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PSEUDO-DIFFERENTIAL OPERATORS ON
BESOV SPACES
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Mitsuru SUGIMOTO

Introduction.

In the present paper, we shall study the pseudo-differential operators on
Besov spaces B$ , (s€R, p, g=[1, ]), and give systematical boundedness
theorems for pseudo-differential operators whose symbols belong to the Hérmander
class S7'; (meR, p, 6<[0, 1]). Besov spaces Bj , are generalization of both
Holder spaces C*® and Sobolev spaces H§ (Remark 1.1).

It has already been known that symbols belonging to the class S} ; generate
Bs, ~-bounded (s>0 if d=1) pseudo-differential operators. See, for example,
Gibbons (S? ) and Bourdaud (S2.5). Our primary object is to show the
same result for the general class S7s.

On the other hand, in order for symbols a(x, §) to generate Bj, ;bounded
pseudo-differential operators, ¢(x, &) need not be so regular but need only small
regularity of Besov or Holder spaces type depending on B% , This fact is
verified if we consider pointwise multipliers ¢(x) which are special cases of
pseudo-differential operators; cf. Triebel [19], Section 2.8. Gibbons and
Bourdaud also considered non-regular symbols satisfying Besov spaces type
estimates, and gave boundedness theorems for such symbols. Our secondary
object is to discuss to what degree we can relax regularity conditions for
symbols.

In order to carry out our two objects, we shall define new symbol classes
Sr{B&A), e>) on RTIXRE which are generalization of the Hérmander class
S7s (Definition 3.3). These classes consist of non-regular symbols ¢(x, &) which
have only B?%, , (resp. B% ,)-regularity with respect to the variable x (resp. &).
Our main result is the following (Theorem 4.1).

MAIN THEOREM. Let p, g€[1, o], s€R, p, 0<[0, 1], and let s>0 in case
of 0=1. If A>p(p, s), pseudo-differential operators on R™ with symbols belonging
to the class ST§P (B ESPY, 15) are bounded on BS,,. Here we have used the follow-

ing notations:
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h(p)=max{n/2, n/p}, h(p)=min{n/2, n/p}
m(p)=m(p; p, 8)
=(1—max{p, 0} )h(p)—(1—p)h(p)

_[-a—p)n/2—n/p] =L
—(1—p)|n/2—n/p|+(p—B)h(p) - p=d

Ap)=Ap; p, 0)

__J(A—max{p, 0})A(p)/(1—0) --- 0#1
- 0 ... 0=1

pw(p, s)y=p(p, s; p, 0)

__|max{A(p), s, A(p)—s/(1—0)} --- 0+1
" |max{0, s} - 0=1

This theorem includes the results of Bourdaud and Marschall which
treat the case p=1 ([1], Theorem 1), the case p=¢=2, d<p ([13]
2.1), and the case p=qg=co ([13], Proposition 2.4). The orders m(p) and u(p, s)
can be found there for these special cases, but their regularity orders for the
variable & are greater than A(p) (Remark 4.1).

It is also discussed when the inequality A>pu(p, s) in main theorem can be
replaced by the equality A=p(p, s). See from through
4.1. They include some previous studies as special cases. For example, The-
orem 4.4 is a generalization of the result of Gibbons (Remark 4.5). Further-
more, is an extension and unification of previous studies for the
L*-boundedness such as Cordes [6], Kato [12], Coifman-Meyer [5], Hounie [11],
Sugimoto and Muramatu (Remark 4.3).

Our theorems do not treats the case 0<p, ¢<1, but there have been several
results about it. See Bui [2], Piivirinta [16], and Yamazaki [20]. Yamazaki
discusses the boundedness on Besov spaces of quasi-homogeneous version.

The contents of the present paper is the following. In Section 1, we shall
introduce the weighted Besov spaces of multiple orders. In Section 2, basic L?-
estimates are given. They are used to prove our theorems. In Section 3, we
shall define new symbol classes by means of Besov spaces of multiple orders
which are introduced in Section 1. In Section 4, main results of the present
paper are given. Section 5 is devoted to their proofs.

1. Weighted Besov spaces of multiple orders.

In the beginning, we shall explain the notations used in this paper.
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We shall fix a Euclidian space R", and n always denotes the dimension of
this space. All function (or distribution) spaces are defined on R™ or R*XR".

We denote by S the Schwartz space of rapidly decreasing smooth functions,
and by S’ its dual.

Let f(x) be a function in S(R%), and o(x, §) in S(REXRE). Then the
Fourier transformations of f and ¢ are defined respectively by the following
formulae :

T F()=F S =f)=| etV fwdx,

Fo(y, Y))ZSS e TV Dg(x, E)dxdE.

RMxR7

We shall denote by 9! and 7! the inverse of & and & respectively. They
can be extended to the dual space S’ as usual.

Let X (resp. &) be a function space with the variable x (resp. &), and be a
Banach space with the norm ||-||x (resp. ||-llz). We sometimes write X=X,=
(X), (resp. E=5.=(&), if we want to stress the variable. Then we denote
by X(&)=X,(Z¢) the class of Z;-valued strongly measurable functions g such
that |g(x, §)lls,€ X,, and define llglxm=Il18(x, &)lzl x,-

For p=[l, o] and we R, we denote by L?*=L2 " the set of all measur-
able functions f=f(x) (x&R™ such that ||f].2v=|<x>¥-f(x)|2=

{{, 1<% £ 17dx}"" < +oo (with a slight modification in the case of p=co)

where {->=(1+]-1®)"2. For p=(p, p’)E[1, ©]* and w=(w, w')=R? we set
Lrv=L2"(L% *). In case of w=0, we abbreviate L»* to L>.

