.2).

LEMMA 4.1. Assume that (E.2) is valid. Let t,, t, t,<[0, T] such that
LW<t,. If a€EX[t, t,]) satisfies

4.1) f@, x)=P@t)Lact, x)]JeC([t, t.1; LAQ)),

g, x)=Q)at, x)]1€C[t, t.1; H'*U")),
then

4.2)  llotact, HI*+10.at, Fcp=(expCuT)t—1))

Uttt D18t 3ap+CaT, (10,7, II+0.8(, Dhads},

for any te[ty, t,].

Proof. Let o be any small positive number and assume that @&
C=([t,, t,—a]; H¥(R)). Applying (E.2) to 9,i, we see that (4.2) is valid for te
[ti, t;—0]. To remove the assumption: #=C>([t,, t.—0o]; H¥(2)), we use the

mollifier with respect to t. Let p(t)eC3(R) such that p=0, SRp(t)dt=l and
supp pC[—2, —1]. For ve L¥(4,, t,)X2), put

vs(t, x):-Pa*V:SRpa(t—S)U(S, x)ds, v;=ps*0="ps*v:, -+, 05*Vm)

for 0<d<a/2, where pss)=0"'p(07's). Note that #;=C=([t,, t.—a]; LA2)).
Since the coefficients of operators P(t,) and Q(f,) are independent of ¢, we have
that 3;f,;=P(to)[a,125] and 0,8;=Q(t,)[0.4,;]. Since @< E¥[t,, t,]) and are
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valid, @,i; 6%4s 0.fs and 9,; converge to 0,i, 034, 9.f and 0.8 as 00 in
C([t, t. — a]; H(R2)), C[t, t.—a]; L¥2), C[t,t.—0];L¥2)) and
C([t,, t.—a]; HY¥(I")), respectively. Here, C°(I; X) has the uniform topology
with respect to t<I. Applying (E.2) to 0,i; and letting 6 | 0, we have that
(4.2) is valid for any t€[t,, t,—0c]. By the arbitrariness of the choice of ¢ and
the continuity of the second derivatives of # in ¢ we have the lemma.

LEMMA 4.2. Assume that (E.1) is valid. If a<E*[0, T]) satisfies
f¢, »y=P®Latt, H]eC0, T1; LX),
8¢, x)=QWLa¢, x)]1=C([0, T]; H'XI"),
then there exists a C(T)>0 independent of @ such that

(4.3)

@4y D%, HFSCD{IF0, IF+I3a0, HIP+17O, JI-+<20, i

+{ SR, Ie+@G, Hids), 0stsT.

Proof. Let ¢ be any positive small number. First, we assume that d,ae
E*[0, T—0¢]). Since P@®)[0,a] = 6tf—H“’(t, 010, — ANM(t, 0®)a, Q@t)[o.u] =
0,8—0,H(t, x)0,4a— B®(t, 0")u, applying (E.1) implies that

(4.5) 1D*0,t, -)II”éC;(T){Ilazﬁ(O, Ol*+18'8.40, lI2+1£0, )2

+ceu@n| 1Dvas, Hirds+{ (10,56, H+<@us, Drwds},

for any t=[0, T—o¢]. Here, we have used the relation: a%u(0, x)=f(0, x)
H(, 3")0,4(0, x)— A0, d*)#(0, x) and also used Lemmas and to evaluate
boundary terms. If we apply Theorem 3.4 to equations: A(t, 3%)i—+A.a=f—d%i
— H(t, 6")0,4+ A% in £ and B(t, 0")u=g— Ht, -)d,# on I', we have

(4.6) lla%a(t, JEZCIfe, N2H-<EE, Wi+ 1D, act, I+ D act, -)Ii}.

Note that

(4.7.2) 17, =70, i+, Z18KFes, lids,
(4.7.b) B, DASCRO, Dhe+| 2@, Diads,
4.7.0) 1Dvat, HPSIDa0, 1P+ I1D%aCs, lds .

Substituting (4.7.a and b) into (4.6) and combining (4.6) and (4.7.c), we
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have

4.8)  ID*a(t, ')ll2§C(T){II5212(0, E+18'3:0, IP+17O, DIP+<EO, D

+ 3 [{aafes, Hie+<aiacs, Dhods+{ 1%, lrds}

for any t<[0, T—o¢]. Applying Gronwall’s inequality to (4.8), we see that
(4.4) is valid for any t<[0, T—o].

Now, we remove the additional assumption: 9,2 E*[0, T]). Let us use
the same mollifier with respect to ¢ as in the proof of Lemma 4.1, i.e., 95 and
ps* are the same notations. We employ the same arguments as in the proof of
Proposition 2.6 in lkawa [2]. Put Csa=p:*(P(-)[a])—P(-)[is] and [sa=
e (Q()[a])—Q(-)[@#;]. The estimate already proved implies that

49) 1Dt IPSCD) {180, HIE+ 130,20, P+ 170, IF+<Ex0, s
+ 2 [ a(s, I +<Bgols, Dhnds+ICoa0, I+ a0, Dhie

+k§S:(lla§C5ﬂ(S, N P+<0t 5a(s, ')>?/z)d8}, 0=t£T—o,
provided that 0<d<e/2. If we note the identity:

ac{pa*(av)—a(pa*w}=Skas{pa(t—3)(a(t, x)—a(s, x)} (s, x)—v(t, x))ds

+SRpa(t—-S){d(S, X)—dlt, D}w(s, x)ds (@=8.a),

we can prove that

(4.10) IC(0, )[2+<T5(0, )%
+k§ S:(Hafcsﬁ(s, MEH<4 5i(s, )>%)ds —> 0

as 0 | 0 provided that #= H*(0, T)X2). In the present case, a< H*(0, T)XQ),
since = E*[0, T]))CH%(0, T)x2). Since (4.3) is valid, letting 6 /0 in (4.9)
and noting we see that (4.4) is valid for any t€[0, T—o¢]. The arbitrari-
ness of the choice of ¢ and the continuity of # in ¢ imply the lemma.

Now, using [Theorem 3.11l and Lemma 4.1, we prove an existence theorem
for P(t,) and Q(¢,) with the inhomogeneous boundary condition.

LEMMA 4.3. Assume that (A.1)-(A.6) and (E.2) are valid. Let t,, 1, t,E
[0, T] such that t,<t,. If i, H¥RQ), i, H(Q), feC[t, t,]; LXQ)) and =
C[t, t.]; HY¥(I)) and they satisfy the compatibibility condition of order 0:
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(4.11) B(t,, 3" io(x)+H (ty, x)i(x)=gt,, x) on I,
then, there exists a unique solution a< E*([t,, t.]) to the equations:

“ Pto)Lale, x)]:f(t, x) in [t, tz]XQ, Qto)La(t, X)]=§(l, x) on [t tz]XF,
.12)
a(t, x)=ux), 0.4, x)=#,(x) in Q.

Proof. First, we assume that ge< C=([t,,t.]; H*(I')). Let w(t, x)€E
C=([t,, t.] ; H¥R2)) be a function satisfying:

(4.13) B(t,, 0")w=g and w=0 on [t,, t,]XI".

Employing the same arguments as in the proof of we see the ex-
istence of such @. In particular, by (4.13) we have

(4.14) Qo) Lw]=B(t,, d" Yw+ H(t,, )0, w=g on [t,, t,]X I’

(because, what @=0 on [, t,]X I  implies that 8,%4=0 on [¢,, t,1XI"). Let o
be a solution to the equations:

Pa)[#]=F—Pt)[®] in [t, £I1XR2,  Q)[#]1=0 on [, tI1xXT,
(4.15)

o(t,, x)=a.x)—w(t,, x), atﬁ(tn x)=ﬁ1(x)—6,w(tl, x) in Q.
By (4.11) and [(4.14), we know that #@,—@(t,, -) and #%,—0,w(t,, -) satisfy (3.46).
Applying [Theorem 3.11 implies the existence of s E*[t,, t,]) satisfying (4.15).
If we put a=¢+w, then @< E*[t,, t,]) and satisfies (4.12).

Now, we shall remove the additional assumption: g=C=([t,, t.]; H=(I")).

Since C=([ty, t:]; H>(I")) is dense in C[t,, t,]; HV*¥[I")), there exist g*e
C>([t, t.]; H=(I")) such that

(4.16) ,Sup, <3:(Z*(s, )—&(s, M1 —>0  as k—oo for /=0, 1.
1535t

Let vt H* ) be functions satisfying:

(4.17.a) —0a,(AY(t,, -)0;08)+A,95=0 in 2,

(4.17.b) B(t,, o"ok=g*({,, -)—&(t, *) on ['.

guarantees the existence of #% and implies the estimates:
(4.18) [0*08| < C<L8*(ts, -)—8(ts, N1z

Put at=a,+ 9t H*Q). Then, by (4.11), (4.16), (4.17.b) and we have
(4.14.2) B(t,, ") al(x)+ H (o, x)a,(x)=g*(,, x) on I,
(4.19.b) |02 (@& — dt,)|| —> O as k—oo,
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As is already proved, (4.12) has a unique solution #*< E*([t,, t,]) with initial
data #%, @,, right member / and boundary data g*. If we apply (E.2),
4.1 and [Theorem 34 to #*—#* and use (3.31.b), we have

(4.20) sup ID* (@, -)—a*(t, )|

tysssiy

<C{IF¥a—ab)*+ sup <E*(s, )" (s, Dl

+ 3 [ auars, 9—g¥ s, Winds}.

Here, we have used the relation : 82i2%(0, x)=F(0, x)— H(t,, 8")i,(x)— Alt,, 32k x).

Combining (4.16), (4.19.b) and [4.20), we see that {#*} is a Cauchy sequence in

E*([t,, t,1). As a result, the limit @& of {#*} exists in E%*[t,, t,]) as k—oo, and

then we see that # is a desired solution of (4.12), which completes the proof.
Under these preparations, we prove an existence theorem to (N). First,

we prove it with zero initial data.

LEMMA 4.4. Assume that (A.1)~(A.6), (E.1) and (E.2) are valid. If fe
CY([0, T]; L¥£)) and g=CY[0, T]; H'*I")) satisfy:

(4.21) 70, x)=0 in 2 and g0, x)=0 on T,

then there exists a wunique solution w<E*[0, T]) to (N) with zero initial data,
right member f and boundary data Z.

Proof. The uniqueness follows from (E.1). We only prove the existence.
Our proof is essentially the same as in lkawa [3, Lemma 4.1]. To make our
paper self-contained, we prove the lemma. In view of well-known Lions’
method of the extension of functions (cf. the proof of Lemma 2.4), we may
assume that Ff=CY[0, 2T7; L¥2)) and Z<C¥[0, 2T]; HV*I")). Let 4,:0=
<t < - <t,=2T, be the subdivision of [0, 2T] into k equal parts. Let
#,(t, x) be the Cauchy’s polygonal line for this subdivision, which is constructed
as follows: Let #,.(t, x), defined for tE[t, t,], be a solution to equations:

(4.22.a), P(t)[an(, x)I=Ft, @) in [t, ,1X2,
(4.22.b), Qo) drot, x)]=Z(t, x)  on [t, t,1XI,
(4.22.¢), 4,00, X)=0,7,00, x)=0 in 2,

and for /=1 #,,(¢, x), defined for t<[¢,, t;+,], be a solution to equations:

(4.22.2), P )lan@, ©)1=7¢, x)  in [t, timIX2,



172 Yoshihiro SHIBATA

(4.22.b), QUtlar(t, x)]

=g, x)+?t:—1__—%{0(tz)[au-1('y x)]It=tl_Q(tl—l)[akl—l('; x)]|t=tl}
on [tl: tl+1]><Fy
(4.22.¢c), Ari(ty, X)=tp,-(t, x), 0tk ri(ty, xX)=0y#g;-1(ts, X) in 2.

