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Abstract
The Hasse diagram graph of a finite distributive partial lattice is characterized

by means of prime convexes.

Median graphs contitute a well known and widely studied class of graphs;
see for example the papers [1] and [2] and the references therein. They consti-
tute a subclass of the Hasse diagram graphs of distributive partial lattices. In
this paper we give a characterization for the Hasse diagram graphs $G$ of finite
distributive partial lattices by means of prime convexes of $G$ . This characteriza-
tion generalizes that of Mulder and Schrijver for median graphs reprinted in [1,

Theorem 2.2].

A meetsemilattice $S$ is a partial lattice if for any two elements $a,$
$b$ having

an upper bound in $S$ also the element $a\vee b$ belongs to $S$. Clearly every finite
meetsemilattice is a partial lattice. A partial lattice $S$ is distributive if its every
subset ( $k$] $=\{s|s\leq k\}$ is a distributive lattice. A finite distributive partial lattice $S$

can be embedded in the distributive lattice $I(S)$ of ideals of $S$, where the join
of two ideals $I$ and $J$ is $I\vee J=$ { $s|\leq i\vee j,$ $i\in l$ and $j\in J$}. By using this lattice we
see that one shortest path joining two points $a$ and $b$ of the Hasse diagram graph
$S$ contains the point $a\wedge b$ , and if $a>b$ , then every point $c,$ $a\geq c\geq b$ , is on some
shortest $a-b$ path.

The graphs $G=(V, X)$ considered here are finite, connected and undirected
without loops and multiple lines. The points of $G$ constitute the set $V$ and its
lines the set $X$. A pointset $A\subset V$ of $G$ is called a convex if $A$ contains all points

of any shortest $a-b$ path (of any $a-b$ geodesic) for every two points $a,$ $b\in A$ . The
intersection of two convexes is also a convex and thus the least convex contai-
ning a given pointset $B$ of $G$ is $\cap$ { $C|C$ is a convex and $B\subset C$}. This set is
briefly denoted by $\langle B\rangle$ . A convex $A\neq V$ is called prime if the set $V\backslash A$ is also a
convex. The sets $\phi$ and $V$ are trivial prime convexes. A graph $G$ has the prime
convex intersection property (is a prime convex intersection graph) if its every

Received August 4, 1986. Revised March 30, 1987.



394 Juhani NIEMINEN

convex $A$ is the intersection of all prime convexes containing $A$ . By [1, Theorem
2.2], every median graph is a prime convex intersection graph. The class of
prime convex intersection graphs is rather wide: for example every complete
graph belongs to this class.

Let $a,$ $b,$ $c\in V$ . A point $t$ satisfying the distance conditions $d(a, b)=d(a, t)+$

$d(t, b),$ $d(b, c)=d(b, t)+d(t, c)$ and $d(a, c)=d(a, t)+d(t, c)$ is a median of the
points $a,$

$b$ and $c$ . A graph is a median graph if its all three points have exactly
one median.

If $A$ is a subset of a set $U$, then $\overline{A}=U\backslash A$ is its complement in $U$ .
When proving the main theorem of this note we need two auxiliary results

which we prove first.

LEMMA 1. A connected graph $G$ is a prime convex intersection graph if
and only if for any noempty convex $A$ and any point $x,$ $x\not\in A$ , there is a prime
convex $P$ separating $A$ and $x,$

$i$ . $e$. $A\subset P$ and $x\in\overline{P}$ .

PROOF. If $G$ is a prime convex intersection graph, $A$ its nonempty convex
and $x$ its point such that $x\not\in A$, there is a prime convex $P$ separating $A$ and $x$,

because otherwise $A$ connot be represented as an intersection of prime convexes
of $G$ . Conversely, if there is a prime convex separating any convex $A$ and any
point $x$ of the lemma then $G$ is a prime convex intersection graph. Indeed, if
there is a nonempty convex $A$ which cannot be expressed as the intersection of
prime convexes, then the intersection contains a point $x$ not belonging to $A$ . By
assumption there is a prime convex $P$ searating $A$ and $x$, and thus the interse-
ction cannot contain the point $x$ , and the lemma follows.

