GRAPHS AND FINITE DISTRIBUTIVE PARTIAL LATTICES

By
Juhani Nieminen

Abstract

The Hasse diagram graph of a finite distributive partial lattice is characterized by means of prime convexes.

Median graphs contitute a well known and widely studied class of graphs; see for example the papers [1] and [2] and the references therein. They constitute a subclass of the Hasse diagram graphs of distributive partial lattices. In this paper we give a characterization for the Hasse diagram graphs G of finite distributive partial lattices by means of prime convexes of G. This characterization generalizes that of Mulder and Schrijver for median graphs reprinted in [1, Theorem 2.2].

A meetsemilattice S is a partial lattice if for any two elements a, b having an upper bound in S also the element $a \vee b$ belongs to S. Clearly every finite meetsemilattice is a partial lattice. A partial lattice S is distributive if its every subset $(k]=\{s \mid s \leq k\}$ is a distributive lattice. A finite distributive partial lattice S can be embedded in the distributive lattice $I(S)$ of ideals of S, where the join of two ideals I and J is $I \vee J=\{s \mid \leq i \vee j, i \in I$ and $j \in J\}$. By using this lattice we see that one shortest path joining two points a and b of the Hasse diagram graph S contains the point $a \wedge b$, and if $a>b$, then every point $c, a \geq c \geq b$, is on some shortest $a-b$ path.

The graphs $G=(V, X)$ considered here are finite, connected and undirected without loops and multiple lines. The points of G constitute the set V and its lines the set X. A pointset $A \subset V$ of G is called a convex if A contains all points of any shortest $a-b$ path (of any $a-b$ geodesic) for every two points $a, b \in A$. The intersection of two convexes is also a convex and thus the least convex containing a given pointset B of G is $\cap\{C \mid C$ is a convex and $B \subset C\}$. This set is briefly denoted by $\langle B\rangle$. A convex $A \neq V$ is called prime if the set $V \backslash A$ is also a convex. The sets ϕ and V are trivial prime convexes. A graph G has the prime convex intersection property (is a prime convex intersection graph) if its every

[^0]convex A is the intersection of all prime convexes containing A. By [1, Theorem 2.2], every median graph is a prime convex intersection graph. The class of prime convex intersection graphs is rather wide: for example every complete graph belongs to this class.

Let $a, b, c \in V$. A point t satisfying the distance conditions $d(a, b)=d(a, t)+$ $d(t, b), d(b, c)=d(b, t)+d(t, c)$ and $d(a, c)=d(a, t)+d(t, c)$ is a median of the points a, b and c. A graph is a median graph if its all three points have exactly one median.

If A is a subset of a set U, then $\bar{A}=U \backslash A$ is its complement in U.
When proving the main theorem of this note we need two auxiliary results which we prove first.

Lemma 1. A connected graph G is a prime convex intersection graph if and only if for any noempty convex A and any point $x, x \notin A$, there is a prime convex P separating A and x, i.e. $A \subset P$ and $x \in \bar{P}$.

Proof. If G is a prime convex intersection graph, A its nonempty convex and x its point such that $x \notin A$, there is a prime convex P separating A and x, because otherwise A connot be represented as an intersection of prime convexes of G. Conversely, if there is a prime convex separating any convex A and any point x of the lemma then G is a prime convex intersection graph. Indeed, if there is a nonempty convex A which cannot be expressed as the intersection of prime convexes, then the intersection contains a point x not belonging to A. By assumption there is a prime convex P searating A and x, and thus the intersection cannot contain the point x, and the lemma follows.

Lemma 2. The convex $\langle a, b\rangle$ of a prime convex intersection graph G consists of points on $a-b$ geodesics for every pair $a, b \in V$.

