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A CONSISTENCY PROOF OF A SYSTEM INCLUDING
FEFERMAN’S $ID_{\xi}$ BY TAKEUTI’S REDUCTION METHOD

By

Toshiyasu ARAI

This paper is a sequel to our [1] and [2].

Let $\prec$ be a $p.r$ . (primitive recursive) well-ordering on a p.r. subset of the set

of natural numbers $N$ , with the least element $0$ and the largest element $\xi$ which
is used to denote the order type of the initial segment of $\prec$ determined by $\xi$ . Let
$\lambda x.x\oplus 1$ and $\lambda x.x\ominus 1$ be $p.r$ . successor and predecessor functions with respect to $\prec$ ,

respectively. Strictly speaking, we should suppose that some fixed p.r. definitions
(indices) of $\prec,$ $\lambda x.x\oplus 1$ and $\lambda x.x\ominus 1$ are given instead of their graphs. And we
will assume that formulae which express the above facts except the well-orderedness
of $<$ by using p.r. definitions of $\prec,$ $\lambda x.x\oplus 1$ and $\lambda x.x\ominus 1$ , are all derivable in a
weak fragment of arithmetic, say, primitive recursive arithmetic. A complete list
of formulae which should be derivable for our purpose can be found in [1, p. 20].

For such an ordering $\prec$ , we define a first order theory $AI_{\xi}^{-}$ . The lahgugage
of the theory $AI_{\xi}^{-}$ is described as follows. Let $X$ be a unary predicate variable
and $Y$ a binary one. For each arithmetical formula $\mathfrak{B}(X, Y, a, b)$ having no free
variables except $X,$ $Y,$ $a$ and $b$ , we introduce a binary predicate constant $Q^{\mathfrak{B}}$

whose intended meaning is the disjoint union of the family $\{Q_{\zeta}^{\mathfrak{B}}\}_{C\prec\xi}$ , where $Q_{\zeta}^{\mathfrak{B}}$

$(\zeta\prec\xi)$ are subsets of $N$ defined by the following transfinite recursion on the
ordinals (natural numbers) $\zeta\prec\xi$ ;

$ n\in^{\mathfrak{B}}\zeta$ iff $\mathfrak{B}(X, Q_{\prec c}^{\mathfrak{B}}, \zeta, n)$ holds for every subset :zr of $N$ ,

where $Q_{\prec\zeta}^{\mathfrak{B}}$ is the disjoint union of the family $\{Q_{\nu}^{\mathfrak{B}}\}_{\nu\prec},$ .
Then the theory $AI_{\xi}^{-}$ is obtained from the Peano Arithmetic PA in this language
by adding an axiom scheme ( $Q\mathfrak{B}$ -initial sequent in 1. 41. 21, below) and an infer-
ence rule ( $Q\mathfrak{B}$ : right in 1. 41. 22, below) corresponding to the above mentioned
meaning of $Q^{\mathfrak{B}}$

As is expected, Feferman’s theory $1D_{\xi}$ for the $\xi$ -times iterated inductive defi-
nitions is interpretable in our $AI_{\text{\’{e}}}^{-}$ . This is shown in 1.

In 2, we give a consistency proof of $AI_{\overline{\epsilon}}$ by the accessibility of the system of
ordinal diagrams $O(\xi+1, 1)$ with respect to $<_{0}$ . This is done by Takeuti’s
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reduction method.
On the other hand, we showed in [1] that the transfinite induction up to each

ordinal diagram from $O(\xi+1,1)$ with respect to $<_{0}$ , is derivable in an intuition-
istic accessible-part theory $ID_{\xi}^{i}(\mathfrak{A})$ . Hence we have that the system of ordinal
diagrams $O(\xi+1,1)$ with respect to $<_{0}$ gives proof theoretic ordinal of Feferman’s
theory $ID_{\xi}$ .

Applications such as provable well-orderings, reflection principles and conser-
vation results, and generalization to the autonomous closure $Aut(ID)$ will be re-
ported elsewhere.

We will give an outline of proof, because it can be obtained by minor mod-
ifications of Takeuti’s original proof.

The author wishes to express his heart-felt thanks to Prof. N. Motohashi for
his invaluable advices and comments.

1. Preliminary

Firstly we specify the language LPA of the Peano Arithmetic PA.

DEFINIT10N 1.1. The language LPA consists of the following symbols:
1.11. Function constants: $0$ (zero), ’ (successor), and the function constant

$f_{e}$ for each index $e$ of each p.r. function.
1.12. Predicate constant: $=(equality)$

1.13. Variables:
Free number variables: $a,$ $b,$ $\cdots$

Bound number variables: $x,$ $y,$ $\cdots$

1.14. Logical symbols: 7, $\wedge,$ $\vee,$ $\supset,$
$\forall$ and $\exists$ .

1.15. Auxiliary symbols: $(,)$ , , (comma) $and\rightarrow$ .

Terms, formulea and sequents in LPA are defined as usual [cf. PT, pp. 6-9].

