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NATURAL TRANSFORMATIONS OF VECTOR FIELDS
ON MANIFOLDS TO VECTOR FIELDS
ON TANGENT BUNDLES

By

Masami SEKIZAWA

There are well known classical examples of vector fields on the tangent
bundle TM which can be constructed from a vector field on the base manifold
M, namely the vertical lift and the complete lift. Furthermore, if we consider
the tangent bundle over an affine manifold (M, V), we can define the horizontal
lift of a vector field on (M, V) to TM. As we shall see in Section 1, the
classical constructions are examples of “natural transformations of the second
order”.

We have two goals in this paper. The first is to describe explicitly all
second order natural transformations of vector fields on manifolds into vector
fields on their respective tangent bundles. The second is to describe explicitly
all pointwise second order natural transformations of vector fields on manifolds
with symmetric affine connections to vector fields on their respective tangent
bundles.

As we have done in previous papers [1], [2], [7], we shall use for our
purposes the concepts and methods developed by D. Krupka [3]-[5]. This leads
to a system of partial differential equations to solve, and to the problem of
geometric interpretation of all solutions. Our main results are formulated in
Theorems 2.4 and B.3

I would like to thank Professor O. Kowalski and Professor D. Krupka for
some helpful discussions.

1. Classical lifts of vector fields to tangent bundles

In this paper we shall adopt the Einstein summation convention, unless
otherwise stated. Also, we assume all manifolds and geometrical objects to be
of class C~.

Let (U; %, x%, -+, x*) and (U ; %!, %%, ---, ¥*) be two systems of local coordi-
nates in a smooth manifold M of dimension n such that the domain UNU is not
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empty. The coordinate vector fields E;=0/0x* and E,=0/0%* (1=1, 2, ---, n) are
related by the transformation formulas

(1.1) E;=A¢E, or E,=B?E, (i=1, 2, -, n),

where [A%]=[0%*/0x'] and [B¥]=[0x*/0x'] are the (mutually inverse) Jacobi
matrices. If y=y*E,=#*E, is a tangent vector field on UNU then we get by
(1.2) FE=Aty® (k=1, 2, -+, n).

Further, differentiating both sides of with respect to X!, we get

(L.3) y* = AL By + AL Bly® s,

where ¥* ,=0y*/dx', y* ;=ady*/ox* and A};=0d*x*/dx'0x? (i, j, k=1, 2, -+, n).

Now let TM be the tangent bundle over M with the natural projection p.
Let (p~'U; x", x%, -+, x™, u', u?, -, u™) and (p~'U; %', %2, -+, X°, @', @t%, -+, ™)
be two systems of local coordinates in TM induced from (U;x', x?, ---, x™) and
(U; z', 2, -, &"), respectively. Here u=u*E,=#*E, is a tangent vector field
on UNU. Then the transformation law on p~*(UNU) is given by

=z 22, 0, 2™,
(1.4)

szﬁua, (k':l, 27 "'7”)-

i}

Let X;=0/dx', X;«=0/0u* (=1, 2, ---, n) denote the coordinate vector fields on
the tangent bundle TM, put X;=0d/0%', Xx=0/0a’ accordingly. Then the two
bases {Xi, Xo, =, Xn, Xier Xow, -+, Xns} and { Xy, Xa, =+, Xu, Xiny Xowy 5 Xna}
are related to each other by

( Xi=A?X,+AHBac X o,

(1.5) -
Xiw=AfXax, (=12, -, n).

Let now Y=Y *X,+Y*X,.=Y*X,+Y*X,. be a vector field on p~(UND).
Then, using [1.5), we obtain the following transformation formulas for the

components of Y:
Yr=ALye,
(1.6) —
YH*=A%u* Y+ ALY, (k=1,2, -, n).

(In Section 2 we shall show that the formulas [1.2), [1.3) and [1.6) define actions
of the second order differential group L% on some manifolds.)

Next, we shall recall briefly the definitions of the vertical and the complete
lift of vector fields on M to TM. The vertical lift of a vector field y on M is
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a vector field »° such that y°(df)=y(s)-p for all functions f on M. Here we
consider the 1-form df on M as the function on TM defined by (df)(x, u)=u(f).

If y=y*E, with respect to a system of local coordinates (U;x!, x?, ---, x") in
M, then we obtain
(L.7) Y'=3* Xpx.