Proof. Let a and b be a pair of points such that the convex $\langle a, b\rangle$ contains at least one point v which is not on any $a-b$ geodesic. This implies the existence of two points x and z, x is on an $a-b$ geodesic and z is on another $a-b$ geodesic, such that no point x_{1}, \cdots, x_{m} of an $x-z$ geodesic $x=x_{0}, x_{1}, \cdots, x_{m}, x_{m_{+1}}=z$ is on any $a-b$ geodesic. Clearly a and b can be chosen such that every convex $\langle u, w\rangle$ with $d(u, w)<d(a, b)$ is the set of all points on $u-w$ geodesics. We may assume further that $d(a, b) \geq d(x, b), d(z, b) \geq d(x, b)$, and that x and z are as near to b as possible. Let us consider the point x_{1}. Because $d(a, x)<d(a, b)$, the convex $\langle a, x\rangle$ consists of points on $a-x$ geodesics, and thus $x_{1} \notin\langle a, x\rangle$. By Lemma 1, the prime convex intersection property of G implies now the existence of a prime
convex P separating $\langle a, x\rangle$ and $x_{1}:\langle a, x\rangle \subset P$ and $x_{1} \in \bar{P}$. Because $x_{1} \in\langle a, b\rangle$, we have $x_{1}, b \in \bar{P}$. Let $x=b_{0}, b_{1}, b_{2}, \cdots, b_{k-1}, b_{k}=b$ be the points of an $x-b$ geodesic. Because x and z are as near to b as possible, $d(z, b) \geq d(x, b)$ and $d\left(x_{1}, z\right) \geq d\left(x_{1}\right.$, $x)=1$, them a $b_{i}-x_{1}$ geodesic goes over $x, i=1, \cdots, k$. This implies that there is no prime convex separating $\langle a, x\rangle$ and x_{1}, which is a contradiction. Thus the assumption is false and the convex $\langle a, b\rangle$ consists of points on $a-b$ geodesics for every pair $a, b \in V$, and the lemma follows.

Now we can present the characterization theorem of this note.
Theorem. A connected graph G is isomorphic to the Hasse diagram graph of a finite distributive partial lattice if and only if the following two conditions hold:
(i) G is a prime convex intersection graph;
(ii) $\cap\{\bar{P} \mid P \in \mathscr{K}\} \neq \phi$ or $\mathscr{K}=\phi$ for the collection \mathscr{K} of all nontrivial prime convexes in G having the following property: if $P_{1} \in \mathscr{K}$, there are P_{2}, P_{3}, $\cdots, P_{n} \in \mathscr{K}(n \geq 3)$ such that $P_{i} \cap P_{j} \neq \phi$ and $P_{1} \cap P_{2} \cap \cdots \cap P_{n}=\phi$.

Proof. Mulder and Schrijver proved that a connected graph G is a median graph if and only if G is a prime convex intersection graph and its prime convexes satisfy the Helly property [1, Theorem 2.2]. The condition (ii) above is nothing but a weakened Helly property for prime convexes of G.

Assume first that G is the Hasse diagram graph of a finite distributive partial lattice S.
(i) Let $x \in S$. The element corresponding x in the ideal lattice $I(S)$ of S is ($x]$. Because $\mathrm{I}(S)$ is distributive, one $(z]-(x]$ geodesic goes over the element $(z] \wedge(x]=(z \wedge x]$. Thus, if the distance $d((z],(x])=n$ in $I(S)$, then $d(z, x)=n$ in S, because the $z-z \wedge x-x$ path always belongs to S. In particular, if C is a convex of the Hasse diagram graph of $I(S)$, then the set $\{x \mid(x] \in C$ in $I(S)\}=$ C_{s} is a convex in S. Moreover, if C is a prime convex in $I(S)$, then C_{s} is a prime convex in S. Let A be a nonempty convex of G, x a point of G with $x \notin$ A and A^{*} the least convex of the graph $G(I(S))$ of $I(S)$ with the property: $(z] \in A^{*}$ in $G(I(S))$ if $z \in A$ in G. Clearly, $(x] \notin A^{*}$ in $G(I(S))$. Because $I(S)$ is a distributive lattice, the graph $G(I(S))$ is a median graph and has thus the prime convex intersection property. Hence there is a prime convex C in $G(\mathrm{I}(S))$ separating A^{*} and ($\left.x\right]$, which implies that the prime convex C_{s} separates A and x in G. By Lemma 1, this proves that G has the prime convex intersection property, and thus (i) holds for G.
(ii) Assume that the collection \mathscr{K} of the theorem is nonempty. We prove
that least element 0 of S belongs to $\cap\{\bar{P} \mid P \in \mathscr{K}\}$, from which the assertion follows. In fact, we prove the assertion for $n=3$; the proofs are the same for other values of n and hence they are omitted. Let $P_{1}, P_{2}, P_{3} \in \mathscr{K}$ be three prime convexes of G such that $P_{i} \cap P_{j} \neq \phi$ and $P_{1} \cap P_{2} \cap P_{3}=\phi$. The sets $P_{1} \cap P_{2}, P_{1} \cap P_{3}$ and $P_{2} \cap P_{3}$ are convexes of G, and because S is finite, every one of them has a least element, and let them be $a \in P_{1} \cap P_{2}, b \in P_{1} \cap P_{3}$ and $c \in P_{2} \cap P_{3}$. Assume that $0 \notin \cap\{\bar{P} \mid P \in \mathcal{K}\}$, which means that 0 belongs to at least one set of \mathscr{K}, say to P_{1}. Because $0, a, b \in P_{1}$, then also $a \wedge b \wedge c \in P_{1}$. The relation $a, c \in P_{2}$ implies that $a \wedge$ $c \in P_{2}$. On the other hand, $a \geq a \wedge c \geq a \wedge b \wedge c$, where $a, a \wedge b \wedge c \in P_{1}$, and thus $a \wedge$ $c \in P_{1}$. Accordingly, $a \wedge c \in P_{1} \cap P_{2}$, and because a is the least element in this convex, $a=a \wedge c \geq c$. Similarly we see that $b \leq c$. Because there is an upper bound c for a and b, the element $a \vee b$ exists, and as well known, an $a-b$ geodesic goes over $a \vee b$ in the Hasse diagram graph of a finite distributive lattice. Thus $a \vee b$ $\in P_{1}$. Because $c, b \in P_{3}$ and $c \geq a \vee b$, the element $a \vee b$ belongs to P_{3}, and analogously we see that $a \vee b \in P_{2}$. Now, $a \vee b \in P_{1} \cap P_{2} \cap P_{3}$, which intersection should be empty, and hence the assumption $0 € \cap\{\bar{P} \mid P \in \mathcal{K}\}$ must be false. This proves the property (ii).