LEMMA 2. The convex $\langle a, b\rangle$ of a prime convex intersection graph $G$ co-
nsists of points on $a-b$ geodesics for every pair $a,$ $b\in V$ .

PROOF. Let $a$ and $b$ be a pair of points such that the convex $\langle a, b\rangle$ contains
at least one point $v$ which is not on any $a-b$ geodesic. This implies the existence
of two points $x$ and $z,$ $x$ is on an $a-b$ geodesic and $z$ is on another $a-b$ geodesic,
such that no point $x_{1},\cdots,$ $x_{m}$ of an $x-z$ geodesic $x=x_{0},$ $x_{1},\cdots,$ $x_{m},$ $x_{m_{+1}}=z$ is on
any $a-b$ geodesic. Clearly $a$ and $b$ can be chosen such that every convex $\langle u, w\rangle$

with $d(u, w)<d(a, b)$ is the set of all points on $u-w$ geodesics. We may assume
further that $d(a, b)\geq d(x, b),$ $d(z, b)\geq d(x, b)$ , and that $x$ and $z$ are as near to $b$

as possible. Let us consider the point $x_{1}$ . Because $d(a, x)<d(a, b)$ , the convex
$\langle a, x\rangle$ consists of points on $a-x$ geodesics, and thus $ x_{1}\not\in\langle a, x\rangle$ . By Lemma 1, the
prime convex intersection property of $G$ implies now the existence of a prime
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convex $P$ separating $\langle a, x\rangle$ and $x_{1}$ : $\langle a, x\rangle\subset P$ and $x_{1}\in\overline{P}$ . Because $ x_{1}\in\langle a, b\rangle$ , we
have $x_{1},$

$b\in\overline{P}$ . Let $x=b_{0},$ $b_{1},$ $b_{2},$
$\cdots,$

$b_{k-1},$ $b_{k}=b$ be the points of an $x-b$ geodesic.
Because $x$ and $z$ are as near to $b$ as possible, $d(z, b)\geq d(x, b)$ and $d(x_{1}, z)\geq d(x_{1}$ ,

$x)=1$ , them a $b_{i}-x_{1}$ geodesic goes over $x,$ $i=1,$ $\cdots,$
$k$ . This implies that there is

no prime convex separating $\langle a, x\rangle$ and $x_{1}$ , which is a contradiction. Thus the
assumption is false and the convex $\langle a, b\rangle$ consists of points on $a-b$ geodesics for
every pair $a,$ $b\in V$ , and the lemma follows.

Now we can present the characterization theorem of this note.

THEOREM. A connected graph $G$ is isomorphic to the Hasse diagram graph

of a finite distributive partial lattice if and only if the following two conditions
hold:

(i) $G$ is a prime convex intersection graph;
(ii) $\cap\{\overline{P}|P\in \mathscr{K}\}\neq\phi$ or $\mathscr{K}=\phi$ for the collection $X$ of all nontrivial prime

convexes in $G$ having the following property: if $P_{1}\in \mathscr{K}$ , there are $P_{2},$ $P_{3}$ ,

..., $P_{n}\in X(n\geq 3)$ such that $ P_{i}\cap P_{j}\neq\phi$ and $ P_{1}\cap P_{2}\cap\cdots\cap P_{n}=\phi$ .

PROOF. Mulder and Schrijver proved that a connected graph $G$ is a median
graph if and only if $G$ is a prime convex intersection graph and its prime con-
vexes satisfy the Helly property [1, Theorem 2.2]. The condition (ii) above is
nothing but a weakened Helly property for prime convexes of $G$ .

Assume first that $G$ is the Hasse diagram graph of a finite distributive partial
lattice $S$.