Obviously, the vertical lift of a single vector y=TM is also well-defined. The
complete lift of a vector field y on M is a vector field y° such that y°(df)=
d(y(f)) for all functions f on M. In terms of local coordinates we obtain

(1.8) Y=y X+ ¥, qu® Xpx .

We note that the vertical and the complete lift of vector fields depend only on
a differential structure of the base manifold.

When an affine connection is defined on the base manifold, we can define
another lift of vector fields on M to TM. LetV be an affine connection on M.
Then the tangent space of TM at any point (x, u)TM splits into the horizontal
and the vertical subspace with respect to V:

(TM)(z, u):H(x. u)@ V(.z', u) .
For any vector field y on M, there exists a unique vector field y* on TM such
that y*(x, )€ H¢z, »y and pyy™(x, u)=yu) for any point (x, ) TM. We call y*
the horizontal lift of y. In terms of the local coordinates, y* is expressed as

(1.9) Y=y X, — % u®y? Xpx,
where I'%; (i, j, k=1, 2, ---, n) are the local components of V.
REMARK A. The local components I'%, and I%; (7, j, k=1,2, -, n) of ¥
given by Vg E,=I'4E, and Vg E;=T4E, are related by
(1.10) Iy=AyBBi'&+B%) G, Jj, k=1,2, -, n),
where we put B};=0d*x*/0x‘0% (i, j, k=1, 2, ---, n). We shall also use the

formula [(1.10) in order to define actions of the second order differential group
L} on some manifolds.

REMARK B. The components Y4 of any of the classical lifted vector field
9%, y¢ and »* above depend only on the components x* of the tangent vector
u=TM, on the components y* of the original vector field y, on their first deri-
vatives y* ;, and on the components /"%, Because, firstly, all these quantities
are subjected to the transformation formulas (1.2)-(1.4) and depending on
the second order jets of the coordinate transformations, and, secondly, the cor-
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responding constructions are geometrically invariant, we say that the classical
constructions y—3°, y°, y* are “second order natural transformations”. We shall
make this concept more precise in the next section.

REMARK C. We know already that each “classical lift” can be expressed
locally in the form

YA=Y4u*, y*, y*:) or YA=YAu*, y*, I'%).

Yet, it will be more precise to say that our second order natural transformations
are of the form

(1.11) (u®, y*, y*, ) —> @Wh, YAt 3%, 3*0)
or
(1'12) . (uk’ ykr F:j) > (uk’ YA(uk’ yk’ r’tzj)) .

2. Natural transformations.

Let us now recall the general theory of natural transformations due to D.
Krupka. We refer to and for more details.

Let L, be the r-th order differential group of the n-dimensional Euclidean
space R™, that is, the Lie group of all r-jets of local diffeomorphisms of R™
with source and target at the origin o= R", where r is any nonnegative integer.
Let P and Q be smooth manifolds on which the group L}, acts to the left. An
r-th order differential invariant f: P—Q is an L}-equivariant map of the left
L%-space P to the left L;-sbace Q, i.e., a map satisfying f(jja-p)=jia-f(p) for
all jta= Ly and all p=P. Here the dot - denotes the action of L7, on P (or on
Q, respectively).

Further, let F"M denote the bundle of all frames of r-th order over M,
which carries a natural structure of a principal L%-bundle FTM(M, L, 7). We
get a natural functor from the category D, of smooth n-manifolds and injective
immersions into the category of principal L7-bundles and L7%-bundle morphisms.
Here, for any morphism ¢ : M,—M, of D, the corresponding morphism F7¢: F™M,
—FT™M, is given in a familiar way (see [6]).

Finally, for a left L%-space P, let FEM denote the fibre bundle with fibre
P, associated to the principal L3-bundle F™M. We obtain a natural functor Fj
from the category D, into the category of fibre bundles and their morphisms.
Here, for any morphism ¢:M,—»M, of D, the corresponding morphism
Fip: FEM,—FEM, is given by

Fpo(Ly, pD=LF"¢(y), p]
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for any [y, pJ=FEM, ([y, p] is the equivalence class of a pair (y, p)=F M, X P
with respect to the equivalence relation defined by the right action (y, p)-jia=
(y-7%a, jsa™t-p) of L% on FT™M,XP).