Then, ., x) is defined for t=[0, 2T] by @,(, x)=1,,(¢, x) if tE[¢t,, tier].
The existence of each #,,; is assured by [Lemma 4.3 since the compatibility con-
dition (4.11) is satisfied at each ?,. Consequently, we see that #,=C%[0, 2T];
HYXQ)NCY[O, 2T]; H(R)) and i, = E*[t,, t;+,]) for all /, from which it follows
that @, H¥Q,7), 2.7=0, 2T)X L.

First, we shall prove that

p— t 1 -
(4.23) 1D?d,,(2, ')llzéc(T)So ha(lla?f(S, IE4-<0r 8 (s, -Ni)ds
for any t=[t,, t;+.], {=0,1, ---, k—1 and £=1. For notational convenience, the
same letter C is used to denote constants independent of / and %2 in the proof.
Put U, (t)=(a,,(2, ), 0.8,(¢, -)) and Ul (1)=(0,8,(t, +), 0%ty (¢, -)) and use the
norm: || [lue, (cf. (3.30)). Applying to (4.22),., at t=t, implies
that

182 51-(te, PSCU Tt IP+H<E (L -

+110'0ct g -1t P10 0-1(L4, MEH D g oty N2}
Thus, by (3.31.a) we see that
(4.24) 1 D%k gy 124, MEZCLNF@e, IPH<E L, i

FNUri-1@N e, pH 1 Uki-al e, - p}

for /=1. Since t,4,—t,=t,—t,.,=2T/k, by and the mean value theorem
we have

a5 o= [QU tirt-s]imty—= Q- iai-i =i I} ), ds

§(GT/k){”f(tz, N2, Wi H N Usi-1@ %, p+ 1 Uk &M %ce, -}
Since 0%a,,(t,, ')':f(tt, )—H(t,, 6")0,d 41 -1(t1, )— Ay, 0%)izy4(ty, -) and Ot -a(ty, *)
Zf(tl, N—H(t,—y, 00tk g1 -1(t;, )—AQi-1, 0Ddp-1(t,, +) as follows from (4.22.a and
¢), by we see
(4.26) 0% 5.(ts, HNP—10%41-1(ts, II?

é(CT/k){”]_;(tz: DIIE+ g, ')>f/z+||"-Ukz—1(tz)||§((cl_,)+||q17ez—1(tz)||?9((tl_,)}-
By (4.26) and (4.22.c), we have
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(4.27) 1U e % pH 1 Ul %o
SA+HCT/EN U1 %o pF N Ukt -l %y}
HCT/ RN F (s, DIPH<ECL ).

Applying (E.2) and to (4.22), and substituting (4.25) and into
the resulting estimate, we have

(4.28) 1U N %o 1 Uk e
<(exp CU—t))A+H(CT/ N Uni-rE )%, p+ 1 Ubt-sE) e, o}

+expCu—t){Cl, 3 13275, )P +<Dte(s, Diads

+(CT /R f(ts, 248, -)>%/z)}, Lst<ti+, (=1).
Applying (E.2) and Lemma 4.1 to (4.22),, we also have

(4.29) 1V o®) oo+ | Vka®) o
=ceo 53 [\ar (s, HP+<@rE(s, Dids, 0st=t,

When /=1, repeated use of (4.28) implies that

(4.30) MU e oeceppH 1 Ukl %ece

<Ce(1HCT/R) || 3, IP+<038(s, Dhads

+(CT/B)e" 5 A+CT /NN Ftien, <o, Do)

for t<[t,, t;+.]. Here, at the finial step we have used [4.29) To treat the
second term of the right-hand side of (4.30), we use the inequalities:

(4.31) 17, IP+<@ e, D= sy IP+<E 1y s
Ly -
.0, B s, NP+, Dhads
‘Repeated use of implies that

432 B A+HCT/E tn, D+ @ En, DS

Z{(Zarermr)

t - ! -y
B0, @R, Diads)

~1r -

Here, we have used Substituting the inequality :

léo(l—,’_(CT/k))Mg_(CT/kyl(l+<CT/k))l'+1
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into (4.32), by and (4.32) we have
(4.33)  Ue®l%ecpH1Un®lie,»
<Ceo1+CT/RN|. B8 7(s, IF+<aras, Diwds for 121
Applying to (4.22.a and b),, by (3.31.a) we have
(4.34) 18285t IPSCHUVa® e+ 1 Ul 17, I
+<B(t, Diet+10%dpis(ty, DIP+10'0 4,11, DI}
Substituting into the right-hand side of we have
(4.35) 162842, DIPSCUUr®NGecep+ 1 Ul %cep>
FIFE, OIPH<EE, Dl F it IP+H<E, Die
FNUr-1@No%ce, - p N Uri-1E e, )
Noting (4.7) and combining (4.33) and we have
1827 4uCt, P IV w1 UnOl%cers
<Ce+CT/DN|. S aEFGs, le+<@2as, Hiwds.

Since (14+(CT/k))<eCT for [<k, by (3.31.a) we have
Especially, from it follows that {#,,} is a bounded set in H*2,7).
Consequently, there exists a subsequence {k;} of {k} and @< H*2,r) such that

#,, converges to # weakly in H*Q,7) as [—oo. For the sake of notational
simplicity, we also denote this subsequence by {k}. Thus, we have proved

(4.36) i, —> & weakly in H¥Q,;) as k—oo.
By (4.36) we see
(4.37) P@®OLalt, x)]=F¢, x),  QWla¢, x)1=&¢, x).

Here, the first and second parts of equalities are valid as elements of L2%(£2,7)
and L*(0, 2T)XxI"), respectively. In fact, if we define P,[#] and Q,[#] corre-
sponding to the subdivision 4, by: P,[#]=P(¢,)[a] and Q,[#]=Q(¢,)[#] for
t,<t<t;4+,, then for any ¢= L% Q,r) we have

|(P()La]—F, aye S 1(Pe—P(-Dasd, $)a,r! +1(P()ir—al, $)a,y!

<(C/R)|D*rll 2,pll$ll @op+ | (P( Lk — ], $)oyp!-

In view of and (4.26), letting k—occ, we have the first part. Since the
map: H¥Q,r)2w—Q@)we L¥(0, 2T)x 2), is strongly continuous (cf. Hérmander
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[1, §2.5]), (4.36) implies that Q(t)i, converges to Q(¢)# weakly in L2((0, 27)x )
as k—oo, On the other hand, by Lemmas and 3.2, (4.22.b), and we
have that <Q()[@,]—g(, -Ni<C/k for any t<[0, 2T], which implies that
Qt)[#,] converges to g strongly in L*(0, 2T)Xx£). Thus, we have the second

part of the equality
Now, we shall prove that &< E*[0, T]) (we adjust the value on sets having

measure 0 if necessary). To do this, first we should remark that the inequality:

(4.38) 3 llozotullz, <Kt*  (2,=0, )X, t<[0, 2T]),

holds with K=C(T)’§ ,Sup. (182 (s, |24<arg(s, -)>%). In fact, since 02arau(t, x)

=020r,,(t, x) for t,<t<t,,, provided that |@|+h=<2, 0<h<1, integrating [(4.23)
in ¢, we have that [0%,]|3,+0'0.4./l3,< Kt*. By (4.36) we have (4.38).

To prove a< E*[0, T]), we use the mollifier p;* which is the same as in
the proof of Note that p;*it=a,=C=([0, T]; HXQ)) for 0<o<T/2.

By we have
P(®[#]=Fo—Csat in [0, TIXR, Q@)[#;]=8s— % on [0, TIXI"
for 0<3<T/2, where Fs=ps*f, Zs=ps*8, Csi=ps*P(-)[#]—P(-)p;*a] and
I'si=p*Q(-)[a]—Q(-)[ps*a]. Applying we have
(4.39) sup [ D¥(da— o Xt, )P CHIF (o=t )0, I
F10* 3 it5— 32 )O, )P+ 70, -)—Fx(0, )|?
+<850, )—&5(0, -Ni+ICsa0, )I*+(Cs @0, -)|*
+<{L 500, )} e+<L 5 (0, )}/

+{. BUBTa—Tos, NP+ @s—2a)s, Hhnds

+{, Barcaas, HlE+10:Cy ats, I?

+<0F5u(s, -3 +<0¢ s a(s, «))in)ds}.
By (4.38) we see that
(4.40) 050250, -)|=Co'?
for any a and A such that |a|+A<2 and 0<h=<1. Noting we see that
{#s} is a Cauchy sequence in E%([0, T]), and then a= E*[0, TJ]). By (4.40) we
also see that #(0, x)=0,#(0, x)=0. Thus, we have proved the lemma.

Now, we can prove the following existence theorem of complete form by
using Lemmas and 4.4
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THEOREM 4.5. Assume that (A.1)-(A.6), (E.1) and (E.2) are valid. If @,
H¥Q), 4, H(R), f=CX[0,T]; LA2)) and g=C([0, T]; H¥I')) and they satisfy
the compatibility condition of order 0. i.e.,

(4.41) B(0, dY)ao(x)+ H0, x)a(x)=80, x) on I,

then (N) admits a unique solution in E¥[0, T]) with initial data #,, %, right
member f and boundary data g.

Proof. The uniqueness follows from (E.1). We only prove the existence.
First, let us assume that #,=H%Q), 4, HXR) and f=CY[0, T]; H(R2)). Put
(4.42) io(x)= 10, x)— H (0, 3)i,(x)— A0, )i (x)= H(Q),
and #,=%(uy, -, Ump), £=0,1, 2. By u/,, we denote the extensions of u,, from
2 to R*. Let P be a strictly hyperbolic operator with respect to ¢ of order 3
having constant coefficients. Let U.(t, x)€ E*(R; R") be solutions to Cauchy
problems: PU,=0 in RXR" and 3:U .0, x)=u4x(x) on R", k=0,1,2. Put U=
U, ---,Un). Let 9 E*[0, T]) be a solution to the equations:

P®O]=F/—P®OLT] in [0, TIXQ, QWIs]=F—QWILU] on [0, TIXI",
9(0, x)=0,9(0, x)=0 in £.

By the definitions of @, and U and we see that f—P(-)[T1eCX[0, T1;
L*Q)), g—Q()[U]eCX[0, T]; HY¥I")) and are satisfied, and then the
existence of # is assured by Lemma 4.4. Obviously, if we put #=%+U, then
@ is in E*[0, TJ) and satisfies (N) with initial data #,, %,, right member f and
boundary data 2.

Now, we shall construct approximations of #,, #,, f and g. We can choose
sequences {f*}CC=([0, T1; H*(Q)), {8*}cC=([0, T]; H>I)), {#}CH=(RQ) and
{a¥} CH=(Q) so that f* (resp. g% ; resp, of; resp. @*) converges to 7 (resp. &;
resp. #@,; resp. #,) in C([0, T]; L* %)) (resp. C([0, T]; HY¥I)); resp. H¥Q);
resp. H'(2)) as k—oo. Let wi= H* ) be a solution of the equations:

—3(AY(0, )0;wk)+2.wi=0 in Q,
B(0, ohwt=g*0, -)—H*O, -)at— B, ¢of in I'.