For g&[1, o] and s€R, we denote by [¢*=/?* the set of all sequences
a=a; FENU{0}) such that |al,2s=]27-a,ll,s={27,[27-a;|9}'/?<+o0 (with
a slight modification in the case of g=o). For g=(¢, ¢')=[1, c0]*® and A=
(A, ANER?, we set [+2=]23(]7 ),

An inequality for vectors means inequalities for their components. For
example, p=(p, p)=q=(g, ¢’) means p=<q and p’'=q’.

Throughout the paper the letter “C” denotes a constant which may be
different in each occasion.

Now, we shall give the definition of the weighted Besov spaces on R™ and
the weighted Besov spaces of multiple orders on R"XR". We shall always
denote by {D,(¥)}5 or {@.(y)}r a partition of unity of Littlewood-Paley
which belongs to the class A(R™) (see Definition 1.1.1 in Sugimoto [17]), and
by {D; +(3, M Fe=0={P )P (1)} =0 their product.
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DEFINITION 1.1. Let p, g=[1, o] and s, weR. Then B3 , . denotes the
set of all f€S/(R?) such that F'®,Ff(x)eL?™ (=0, 1,2, --)and ||flst, , ,=
HEF"@,-E.FfII,';J(Lg,w)<+00. In case of w=0, we abbreviate B} 4 » to B3 ,.

DEFINITION 1.2. Let p=(p, p’), a=(q, ¢')=[1, 0]* and 2=(4, 1), w=(w, w’)
€R?. Then B2, , is the set of all c=S' (R X RE) such that (F7'D,, ,Fo)x, &)
eL®v (j, k=0,1,2, ---) and |o|ls2 , ,=1F7'D; s Fall a2 pw;<+oo. In case of

w=0, we abbreviate B2, to B3 ..

REMARK 1.1. One has Bf.=H3j (Sobolev space) and B% .=C* (Holder-
Zygmund space; s>0); see, for example, Triebel [19].

REMARK 1.2. The spaces B? ,., are also discussed by Sugimoto in
the case p=p’, g=¢’ and by Muramatu in the case w=0.

Most of all fundamental properties of the weighted Besov spaces of multiple

orders are derived from the following lemmata.

LEMMA 1.1 (Fourier multiplier theorem). Let p=(p, p/)E[1, o]?, w=
(w, w)ER? and P=S(R}XR7}). Then it holds that

(F'D(ty, 'Fa)Xx, E)lre=Cla(x, §lre,
where C is a constant independent of o and t, t’<(0, 1].

LEMMA 1.2 (Nikol’skij’s inequality). Let p=(p, p"), q=(g, ¢)=[1, =]?
w=(w, w)=R? and p<q. Then the estimate

l950¢" a(x, E)ll Lo

gCMn(IIP-llq)HaIM/T!(l/P’ ~1/g")+1a’ | lla(x, S)I[Lp,w

holds for all multi-indices a, a’, all M, M’'=1 and all o= L? ™ such that supp Fo
C{(y, 9); |yI1<M, |p|<M’}. Here C is a constant independent of M, M’ and o.

These lemmata can be easily proved if we notice Young’s inequality
loxt|r <lieli izl e, where p=(p, p"), a=(g, ¢"), r=(r, r)E[1, co)*and 1/p+1/q

=1+41/r, 1/p’+1/q¢'=14+1/7".
With the aid of the preceding lemmata, the results similar to theorems in

Section 1.3 of Sugimoto can be obtained. We shall state some of them
without proof.

THEOREM 1.1. Let p=(p, p’), q=(q, ¢’)=[1, oo]? and A=(1, X’'), w=(w, w’)
eR?* Then it holds that
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(i) B2 . is a Banach space.

(ii) B2, does not depend on the choice of {D; }.

(iii) SC B2, ,.0.CS’ (continuous embedding).

(iv) In particular, S is dense in B2 .., if p, p’, ¢, ¢'#+co.

THEOREM 1.2. Let p, qo=(qo, 93), @:1=(q1, ¢)E[1, 01%, 2, 2:=(4o, &), 4=
(A1, ADER? and w, w,, w,=R?. Then we have the following continuous embeddings:

(i) Bi.epw,CB2 ey w, if @0=<q, and w,=w,.

(i) B20gpwCT B2 gw if (@) 2,<A, (b) Li<A, A=A, ¢:=gqi, or (¢) <A,
Ao=144, qo=q:.

THEOREM 1.3 (complex interpolation). Let po=(po, 16)s Pr=(D1, P1), €e=(q0, G0,
a.=(q:, g)E[1, 001% and A,, A, wo=(w,, wy), w,=(w,, w)ER?, and let A, w, p=
(p, p) and q=(q, q¢") (b, D', q, ¢’ #0) be vectors determined by 1/p=(1—8)/p.+
0/p, 1/¢g=01—80)/q0+6/q,, 1/p'=1—0)/ps+6/p1, 1/¢'=1—86)/q5+0/qi, 2=
(1—)2,+02,, and w=(1—0)w,+0w,. Here 0<O<1. Then it holds that

[Bﬁg,qo-wo’ Bﬁ}vh-m]ﬁ:B;-a-w'
We can remove the restriction p, p’#oo (resp. p’'#0) in case of p,=p, and

wo=w, (resp. in case of wi=wy).