For each manifold M and each differential invariant /: P—Q we can define
a morphism fy: FEM—F{M over the identity map id: M—M by

Fuly, D=Ly, f($)]

for all [y, pJeFEM. This morphism fj is called the realization of a differential
invariant f on the manifold M.

An r-th order natural transformation T of the functor FZ into the functor
F§ is a collection of bundle morphisms T : FEM—F5M over the identity map
id: M—M (M D,) such that the diagram

Tu,
FTPMl — F’éMl
PP P

Tu,

FpM,

oM,

is commutative for every morphism ¢: M,—M, of D,.

The following theorem due to Krupka says that the problem to find all
r-th order natural transformations of F# to F} is equivalent to the problem of
finding all r-th order differential invariants f from P to Q.

THEOREM A. Let f:P—Q be an r-th order differential invariant. Then the
correspondence Ty : M—fy, where M is an object of D,, is a natural transforma-
tion of the functor Fp to the functor Fj. Moreover, the correspondence f—T; is
a bijection between the set of all r-th order differential invariants from P to Q
and the set of all r-th order natural transformations of Fp to F%.

In order to apply the method by Krupka to our problem, we shall restrict
ourselves to the second order differential invariants. We define functions A%, A%;
(1=i<j=<n, 1=k=<n) on L} by

AX(jia)=D;a*(0),  Al(jie)=D.D;a*(o)
for any local diffeomorphism a=(a’, &% -+, a®) with a(o)=0=R", where D;
denotes the partial derivative with respect to the i-th variable in R™ The

system of the canonical (global) coordinates on L} is the system of functions
{B%, B} (1=i<j=n, 1=k<n) on L} given by

Bijim)=Aljle™), Bi(jie)=A%(la™), (<i<j<n, 1<k<n).
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Obviously

Bg(]%a)Ag(]%a)zag (l’ k-:lr 2) Tty n)
for all jia=L:. Thus A% (, k=1, 2, ---, n) are well-determined functions of the
canonical coordinates B% (7, k=1, 2, ---, n).

Let us consider the product P=R™*XT.R" of R* and the set T,R" of all
1-jets with source at o=R"™ and target in R". We denote by {u*, y*, y* ;}
(i, k=1, 2, ---, n) the canonical coordinates on P. We define an action of L2 on
P by the formulas

u*(jla-u)= AL (jia)u(u) ,
y¥(Jia- )= AL(Jia)yX(y),
vk (ke y)=A%>ia) B¥jia)y* (M) + AL (J3a) Bi(j3a)y® s, (4, k=1,2,---,m)

for all jlasLi, u=R"™ and y=T.R". Or briefly, we can write

ut=Agu, Fr=ALy",
2.1)

y* =A% B}y*+ AL B}y® s, (¢, k=1,2, ---, n),
which is formally the same as [(1.2) and [(1.3).

Put Q=R"@PR*" and denote by {v*, Y4} (k=1, 2, ---, n, A=1, 2, ---, 2n) the
system of canonical coordinates on Q. This can be also written in the form
{vk, Y*, Y**} (k=1, 2, ---, n), where k* stands for n+k (k=1, 2, .-, n). The
space Q has a structure of a left L2-space defined by '

pr=Av®, Vr=ALYe,
(2.2) {

)_/k*:‘Az.hva YD+A§Ya‘ ’ (k:l’ 2’ Tt n))
which coincides with [(1.2) and [(1.6).

We see easily that the corresponding associated L:-bundles FAM and F3M
over a manifold M always have canonical bundle projections

(2.3) iM—> TM, F3M—> TM.

Now we define the problem to find all second order natural transformation
of vector fields on a manifold to vector fields on its tangent bundle as the problem
to find all those natural transformations of F3 to F3 which, for each M and via
the projections (2.3), induce the identity map id: TM—TM. Hence, by Theorem
A, this reduces to the problem to find all second order differential invariants
[k, vk, & Dok, YA(uk, y*, y* ;) from Pto Q such that v¥*=u* (k=1,2, -, n)
(cf. (L.1L).