Since the coefficients of the operator B(0, ') and the A%(0, x) are in B%R2),
guarantees the existence of @wi< H¥ Q). By [Theorem 3.4, [(4.41),
Lemmas and B.2, we see

lo*@§| = C{<&8*(0, -)—Z(0, -,/ o+ 10" (@r— i)l + | 6435 —dio)ll} -
Thus, if we put at=df+wk then a4 a* and g* satisfy [4.41). Consequently,
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there exists a solution #*<FE*[0, T]) to (N) with initial data % a* right
member f* and boundary data Z*. Applying to a*—a* implies
that {#*} is a Cauchy sequence in E%[0, T']), from which it follows that the
limit #€ E*0, T]) exists and satisfies (N) with initial data #,, #,, right member

-

f and boundary data g. This completes the proof of the theorem.

§5. A priori estimate in a half-space.

In this section, we derive some “a priori estimate” for the following problem :
(5.1) e[a]=f in RxR}, Q[al=F on RXRE,
where R?={x=R"|x,>0}, R?={x=R"|x,=0},
P{a]=Dia+2S%t, x)D;D.a+ P/ ¢t, x)D;D;it, D=—+/—13/0t, D;=—~/—108/0x;,
Qlul=—P™(t, x)D;iu+4Q", x")Dpa+S°(t, x")Dit, x'=(xy, =+, Xn-1).

In this section and Appendix, the functions in general are assumed to be com-
plex—valued and we use the following notations. Let y always refer to any
real number =1. Put Gz={(¢, x)R"*'||x’|<R, t€R, 0<x,<R} and Gz=
{(¢,, x)ER"||x’|<R, t=R}. For any integer L=0, s€R, scalar functions u, v

-

and vector valued functions #, ¥, put

Hkr={a="@, -+, up)|u:E i RX RY), Supp 1:C G,

e~ | 3832 a(t, x)|*dtd x <oo} ,

k"“"“SLSRlxRZ

<D'>su(x’):(273)“"&”_1(1-1- 16712 2a(&")d &’
(&’=(&,, -, &,-,) and the @ denotes the Fourier transform of u(x’)),
DYa(x" )= D >*uy(x’), -, <D >*um(x’)),

<u>§,,=sme-m IKD">*u(t, x")|%dtdx’

(u, v)rzg e~y (t, x)v(t, x)dtdx ,
RxRT

lu, U>T=S e~ u(t, x"Hit, x")dtdx’,

R™
L. m L. m
(a, v)7=a§(ua, Va)y {a, v>7=§1<ua, Vady

4

2l gn=lal, ‘u(x’y=u(x’,0), “@="Cu’, -, un’).
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Put
n

B(, R)= X

Jj=

i,

. n n-1
Pl togt 21 evtogt St ct 25 1 Q7 Lt

1
Throughout this section, it is assumed that:

(A.5.1) The P, St are mXm matrices of real-valued functions in #%*Gg) and
the S°, QP are mXm matrices of real-valued functions in B%Gj).

(A.5.2) tP¥=PpPii tS'=S* on Gg and ‘Q?=—Q” on Gj.
(A.5.3) There exist d,, d,>0 such that

SRnP“(t, x)D,-zZ(x)-_D,-a(x)dx—SRnQ”(t, 2)D,ix)- Doi(@)d x

—{ ., Dtt(0)- O IOy x 2 sl a1~ d. )
+

for any a#< H'(R?) such that #(x)=0 for x& {xeR?|0<x, <R, |x’| <R}
and t<R.

(A.5.4) (S, x")—S"(t, x’, 0))0-9=0 for any (f, x")&Gr and constant vector
e R™,

(A.5.5) There exists a constant d;>0 such that P"*(¢, x)o-5=d;|5|? for any
(t, x)eGg and constant vector 7€ R™.

We begin with the following Green’s formula.

LEMMA 5.1. Assume that (A.5.1)-(A.5.4) are valid. For any a< 4% g, the
following two identities are valid:

(5.2) ~—=1{(ela], D.a),—(D.a, P[4]),}
=2r{(D.a, D.a),+(P"D;u, D.w),} —{<°Q[a], ‘D&’ >, +< ‘D, ‘Q[&]">,}
+{KQP*Dp@’, ‘Dyit’>;+<*D,#’, Q**Dpit’ )}
+U(S* = SV)Y D, ‘D>, +< Do’ (S°—‘S™)' D@’ ),
where A=B means that | A—B|<C(B(1, R))|#|3,,.
(5.3)  ~—=1{(2Lal, Duit),—(Dait, 2[2]);}
=D, ‘D’ >+ <P Dpit’, ‘Dpit’>,—<‘PPD’, ‘Dpit’>,
+2¢'SPD,@’, ‘D>, +2y{(Dtk, Dyit),+(Dati, D,it),+2(S*D;at, D,it),} .
Proof. By integration by parts we have

(5.4.2) (u, Dw),=2+—17(u, v),+(Dwu, v),,
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(5.4.b) (u, Duv)y=—~—1%, V' 4+(Dau, v),,

(5.4.c) (u, Dpv),=(Dyu, v),. ‘

Using (5.4) and (A.5.3), we see easily (5.2) and (5.3). So, we may omit the
details of the proof.

LEMMA 5.2. Assume that (A.5.1)-(A.5.4) are valid. For any @< 42y the
identity:

(5.9) QP Dyi’, ‘D’ >,+<*Dit’, QP*Dpit’>,
E—ZT{(Qpr?Z, Dnﬁ)r'l‘(Dna; Qpra)r} .

holds where = is the same as in Lemma 5.1.

Proof. We have by (5.4.a) and (A.5.2)
QP Dpit’, ‘Dyit’>,
=—21(Q?Dpit, Dyit),+~—1(Q?D,D, i, D,it),+~—1(D,i, QZ’Dthz‘t),f
In the same manner, we have
<‘Dtﬁ,) Qp‘Dpﬁ’>r
=—2y(Dntt, Q?Dypii),—~'—1(Dnit, Q?DypD,it),—~—1(Q?D,D,i, D,a),.
Combining these identities, we have the lemma,
LEMMA 5.3. Assume that (A.5.1)-(A.5.5) are valid. Then, the following two

estimates are valid.
(i) There exists a yo=1 depending only on ds, d., ds and B(1, R) such that

vl ,=Cld){rt1elalld, ,+<OLal i, D’ >_1 2, ;}
for any y=7y, and a<s Hi k.

(i) For any r=1 and ans 42 g,

DY+ deC Do’ SCBO, RY'S CDpit'D8,
+C(BQA, R)rlalt,+rtelalls,,.
Proof. (i) By (5.2) and Lemma 5.2, we have
(5.6) 2r{(D:@, D.tt),+(P*Dyii, D;it),—(Q?Dypit, Doii)y—(Dyu, Q?Dypit),}
H(S* = S™)Y D', ‘D’ >, +< Dy’ (§°—‘S™) D,ii’>,

=~/—=I{(2la], D), +(Dyii, PLal)} +<‘QLaT, ‘D’ >+ Doi’, ‘QLaT’,.
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Noting the fact that e **=—(2y)"'(d/dt)e"**, by integration by parts we have
that |8, <y '|D.dlo |4l ,, that is,

(5.7 |@lo,, =7 ' |D¢it|o,,.

Applying [5.7), the assumptions (A.5.3) and (A.5.4) to the left-hand side of (5.6),
we have

2min (dy, 1/2)r| %13, =C(BQ1, R)| 4|}, +2|@[allo,|%]1,;
+2°QLaAT D112, ' Dett’> 1127,

provided that 1—(d,+1)y '=Z min (d,, 1/2). From this we have (i). (ii) By (5.3)
we have

CDut’, Doy, +C PP Do, Dot SCBO, R), 0) 5 <Dpi'd%,,

+o{’Dat’ >3, +C(BO, R)yrlali,+r ' 1ela]l3 ,+C(BQ1, R)|al3,,

for any ¢<(0, 1). Using the assumption (A.5.5), we have (ii).

THEOREM 5.4. Assume that

(A.5.6) the P', S are matrices of real-valued functions in C%([0, R]; 8=(GR))
and the S°, QP are matrices of real-valued functions in B°(Gh).

Assume that (A.5.2)-(A.5.5) are valid, Let y,=1 be the same constant as in Lemma
9.3. Let R’€(0, R) and p=(0, 1). Then, there exists a C=C(R, R’, p, B1+p, R),
ds, dy, ds)>0 such that
7113 A D’ D2y,  SC{yr  @Lull} ,+< QLAY YYe. )
for any y=y, and a4} -
Proof. We shall use the same notations as in Appendix and regard x, as

a parameter. Choose @z, §, r)C=(R"*') so that 0=¢,=1,

1 for *+7%41812=1,

ooz, &, )=

0 for z2+y*+18&|2L1/2.
Let 6=(0, 1) be a small number determined later. Choose ¢,(r, &, y)=C(R"*
—{(0) O! 0)}) so that O§¢1§1;

1 for 20(z*+7r)=1¢'|%,
(58) ¢1(T1 ‘E,) T):

0 for o(x*+yH)<|&|3.

Let @,, @, and @, be weighted pseudo-differential operators with symbols 1—g,,
bop1, §o(1—¢,) in the sense of Appendix, respectively. Take R;, R, so that
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R'<R,<R,<R and choose X,(x), Xo,(x)=C> so that

for |x|<R’, 1 for |x|=R,,

1
Xl(x):{

0 for {x|=R,,

xz(x):{
0 for |x|=R.

Put @,4=4®Pu,, -+, ®,uy). Note that X,@=14 and that i=310,a.
First, we shall evaluate (D®D,%>_y,,. Noting that P""(¢, x) is non-singular
for (¢, x)Gr as follows from (A.5.5), we have

(5.9) @[Nal=f, in RXR?,

where

(5.10)  Fi=tP @ (A (P™™) @[]} + P ™ (2D XD, Dy it+(D3X,) Dy i}
+ (PP 4 PP ){(DpX1) D D16+ (DpX1)D p @16t +(Dp Do X1) D1k}
+P?4{(D pXy) D@, 6 4(D X)) D @i+ (D, DX,) D, it} —2SH(DX,) D, D it
— P {[ @, Dy, L(P™™) (PP +PP*)]1D i+ [P, Dy, Xo(P™™) " PPC1D i
—2[®,D,, X(P**)"'S1D,—[ D, D,, Xo(P")*1D,ii}
+X PP D {(Dp(Xo(P* ") (PP PP™))) Db +(D p(Xo(P™™)* PP9)) D i
— 2D (AP S D yii— (D, (Xo(P™™) ")) D, it} .

Here, [A, B]a means the commutator of A and B, that is, [A4, Bli=A(Bi)—
B(A#). Applying Ap. 5 with s=1 in Appendix below to (5.10), we
have

(5.11) | f1lo,SCl@[a]lo,,+CBA+p, R) i, .
By Lemma 5 3-(ii), and we have
(5.12) DD, SOBO, R) S CDya®it) 3%,
+(CBA, Ry +CBU+p, R alt,+Cr | @[]l
Since
(5.13) D0, 5%, = Cal Dt ®,i) Yo, +Cl |2,

as follows from [(5.8), substituting [(5.13) into [(5.12) and taking ¢>0 so small,
we have

(5.14) D Dya) 8, , <Clrlalt, ,+r | elallt )

where C=C(R, R’, u, B(l4+p, R), ds, d,, ds).
Now, we shall evaluate {‘A,<{D">~'*®,u’>,,,. Put
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Oz, &, =T+ 1&" P+ A+ 1€ 15) @z, &, 1=z, &, 7)),
and let ¥ be a weighted pseudo-differential operator with symbol ¢. By [(5.8),
(5.15) $ES?, KDY Q= A;"T i

where Ua='Wi,, ---, ¥un) and A;'? is the weighted pseudo-differential operator
with symbol (z%+ |&|24-7?)-"/¢. Using [5.15), we have

(5.16) PALDD> 2 P, u]=F, in RXR?

where f, is a function given by replacing @, by A% in (5.10). Applying
Ap. 5 with s=1/2 to f, implies that

(5.17) | folo, <Cl@[a]lo,,+C(B(, R)il,,,.
By Lemma 5.3(ii), [5.16) and [(5.17), we have

(5.18) DD 0¥ SC{Z, DD O D}
=1

+rlalt 203113,
where C=C(R, R’, B(1, R), d,, d,, d5). Noting by Lemmas 3.1 and 3.2 we
have
S DD Y DN S CCH Y, SC Ly
Since [X,, <D’'>~12Ju=LD">~'?[{D">"?, X,]KD">"'"*v, employing the same argu-

ments as in the proof of Ap. 5 in Appendix below, by Theorems Ap.
1 and Ap. 2 (also in Appendix below) we have

10X, <D >712]0]| Ra-1=CIKD">™*0|| g -1.
Consequently, we have
EDXLD > 2Dyt S0, Z DYDYy Dol Do, ;— < [Xy, <D~ M*1D Do’
S DX Do’ > _1j2,,—CLD > 2D Do’ o, 4.