THEOREM 1.4 (pointwise multiplier theorem). Let p, g<=[1, 0]?, 2€(0, o0)?,
and w,, w,=R?*. Then it holds that

lo(x, €)-2(x, E)ll52, ¢, wpuy

< Cllo(x, )12, g0y 17 )l 8%, 5,010
where C is a constant independent of ¢ and .

In the subsequent sections, will be used in the form of the
following version.

COROLLARY 1.1. Let p=(p, p"), a=(g, ¢')=[1, c0]?, 2=(4, A)ERX(0, o0),
and w,, wiER. Then it holds that
(1) la(x, £)-9ENs2, o couwgrup=Clo(x, O&2 o 0, we 19ENEE o1, 0,
(1) 1002, &) $@N5he .0 0 worwp= ClCEs Oll5ke, g, o w1 BENBE: g0, 0,5
i) [(F'D; ) (x, OBENE 2" L p Oworen,
<CIF P, s Fo)x, OiF -+ wr 0205 $E) 52, g, o, -

Here C is a constant independent of o, ¢, and j.
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ProoOF. If we notice the estimate

1F-10, 4 F(a(x, HGENF- ¥ Lp- 0w,
< C277 (@7 0 Z,0)(x, §)- ¢ s Py

P, (1,¢'), (0, w)?

we can easily obtain corollary from [Theorem 1.4 and Lemma 1.1l
Finally, we shall give a proposition concerning dilatation.

PROPOSITION 1.1. Let p=(p, p"), q=(q, ¢")=[1, 1%, 2=(4, 2)=(0, o0)?, and
t, ’>0. Then it holds that

(i) 1fEn)lsd, < Ct™?max{l, £} £(x)l53,
(i) llottx, 8)l53 < Ct-™?max(L, t3}#/="» max{l, t'* }o(x, &)la2 ,,
i) (F 10, s F)a(x, 1ONT ¥ 27y

<Ct'~™? max{l, '} (F'D; e Fa)x, O 4 ?.

Here C is a constant independent of f, a,t,t’, and j. These estimates holds for
A=0 (resp. A’=0) as well in case of g=c0 and t=1 (resp. ¢’=o0 and t'=1).

PrROOF. We shall prove only estimate (i) with g#oco. Other estimates can
be proved in the same way. Let x be an integer such that 2*<t<2¢*!, Then
it holds that

1/

I £elay, =( 2 * @ D@ fENeny)
=t-m2( B 20915 0 (69T f127))
<ctmo( S 29195020 D f127))

— £ j 1/q
= - 4 -1 {PF.
Ct P((j§+l+j§‘.o)21 U(||F, D (2 y)gxf”Lp)Q) ,
where £=max{r, 0}. We have the following estimate for the first term:

3 2T D2 )F - f o)

=gete 51 20-0(| 30 (25 )T 17"
=£+

SC@*Ifllsd, )
By virtue of the Fourier multiplier theorem (Lemma 1.1), we have the following
estimate for the second term in case of =1 (F=«):
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2 2139(|[F 7 D (25 3)F o f || L7

jéo Zjlq(||ff;1@j(2"y)(@o+¢l+@2)(y)gfoLp)q

< 3 29 F Do+ O, DT 117

éC(tlllflls’},_q)"-
In case of t<1 (§=0), we have
1F5' @o(25- )F o fllr =\ flr =<1 f 52, -

Combining these estimates, we have the desired result.

2. Basic L?-estimates for pseudo-differential operators.

In this section, we shall give fundamental estimates for pseudo-differential
operators. Partially, they have already been obtained in Sugimoto [17], [18],
but we shall give some new results. They will play an important role in
Section 5.

In this paper, we shall consider pseudo-differential operators of the follow-
ing type: Let a(x, &) be a function on R*"XR" and let f be a tempered dis-
tribution on R™ whose Fourier transform is a function. Then we set

o(X, D) f(x)=@a)"| e 0(x, HF(@)de

if o(x, E)f(é)e L'(R?). We shall say that the operator (X, D) is well-defined
for L? (resp. H?) if o(x, &)f(&)= LYRE) for all feL? (resp. f&€H?) and almost
all xeR™ Here H? denotes the Hardy space introduced by Fefferman-Stein
[7], and coincides with L? if 1<p<oo.

THEOREM 2.1. Let p=[1, o], ¢’€[1, 2], and ¢'<p=gq, and let q=(q, ¢’).
Then, for c=B{IS ™2 and f<S, the estimate

le(X, D)fllLr=Cllo(x, Olisepg ol flier

g, (1,1

holds. Here C is a constant independent of o and f. In particular, if q¢'=p
(resp. q’=2), a(X, D) is well-defined for L? (resp. L?) and the same estimate holds
for feL? (resp. fL*NLP).

REMARK 2.1. with p=g¢=¢’<[1, 2] has already been givea by
Sugimoto [17], Theorem 2.1.1.
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PROOF. Set ¢, (x, §)=(F7'D;,F0)(x, §) and K (x, 9)=F[0; :(x, £)1(n).
Then we have

054X, DYf(x)=@m) | K a(x, n—)f()dn

=(27r)'”gK,-, #(x, =2 (n—x)f(n)dy,

where X, denotes the characteristic function of supp®,. Then by Hélder’s
inequality and Hausdorff-Young’s inequality we have

|05, (X, D)f ()| SCllasalx, Ol -(Ll*| f1¥ (N,

where Z,(-)=X,(—-). By Holder’s inequality and Young’s inequality again, this
implies
o, (X, D)flLP<Clla,a(x, )lz@e - (X [*] f ]9 | L2ra )
=Clla;.+(x, OllLee> - (IXell) - (I F19 | L2 )7

gczk(n/q'—ﬂ/q)”aj.k(x’ E)HL“I'WHf“L”;

where 1/s=1/p—1/q and 1/t=1—q’/q. Summing up these inequalities for j, %
=0, we have the desired results.