(i) Let $x\in S$. The element corresponding $x$ in the ideal lattice $I(S)$ of $S$

is ( $x$]. Because $I(S)$ is distributive, one ( $z$]$-(x$] geodesic goes over the element
( $z$] $\wedge(x$] $=(z\wedge x$]. Thus, if the distance $d((z$], $(x])=n$ in $I(S)$ , then $d(z, x)=n$

in $S$, because the $z-z\wedge x-x$ path always belongs to $S$. In particular, if $C$ is a
convex of the Hasse diagram graph of $I(S)$ , then the set { $x|(x]\in C$ in $I(S)$ } $=$

$C_{s}$ is a convex in $S$. Moreover, if $C$ is a prime convex in $I(S)$ , then $C_{S}$ is a
prime convex in $S$. Let $A$ be a nonempty convex of $G,$ $x$ a point of $G$ with $ x\not\in$

$A$ and $A^{*}$ the least convex of the graph $G(I(S))$ of $I(S)$ with the property:

( $z$] $\in A^{*}$ in $G(I(S))$ if $z\in A$ in $G$ . Clearly, ($x$] $\not\in A^{*}$ in $G(I(S))$ . Because $I(S)$

is a distributive lattice, the graph $G(I(S))$ is a median graph and has thus the
prime convex intersection property. Hence there is a prime convex $C$ in $G(I(S))$

separating $A^{*}$ and ($x$], which implies that the prime convex $C_{S}$ separates $A$ and
$x$ in $G$ . By Lemma 1, this proves LPthat $G$ has the prime convex intersection
property, and thus (i) holds for $G$ .

(ii) Assume that the collection $X$ of the theorem is nonempty. We prove
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that least element $0$ of $S$ belongs to $\cap\{\overline{P}|P\in X\}$ , from which the assertion fol-
lows. In fact, we prove the assertion for $n=3$ ; the proofs are the same for other
values of $n$ and hence they are omitted. Let $P_{1},$ $P_{2},$ $P_{3}\in X$ be three prime
convexes of $G$ such that $ P_{i}\cap P_{j}\neq\phi$ and $ P_{1}\cap P_{2}\cap P_{3}=\phi$ . The sets $P_{1}\cap P_{2},$ $P_{1}\cap P_{3}$

and $P_{2}\cap P_{3}$ are convexes of $G$ , and because $S$ is finite, every one of them has a
least element, and let them be $a\in P_{1}\cap P_{2},$ $b\in P_{1}\cap P_{3}$ and $c\in P_{2}\cap P_{3}$ . Assume that
$0\not\in\cap\{\overline{P}|P\in \mathscr{K}\}$ , which means that $0$ belongs to at least one set of $\mathscr{K}$ , say to $P_{1}$ .
Because $0,$ $a,$ $b\in P_{1}$ , then also $a\wedge b\wedge c\in P_{1}$ . The relation $a,$ $c\in P_{2}$ implies that $ a\wedge$

$c\in P_{2}$ . On the other hand, $a\geq a\wedge c\geq a\wedge b\wedge c$, where $a,$ $a\wedge b\wedge c\in P_{1}$ , and thus $ a\wedge$

$c\in P_{1}$ . Accordingly, $a\wedge c\in P_{1}\cap P_{2}$ , and because $a$ is the least element in this
convex, $a=a\wedge c\geq c$ . Similarly we see that $b\leq c$ . Because there is an upper bound
$c$ for $a$ and $b$, the element $a\vee b$ exists, and as well known, an $a-b$ geodesic goes
over $a\vee b$ in the Hasse diagram graph of a finite distributive lattice. Thus $a\vee b$

$\in P_{1}$ . Because $c,$ $b\in P_{3}$ and $c\geq a\vee b$ , the element $a\vee b$ belongs to $P_{3}$ , and analo-
gously we see that $a\vee b\in P_{2}$ . Now, $a\vee b\in P_{1}\cap P_{2}\cap P_{3}$ , which intersection should
be empty, and hence the assumption $0\not\in\cap\{\overline{P}|P\in X\}$ must be false. This proves
the property (ii).