In the sequel, we shall use the method of differential equations proposed by
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Krupka (see [5]). For the computational purposes, we shall extend the symbols
A%; and B%; also for the case i=j by putting A%;=A% and Bi;=Bj%. Then the
range of all indices denoted by small letters will be {1, 2, ---, n}, independently
of the other indices. We note that, with respect to this notation, we have to
use the following conventions (cf. [4]):

0B, dAY
oBp. 0B

——62(6‘161‘"*_5(157) (Z‘: ].’ k’ p; q, T':l, 2: Tty n) .

PROPOSITION 2.1. For any differential invariant f:P—Q as above, the func-
tions Y4(u*, y*, y* ) satisfy the following system of differential equations:

(2.4) ¢ g}/: +y1, a;y);k 3% gy):q +u? g:; =Y10%,
25 P+ g =Y g U =B,
(2.6) ¥t f?yii +y7 gy);k =0,

(2.7) . 0T ;P OV =WY?+utY")ok

e ty 0y? 4
for all k, p, q, r={1, 2, -+, n}.

Proor. The fundamental vector fields on P relative to the action [(2.1) are
given by

&= an()aa+aBp()aya, 8BP()6“
3 5 .9 9
- o7 ‘y"-amﬂ oy, T

, 1, 8 @
&= aBg, (e )a a "”7(3’q ayr . TV ayp,q)’
(py q, 7’21’ 2) Ty n)’

where ¢ denotes the identity element si(¢d) of L2. The corresponding funda-
mental vector fields on Q relative to the action are given by

ST NI I T T
"’%— aBp ( ) aYA aBp ( )a 2 =—Y1 aYp — Y4 aYp‘ Ve avp ,
o 0Y4 0 S P

ﬂ%zm(e)g‘fg: (qu +u Yq)ayp* (p’ q, 7/:1, 2’ e, n).

Since any L32-equivariant map f from P to @ satisfies
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f*(s%)-:g% and f*(E%I):E%ry (p’ q, r=1’ 2; Tty n) »

we get
§4(Y4:-f)=E%(Y4) and §&F(Y4-f)=E¢(Y4),
(p,q,r=1,2, ---,n, A=1, 2, ---, 2n).

We have to use also the condition v*ef=u* (k=1, 2, ---, n). Hence we get the

system (2.4)-(2.7). gq.e.d.

The following Lemma will be used for solving the system (2.4)-(2.7) and
also the system (3.2)-(3.5) in Section 3.

LEMMA 2.2. The complete solution of the system of partial differential equations
, oYt Y *
Yy
ay? ou?
where Y, Y2, ..., Y™ are functions of y*', %, -+, y", u', u?, ---, u™ only, is given

by

(2-8) +u =Yq5§) (kr pr (I:l» 2’ e, Ny nZ_Z),

Y"=ay"+,3uk (k=1; 2) Tt n)’
where a and B are arbitrary constants.

PROOF. (We do not use the Einstein summation convention in this proof.)
Let us introduce new independent variables in by putting

yp
u?’

2P= vP=y?, (P=1, 2, ,m).

Then takes of the form

Ve oYy * oY *

— (79 —2zP q — Y a5k
(2.9 v"(z z?) 327 +v 507 Y%, .
Putting p=¢ in we get

aYk
(2.10) P a7 =Y 78",
which can be rewritten (at generic points where v'v?--- v"+#0) in the form
aYk aYk

k —VEk i

(2.11) Vi =Y*, 507 =0 (p+k).

We can integrate easily, and we obtain at all generic points and hence
at any point by continuiy

(2.12) Yk:‘rkvk (k=1, 2) Tty n))

where r* (k=1, 2, ---, n) depend only on z? (p=1, 2, ---, n).
Now, substituting [(2.12) into [2.9) we get
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21 V! apyk O Y TR
(2.13) 17,(2—2 w 5;?+rv b =rw0?% .

Putting k=q in [(2.13) we obtain

Ef k__D kar —
vp(z zPw g =0,
which implies that dr*/0z?=0 holds for p+£k at all generic points, and hence
at any point. Thus y* (k=1, 2, ---, n) depend only on z*, y*=y*(z*). Sub-
stituting into we get, for p=k¢,
ar*
O S ] k)8 — a0y,
v¥(2?—z )az” +rfvi=rl

and, at any generic point,
or* '
(2.14) (=2 g e =r"—r" .
Here dr*/dz* is a function of z* only, say, 0r%/0z*=f(z*). Then gives
r'=0r*—z"f(")]+2f(z").