The following proposition is a refinement of with p=oo,

PROPOSITION 2.1. Let g<[1, 2). Then, for o(x, &) L3(B¥De) and f<S,
the estimate

le(X, D)flr>=Cllo(x, 5)||L°;’<(B,}f’1")e)l|fllL°°

holds. Here, C is a constant independent of f, ¢, and x. In particular, if ¢=2,
o(X, D) is well-defined for L* and the same estimate holds for feL*NL*.

PROOF. Set g,(x, §)=(F;'P,(n)F0)x, §). We have in the same way as in
the proof of [Theorem 2.1,

la (X, D)f(x)|=Cllaw(x, O)leg - (1L |*] f19(x))0
=C2* g u(x, ONzg -1 flz=-
This implies the desired result.
THEOREM 2.2. Let (1) p=2, q=(q, ¢")E[2, o)\ U{oo} X {2, oo} or (2) pe

{1, 2), g=(g, ¢)E(2, 00)X[2, ) U{o} X {2, 0o}. Then, for o& BIENE HE
and fESNH?, the estimate

le(X, D)flLr < Cllo(x, Olls&izs g mzm@ | fllar

e (1,1),0,n/p—n/2
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holds. Here C is a constant independent of o and f. In particular, if
a(x, EXEXM L for all real number M, (X, D) is well-defined for H? and the
same estimate holds for feH?.

REMARK 2.2. [Theorem 2.2 with g=g’=oco has already been given by

Sugimoto [18], Theorem 1.1. [Theorem 2.2 with p=2 is an analogy of Theorem
2.1.2 in Sugimoto [17], and is suggested by Professor Tosinobu Muramatu.
He also proved it in a way different from ours (unpublished).

REMARK 2.3. Let p<=(0, 2], q=(q, ¢')=[1, oJ?and ¢’'=p. If a(x, EXEH¥ e
L? for M>n/p—n/q’, the estimate

le(X, D)fla<Cllo(x, E)XEX el Il P

holds for the same M; cf. Lemma 2.1 in [18]. In [18], a function o(x, &) is
called “rapidly decreasing with respect to &” if the condition “o(x, §)<&>¥ < L?
for all real number M” holds for g=(c0, ); see Definition 2.1 in [18].

ProorF. By the same argument as in (with a few modification), the-
orem is reduced to the case (1). On the other hand, implies the
case p=2, q=(q, 2), and Theorem 2.1.2 in implies the case p=2, ¢=¢’.
The case p=2, gq=(2, o) can be proved by the same argument as in the proof
of Theorem 2.1.2 in with a slight modification. (Replace the estimate (13)
in the proof of Theorem 2.1.2 by the estimate (4) in the proof of
Theorem 2.1.1.) By the method of complex interpolation (Theorem 1.3), we
can have theorem in the case (1). The latter half of theorem is given by the
same argument as in the proof of Lemma 3.1 in [18] We shall omit the
details. ‘

In Section 5, these theorems will be used in the form of the following

corollary.

COROLLARY 2.1. Let p<[l, «o] and let X(&) be a smooth function with
compact support. Then we have :

(1) [o(X, DXD)fl 2 < CR¥®|a(x, Ols@imp, I flp (FELNLP),
(i) [a(X, DXAD)S =S CR* | a(x, )l 3ok, I fl= (FELNL),
For psco, we have | o A
(i) o(X, DA(D)f I o
 SCRE™ D |g(x, O)a@ B g | flur (FELNH?).
Here 1x(@)=1¢/R) (R21), A(p)=max(n/2, n/p}, h(p)=min{n/2, n/p}, and C
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is a constant independent of o, f, and R.

Proor. (i) By [Theorem 21, we have for p<[2, «], ¢=2 or p<[l, 2],
q=p
lo(X, DXR(D)flLr=Cllo(x, EXaOls& @, I fLP

D¢
=Clo(x, Hla&R ., 1X=(E) N szall fll 2

SCR™Ya(x, Olla&r® . il fllz?

(09,00), (1,1)

=CR*P|o(x, Ol s@EPN , I /17

(00, 00),

Here we have used the pointwise multiplier theorem (Corollary 1.1) and Pro-
position 1.1.

(i) By [Proposition 2.1l with ¢=2, we can have estimate (ii) in the way
similar to the proof of estimate (i). (We use the pointwise multiplier theorem
for the ordinary Besov spaces; see, for example, Theorem 1.3.6 in [17].)

(iii) By with g=¢’=o00, we have for p=[1, 2]

la(X, DXR(D)f 1P < Cllo(x, EXrNa& B EB 0.k py—n o I/ I a7

<Cllo(x, Ola@ B AR IXe@lsE @, I f a7
SCRM®-2®|g(x, &) a3 AR | a7

(0,), (1,1)

Here we have used and [17], Corollary 1.3.1. With the aid of
bilinear interpolation theorem (see, for example, Calderén [3], 10.1) and The-
orem 1.3, we can obtain the same estimate for p<[2, co] from estimate (i)
with p=co and estimate (iii) with p=2.