DEFINITION 1.2. Let $L$ be a first order language obtained from LPA by adding
some predicate constants and variables. Then PA(L) denotes the formal system

defined as follows:
1.21. Initial sequents of $PA(L)$

1.21.1. Logical initial sequent:

$D\rightarrow D$

where $D$ is an arbitrary formula of L.
1.21.2 Equality axiom:
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$s=t,$ $F(s)\rightarrow F(t)$

where $s$ and $t$ are arbitrary terms and $F$ is an arbitrary formula of L.
1.21.3. Mathematical initial sequents:

$\rightarrow t=t;0^{\prime}=0\rightarrow$

and defining equations for p.r. functions.
For example, if a $p.r$ . function $f$ is defined from $p.r$ . functions $g$ and $h$ by equa-
tions,

$\{_{f(a_{0}^{0}\prime}^{f(a},$
$a_{n-1}^{n-1}a,$

$b+1$ )
$=h(a_{0},\cdots,a^{)_{n-1}}0)=g(a_{0},\cdots,a_{n-1},b, f(a_{0}, ..., a_{n-1}, b))$

,

and $\overline{f,}\overline{g}$ and $\overline{h}$ are function constants corresponding to the definitions of $f,$ $g$ and
$h$ , respectively, then

$\rightarrow$;$(t_{0}, \cdot.., t_{n-1},0)=\overline{g}(t_{0)}$ ..., $t_{n-1})$

and
$\rightarrow\overline{f}(t_{0}, \cdot.., t_{n-1}, s^{\prime})=h(t_{0}$ , $\cdot$ .., $t_{n-1},$ $s,\overline{f}(t_{0}, \cdot.., t_{n-1}, s)$

are mathematical initial sequents for all terms $t_{0},$ $\cdots,$ $t_{n-1}$ and $s$ .
1.21.4. Induction axiom:

$F(O),$ $\forall x(F(x)\supset F(x^{\prime}))\rightarrow F(t)$

where $t$ is an arbitrary term and $F$ is an arbitrary formula of L.
1.22. The inference rules of PA(L) are those of Gentzen’s LK in [PT,

DEFINITION 2.1].

DEFINITION 1.3. Let $LPA+\{X, Y, c_{0}, c_{1}\}$ be the language obtained from LPA
by adding a unary predicate variable $X$, a binary predicate variable $Y$ and two

new individual constants $c_{0}$ and $c_{1}$ .
1.31. A formula $\mathfrak{B}(X, Y, c_{0}, c_{1})$ of $LPA+\{X, Y, c_{0}, c_{1}\}$ , where $X,$ $Y,$ $c_{0}$ and

$c_{1}$ are fully indicated in $\mathfrak{B}(X, Y, c_{0}, c_{1})$ (cf. [PT, DEFINITION 1.6]), is said to

be an arithmetical form if it has no free number variables.
1.32. An arithmetical form $\mathfrak{A}(X, Y, c_{0}, c_{1})$ is said to be a positive operator

form if every occurrence of $X$ in it is positive.

Let $\prec$ be a $p.r$ . well-ordering with the largest element $\xi$ as in the introduction.
For such an ordering $\prec$ we define a formal system $AI_{\xi}^{-}(X)$ , where re is a set of
arithmetical forms. Also, for readers’ convenience, we repeat the definition $of_{-}^{l}the$

formal system $ID_{\xi}$ .

DEFINITION 1.4.
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1.41. Definition of $AI_{\xi}^{-}(\mathcal{B})$ .
1.41.1. The language $LAI_{\xi(B)}^{-}$ is obtained from LPA by adding a binary

predibate constant $Q\mathfrak{B}$ for each arithmetioal form $\mathfrak{B}$ in 3 and a countable list of
unary predicate variables $X_{0},$ $X_{1},$ $\cdots$ For brevity we write

$LAI_{\xi(B)}^{-}$ $:=LPA+\{Q^{\mathfrak{B}} : \mathfrak{B}\in \mathcal{B}\}+\{X_{i} : i<\omega\}$ .
In the following, we use the letter $X$ to denote one of the variables $X_{0},$ $X_{1},$ $\cdots$

1.41.2. The system $AI_{\xi}^{-}(\ovalbox{\tt\small REJECT})$ is obtained from $PA(LAI_{\xi(X)}^{-})$ by adding the
following extra initial sequents called $Q^{\mathfrak{B}}$ -initial sequent and the following new
rule of inference called $Q^{\mathfrak{B}}$ : right for each $\mathfrak{B}$ in 3.

1.41.21. $Q^{\mathfrak{B}}$ -initial sequent:

$t\prec\xi,$ $Q^{\mathfrak{B}}ts\rightarrow \mathfrak{B}(V, Q_{\prec l}^{\mathfrak{B}}, t, s)$

where $t$ and $s$ are arbitrary terms, $V$ is an arbitrary unary abstract of $LAI_{\xi(\mathcal{B})}^{-}$ ,
$ t\prec\xi$ denotes the formula $f_{e}(t, \xi)=0$ for a characteristic function $f_{e}$ of $\prec,$ $\xi$ in the
formula $f_{e}(t, \xi)=0$ denotes the numeral corresponding to the number $\xi$ and $ Q_{\prec}^{\mathfrak{B}}\iota$

is the binary abstract defined by

$Q_{\prec t}^{\mathfrak{B}}$ $:=\{x, y\}(x\prec t\wedge Q^{\mathfrak{B}}xy)$ .