Noting the fact that |&’|*=2a(z%+7?%) on supp ¢(1—¢,), by we have
that <KD’>~Y2D,@,i’.,<Cl#@|,,,. Substituting these estimates into im-
plies that

(5.19) D Doi) Y210, <CUY 21+ 77" | 2L IR}

where C=C(R, R’, B(1, R), d,, d,, d;5). Since supp(1—¢,)C{(z, &, r)ER"*!|z*+
|&|*+72<1}, we have

(5.20) DX P D2y, , < WHE,, <Clal},.
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Noting that D,2a=3>1D,X,®,u), by and [5.20) we have
(5.21) D P2y, ZC 015+t 2Lalld,, ).

On the other hand, by Lemma 5.3-(i) we have

(5.22) rlald , SCd )y @Lalld, 4+ <QLal >1s2, ' Det’>-1/2,4}

for any y=<7,. Substituting (5.21) into (5.22) and using Schwarz’s inequality,
we have '

(5.23) rlall,=Cld){r -t 1elalls,,+CQLal e}

where C=C(R, R’, p, Bl+p, R), ds, d,, ds). Substituting (5.23) into (5.21) and
combining (5.23) and the resulting inequalities, we have the theorem.

We would like to get the estimates of the same type as in Theorem 5.4
under the assumptions (A.5.1) instead of (A.5.6). To do this, we need to con-
struct the approximation functions of the coefficients of ¢ and O.

LEMMA 5.5. Let ¢>0 be any number. If the coefficients P*, S* and QP
¢, j=1, -, n, k=0, 1, ---, n and p=1, ---, n—1) of the operators P and Q satisfy
(A.5.1)-(A.5.5), then there exist ¢,>0 and mXm matrices P, St and QF having
the following properties for any ¢ <(0, 0,):

(@) The P, St are matrices of real-valued functions in C*[0, R]; 3=(Gk-.)) and
‘ the Si, QP are matrices of real-valued functions in B(Gg-.).
(b) (A.5.2) are valid for the functions with subscript o.

(c) SRnPa“(t, x)D,-ift(x)-Dm(x)dx—SRn Q2(t, x")D,i(x)  Dna(x)d x

—{ . D) QI VD,V x 2 (dy— )"l *—d

for any a= H'(R?) such that i(x)=0 for x&£{x =R |0<x,<R—e¢, |x'| <R—c¢}.

(d) (S, x")—S2(, x/, 0)p-9=—¢|D|® for any (t, x’)=Gpr-. and constant vector
7I=eR™,

(e) Pr™(t, x)p-0=(ds—e)|9|® for any (, x)EGr_.X[0, R] and constant vector
IeR™.

() If we put

n : 0 n .
B,(, R—)={ 2 |P¥|e 05, xtomrt 1St 1,05, xtom

i, 7=1

n-1
+1S8 w0, + 2, 1 QF o, |

then B,(l, R—e)<B(l, R) for [<[0, 2].
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(2) Li?’(}lpa“"Pijlw,o,Gk_s «t0,11=0, 1}[}})]52—5" |0, 0, 65—, xt0,R3=0,

lim| Q2 —Q?|w,o,65_, =0, lim[S3—S°|w,0,65_, =0.
a0 ai0

Proof. Choose X(t, x)EC3(R™) (x'=(xy, -+, xn_1)) S0 that X=0, ng(t, x")dtdx’

=1, suppX(¢, x")C{(¢, x")€R"|t*+ | x’|2<1}. For any function u=u(t, x’, x,), put

@o=0"{, X(t—5)/a, (x'=y)/aN(s, ', x)dsdy’

(this operation is the usual convolution with respect to (¢, x’)). Put P¥=(P%,7?),
S*=(S*%,%) and Q?=(Q?,"%) where the subscript @ and superscript b denote the
row and column, respectively. Let P, S% and QP are mXm matrices whose
(a, b) components are (P%7°),, (S¥.%), and (Q?,°%,, respectively. Then, we see
easily (f) and (g). Since

(Sg(t’ x')——S;l(t’ x,: O))ﬁ'ﬁZ(So(t, x,)_sn(ty xly 0))1—}'2}
_{Isg"‘solw,o,ak_‘ +IS;1(') ) 0)_Sn(., *y O)Iw.O.G'R_E } lijlzy

by (A.5.4) and (g) we have (d). In the same manner, we have (c) by (A.5.3)
and (g). Other assertions also follows immediately.
The following is the main result in this section.

THEOREM 5.6. Assume that (A.5.1)-(A.5.5) are valid. Let R'(0, R) and
#<(0, 1). Then, there exist a y,=1 depending only on ds, d,, ds and B(1, R) and
a C=C(R, R, p, B(14pu, R), ds, d,, ds)>0 such that

rlalt,—<' D’ 2, , =Cly | @Lal 5, +<CLal Y.}

for any v=7, and a<s 4% g
r=r7

Proof. Let e>0 be any small positive number. Choose R”>0 so that R’'<
R”<R. Without loss of generality, we may assume that R”<R—e, ds—e=d,/2,
d+e<2d, and ds;—e=ds;/2. Let P{, St and Q? be matrices given in
5.5. Put

P,.Lal=Dia+2Sit, x)D;D.a—Pi(t, x)D;D;i—2¢elnD,D,it,

Q,[ul=—P3¢t, x)D;a+QF¢, x")Dpu+S3t, x")D. %,

where [, is the mXm identity matrix. By the coefficients of @,,.
and Q, satisfy (A.5.2)-(A.5.6). Noting (f) in and replacing R by R”
in [Theorem 5.4, by [Theorem 514 we have that jthere exist a 7,=1 depending
only on d;, d,, ds and B(1, R) and a C=C(R”, R’, p, B(14+p, R"), ds, d, ds) such
that
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(5.24) 7113+ D’ 21, SCHr 7 Do, L] 15+ Qo[ ] D 2.4}

for any y=7, and d4=H%g. Since a2 g, letting ¢ |0 in by (g) in
we have

(5.25) 71a1 D’ 20, <C{yH@Lallf < QLal Y, ,+el i3}

Since = 42/, letting ¢ | 0 in (5.25), we have the theorem.

§6. A priori estimate with zero initial data.

First, using a partition of unity, we prove “a priori estimate” of the same
type as in [Theorem 5.6l for RX Q. To do this, we introduce some notations.
For any integer M=0, s&R and y=1, put

(6.1) HYRXDy={a="(t, -+, um) | 1S HERX D),
|@lkp.0=|, e ID¥at, nl*dtdv<co},

6.2) @ty r=| _ecat, pidt.

THEOREM 6.1. Assume that (A.1)-(A.6) are valid. Then, there exist y,=1
and C>0 depending only on 8y, 8:, I' and M1+ p) snch that

rlally, @ +<0:8021 ), r<C{y ' I P(OLal 13, 0 +<Q()[a DY 2.1, 1}

for any y=y, and a= LY RX Q).

Proof. Let ¢, be the same as in §2. Put ¢,a4=7,,
P()[a]=0%+2H"0,0,i6—0,(A*9;it), Qo()#]=v.A"0,i -+ B'0;i+ H0,a .
We have
(6.3) Po(-)[ﬁz]¥¢zP(-)[d]+Fl in Rx%,
Qu().]1=¢,Q(-)[a]+G, on RXI,

where
(6.4.a) F=2H(8:0,)0, 11— AY(8,0,)it)— (0:0.,) A0 jii—  (AI8 i+ A™+'it),
6.4b)  G,=v,AY0,0)i+ B 0:4.)i—¢. B " i.

First, we shall consider the case where /=0. Since ¢, vanishes near I’, by
integration by parts we have
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(6.5) |" emmigopotac, H1+Fu, ), e, Ndt

:rgle—zf‘{lla,ao(t, PH(AYE, 3du(t, ), Bid(t, -D}de

—%Sf e M@ Ht, -)0:bo(t, -), Dubo(t, -))dt

——%‘So.o e-zrt(atAij(t: ')aﬂ)o(t; ')’ aiﬁO(t’ .))dt'

In view of the assumption (A.4), we have

(A™(t, -)0;04(t, +), 0ibo(t, *))=20,[0"0,]1°—8:]1501*.
Noting the fact:|d,lo,, 0=<7'|0,70l0.;. 2, by (6.4) and we see
(6.6) 7103, r<Cly | P()[alld. .0t 211, 0}

for any y=2(144,) where C=C(H(1), 9).

Now, we shall treat the case where 1=</<N. Using the change of variables,
we shall reduce the problem to the half-space case. Let us use the notations
defined in (3.6) and in §2. Put

Wit, =0, Tiy), Jit, ©)=g ()P, x)], Z.(t, x)=¢x)QW)[alt, x)],

Rut, »)=Fut, ToN+HFE, TlyN+AY7 ¢ TNV i@ Y (y)8,m.(t, ),

Rit, y) =8, Ty, +GCit, Tuly’, 0)).
Noting (3.7.b) and we can rewrite as follows:
(6.7.a) 0tw,+2H(t, ¥ (y)Y5(»)0.0i0,— A" (t, T (¥ )Y} (9)Y ] ((9)0i05,

=h,(t, y) in RXR?,
(6.7.b) —{Y2.(9", 00/ (N A" 7 (¢, To(y’, ONY (v’ 0)0:70,
+ B¢, Ty, )Y 7y, 0005w, + H(, ¥(y’, 0))0.,

=hjt, y) on RXR?®.
Put
S, y)=H't, T .(y)Yi(y), Set, y)=Ht, ¥y, 0J(y’, 0),

P, y)=A"7t, T (yNY i (Y (),
Q*@, y)=Bt, T\(y’, ONYa(y’, 0)].(y").

Choose R’<a, so that supp w,C{{, y)||y| <R’} and put R=g¢,. Then, we
can rewrite in the form of (5.1). And then, f(t, y)=—h(t, y)and 8, ¥’)
=—~/=1J,(y")hit, y). Noting that the Jacobian of the map: x=¥,(y), is equal
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to 1, it follows immediately from (A.1), (A.3)-(A.6) that the assumptions (A.5.1)
~(A.5.4) in §5 are valid. Note that P is equal to P}/ defined in [3.22) [3.26)
implies that the assumption (A.5.5) in §5 is also valid. Consequently, we can
apply [Theorem 5.6, and then the inequality :

(6.8) 718,12, 40, 210,y SCLr B |3 <D )

holds for any y=y,. Noting (2.2.c) and combining and [6.8), we have the
theorem under the suitable choice of .
Now, we introduce the operators:

P[#]=P®)al+2s Jwdx)dda, 0<esl.