3. Besov spaces version of the symbol class S7;.

We say that a C=-function ¢(x, &) defined on R?X R} is a symbol of class
Srs (meR, p, 60, 1]) if 0204a(x, §)-&)m-%lai+eBic L=(R: X RE) for any
multi-index a, 8 (Hérmander [9]). For functions which are not necessarily C=,
we shall define the following:

DEFINITION 3.1. Let meR, p,d<[0,1], and &, £#’'N. We say that a
function a(x, &) defined on RZX R} is a symbol of class S7s(x, £”) if the (classi-
cal) derivatives 9%d%0(x, &) exists and continuous for any multi-index a, 8 such
that |al<¢, |BI=#’, and if  [0lsTs > =Diaiseipise 1050%0(x, §)
-(5)'7"‘5‘“‘+P'ﬁ'l|Ltw.°°)<+oo,

In this section, we shall introduce new symbol classes which are the Besov
space version of the classes S7s and S;'s(x, ’). In the beginning, we shall
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define a kind of dilatation operator. We sometimes express a tempered dis-
tribution e=S'(R2X RE) by a(x, &) as if it were a function, and the multiplication
of C~-functions or the dilatation is defined in a distributional sence.

DEFINITION 3.2. We shall fix a partition of unity of Littlewood-Paley
{@,}2,= A(R™. (See Definition 1.1.1 in Sugimoto [17].) For m&R and p, d<
[0, 1], we shall define an operator E%, ,.; on S'(RZXRE) by

(E%. p.50)(x, §)=27""-%(27"x, 2°8),

where o*(x, §)=0,§)-a(x, &).
Now, we shall define our symbol classes.

DErFINITION 3.3. Let meR, p, 6<[0, 11, p=(p, "), q=(q, ¢")=[1, o0]* and
A=(4, )= R?. We say that a tempered distribution ¢ &S’(R}XRE) is a symbol
of class ST's(B3% ), if ]Iallsgf(;(g;'qn:s%pllE’;n,p,,;ollgg,q<+oo (first version), and
of class Sps(B3.,). if Ildlls},’fawg,q>z=IlSlylpll(ff"q)j. v EXEm, 0 s0)0g 2 s 19 A< F00

(second version). We sometimes abbreviate STy(B2 ), to ST(B2 ,).

REMARK 3.1. Muramatu [15] defines symbol classes similar to our second
version classes. Marschall [13] and Miyachi [14] also define symbol classes
which are the Holder-Zygmund spaces version of the class S7's

Now, we shall show some fundamental properties of our symbol classes.

THEOREM 3.1. Let m, p, 0, p, q, &, £, and &’ be the same as in Definitions
3.1 and 3.3. Then the class ST«(B2 ) (resp. Srs(B3. o) STs(k, k7)) is a Banach
space with the norm ||ollspscad o1 (resp. lollspsed o N0llsPsw ). In case of

A'>0 the spaces SpB3. o) and SFs(B3.,). do not depend on the choice of {D,}7m
e A(R™).

Proor. The former half can be easily proved with the aid of Fatou’s
lemma. The latter half is an easy concequence of pointwise multiplier theorem
orollary 1.1). We shall omit the details.

THEOREM 3.2. Let m, my,, m;ER, p, po, p1, 0, 0, 0,<[0, 11, p, g=(q, ¢"),
9o, . €[1, 1%, 2=(4, A'), A, HLR?, k, ’N. Then we have the following
continuous embeddings.
(i) Sqa(B3 o CSis(Bj.oi
Sei(B}.0e=Sgo(B}.o1 if g=o0.
(ii) Spa(B3oehCSEa(Bjle): ((=1,2) if Bio,CBjlq,
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(iii) S,’,’,‘g(x, IC')C_S 5(3(00 wy,q)2 tf A<k and A'<k'.
(iv) Spo JO(B(oo ), q)lcsz}ﬁl(B%w.w).q)l if me=m,, Plépo. 0,=0, and 2>0.

S%?&(B‘(Iw,m).q)zcsm 6(B(oo w g2 1f me=my, 01= 0o, and 2’>0.

PROOF. (i) is trivial by definition. (ii) with 7=1 is trivial. (ii) with
i=2 also follows from an elementary property of Besov spaces. (cf.
1.2) (iii) can be easily obtalned if we notice the inclusion C®** ’CB(W £ (oo, 00
C B4, .4 (See, Sugimoto [17], Theorem 1.3.5.) (iv) is also an easy consequence
of Proposition 1.1 if we notice the equality

(B 01,8,0)(%, ©)=2 M (B, 5,0 )20 x, 24017 0008)

We shall omit the details.

4. Bj, estimates for pseudo-differential operators.

In this section, we shall give B;,,q'-estimates for pseudo-differential operators
with symbols belonging to the classes S™y(B32 ), or S™sB3 ). which are intro-
duced in Section 3. Hereafter, we shall assume p, ¢g&[1, o], s€R, and p, 0
[0, 1], and use the following notations:

h(p)=max{n/2, n/p}, h(p)=min{n/2, n/p}
m(p)=m(p; p, 0)
=(1—max{p, 6})h(p)—(L—p)h(p)

_]—1=p)|n/2—n/p| ’ - p20
—(1—p)In/2—n/pl+(p—0)A(p) --- p<0

Ap)=Ap; p, 0)

_J(1—max{p, 0DhA(p)/(1—08) - 6+1
- 0 e d=1

p(p, s)=p(p, s; p, 9)

__Jmax{A(p), s, A(p)—s/(1—0b)} -
~ |max{0, s} --5:—1

Furthermore, the inclusion SI's(B2 .).C-L(B%,,) (=1, 2) means that the estimate
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lo(X, D)f||B§,,q§C”0'(X, 5)”5}%(3},,qnl|f“3;q

holds for all e=STs(B2,,); and all f=S for some constant C. The inclusions
such as S7s(k, £), SpsC.L(BS%,,) and Srs(B2 )i, Sts(k, £)CL(L?) have similar
meaning. Our main result is the following.