Assume conversely that $G$ is a graph satisfying the properties (i) and (ii)

of the theorem. We choose an arbitrary point from the set $\cap\{\overline{P}|P\in X\}$ and
denote it by $h$ . Let $a$ and $b$ be two arbitrary points in $V$ and let us consider the
intersection $\langle h, a\rangle\cap\langle h, b\rangle\cap\langle a, b\rangle$ . Because the convexes $\langle h, a\rangle,$ $\langle h, b\rangle$ and $\langle a, b\rangle$

are the intersections of corresponding prime convexes, we can substitute the
intersection $\langle h, a\rangle\cap\langle h, b\rangle\cap\langle a, b\rangle$ by the expression

( $\cap\{P_{i}|P_{i}$ is a prime convex and $\langle h,$ $a\rangle\subset P_{i}\}$ ) $\cap(\cap\{U_{j}|U_{j}$ is a prime convex
and $\langle h, b\rangle\subset U_{j}$ }) $\cap$ ( $\cap\{W_{k}|W_{k}$ is a prime convex and $\langle a,$ $b\rangle\subset W_{k}\}$ ).

Now, $P_{i}\cap W_{k},$ $P_{i}\cap U_{j}$ , $ U_{j}\cap W_{k\neq}\phi$ , and if $\langle h, a\rangle\cap\langle h, b\rangle\cap\langle a, b\rangle=\phi$ , then
$h\not\in\cap\{\overline{P}|P\in X\}$ , which is a contradiction. Thus $\langle h, a\rangle\cap\langle h, b\rangle\cap\langle a, b\rangle\neq\phi$ . Moreo-
ver, this intersection contains exactly one element. This can be seen as follows:
Every prime convex $P$ of $G$ (or its complement $\overline{P}$ ) contains at least two of the
points $a,$ $b,$ $h$ . If the intersection $\langle h, a\rangle\cap\langle h, a\rangle\cap\langle a, b\rangle$ contains two disjoint points
$x$ and $y$ , then every $P$ (or $\overline{P}$ ) contains both $x$ and $y$ , and the convex $x$ cannot
be separated from the point $y$ , which contradicts (i) by Lemma 1. Thus $\langle h, a\rangle\cap$

$\langle h, b\rangle\cap\langle a, b\rangle=\{d\}$ . According to Lemma 2, a convex $\langle x, z\rangle$ consists of points on
$x-z$ geodesics. Thus the relation $\{d\}=\langle h, a\rangle\cap\langle h, b\rangle\cap\langle a, b\rangle$ shows that every triple
$h,$ $a,$

$b$ , where $a$ and $b$ are arbitrary points of $G$ , has a unique median.
We order now the points of $V$ as follows:
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$a\leq b\Leftrightarrow a$ is on a $ b-hgeodesic\Leftrightarrow a\in\langle h, b\rangle$ .

This definition suggests us to define the meet $a\wedge b$ as the unique median $d$

of the points $a,$
$b$ and $h$ . Assume that $c$ is a point such that $ c\in\langle h, a\rangle\cap\langle h, a\rangle$ and