Assume conversely that G is a graph satisfying the properties (i) and (ii) of the theorem. We choose an arbitrary point from the set $\cap\{\bar{P} \mid P \in \mathcal{K}\}$ and denote it by h. Let a and b be two arbitrary points in V and let us consider the intersection $\langle h, a\rangle \cap\langle h, b\rangle \cap\langle a, b\rangle$. Because the convexes $\langle h, a\rangle,\langle h, b\rangle$ and $\langle a, b\rangle$ are the intersections of corresponding prime convexes, we can substitute the intersection $\langle h, a\rangle \cap\langle h, b\rangle \cap\langle a, b\rangle$ by the expression
$\left(\cap\left\{P_{i} \mid P_{i}\right.\right.$ is a prime convex and $\left.\left.\langle h, a\rangle \subset P_{i}\right\}\right) \cap\left(\cap\left\{U_{j} \mid U_{j}\right.\right.$ is a prime convex and $\left.\left.\langle h, b\rangle \subset U_{j}\right\}\right) \cap\left(\cap\left\{W_{k} \mid W_{k}\right.\right.$ is a prime convex and $\left.\left.\langle a, b\rangle \subset W_{k}\right\}\right)$.

Now, $P_{i} \cap W_{k}, P_{i} \cap U_{j}, U_{j} \cap W_{k} \neq \phi$, and if $\langle h, a\rangle \cap\langle h, b\rangle \cap\langle a, b\rangle=\phi$, then $h \notin \cap\{\bar{P} \mid P \in \mathscr{K}\}$, which is a contradiction. Thus $\langle h, a\rangle \cap\langle h, b\rangle \cap\langle a, b\rangle \neq \phi$. Moreover, this intersection contains exactly one element. This can be seen as follows: Every prime convex P of G (or its complement \bar{P}) contains at least two of the points a, b, h. If the intersection $\langle h, a\rangle \cap\langle h, a\rangle \cap\langle a, b\rangle$ contains two disjoint points x and y, then every P (or \bar{P}) contains both x and y, and the convex x cannot be separated from the point y, which contradicts (i) by Lemma 1. Thus $\langle h, a\rangle \cap$ $\langle h, b\rangle \cap\langle a, b\rangle=\{d\}$. According to Lemma 2, a convex $\langle x, z\rangle$ consists of points on $x-z$ geodesics. Thus the relation $\{d\}=\langle h, a\rangle \cap\langle h, b\rangle \cap\langle a, b\rangle$ shows that every triple h, a, b, where a and b are arbitrary points of G, has a unique median.