THEOREM 4.1. If (1) d+#1 or (2) 6=1, s>0, the inclusion ST§P(B&EPY 15)
CL(B3%.9) holds for 2> u(p, s).

By virtue of [Theorem 32, we have

COROLLARY 4.1. If (1) d#1 or (2) =1, s>>0, the inclusion S},’ffép’([y(p, $)]+1,
[A(D)1+ 1T L(BY,o) holds.

REMARK 4.1. with p=1 includes the result of Bourdaud ([T],
Theorem 1) which corresponds to the inclusion S ,(B&EM2R)CL(BS )
(A>p(p, s)). [Theorem 41 with p=¢g=2, 6<p and with p=g=co include the
results of Marschall ([13], Theorem 2.1, Proposition 2.4) which correspond to
the inclusions S, 5(B &3, e, ) LB, 2) (A>p(2, ), 2> h(2)) and ST (B &2, o,
CL(B% &) (A>p(co, s), X7>h(co)).

REMARK 4.2. There is a question whether the order m(p) can be replaced
by a greater one. In the case d<p, d+#1, we can give the negative answer.
In fact, if we assume S;iP+<C _L(BS,, for some ¢>0, we have for all g
Sz)na(mwlz

lo(X, D)flr<CllA“'**a(X, D)f s, ,
<CIflazet<Clifllz,

where A% denotes a pseudo-differential operator whose symbol is (14 |&]|2)*/2.
This contradicts the results of Hormander which shows that the order m(p)
is the critical one for the LP?-boundedness in the case d=<p. In the case p<39,
Ho6rmander shows that the order m(2) is the critical one for the L:2-
boundedness, but the present author cannot extend this results to the B, -
boundedness. '

In the rest of this section, we shall discuss the problem whether the
inequality A>pu(p, s) in can be replaced by the equality A=pu(p, s).
In the case s=<0, it is true if we assume p<(1, o) and g=max{p, 2}.

THEOREM 4.2. Let s<0, pE(l, ) and gzmax{p, 2}. If (1) s#0, d+1 or
(2) s=0, p, 0+#1, the inclusion ST§P(BY B P ),C L(BS, ) holds. More sharply,
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the inclusion ST§P(BEE G P),CL(BS.) holds in case of (1) or (2/) s=0,
o0<p+1. Here 1/¢g*=1—1/q.

Theorem 4.2 with p=¢=2 and s=0 is an L*boundedness theorem.

COROLLARY 4.2. If 0<p=+1, the inclusion S5 sBLRm450%mD),C r(L?)
holds. If p<d+1, the inclusion S¥5®™*(B&2m2 ), .L(L?) holds.

REMARK 4.3. [Corollary 4.2 is an extension and unification of previous
studies for the L*-boundedness. See Cordes [6] (SS,o([n/2]+1, [n/2]+1)CL(L?)),
Kato [12], Coifman-Meyer [5] (SS ([n/2]+1, [n/2]+1)CL(L%; p#1), and
Hounie (S0 ([n/2]+1, [n/2]+1)CL(L?); p<d+1). Their regularity
orders for symbols are greater than ours. This corollary contains the result
of Sugimoto and Muramatu as well. They prove that ¢(X, D)is L*
bounded in case of a(x, §)eB& %%, ([15], [17]) and show the inclusion
Sp.a(BEB 0y, L(L?); 05 p+1 ([(I5]).

REMARK 4.4. The restriction d#1 in [Corollary 4.2 is essential, that is,
this result is false in the case d=1: see Ching [4]. In the case d<p, the

regularity order ((1—p)n/(1—9)2, n/2) for symbols is sharp enough, that is, it
cannot be replaced by smaller one; see Miyachi [14].

Next, we shall consider the case 0<s<A(p). Then u(p, s)=A(p), p, d+1
and p+oo.

THEOREM 4.3. Let 0<s<A(p). Then the inclusion ST§P(BE&EykEY),
CL(B%,g) holds. More sharply, the inclusion ST§P(BEByRPR),CL(BS, ) holds
in case of 0<p.

Finally, we shall consider the case s=A(p). We must assume 6=0 in this
case. Then u(p, s)=s, A(p)=1—p)h(p), and m(p)=—(1—p)|n/2—n/p|. In the
case s>A(p), we have

THEOREM 4.4. Let s>(1—p)h(p). Then the inclusion S, = 'n/2-rIPY( B&EPY ),
C.L(B5,,) holds.

COROLLARY 4.3. Let s>0. Then the inclusion S5V ™*( B & ™2 w, 151 CL(BE, )
holds.