By the usual energy method, we can sze that for P.(¢) (E.1) and (E.2) in §4 are
valid (cf. below), and then the existence theorem of solutions to
(N) is valid in the case where the operators are P.(¢), 0<e<1l. And also,
is valid for P.(t) as will be stated in below. Using
these facts, in §§6 and 7 we prove that the constants in the inequalities (E.1)
and (E.2) are independent of . And then, we can prove the assertions 2° of
Theorem 2.2 in §7 below. To prove the existence theorem for the original
operator P(t), we consider the set {#.},<.<: Where each #. is a solution to the
equations: P.(®)[#.]=/f in [0, TI1x 2, Q) @.]=2 on [0, TIXTI", .0, x)=#(x)
and 0,#.(0, x)=#,(x) in 2. By means of Theorem 2.2-2° and Lemma 4.2 we
see that {#.}oce<: is a bounded set in H*(0, T)X ). Hence, a weak limit #
exists as €} 0. Our task is to prove that = E*[0, T]). If we prove this, #
becomes actually a solution of the original problem (N). In the final part of §7,
we shall prove this fact. The technical point lies in proving the right con-
tinuity of # at t=0. Theorem 2.2-2°-(c) is used essentially to prove it.

COROLLARY 6.2. Assume that (A.1)-(A.6) are valid. Then, there exist
rs=1 and C>0 depending only on 8y, 0, I’ and M(1+p) such that
71812, 04<0:8>2 0., r<C{y | P(DLall5 1 o+<Q)La 1D, 5. 1}

for any €<(0, 1], y=ys and = H(RX8).
To use the energy method, we need the following formula.

LEMMA 6.3. Assume that (A.1)-(A.6) are valid. For any A=0, t>0, e
[0, 1] and @, 9= E¥[0, t]), the following identity is valid:
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—%{(asﬁ(s, ), 059(s, - N+(AY(s, )o;als, -), 0:9(s, -)+Aa(s, -), (s, -))
+ By(s, a(s, -), (s, N+ Bu(s, als, -), 9(s, )+ Bu(s, 9(s, ), u(s, -))
(- H(S, )+eln+H(s, )0sa(s, ), 9,0(s, +)>
+<8i(s, +), (vi(VH (s, )+elat+H(s, -)0,(s, -)>
=(P(s)La(s, -)1, 8;9(s, -)+@sa(s, -), P(s)Lo(s, -)])
+<Q(s)Lacls, )], 0s9(s, -)>+<asucs, .), QSLa(s, )
for any s(0,t). Here, Py(t)=P(t) and A=B means that

| A—B| <C4, SHW)ID*a(s, HIID (s, )

Proof. By (3.11.a), (3.12) and (3.13), we have

(6.9) (B¥(s, -)aq(s, ), 0,0(s, ->+La,a(s, -), B(s, -)a:v(s, -
= a.s, uls, ), 565, ).
By (3.14)-(3.16) we have also
(6.10) (B(s, a(s, +), 0,8(s, *)>+<asa(s, ), B(s, -)i(s, )
d

=5 1 Bals, als, ), 0(s, )+ Bals, (s, ), als, )}
By integration by parts and the assumption: *A¥= A% we have
(6.11) %(A”(s, )a;i(s, +), 0:9(s, +))
=wi(-)AY(s, -)0;u(s, +), 050(s, - D>—(9(A'(s, -)d,u(s, -)), d59(s, -))
+<a,a(s, ), vi(+)AY(s, -)0;0(s, - >—(0sa(s, -), 0(A™(s, -)0;9(s, ).

Combining (6.9)-(6.11) and using the definitions of P.(t) and Q(f), we can im-
mediately obtain the lemma.
Using we have the following lemma.

LEMMAG6.4. Assume that the assumptions (A.1)-(A.6) are valid and that
0<e=<1. Then, the following two estimates are valid.

(i) There exists a C=C(Az, M(1), 0,)>0 such that

[8.a(t, Y+, lgew-+el @uis, ids
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<e19,00, P+ 110, )30

+ IP()ats, D[+ <Q)ats, WDipdds},  OSI=T,
for any i< E¥[0, T]) and T >0.
(ii) There exists a C=C(Ay, HM(1), 6,)>0 such that

l9ea(t, -)I*+llalt, -)II%cz(,)é(eXDC(t—tl))[llazft(tl, s

Hlatts, Myant|, (IPEILAG, HIP+e Qs DLl ds |

for tety, t.] and a<EX[t,, t,]), where t,, t,, t, are any numbers<[0, T] such that
t, <t,.

Proof. (i) Putting #=149 in and integrating the resulting identity,
we have

6.12) 2, Dl+Hlaw, o +2e] @, Hids
<1280, I+, 3w+ IPacs, HI1%ds
+2{, IKQ)Lals, )1, d,a(s, )>1ds

L
~+(min (1, 6,))"'C(4,, ﬂ(l))go{llasft(s, JE+lals, ke }ds.
Here, we have used (3.31.b). Since by Schwarz’s inequality we have

(6.13) 2[ 1<Q)tats, 1, d,ats, lds

= eSZ(asﬁ(S, . )>gds+€_1SZ<Q(S)[ﬁ(S’ H>ids,

substituting into (6.12) and applying Gronwall’s inequality to the resulting
inequality, we have (i).

(ii) Since the coefficients of P,(¢,) and Q(¢,) are independent of ¢, an obvious
modification of the proof of yields that

(6.14) 1952(s, IIP+lals, Mot +2e<0sa(s, -5

d
s |
S| Pto)Lals, )12+ e<asd(s, )i+~ KQ(s)[a(s, )13

+C(2, M), 0)1110sa(s, HP+Nas, Miept -

Here, we have used Schwarz’s inequality and (3.31.b). Integrating [6.14) from ¢,
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to ¢t and applying Gronwall’s inequality to the resulting inequality, we have (ii).
In view of (E.1) and (E.2) in §4 hold for P.(¢) (0<e<1). Thus,
by we have the following existence theorem for P, and Q.

LEMMA 6.5. Assume that (A.1)-(A.6) are valid and that 0<e<1. Let T>0
be any positive number. If @,=H¥R), wm,sH ), fC ([0, T]; LX), Z<
CY[0, T]; HY*I")) and (4.41) is valid, then there exists a unique solution i<
E%([0, T]) to the equations:

6.15.a) P.@Mal=f in [0, TIxR, QWlal=& on [0, TIXT,
6.15.0) (0, x)=a,x), 0,40, x)=i,(x) in Q.

In addition, we assume that f=C\([0, ) ; L¥R2)), g=C ([0, oo); HY*(I")) and
that f and g vanish for t>T, with some T:>0. Put T,=max(T,, T,) (cf. (A.2)).
Then, there exists a unique a< E* [0, o)) satisfying (6.15) for any T >0 and the
estimate :

ID%a(t, )IP<Clexp (t—T,)|D*a(T, -)|°

for any t>T, with some C=C(I")>0,

Proof. By [Lemma 6.4l and [Theorem 4.5 the first assertion can be seen
immediately. If 7eC[0, ); L¥R2)) and g=C [0, o) ; HY¥I")), for any T>0
(6.15) admits a unique solution #r;=E*[0, T]). By the uniqueness we know
that #r(¢t, x)=d#r (¢, x) for 0Zt<T provided that T'>T. So, if we put #(t, x)
=uar(t, x) for t=[0, T], then @ is well-defined, satisfies (6.15) for any 7 >0 and
as E¥[0, 0)). By (A.2) we have

(6.16) §ta— 33a=0 in [Ty, 0)XR, Zw(x)da=0 on [Ty, c)XI .

Multiplying the first equality of (6.16) by 9,4 and integrating the resulting
formula, by Gronwall’s inequality we have

(6.17) ID*act, Hl<(expt—TNID'@(T,, )I*  for t>T,.

Employing the same arguments as in the proof of Lemma 4.1], by [6.17) we have
(6.18) ID*a.a(t, )iP<(exp t—T)ID'6 (T, -)I*  for t>T,.

Finally, regarding ¢ as a parameter and applying we have

(6.19) I18%act, 2= C{ldtact, HI*+ D ac, )|} .

Combining (6.17)-(6.19), we have the lemma.
Under these preparations, we shall prove the following key lemma.
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LEMMA 6.6. Assume that (A.1)-(A.6) are valid and that 0<e<1l. Then,
there exists a C=C(d,, 0, M(1+p), I')>0 such that

©20 [ {1DvaCs, OI*+@as, Hiads

< et {IP()ats, HII+HQEIaG, Dislds,  O0StsT,

for any T>0 and a=C=([0, T]; H¥R)) satisfying the conditions: 040, x)=0 in
Q for any k=0. Here, C is a constant independent of e.

Proof. Let t, be any time in [0, T] and fixed. Put

o P.(s)La(s, x)] for 0=s=t,,
I, x)={

for s<0,
' Q(s)la(s, x)]  for 0=s=t,,
&(s, x)={

for s<0.

By the assumption for # we know that fec‘((—oo, t]; LX) and ge<
C'((—oo, tod; HY*I')). Let a,=1 and a,=2, and choose b,, b; so that b,(—a,)*
+b,(—a,)*=1 for £=0 and 1, i.e., by=3 and b,=—2. Put

@, x) for t<t,,
(6.21.a) F, x)=¢ 1

lgo blf(tg—al(t—to), x) for t>to,

g, x) for t<t,,
6.21.b) G, x)=1 ,

120 bzg(to—al(t"‘t()), .?C) for t>to.

Then, we see easily that

(6.22.a) FeCYR; L¥RQ)), GeCY(R; H'¥I)),

(6.22.b)  F(¢, x)=P.@®)[a{, x)] and G, x)=Q@[a¢, x)] for 0=t<t,,
(6.22.c)  F(t, x)=0 and C(t, x)=0 for t=<0 or t=2¢,.

Let 5= E*[0, o)) be a solution of the equations:

(6.23.2) P.(H)[0]=F 1in [0, o)X A2, QM[3]=G on [0, o)X I,
(6.23.b) 9(0, x)=0,9(0, x)=0 in 2.

In view of (6.22.c), the existence of # is assured by Noting also
(6.22.c), by we know that '

(6.24) ID*3(2, )P <Clexp ¢—T:))|D*(Ts, ) for t>T,
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where T,=max (2t,, T,). Put 3,(¢, x)=9(, x) for t=0 and =0 for t<0. By
(6.23.b) and the fact that F(0, x)=0 in £, we see that d?3(0, x)=0 in £, and
then 9,=E*R). By we know that s, HHRX L) for any y>1. Since
P(t)[9,]=F in Rx2 and Q()[#,]=G on RxI' as follows from (6.22.c) and
(6.23.a), by we have

(6.25) 710013 1.0+<0: 0002110, rSC{r ' FIS. ;. 2 +<{GC)}se.r. '}
for any y=y;. Noting that F and G vanish for ¢<0, by (6.21) we have

t
[

P13, 0100 *IP()as, H1I%ds,  <Gohp.r<19] QOGS Diuds.

On the other hand, by (6.22.b) and the uniqueness of solutions for (6.15) we have
that d,(¢, x)=a(t, x) for 0<t<t,. Therefore, the lemma follows from [(6.25).

To prove the estimates of the same type as in for any #<
E¥[0, T]) satisfying the conditions: #(0, x)=0,#(0, x)=0 in £, we need the
following lemma about the approximation of .