$ c\not\in\langle h, d\rangle$ . The intersection $\langle h, d\rangle\cap\langle c, b\rangle$ is empty, because if $x$ belongs to this
intersection, then the $d-x-c-h$ path is a $d-h$ geodesic and $ c\in\langle d, h\rangle$ , which is a
contradiction. There is a prime convex $P$ separating the convexes $\langle h, d\rangle$ and $\langle c$,
$b\rangle:\langle h, d\rangle\subset\overline{P}$ and $\langle c, b\rangle\subset P$. Indeed, as seen above, the points $h,$ $d$ and $c$ have a
median $u$ which is on a $d-h$ geodesic and thus belongs to the convex $\langle d, h\rangle$ . By
the prime convex intersection property of $G$ and Lemma 1, there is a prime
convex $P$ separating $\langle c, b\rangle$ and $u$ ( $\langle c,$ $b\rangle\subset P$ and $u\in\overline{P}$ ). If now $h$ or $d$ belongs
to $P$, then also $u$ belongs to $P$ because $u$ is on a $c-h$ geodesic as well as on a
$c-d$ geodesic. Thus $h,$ $d\in\overline{P}$ , whence also $\langle h, d\rangle\subset\overline{P}$ . If $a\in\overline{P}$ , then $c\in\overline{P}$ because
it is on an $a-h$ geodesic, and thus $a$ must belong to $P$. Because $d$ is on an $a-b$

geodesic, the relation $a,$ $b\in P$ implies a contradiction, and hence $ c\in\langle h, d\rangle$ . This
proves that $d$ is a maximum lower bound of $a$ and $b$ , and thus the order defined
on $V$ is a meetsemilattice order. Accordingly, $V$ is a meetsemilattice with $h$ as
the least element. Because $V$ is finite, it is a partial lattice. The Hasse diagram
graph of $V$ is isomorphic to $G$ : When a line belongs to an $x-h$ geodesic, there
is nothing to prove, and hence we assume that the line $(a, b)$ of $G$ does not

belong to any $x-h$ geodesic. This is possible only if $d(a, h)=d(b, h)$ . But then
$a,$

$b$ and $h$ have no median, which is absurd, and the ismorphism follows.
It remains to show that every set ( $k$] $=$ { $v|v\in V$ and $v\leq k$ } is a distributive

lattice. By the order definition above, $\langle h, k\rangle=(k$]. Every convex $A$ of a prime
convex intersection graph induces a prime convex intersection graph. By Mulder
and Schrijver [1, Theorem 2.2], a prime convex intersection graph $\langle h, k\rangle$ is a
median graph (and then the Hasse diagram graph of a distributive lattice with
$h$ as the least element and $k$ as the greatest element by [1, Theorem 3.1]) if its
prime convexes needed to separate its convexes satisfy the Helly property. The
prime convexes needed to separate the convexes of $\langle h, k\rangle$ are obtained from the
prime convexes of $\mathscr{K}$ by intersecting them with $\langle h, k\rangle$ . Let now $P_{1},$ $P_{2}\cdots,$ $P_{m}$ be
prime convexes of $\mathscr{K}$ such that $ P_{i}\cap P_{j}\cap\langle h, k\rangle\neq\phi$ . We denote the corresponding
prime convexes of $\langle h, k\rangle$ by $ P_{i}^{0}=P_{i}\cap\langle h, k\rangle$ . By Lemma 2, the convex $\langle h, k\rangle$

consists of points on $h-k$ geodesics in $G$. If $h,$ $k\not\in P_{i}^{0}$ , then $P_{i}^{0}$ is not prime be-
cause its every point is on some $h-k$ geodesic. Hence either $h$ or $k$ belongs to
$P_{i}^{0}$ The relation $h\in P_{i}^{0}$ contradicts the property $h\in\cap\{\overline{P}|P\in \mathscr{K}\}$ , and thus $k\in P_{i}^{0}$ ,

and this relation holds for every $i,$ $i=1,$ $\cdots,$ $m$ . Then $k\in P_{1}^{0}\cap P_{2}^{0}\cap\cdots\cap P_{m}^{0}$ , and
the Helly property of the prime convexes needed to separate the convexes of $\langle h$ ,
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$ k\rangle$ follows. This proves the distributivity of $\langle h, k\rangle=(k$], and thus $G$ is the Hasse
diagram graph of a finite distributive partial lattice.

The author likes to express his sincere thanks to the referee for his valuable
suggestions and comments.
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