REMARK 4.5. with p=1 includes the result of Gibbons
which corresponds to the inclusion S%,(B&%), g ) CL(BS,) (0<s<1, N is a
large enough integer). [Corollary 4.3 with p=1 includes the result of Coifman-
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Meyer which is a special case of that of [8]. See [5], Théoréme 13.
In the case s=A(p), we have

PROPOSITION 4.1. If p#1and p+ oo, the inclusion S;§=0 "2 /P BU O L@ R,
CL(B{PEPY) holds,

5. Proof of the B ,-boundedness theorems.

We shall prove theorems given in Section 4. In the beginning, we shall
explain the notations used in this section. Let {@;}50, {D; £}T =0, and {D,}5%,
be partition of unities as used in Definitions .1, .2, andB.2 For a symbol ¢(x, &)
and a function f(x), we set

o(x, §)=0a(x, §)-0.8), ox, §)=(F'P[(¥)Fs0)(x, &),

ayx, &)=a,(x, £)-0,8), f)=TAD)f(x),
where ¥,=0,+ @, and ¥,=0,_,+?,+D,., (v=1). We remark that ¢(X, D)f(x)
=% X, D)f.(x).

Step 1. The following estimates will be used later:

1.1 o2 °x, E)”B%’Q.u.l)écgu—awx”g-‘@j,kS'GHL},"'(L(‘”'”U p
Lal

(1.2) | Sosen o,y SClotz, Olsi.
o

(1.2%) H jgo 0,27%%, §) L3BS 1)£)§C”0'(tx, Dot an

Here (j—a)*=max{0, j—a}, and C is a constant independent of o, j, a>0,
teR, t+0 and MN. In fact, by Fourier multiplier theorem (Lemma 1.1), we
have

”0']-(2_a'x, S)”Bgo"zo’o;, a, 1)

> 274 F105(2799)D (DD (NF Tl ¥
j—O

<c( =

YEAY

23 |F7D, 4 F o d
SC29-0*AF 1P Fa|| ¥ (s

Here J(j)={j; supp @;(2-*-)Nsupp D (-)+ @}. This is esitmate If we set
D(y)=354D,(y), we have similarly



58 Mitsuru SUGIMOTO

Lal
[ osar o]

(29,00, (1,1)

= ,%2“ IF-10,(2-23)B()P o (PF |1 ¥ L&
§C|lg;1¢k(77)geo‘ ”li,l’ (L(oo,co))

=CI(F7' @ (mFe)a(tx, Nk ¥ ==,
=CllaCtx, Olla&A} . 1>-

This is estimate Estimate is given in a similar way.

Step 2. For convenience’ sake, we set

aR=20-ImD(F D, F)0*(x, 2P if P =

If 2>0 (if A=0 in case of g=c0), we have by [Proposition 1.1|,

()
)I.’(q,m1 .

(2.1) suplla¥( Dl =Cllollsp» s &
We have the following estimates as well for all :
(2.2) sup | ade (D3 SCloll s s APy e if 61,
2.3) Isup a5l g =Cllollspse: e a @ APy, 1y -
In fact, we have for » such that |r|£3,
a}+.(4; p, 9)
SC22-PA(F 1D 1 (272 9)D (N F N Efrcrr, p.30) 1} BP0,
§C2"“"’”Sl:pll5"CD,-+r(2’5y)¢k(17)9)(E¥,1<p>.p,ad)llz},"'”’)u(“'”b
Setting j=[7(1—49)], we have
sup flaje (DIl
<C|j27* Supll(F 7103, s F)Encp, 0,60t} FP 2118
SC(1+1/(A—)2"* sup|(F D, s FNEmcps. .50l 1} FP e = [112
=Cllollsps? & EPY 150e-

(o0, ), (Q.

This is estimate Estimate is trivial.

Step 3. Now, we shall introduce fundamental estimates of our proof.

have for p#oco and v=4,
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3.1 lo%(X, D)f||Lp S C2U~» AP =2PN+e=DTRD g3 A p))| f || 17,
o]
(3.2) jgo oy(X, D)f Lp§C||0'||S},"f,§p)<3225,’_;°§{”()1,1))1Hf”Lp,

(3.2)

v-4
T X, D)f| . SClolspioaeieR onl fllem.

We have the following estimate as well for all p and v:
(3.3) loi(X, D)f [|Lp=C27i =D am+igy Q)| f 2.

Here C is a constant indpendent of o, f, 7, and v. The proof of these estimates
is as follows: For ¢>0, we shall define a dilatation operator H, by (H,f)x)
=f(x/t). Then it holds that (X, D)=H;'ec(t*X, tD)-H, and |H,f|.r=
t*?||fll.p. On the other hand, we have by estimate (iii) in and
estimate [(1.1),

ley2-*¢ X, 2*¢D)f|| P
< C2v1-PI R - RPN+ =3p) *ACPI =Ci=30) AP +vm D) gy 3 pY) | (20 D) f || g2
éczcj—w(g(p)—2<p)>+(»p—j>+g(p)a5_(;((p))” f“Lp

if p#co and v=4. Here we have used the fact that H?=L? in case of 1< p<oo,
a characterization of H' by Riesz transformation, and a Fourier multiplier
theorem. (Use also equations (j—vp)*=j—vp+(vp—7)* and (1—p)h(p)+m(p)
=(1—0)A(p).) We can have, then, estimate [3.1) Similarly, if we use estimate
(iii) in and estimate we have :

yvpl
_Z‘a ay(27ve X, 2°D)f
i=

P

§C2““"’Mﬁ(m'h(m”"m(m|]E',‘n<p), p,ao'HBEg;,'-;o(){”d,1)l|wy(2”PD)f||HI’

=CllollsrsP &P ol fllz?