LEMMA 6.7. Let a=E*[0, T]) such that @0, x)=0,4(0, x)=01in 2. Then,
there exist a*=C=([0, T]; H¥Q)), k=1, 2, ---, satisfying the following properties:
(@) ata*0, x)=0 for any k=1 and (=0,

(b) | D*ar@, -)—alt, -N|—0 as k—co for any t<[0, T],

© (1D, H—ae, Nrdt—0 as koo,

Proof. By Lions’ method we see that there exists a 7= E%*R) such that
a(t, x)=o(, x) for 0=<t<T. Without loss of generality, we may assume that &
vanishes for t<—T and ¢t>27T. Choose p(t)eC%(R) so that supp p[0, 1] and

SR o(s)ds=1. Put

uk(t, x)=kS?p(k(t—s))ua(s, X)ds and  aF=t(ut, -, uk)

where 9=%uv,, -+, vn). Since supp pC[0, 1], (a) follows immediately.
Since #(0, x)=0,9(0, x)=0 in 2 as follows from the assumptions: #(0, x)=
0,40, x)=0 in 2, by integration by parts we have

aiosut(t, 0=k p(k(t—)@i050a)s, »)dsdy

for any / and a such that /4+|a|<2. If we put vi2(¢, x)=0l0%v,.(t, x) for t=0
and =0 for (<0 and set #'*=‘vi%, ---, vi%), then we see that #'*c E(R) for
I+lal <1 and that v**= LA RX Q) for [+ |a|<2. Since di02a(t, x)=9'*(t, x) for
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0=t<T and

Il

0i05ut(t, x):—kgc_c o(kt—s)wie(s, x)ds, a=1, -, m,

(b) and (c) follow immediately.
The following is the main result in this section.

THEOREM 6.8. Assume that (A.1)-(A.6) are varid and that 0=e<1. Then,
for any T>O0 there exists a C=C(d,, 05, I', M(1+p))>0 such that

(6.26) | D ace, ')I|Z+S;{<asﬁ(s: Wriet+IIDracs, )| ds
<Ce®| {IP()ats, NI*+<Q)ats, HDiutds,  O0StsT,
for any a=E¥[0, T)) satisfying the conditions: #(0, x)=0,@(0, x)=0 in Q.
Proof. When e=(0, 1], using Lemmas and [6.7, we see that

@20 ((@acs, Dri+IDacs, lttds

gCeCtgj{uPs(sma(s, VPH<QE)als, Hiatds,  0<t<T,

for any #<E%[0, T]) satisfying the conditions: (0, x)=0,#(0, x)=0 in Q.
Since #<E*[0, T]) and the constant C in (6.27) independent of ¢, letting |0
in (6.27), we have that (6.27) is also valid for ¢=0. Putting #=¢ and A=A4,
in and integrating the resulting identity from 0 to ¢, we have
(6.28) 0.4, )+, HNier=10:40, )*+[a0, )%

+2{ |(P()ats, )3, a,als, Ml ds+2] [KQOIACs, ], duils, )l ds

+Cl, HN| 1D s, Hlrds O0=e=).
Noting the assumptions: #(0, x)=0,#(0, x)=0 in £ and using and
Schwarz’s inequality, from (6.28) we obtain

6.29) 3., YP+at, o= IPOaG, 1)
HQUOLas, ODhsbds+C| (1D ats, P +@als, Htitds

where C=C(4;, M(1)). Substituting (6.27) into (6.29) and noting (3.31.h), we
have the theorem.
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§7. Proof of main results.

First, we shall prove the estimate (a) of Theorem 2.2-2°.

LEMMA 7.1. Let T>0. Assume that (A.1)-(A.6) are valid. Then, there
exist constants C,=C(d,, 02, M(1), I') and C,=C(3,, 8, HM(1+p), I') such that

@D 8, Olt+lad lia=Aexp IO, JI+1a0, i
+{lPs)tacs, H11ds+CutexpCn| <@, Dinds
for any t<[0, T], «a=E¥[0, T]) and 0<5e<1.

Proof. First, we assume that

(7.2) Q)[a]=0 on [0, TIxTI.
By (6.28) we have
(7.3) 0.4, HIZ+1a¢, Hier=10.a0, HI*+1a0, 0

t [ Z—
+2[!|(P)as, ), s, )| ds+C(HD), 2| ID"als, -)l*ds
for any #<= EX[0, T]) satisfying (7.2). By Schwarz’s inequality and (3.31.b),
(7.4) the right-hand side of (7.3)

< 10,20, YF+130, MWyeo+| IPA)ats, NIds

+CT, HW, 8, )| {10,Cs, OP+Ias, Hlyeds.

Substituting (7.4) into (7.3) and using Gronwall’s inequality, we have

(7.5) 19.at, HlI*+lact, Hie=(expC:it){[0.a(0, -)|*
+120, ot IPAs, HIIds},  0<t<T,

for any a< E¥[0, T]) satisfying (7.2).

Now, we shall prove (7.1) without (7.2). Let #<FE*[0, T]) and put #.(x)
=0, x), @(x)=0,4(0, x), f(t, x)=PL)[a(t, x)] and B(t, ©)=QWO)[a(t, x)]. By
Lemma 3.9 we know that there exist #tc H%Q) and @< H'(Q) such that

(7.6.a) A% —> it, in H'(2) and #t—> 4, in L¥Q2) as k—oo,
(7.5.b) B(0, d")ak(x)+H0, x)ak(x)=0 on 2.

By the same arguments as in the proof of Lemma 6.7, we see that there exist
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g*=C=([0, T1); H'*Q)) such that
(7.6.c) 2*0, x)=0 on I,

(7.6.d) | [ @, =0, Diads —0 as koo,

Since C'([0, T1; L¥R)) is dense in C%([0, T]; L)), there exist f*<CY([0, T];
L*2)) such that

(7.6.¢) f*—> 7 in C%[0, T]; LXR2)) as k—oo.

For a moment, we assume that 0<e<1. In view of (7.6.b), by
we know that there exist 9*< E* [0, T]) satisfying the equations: )

(7.7.a) PM[5*]=1* in [0, TIXRQ, Q®[#*1=0 on [0, TIxT,
(7.7.b) 5%0, x)=akx), 8,9*0, x)=ukx) in Q.
Applying we have

(7.8.2) 10: 9%, DI*+ 9%, 5= (exp C:t){||@lI*+ |85 o>

t o
+{ 174, reasy.
On the other hand, noting (7.6.c), by we know that there exist
w*k< E*[0, T]) satisfying the equations:
(7.7.c) P®)[w*]=0in [0, TIX L2, QW[w*]=g* on [0, TIx1I,
(7.7.d) w*0, x)=0,w*0, x)=0 in 9.
By and (3.31.b) we have
t
(7.8.b) 0.0k, I*+Ilw*, ')ll?méCz(eXpCzt)So@”(S, Ninds,

0=t<T.
Put #*=9*+w*. Combining (7.8.a) and (7.8.b), we have

@8.c)  10.aME, NP+ Ia4E, g =2exp COUBI+ a5
+| 175, irds)+2Cexp G| <@t(s, Diads,  0st=T.

Applying Lemma 6.4-(i) to #*—a, by (7.7) we have

7.9) A, )= att, D122, =, s

e {laf—al*+ 11 aE— dol|s o>

+{ (172, )= Fts, IPem@Hs, 9—=a(s, Dialds.
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By (7.6.a, d and e) and we see
9., Di*+llakt, Mie —> 0.4, HI*+lal, HNie> as k—oo.

Letting £—oo in (7.8.c) and recalling the definitions of #&,, #@,, f and Z, we
have that is valid for 0<e<1. Since C, and C, are independent of ¢ and

#<= E¥[0, T]), letting ¢|0, we have that is also valid for Py(t)=P(t), which
completes the proof.

Now, we shall prove the estimate (b) of [Theorem 2.2-2°.

LEMMA 7.2. Assume that (A.1)-(A.6) are valid. Then, there exists a C=
C(0y, 02, M(1+p), I') such that

(7.10) [\@as, prindsscec1Dao, e

+{ UIPaGs, HII+<Qats, YDhads)
for any t<[0, T], a<E¥[0, T]) and 0<¢<1.

Proof. As was seen in Lemma 7.1, we may assume that 0<e<1. In the
proof, we use the same letter C to denote various constants depending on 4,
0;, I' and M(1+p). Put

H(t, x)=v(x)H't, x)+ela+HE, x),
E(t, ©)=|D*a(0, HI*+1D*a, Hlit+| (15 a(s, JF+IPLs)Lats, IMds
+|, [KQ)Tats, )1, d.as, - lds.
First of all, we shall prove that
7.11) [licrs, s, -, 9,665, - 1ds<CEG, ayrEE, o)

for any @ and 5 EX[0, T1). Since H.(t, x)='H.{t, x) and H.(t, x)Zeln, we have
(7.12) | H.(¢, )0, W, | S(H (¢, x)i0,-w,)""*(H(t, x)Ws- W,)""?

for any (¢, x)€RXI" and constant vectors w,, W,ER™. By we have
(7.13) the left-hand side of

g{g:’(f{;(s, N04iils, -), Byils, -)>ds}”2

X{S:<Hs(s, 99,8(s, ), 355(s, -)>ds}w.
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Putting #=4¢ and 1=2, in and integrating the resulting identity
from 0O to ¢, we have

(7.14) [ <rus, s, -, dats, ds=CEQ, a).

Here, we have used the fact that H.(¢, x)=*'H.(¢, x) and (3.31.b). Since the same
estimate as in holds for #, substituting into (7.13), we have

Now, let (0, T] be fixed. Put Ci([0, t]; H'*"))={G<C [0, t]; H'*I"))|
G0, x)=0 for xI'} and L*(0, t); H'(I"))=1{g(s, x)|8(s, x) is a H"(I")-valued
L? function in s&(0, t)}. Note that Ci([0, t1; H**([")) is dense in L%(0, ?);
HY¥I")). Given GeCl([0, t1; HYI')), let = E*[0, t]) be a solution to the
equations :

(7.15.a) P(s)[9]=0 in [0, 11X 2, Q(s)[#]=G on [0, tIXTI,
(7.15.b) 9(0, x)=0,%(0, x)=0 in Q.

The existence of # is assured by because G(0, x)=0 for xI'. By
we have

(7.16) E, ﬁ)gcwg:w(s, D% eds .
Integrating the identity of and substituting (7.15), we have
@.17) || @,ats, ), G5, -pds| < 1K@, 91, dats, Hlds

+.1P)acs, 3, 8,56, NIds+2] [KHils, I0uils, -), 3,5(s, -)>1ds

— — | Z— —
+C(HON( D act, HIND 6, )II+C(HL), Zz)SOHD’ﬁ(s, HINDo(s, lds.
By (7.11) and Schwarz’s inequality, we have

(7.18) the right-hand side of (7.17)<CE(t, #)'*E(t, 9)'/*.
Combining [7.16), (7.17) and we have

¢ t 1/2
@19 |[<@as, ), 66, pds|scEe, aye{{ G, Drads)

Noting that L*(0, t); H-'/*(I")) is the dual space of L0, t); H'*(I")), by
and we have

@200 [@as, pripdsce 1D a0, | AP s, I
+Qads, HDids)
+cf{[cawrats, ptudsh " {[ @acs, »riads}

1/2
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Here, we have used (3.31.b) and the fact that 1+¢t<e® (C=1). From [7.20) the
lemma follows immediately, which completes the proof.

Now, we shall prove the estimate (c) of 2°.