We order now the points of V as follows:

$$
a \leq b \Longleftrightarrow a \text { is on a } b-h \text { geodesic } \Longleftrightarrow a \in\langle h, b\rangle .
$$

This definition suggests us to define the meet $a \wedge b$ as the unique median d of the points a, b and h. Assume that c is a point such that $c \in\langle h, a\rangle \cap\langle h, a\rangle$ and $c \nexists\langle h, d\rangle$. The intersection $\langle h, d\rangle \cap\langle c, b\rangle$ is empty, because if x belongs to this intersection, then the $d-x-c-h$ path is a $d-h$ geodesic and $c \in\langle d, h\rangle$, which is a contradiction. There is a prime convex P separating the convexes $\langle h, d\rangle$ and $\langle c$, $b\rangle:\langle h, d\rangle \subset \bar{P}$ and $\langle c, b\rangle \subset P$. Indeed, as seen above, the points h, d and c have a median u which is on a $d-h$ geodesic and thus belongs to the convex $\langle d, h\rangle$. By the prime convex intersection property of G and Lemma 1, there is a prime convex P separating $\langle c, b\rangle$ and $u(\langle c, b\rangle \subset P$ and $u \in \bar{P})$. If now h or d belongs to P, then also u belongs to P because u is on a $c-h$ geodesic as well as on a $c-d$ geodesic. Thus $h, d \in \bar{P}$, whence also $\langle h, d\rangle \subset \bar{P}$. If $a \in \bar{P}$, then $c \in \bar{P}$ because it is on an $a-h$ geodesic, and thus a must belong to P. Because d is on an $a-b$ geodesic, the relation $a, b \in P$ implies a contradiction, and hence $c \in\langle h, d\rangle$. This proves that d is a maximum lower bound of a and b, and thus the order defined on V is a meetsemilattice order. Accordingly, V is a meetsemilattice with h as the least element. Because V is finite, it is a partial lattice. The Hasse diagram graph of V is isomorphic to G : When a line belongs to an $x-h$ geodesic, there is nothing to prove, and hence we assume that the line (a, b) of G does not belong to any $x-h$ geodesic. This is possible only if $d(a, h)=d(b, h)$. But then a, b and h have no median, which is absurd, and the ismorphism follows.

It remains to show that every set $\quad k]=\{v \mid v \in V$ and $v \leq k\}$ is a distributive lattice. By the order definition above, $\langle h, k\rangle=(k]$. Every convex A of a prime convex intersection graph induces a prime convex intersection graph. By Mulder and Schrijver [1, Theorem 2.2], a prime convex intersection graph $\langle h, k\rangle$ is a median graph (and then the Hasse diagram graph of a distributive lattice with h as the least element and k as the greatest element by [1, Theorem 3.1]) if its prime convexes needed to separate its convexes satisfy the Helly property. The prime convexes needed to separate the convexes of $\langle h, k\rangle$ are obtained from the prime convexes of \mathscr{K} by intersecting them with $\langle h, k\rangle$. Let now $P_{1}, P_{2} \cdots, P_{m}$ be prime convexes of \mathscr{K} such that $P_{i} \cap P_{j} \cap\langle h, k\rangle \neq \phi$. We denote the corresponding prime convexes of $\langle h, k\rangle$ by $P_{i}^{0}=P_{i} \cap\langle h, k\rangle$. By Lemma 2, the convex $\langle h, k\rangle$ consists of points on $h-k$ geodesics in G. If $h, k \notin P_{i}^{0}$, then P_{i}^{0} is not prime because its every point is on some $h-k$ geodesic. Hence either h or k belongs to P_{i}^{0}. The relation $h \in P_{i}^{0}$ contradicts the property $h \in \cap\{\bar{P} \mid P \in \mathcal{K}\}$, and thus $k \in P_{i}^{0}$, and this relation holds for every $i, i=1, \cdots, m$. Then $k \in P_{1}^{0} \cap P_{2}^{0} \cap \cdots \cap P_{m}^{0}$, and the Helly property of the prime convexes needed to separate the convexes of $\langle h$,
$k\rangle$ follows. This proves the distributivity of $\langle h, k\rangle=(k]$, and thus G is the Hasse diagram graph of a finite distributive partial lattice.

The author likes to express his sincere thanks to the referee for his valuable suggestions and comments.

References

[1] Bandelt, H. J. and Hedlikova, J., Median algebras, Discrete Math. 45 (1983), 1-30.
[2] Bandelt, H. J. and Mulder, H. M., Infinite median graphs, (0,2)-graphs and hypercbes, J. Graph Theory 7 (1983), 487-497.

Faculty of Technology
University of Oulu
90570 Oulu
Finland

[^0]: Received August 4, 1986. Revised March 30, 1987.