(00, ),

if p#oco and v=4. This implies estimate We can have estimate
(resp. (3.2’)) in the same way if we use estimate (i) (resp. (ii) in
and estimate (resp. (1.27)).

Step 4. We shall decompose the operator o¢(X, D) into the sum of the
following three part:

AX, Dy= 3 A"X, D); AXX, D)=E o%X, D)

B(X, D)= 3 BX(X, D); BXX, D)= & a¥X, D)
y= J

=(v=3)



60 Mitsuru SUGIMOTO

(X, D)= ,ij, (X, D): (X, D)= ’§=30 o4 X, D)

Then there exist constants C and C’ such that suppF(A*( X, D)f)C{C2*<|y]
=C'2%}, suppH(B*(X, D)f)C{|y| =C2"}, and suppF(I' (X, D)f)C{C2/ < | y| £C’'2}}
for all v and ;. Hence, we have

4.1) I ACX, D)fllst, ;<CIAXX, D)f(x)g*cuts,
4.2) |B(X, D)fllss, ;SCIBAX, D)f(x)l g sty  if >0,
(4.3) I1CX, D)fllss, SCIT (X, D)f(X)gcas

(See, for example, and 1.2 in Marschall [13].) We have the follow-
ing estimate as well:

(4.2) IB(X, D)fl83, ,=CIB*(X, D)f(x)lli} 2>,

if p=(1, ©) and g=max{p, 2}. Here we have used a fact that L? is continu-

ously embedded in B9, , in this case. (See, for example, Triebel [19], Section
2.3.)

Step 5. We shall study the part A(X, D). If p#co and v=4, we have by
estimates [3.1) and [3.2)

14X, D)flwes|| 8 o3 X, D)f

v-—4
ot 2, 105X, D)fle

<Clolsps»w @i il full r+C 2 202 g APNf Ml P

:=I+11 (resp.).
By Theroem 3.2, we have
I=Clolsps» ey ieynlfiller  if A(p)>0.
By estimate we have
II§C51JJPI asAONIIf NP

=Cllolsps» @y k@3nlfiller if A(p)>Ap)20,
I1<C 5 |ay ANl £z
=Cllollsps» aEay keynllfillr  if A(p)=4(0)>0.
In case of p=oco, we have by estimate

| A(X, D)f“L°°§_C||U”s;’f,§“°)(3m°°) R 1l

(o0, ), (1,1)
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Combining these estimates and estimate [4.1)], we have

(6.1 TACX, D)f g5, ,SCllallsms &y Ryl fl85, -

(00,00, (1,1)

In case of p#oco, 0<d<p+#1 (that is, in case of A(p)>A(p)>0), it holds more
sharply

(5.2) IACX, D)flls5, S Cliollsmm @@y il Flla, ,-

(00,00}

Step 6. We shall study the part B(X, D). We have by estimate [3.3),
I B(X, D)fllp<C 5 2-34ia-0icmsitigy Q)| f, [ v
j=v-38

=C 3 aly, () 220D A f | p,

IT1s8

Combining this estimate and estimate we have for s>0 and 1=0,

| BUX, D)f 133, SCsup a5()- | fllsg;$-ci=ico

<Cllolsp g imy, il fllagrg-na-iom.

Here we have used estimate with g=co. Using this estimate with s (>0)
replaced by s+(1—0)}(A—A(p)) (>0), we have

6.1) | BUX, D)f s, ;< || BCX, D)flas:g-0ci-acom

=Cllollsrs» & i, 1l flls3, -

Here (1) 0#1, A=A(p), 2>A(p)—s/(1—0) or (2) 6=1, =0, s>0. On the other
hand, if we use the estimate (4.2’) instead of estimate [4.2), Holder’s inequality,
and estimate we have for A=A(p)—s/(1—8) (0+1)

(6.2) 1 B(X, D)flss, ,=IB(X, D)fls,,
<C 3 e Dl fllagovci-2com
7158 '
SCllollssP &P 1yl fllg@5bcA=4on

=Cllollspgm o e @ 0uF @5l f 1125,

Here s<0, p=(, o), g=max{p, 2}, 0+1, and 1/¢*=1-1/4.
Step 7. We shall study the part /'(X, D). We have by estimate
I (X, D)f|l ,p<C2792 Ji: 22 =D AD+ gy Q)| £, || P

Combining this estimate and estimate we have
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(7.1) I'(X, D)8,
<C jﬁ;2»{(1-—5)2(p)+61)ax]{(,2)||fv”LP .5-1
y= J

j-4
<Csup a;(X)- H 3 2u((1—5)1(1’)+51)l|f”“Lp
K v=0

q.8-24
vy

S Cllollsmim & e, ool f a5+ @-Dca-2cm>

(00, ), (e0,

SCllollspsP @i, ol fllsy,,

Here 2>s and 2=A(p). In this estimate, we have used estimate and the
following elementary assertion:

J
> b,
y=0

=Clbllgs (¢g€[1, o] and s<0).

1%
If we modify estimate with =0 and A=s, we have by estimate and
Holder’s inequality (1/¢*=1—1/q),

(7.2) 17X, D)fIIB;,,éCHg 202 0. 9 qx(s)| £, [l P

q
Ui

o
=Clisupay(s)llg: 2 274701 flloe
Y y=
SCllollspr: o 0w s AP, 27 H P O 5,

=Cliolsm: e EP2 ol fllss, -

Here s>A(p; p, 0) (s=A(p; p, 0) if g=1).
All results in Section 4 can be obtained from estimates [(5.1), [(5.2), [(6.1),
and
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