Because 7? is a function of z? only, we see that f(z*) and y*—z*f(z*) are con-
stants. Let us denote these constants by a* and S*, respectively. Then y?=
a*z?+fB* for each ¢ and each k (k, ¢g=1, 2, ---, n). Hence, there exist constants
a and B such that

r'=az?+p for ¢=1, 2, ---, n.
Substituting into we get
(2.15) Yi=ay*+Bu* (k=1,2, -, n).

On the other hand, we see that gives a solution of for @ and B
arbitrary. ‘

THEOREM 2.3. All differential invariants f: (u*, y*, y* )—(@*, Y4) from P=
R"XTLR"™ into Q=R"DR*™ (n=2) such that v¥=u* (k=1, 2, ---, n) are given,
in the canonical coordinates, by

Yi=ay*, Y*=ay* ,u®+By*+7* (k=1, 2, -+, n),

where a, B and y are constants.

Proor. (We do not use the Einstein summation convention in this proof.)
To obtain our differential invariants we solve the system (2.4)-(2.7).

Putting ¢=7 in we get
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5 oY *
ay? ,

=0 (k, p, ¢=1, 2, ---, 1),

which implies that 9Y*/dy? ,=0 at each generic point where y?+0 and hence,
by the continuity, at any point. Thus Y* do not depend on y?, for p, ¢g=
1,2, ---,n. Hence reduces to [2.8). By Lemma 2.2, the solution of
and is given by

(2.16) Yi=ay*+Bu*  (k=1,2, -, n),

where a and B8 are constants.
Substituting [2.16) into [2.7) and putting ¢=7 in the obtained equations we

get
y? or’™ =u¥ay'+pu)oy  (k, p,¢=1,2,,n)
ayp,q D ’ ’ » ’ ’ ’
which can be rewritten in the form
oy ** oY #*
q — 9 q q i .
(2.17) y FPI ulay?+pu?), 97 0, (k£p)

We can integrate with respect to y? , and obtain (at all generic points
and hence at any point)
(u®)?

(2.18) Y”*——-azy",au“-i—ﬁzy”,a—yT- +rF (k=1,2, -, n),

where 7* (k=1, 2, ---, n) do not depend on y?, (p, ¢=1, 2, .-, n). Now, sub-
stitute [2.16) and [2.18) into [2.7) for p=Fk. We get

y? Y7
ﬁ[}—r(u')2+}71(u")”]=213u’uq (g, r=1,2, -, n),

which is possible if and only if

(2.19) B=0.
Thus we obtain
(2.20) Y“=a2yk,aua+)‘k (k:]-: 2) ] n);

where y* (k=1, 2, ---, n) depend on y* and u” (p=1, 2, ---, n).
Next, substituting into we get

ark ark

q q — a5k

y ayp +u aup T 511 ’

which is the same as Thus, by once again the solution is

given by
(2.21) r =gy +ru*,
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where B’ and y are constant.

Finally, by and [2.21), takes of the form
(2.22) Y *=aXy* u*+ By +rut (=1, 2, -+, n).

Thus, the solution of the system (2.4)-(2.7) is given by with =0 and
(2.22). ‘This is our assertion.

Let us introduce the canonical vertical vector field V on TM by the formula
Vs wy=vertical lift of u at (x, u).

This means, in a system of local coordinates on UCM,

(2.23) V(x,u):uka*-
Summarizing now and formulas [1.7), [1.8), [2.23), we obtain

our first main Theorem in the following form:

THEOREM 2.4. Any vector field on the tangent bundle TM which comes from
a second order natural transformation of a wvector fields on a manifold M
(dim M =2) is a linear combination (with constant coefficients) of the wvertical lift
and complete lift of the given vector field on M and of the canonical vector field
on TM.