LEMMA 7.3. Assume that (A.1)-(A.6) are valid. Then, there exist constants
Ci=C(8,, 0., M, I')) and C,=C(8,, 0z, H(1+p), I')) such that

N0.a¢t, HI*+11al, Mier=(expCit){l18.a0, >+ %0, )%cw>}

+Ca(exp C:) {1 D' #(0, ')HZ+S:(IIPE(S)[1?(S, ONFH<Q(Lals, )IDie)ds}

<{[ PG, HIE+HQats, HDiwds} T, 0St<T,
for any a= E¥[0, T]) and 0<e=<1.

Proof. Putting #a=9 and 1=2, in and integrating the resulting
identity, we have

19.a(t, HIE+Nalt, dlse>=10.40, I*+I11a0, %0

{[lIpesacs, ras) 1o, dras)”
+{S:<Q(S)[ﬁ(s, .)]>%12}”2{S‘:<asﬁ(s’ -)>31,2ds}”2

+C@,, 83, D, | (10,5, l+lals, Hgehds.

Here, we have used (3.31.b). Substituting the estimates of Lemmas and [7.2
and using Gronwall’s inequality, we have the lemma.
Now, we shall give a

Proof of Mheorem 2.2-1°. We may assume that f<CY([0, 2T]; L¥)) and
geCy([0, 2T]; HYXI')). Let #.€E¥[0, 2T]), 0<e<l, be solutions of the
equations:

(7.21.2) Pt ])=f in [0, 2TIx R, Q)@ 1= on [0, 2TIx T,
(7.21.b) @0, x)=1ax), 0,20, x)=u,(x) in Q.

Since #,, #, and g satisfy the existence of such #, is assured by
6.5. In the proof, we use the same letter C to denote various constants depend-
ing essentially on d,, 8., M(2), ' and T. By Lemmas 4.2 and 7.1, we have

(7.22) | D, NP*<C-Clito, iy, f, B) for any t[0, 2T],
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where
Clito, 1, Fr 8)=3%t00]2+ 115" |24 7(0, -)|2+<E (0, )%
+ 2 sup, {197, @S, Dhal

If we assume that 0,%.< E*[0, 2T]), differentiating (7.21) in ¢, we have that

P[0, ]=8,F —H®(-, §98, 8. — AD(-, 5%,
(7.23) Q()[8,#.]1=8,8 — B™M(-, 8")it,—d,H 8, i,

04,0, x)=d,(x) and 0%u.(0, x)=1.(x), where

dio(x)=F(0, x)—H(0, 5")a(x)— A0, 3*)io(x).
Applying we have
(7.24)  ||0¢a.t, DIP+10.a.¢, HliFwr=(expCt{l @)+ a1]%w

+CUP RN @2+ 70, DI+ (18.7(s, P+, e
+ID%as, ltds)h

X{S:(”as]_;(s, -)[l2+<as§(s, ")>?/2+”52ﬁ5(s, ')”2)(18}1/2} .

Employing the same arguments as in the proof of Lemma 4.2, by using the
mollifier with respect to ¢ we can remove the additional assumption: 0;%.<
E*([0, 2T]). Thus, (7.24) is actually valid, and then it follows from and
(7.24) that :
(7.25) 0%a.(t, P+ 10:a:(t, M Fcr=(exp COH || #|>+ %1 1|% o>
| +C-Clan, s, 1, BNV},

implies that {#.}occ<: is a bounded set in H%(2,r) (2:7=(0, 2T)XR2). By
passing to a subsequence if necessary, we may assume that the sequence
{#:}ocec: converges to a= H%(Q2,7) weakly as € 0. In the similar manner to
the proof of Lemma 4.4, we see that

P@®)[a]=/f in the sense of L%2,r),

Q()[a]=g in the sense of L%*(0, 2T)x[I’).

(7.26)

Our task is to prove that #= E*([0, T]). To do this, we use the similar argu-
ments to the final part of the proof of Let p;* be the same as in
the proof of and put #;,=ps*i. Note that #,=C=([0, T]; H¥Q))
provided that 0<d<T/2. By (7.26) we see that [4.39) is also valid in the present
case. From this point of view, to prove that {#s;} is a Cauchy sequence in
E¥[0, T]), it suffices to show that
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(7.27) 02(its—dis )0, -)I*+ 100, (st5— s )0, -)||*—>0 as 4, 6" | 0.
Applying to #.—#., we have
_ T __

sup [D(alt, )—dott, MPSCle—e'1] 1D%als, lds.

o<t<T 0
Combining this and implies that {i.}o<.<; is a Cauchy sequence in
EY([0, T]), and then #=E' ([0, T]) and
(7.28) sup || D'(it.(t, -)—at, -))| —>0 as € 0.

0t<T

Let @ and 8 be multi-indices such that |a|=2and |8]=1. Then, we have that
azu(t, x)= LX), 0%0,a(t, x)= L*(L2) and
(7.29) |3 a, P+t HIPSC-Clae, @, f, 8)
for any ¢t<[0, T]. In fact, given ¢=Cq(2), by we have
[(@%a(t, -), P 1@, =i, +), (—82)°¢)|+C-Cli, s, 1, Bl

Applying [7-28), we have [7.29) immediately. Put 9(t, x)=f(, x)—H(t, §)d.4(t, x)
—A(t, 3)a(t, x). Then, o, x) L¥ Q) for each t<[0, T] and d%a(t, x)=1d(t, x)
in the sense of L¥27) (2r=(0, T)X Q) as follows from (7.26). Given ¢ L¥£2),
we have

(7.30) (3(t, -), §) —> (th2, $), (380, a(t, -), §) —> (024, @) as t | 0.

In fact, given >0, let us choose ¢<=C3(2) so that ||¢—¢|<e. Then, by the
definition of #, (7.23), (7.29) and integration by parts, we have

I(i}(t: ')_aZ’ ¢)|§- |(1j(t) ')—722’ ¢—¢')l+](f(t7 ')_f(o) )’ Sb)l
$C 3 1@uitt, =i, BN +C 3, (att, )=, )

Since |[(3(¢t, -)—tls, @—P)| =(C-Cldk, #,, 7, B)+li:]2)"%a as follows from Schwarz’s
inequality and and since ||0,a(t, -)—a,]|—0 and |, -)—@,]|—0 as t] 0 as
follows from (7.21.b) and (7.28), we have

lim sup |(8(¢, V= tha, )| S(C-Clito, s, [, B)+ %017 %a.

The arbitrariness of the choice of ¢ implies the first part of (7.30). In the same
way, we have the second part of (7.30). Since H'(Q)X L*Q) is a Hilbert space
equipped with scalar product (, )a> (cf. (3.30.b) and (3.31.a2)), it follows from
(7.30) that

(7.31) 1?25 oy =lim inf (|9, DI*+19calt, %)

Now, we shall prove that
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(7.32) 1tif{)1(||ﬁ(t, VPH00.adt, %)= lal>+ 1 1% o> -

If we get by (3.31.b) we see that

(7.33) lim||9(t, -)—#@[=0, lim|0*(d,u(t, -)—u.)||=0.
tio tio

In view of (7.31), to prove it suffices to show that

(7.34) lir{lﬁ’up(llﬁ(t, EH10:at, D)=l #ll>+ 50 -

The idea of proving is essentially due to Majda [5, p. 44-46]. By
and (7.25) we have :

(7.35) l92d:(t, *+10:8:, G =(exp Cit){lgel®+[ld:l% 0+ R®)},

where R(f) is independent of ¢ and R(¢)—0 as ¢t} 0. In the same manner as

(7.30) from and (7.28), noting the definition of ¥ and (7.21.a), we can
prove that

(7'36) (a%ﬁs(t) '); ¢)"——>(i}(t; ')7 ¢)) (agatﬂe(t,’ ')7 ¢)~—+(a§atﬁ(t1 .)) ¢)
for any ¢=L* ) as ¢ 0. Combining (7.35) and (7.36) implies that
loCt, HI>+10.a, -)Iicho>§1illel¢i()llf(Ila%fts(t, NP+ 10: 2, %)

=(exp Cit){ll @2 )*+ 121, 1% oy + R (@)} .

Accordingly, follows from the fact that R(t)—0 and expC,t—1 as t|0,
and then we get

Recall that to complete the proof we only prove [7.27). To do this, it
suffices to prove that

(7.37) 1(0%us)O, )—usll —>0, 6"((9:#5)0, -)—at:)| —>0 as 51 0.

Since d%a(t, x)=9(t, x) in the sense of L% Qr), we have that 0%ast, x)=vs(t, x)
(=ps*v) in the sense of L* Q) for each t<[0, T]. Then, we have

1@22)0, )=t < | p(—)]| 535, )—tslds.

Recall that supp pC[—2, —1]. By this and the first part of we have the
first part of (7.37). The second part of (7.37) also follows from the second part
of [7.33) Accordingly, we have proved that (N) admits a solution #< E*[0, T]).
The uniqueness of solutions follows from Theorem 2.2-2°, which completes the
proof of Theorem 2.2.

In the same manner as in the proof of Theorem 2 of lkawa [3, p. 364-367]
(cf. also lkawa [2, p. 604-607]), we can prove Theorem 2.3. So, we may omit
the proof of Theorem 2.3.
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§8. The unique existence theorem and energy inequalities for n=1.

When n=1, we may assume that Q=(a, f) (—o<a<B<o) or =R,
(={xeR|x>0}). The treatment of the case that £2=(a, B) is essentially,the
same as 2=R,. Thus, we consider the case that 2=R,, below. The problem
(N) can be written as follows:

PO[a]=8a+H(, 390, 4+ A(t, a=f¢, x) in [0, T1XR.,
N) QW) #]| zmo={B(, 0)a+H")0, %} | z=o=28(2) on [0, T],
(0, x)=1u4(x), 0,40, x)=1u,(x) in R,,

where H(t, d'), A(t, ®) and B(t, 0') are mXm matrices of differential operators
of the forms:

8.1.a) H(t, d“Yo=2H'(t, x)o.0+Ht, x)7,
(8.1.b) A(t, 0*)v=—0,(At, x)0,0)+A'C, x)d, 0+ A%, x)D,
(8.1.c) B(t, d")o=—A, x)0:9+B@)d,
B.1.d) H'Y, x)=(H' (t, x)), =1, 2, A¥¢, x)=(A*¢, x)), k=0,1, 2,
Bt)=(BJ%t)), H®)=(H.®)).
Now, we introduce the assumptions for n=1.

(A.8.1) The A%® and H'.? are in B¥[0, TI1xR;), H?,® and A*?, k=1, 2,
in 8Y([0, T1xXR,), and B,® and H°,® in 8%[0, T]).

(A.8.2) tA(t, x)=A, x), *H\(t, x)=H\t, x), *H(t)=H"¢)
for any t<[0, T] and x=R,.

(A.8.3) There exists a constant 0,>0 such that A%, x)=0:ln
for any (¢, x)e[0, TI1XR..

(A.8.4) —Ht, 0)+Ht)=0 for any t<[0, T].
Put
MT(]-)ZIAOIw,l.[o,T]xﬁ'*"Hllw.l,EO.T]x§+lelw,o,[o,TJxﬁ
3 | A* w0 co.roa+ 2 {sup|d B@)/dt'] + sup |d H@®)/ '} .
k=1 =0 [0, T] [0, 7]

The following is our main result for n=1.

THEOREM 8.1. Let T>0 and n=1. Assume that (A.8.1)-(A.8.4) are valid.
1° If a,=sHXR), a,sHY(RQ), fCY[0, T]; L¥R)), 2=C [0, T]) and the com-
patibility condition of order 0 is satisfied, then there exists a unique solution
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acs E¥[0, T]) to (N) with initial data i, i, right member f and boundary data

-

g.

2°  Put &(t, ft):g:{HP(S)[i{(s, DI+ Q) a(s, )1l z=ol®tds. Then, there exists
a constant C=C(0;, M(1))>0 such that for any t<[0, T] and @< E*[0, T]) the
following three estimates hold :

@ 10, P+t NwS2e718,a0, P+, l3w+CEE, D,

®) {145, O)1*ds=Ce (I D*a(0, I*+&, )},

© ldcatt, P+, =30, J*+1a0, i} +Ce{|D*a, I*
+&, e, a)'t.

Here, the norm ||-| s> ts defined by:
l&ll% e, =(AE, -)0-u, 0,4)+A(d, ﬂ)—ZSOB(t)ﬁ(x)-azﬁ(X)dx,
where A=(0s/ 2)+(2/53)([50qu] | B(&)I)?.

Note that by (A.8.3) we have

(8.2) | 2)|%cer=(0s/2)||0" @||®.
Recall that plays an essential role to prove To
get [Theorem 8.1, it suffices to prove the following lemma corresponding to

LEMMA 8.2. Let T>0 and n=1. Assume that (A.8.1)-(A.8.4) are wvalid.
Then, there exists a constant C=C(0;, Mr(1)) such that

1Dtag, 1+ (aacs, 11D, Hl)ds
<Ce| (IP)als, NP+ QOLAGs, )]l mol?}ds

for any a< E¥[0, T]) satisfying : #(0, x)=0,#(0, x)=0. Here, P.(t)[a]l=P()[a]
—260,0,i, 0<eZ1, and Pyt)[a]l=P@)[a].

Proof. First of all, note that

B(t)a(t, 0)-0.4(t, O)Z—%S:B(t)ﬁ(t, x)-0,4(t, x)dx

+g:°(dB(t)/dt)z2(t, x)- 9.4, x)dx+S:B(t)6,ﬂ(t, x)-0,dt, x)dx

—S:B(t)axﬁ(t, x)-8,4(t, x)dx.
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By integration by parts and (A.8.2) we have
(P®OLae, )]+4aq, -), d.a4(t, '))=%—d%—{llazﬂ(t, OIEHNa, Ol
_’%(ale(t; )0.a(t, +), 0,a(t, )+(H, -)d.alt, -), d.4(t, -))
—QMLat, )]l z2=0-0.a(, 0)——;—(&1‘120, Dat, -), 0.ut, -))

-]
0

—S:B(t)ara(t, x)-0,4(t, x)dx-i-g (dB/dt)t)a(t, x)-0-a(t, x)dx

+S:B(t)atﬁ(t, x)-0za(t, x)dx+(—H¢, 0)+ H))o,a(t, 0)-0,4(z, 0).
Hence, by (A.8.4) and the assumptions: #(0, x)=0,#(0, x)=0, we have

8.3) 8.t I+ lae, =] 1PG)Las, Hlids

+C(8s, Mr() (Iasics, IF+ (s, Hge)ds

+{{,10)as, 311omol%as} | 10,5, 0125}

By integration by parts we have also
(POLaE, Y], Built, D= L@eilt, -), B:tlt, )+ (HY, s, ), Baiilt, )]
18, 0)1*+ A, 03:alt, 02t 0)— 3@ HE, s, -), Dsilt, -)

+%(8IA0(IJ ')al‘ﬂ(t’ ')1 axﬂ(t: '))+(H2(t: ')ata(t’ ')) axa(tr '))

+(AE, -)a-alt, )+ A, Dalt, -), d-u(t, -)).

Hence, we have
@4 {10,a6s, 01%ds=C@Es, M| (19,00, I*+ 1, N3erds

+C(ds)llo.at, N>+ |alt, -)qum)+SleP(S)[ﬁ(s, 1l*ds.
Substituting [(8.4) into (8.3) and noting that

3 [C1@e)acs, 11eml®ds] “TC@N B, 126 a1

< 2 (Bett, Y att, ) +@CEYD[ 1A, I1aml®ds,
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we have

l9ea(t, HI*+Nalt, )G =C(ds, MT(]-))S:(”acﬁ(S, DEHlacs, Hlie)ds

+C@| (IP)aCs, DI*+] Qas, )]lamslds.

Here, we have also used the inequality: (a+b+c¢)/2<3Y% (a'/*+b'*+c''?) for
a, b, c=0. Applying Gronwall’s inequality implies that

19:1(e, )E+ N, e
= CO,)Xexp COs, M| (IP)ats, HII*+1 QLS ) z-0lDds

Combining this and we have the lemma in the case that ¢é=0. When
0<e<l, by the same arguments we can prove the lemma. So, we may omit
the proof.

Replacing [Theorem 6.8 by Lemma 8.2, we can prove by the

completely same arguments as in §7. Thus, we may omit the proof.

In the same manner as in the proof of Theorem 2 of lkawa [3, p. 364-367],
we can prove the following theorem.

THEOREM 8.3. Let T>0, n=1 and L be an integer =3. In addition to
(A.8.1)-(A.8.4), we assume that A< BL[0, TI1X2), H*,® and A*be 8%-*([0, T]
x2), k=1,2, and H'? and B, 8%[0, T]). If a,cHYRQ), i, s H Y Q),
feCt-\[0, T]; LA2)NEL-*[0, T1), 8=CL-([0, T1) and the compatibility con-
dition of order L—2 is satisfied, then the solution @ of (N) belongs to E([0, T]).

Appendix On some L%boundedness theorem for commutators

By using the Kumano-go, Muramatsu and Nagase theory on pseudo-differential
operators, we derive L’-estimates for some kind of commutators, which are
used in §5. First, we quote fundamental results from Muramatsu [7, Part II,
Chapter 2]. In what follows, we use the following notations. By X, Y, we
denote points of R*. By &, we denote the dual variables with respect to
innerproduct: X -F=3X,5, For differentiations, we use the symbols:
Dy=—~/—1(3/0X,, -+, 8/0X,) and Ds=+/—1(3/05,, ---, 8/05,). Put A&)=
(1+|5|?Y2. Functions considered in this section are in general complex-valued.
Let =R If a(X, &, V)= 8(R*") satisfies

|D¢DEDSa(X, B, V)| <C(a, B, )A(E)°~F!

for any multi-indices a, B, §, we say that a is the symbol of order ¢ and write
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asS?. For any symbol a=S7, let us put

Au=a(X, Dy, Y)u=(27r)'"0$—Sge“?"x's‘y‘s’a(X, 5, Vu(Y)d5dY,

where OS_SS means the usual oscillatory integrals. We call A a pseudo-

differential operator with symbol a. When Au=Bu for any u=S(R"), we shall
write a=b, where A and B are pseudo-differential operators with symbols a
and b, respectively.

THEOREM Ap. 1 (expansion formula [7, p. 311]). Let c=R and acS°.
Then,

azalX, 5, X)+ 3 V= 15 0(X, B, X+x(Y — X))dx

lal=1

where a®(X, &, Y)=D3D¢a(X, 5, 7).

THEOREM Ap. 2 (L*boundedness [7, p. 320]). (i) Let 6>0. For acS~?,

put
N¥a)= Sup_ max |a‘(X, &, Y)Y AE) +1ar,

X, Y, 5 la1s2ky

Here k, is the least integer such that 2k,>n and a‘®=D%a. Then,
|Au|rn SCNYa)|lullgn for any us L¥R™).
(ii) For any a(X, E,Y)eS, and §<(0, 1), put

No(a)=_sup - max {|a>(X, &, V)IA&)",

Y,Z, 5 1ais2ky

la‘(X, &, Y)—a‘(X, &, Z)| X&)
Y—Z|° '

la‘(X, &, Z)—a‘(Y, B, Z)| (&)™
| X—Y|? }

Here, k, is the least integer such that 2k,>n-+6. Let A be a pseudo-differential
operator with symbol a. Then,

| Au|rn=CNo(a)llullpn for any ue L*(R").

Now, we shall derive the estimates used to evaluate L*-bounds of some
kinds of commutators in §5. In what follows, we use the same notations as
in §5. For the sake of simplicity, we write X=(t, x’), Y=(s, y"), &=(z, &).
Put 2(&)=(& 2 4)"?=(>+1&'|*+7")"%2. We shall say that a(X, &5, Y, r) is a
symbol in SY (we write a=S9) if a is in C* with respect to all variables
(X, £,Y, 7) and for multi-indices a, 8, 0
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|D$DED}a(X, B, Y, nI£C(a, B, 6)A,(8) "¢,

Let us define the weighted pseudo-differential operator A with symbol a=S¢ by
AX, D, Y, pu=@m)ne0s—||e 2 5v5a(X, 8, Y, pe-ru(Y)d5ay

for any uES(R")={ucd’'(R")|e""u(X)=S(R™)}. If we put
GT(X) E’ Y):a(T-IX’ TE’ T_IY’ T>’ uT<X):e—tu(T-lX)’
by the change of variables we have that
(Ap_l) A(X, Dx, Y, r)uze"(Arur)(rX)
where A, is a pseudo-differential operator with symbol a/(X, Z,Y). By
Ap. 1 and (Ap. 1) we have
LEMMA Ap. 3. Let o=R and a(X, E,Y, y)=Si. Put
—— 1
aiX, B, Y, p=a(X, &, X, p—v=T 3 [(DeDsa)X, &, X6y —X), p)dx.

Then, Au=A,u for any usS,(R™). Here, A and A, are weighted pseudo-differ-
ential operators with symbols a and a,, respectively.
Now, we put

Nj (@)= max sup |a‘“(X, &Z,Y, pIA&E) +=
le|s2ky X, Y, 5

for ¢>0 where k, is the same as in Ap. 1-(i). And also, we put

No.(@)= max { sup 1a(X, 5, Y, pla&)=,

lals2kg )

(aj = — gl =l =)l al —_ -6
X,Sl}fg,sla (X: ‘-’:Yr T) a (Z’ bl gy Y, T)lzr(‘-‘) IX Zl ’

X’si}?gglaw’(X, B, Y, nN—a®X, 5, Z, r)|2,(5Z)« IY—-Zl"’}
for 6=(0, 1) and y=1 where %, is the same as in Ap. 1-(ii). Since
N¢(a;)= Ny, (a), Nya)=Ns(a),
by Ap. 2 and (Ap. 1) we have
LEMMA Ap. 4. (i) Let a(X, E,Y, =S}, 0<(0,1) and A be a weighted
pseudo-differential operator with symbol a. Then,

| Aulo,,=C(0)Ny, (a)|ul,,;.
(i) Le; alX, 5,Y, reS? for some ¢>0. Then,
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| Aulo,,=C(0)Ns, (@) ulo,;.

Under these preparations, we can easily prove

THEOREM Ap. 5. Let a(X)= 8%(R"), 0<s=1 and ¢(Z, v) be a function in
C=(R"X {yeR|r=1}) such that for any a

| D2g(E, )| SCla@)d (&)~

Let @ be a weighted pseudo-differential operator with symbol ¢ and put [a, @]
=aQu—DP(au). Then,

Cs)lalw, 1. rnluloy, 0<s«l,
H:a, ¢]u Io,r__S_

C(ﬂ)lalw,1+y,Rn|ulo,r, s=1

Here, p is any small positive number.

Proof. Put
HX, 8, Y, p=—v=T 3 | (D¥aXX+x(Y—X)drD3g(Z, 7).

Then, b&S:~! and by Ap. 3 we have
La, @lu=Bu for any usS,(R"),

where B is a weighted pseudo-differential operator with symbol a. Thus,
applying Ap. 4 and using the fact that S(R") is dense in L}
={uce Ll (R e Tu(X)e L} R")}, we have the lemma.
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