3. Pointwise natural transformations.

In this Section we shall find all “pointwise” second order natural trans-
formations of vector fields on a manifold with a symmetric affine connection
to vector fields on its tangent bundle. Here “pointwise” means that any value
of the transformed vector field on TM is determined by the corresponding value
of the given vector field on M (and by the given connection). As we recalled
in Section 1, the horizontal lift is a classical example of such a transformation.
Our main Theorem in this section is [Theorem 3.3

Let us consider the vector space V=R"PR"D[R*"Q(R™OR™)], where R™
is the dual space to R" and B, &, © denote the direct sum, the tensor product,
the symmetric product, respectively. We denote by {u*, y* I'%} (1<i<j<n,
1=k=n) the canonical coordinates on V. We define an action of L2 on V by

the formulas
ut=Au, Ft=ALy*,
3.1 _
b= AYBIBTE,+By), (1Si<jsn, 1<ksn),

which is formally the same as [1.2) and [1.9)
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Further, consider the vector space @ in Section 2 with a natural structure
of a left L3-space defined by
By a similar observation to in Section 2, our problem reduces to fined all second
order differential invariants f: (u®, y*, I'%)—(*, Y4u*, y*, I'%;)) from V to Q
such that vt=u* (k=1, 2, ---, n) (cf. [(1.12)).
In the sequel, we also extend the symbol I'%; for the case 7=; by putting
t,=r%. With respect to this notation, we have to use the following con-
ventions :
ory, _1

arg'r - 2 5;(536;‘*—535?) (i) j’ k: p) q, 7’=1, 2, Tty n) .

PROPOSITION 3.1. For any differential invariant f:V—Q as above, the func-
tions YA(uk, y*, I'%)) satisfy the following system of differential equations:

(3.2) ya gy: O BT 30T 8o s gf:: —yeoy,
(3.3) aaY (e, —8T 2. —8eT8,) g?’; us a;; T _yes,
(3.4) (%.,%:0,

(3.5) %’Qg == WY Y3,

for all k, p, q, rE{1, 2, -+, n}.

PrROOF. The fundamental vector fields on V relative to the action are

0 0 a
U%z—yq ayp +(_6%Fgc+5grgc+agrgp) a[vgc —u? ou? ’

. 0
77%:7"5;_"’ (pr q, ?'_-—_1, 2; Tty n)-
Since any L3-equivariant map f from V to @ satisfies
f*(”%):‘g% and f*(v%r :E%r (17: q, r=1’ 2: ttty n),
we get the system (3.2)-(3.5). g¢.e.d.

THEOREM 3.2. All differential invariants f:(u*, y*, ['})—@w*, Y4) from
V=R"PR"P[R"QA(R™OR™)] into Q=R"PR*™ (n=2) such that v*=u* (k=
1, 2, ---, n) are given, in the canonical coordinates, by

Y =ay*+Bu*,
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Y =—al % usy’— B 5w u’+ oy +gut,
where a, B, ¢ and ¢ are constants.

PrROOF. We shall solve the system (3.2)-(3.5). According to the system

reduces to Thus, by the solution of [3.2) and [3.4) is
given by

(3.6) Yi=ay*+But  (k=1,2, -, 1),

where a and B are constants. .
Substituting into we get

aYk* ____l_ak(aq r+5qar)(aua °—l—,3u“ub)

a[‘gr — T g9\ b 0a y ’
from which we get by integration with respect to I'%
(3-7) Yk*:—apﬁbuayb—‘s[,zbuaub+rk ,

where 7* (k=1, 2, -+, n) do not depend on I'% (p, ¢, ¥=1, 2, ---, n). Substituting
(3.7) into [(3.3) we obtain, after some calculations,
or*

yq a;p +uq a P _Tqag"
Thus, by Lemma 2.2 once again, we obtain
(3.8) Tk=§0yk+¢'uk (=1, 2, ---, m),

where ¢ and ¢ are constants.
Summarizing above, the solution of the system (3.2)-(3.5) is given by
and [3.7) with [(3.8). This is our assertion.

According to Theorem A, we have, from (1.9) and [Theorem 3.2, our
second main Theorem in the following form.

THEOREM 3.3. Let M (dimM=2) be a manifold with a symmetric affine
connection Y and denote by TM its tangent bundle. Then a vector field Y on TM
comes from a pointwise second order natural transformation of the connection NV
and a vector field y on M if and only if, at each point (x, W) TM, Y(x, u) is a
linear combination with constant coefficients of the vertical and horizontal lifts of
y and u with respect to N, that is,

Y(x, wy=ay™(x, w)+ Bu(x, u)+¢y°(x, w)+¢u(x, u),

where a, B, ¢ and ¢ are constants.
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