Here $Q^{\mathfrak{B}}ts$ is called the principal formula of this sequent.

1.41.22. $Q^{\mathfrak{B}}$ : right.

$\frac{\Gamma\rightarrow\Delta,\mathfrak{B}(X,Q_{\prec l}^{\mathfrak{B}},t,s)}{\Gamma\rightarrow\Delta,Q^{\mathfrak{B}}ts}$

where $t$ and $s$ are arbitrary terms, $\Gamma,$
$\Delta$ are arbitrary finite sequences of formulae

and the predicate variable $X$ dose not occur in the lower sequent. $X$ is called the
eigenvariable of this inference and $Q\mathfrak{B}tS$ is called the principal formula of this
inference.

1.42. Definition of $ID_{\xi}$ .
1.42.1. The language is defined by

$LID_{\xi}$ $:=LPA+$ { $P^{\mathfrak{A}}$ : $\mathfrak{A}$ is a positive operator form}.

Here $P^{\mathfrak{A}}$ is a binary predicate constant.

1.42.2. The system $ID_{\xi}$ is obtained from $PA(LID_{\xi})$ by adding the following
initial sequents $(P^{\mathfrak{A}}. 1)_{\xi},$ $(P^{\mathfrak{A}}. 2)_{\xi}$ and $(TI)_{\xi}$ for each positive operator form $\mathfrak{A}$ :

$(P^{\mathfrak{A}}$ . 1 $)\xi$ $\rightarrow$ $\forall x\prec\xi(\mathfrak{A}(P_{x}^{\mathfrak{A}}, P_{\prec x}^{\mathfrak{A}}, x)\subseteq P_{x}^{\mathfrak{A}})$

where $\forall x\prec\xi$ $(\mathfrak{A}(P_{x}^{\mathfrak{A}}, P_{\prec x}^{\mathfrak{A}}, x)\subseteq P_{x}^{\mathfrak{A}})$ is an abbreviation for the formula
$\forall x\prec\xi\forall y\mathfrak{A}(P_{x}^{\mathfrak{A}}, P_{\prec x}^{\mathfrak{A}}, x, y)\supset P_{x}^{\mathfrak{A}}y)$ and $P_{a}^{\mathfrak{A}},$ $P_{\prec a}^{\mathfrak{A}}$ are abstracts defined by

$P_{a}^{\mathfrak{A}}:=\{x\}(P^{\mathfrak{A}}ax)$
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$P_{\prec a}^{\mathfrak{A}}$ $:=\{x, y\}(x\prec a\wedge P^{\mathfrak{A}}xy)$ .
$(P^{\mathfrak{A}}. 2)_{\xi}$ $\rightarrow\forall x\prec\xi(\mathfrak{A}(V, P_{\prec x}^{\mathfrak{A}}, x)\subseteq V$ . $\supset. P_{x}^{\mathfrak{A}}\subseteq V)$

for each unary abstract $V$ of $LID_{\xi}$ .
(TI) $\xi$

$\rightarrow\forall x\prec\xi(\forall y\prec xF(y)\supset F(x))\supset\forall x\prec\xi F(z)$

for each formula $F$ of $LID_{\xi}$ .
If re is the set of all arithmetical forms, then we write AI; for $AI_{\xi}^{-}(X)$ . If

re is a singleton $\{\mathfrak{B}\}$ , then we write $AI_{\xi}^{-}(\mathfrak{B})$ for $AI_{\xi}^{-}(X)$

Let $\mathfrak{B}_{0}$ be the arithmetical form defined by
$\mathfrak{B}_{0}(X, Y, c_{0}, c_{1})$ $:=\forall x\prec c_{0}Yxc_{1}\supset T(X, c_{0})$

where $T(X, c_{0})$ denotes the formula $\forall x\prec\xi(\forall y\prec xXy\supset Xx)\supset Xc_{0}$ (cf. [3, p. 334]).

Then the transfinite induction up to $\xi$ is derivable in $AI_{\xi}^{-}(\ovalbox{\tt\small REJECT})$ for every $\ovalbox{\tt\small REJECT}$

containing $\mathfrak{B}_{0}$ .

PROPOSITION 1.5 (Takeuti) The formula $\forall x\prec\xi T(ty\} (F(y)), x)$ is derivable
in $AI_{\xi}^{-}(X)$ for every formula $F$ of $L_{AI_{\xi}^{-}(\mathcal{B})}\iota f\ovalbox{\tt\small REJECT}$ contains $\mathfrak{B}_{0}$ .

PROOF. Put
$C(a)$ $:=Q^{\mathfrak{B}0}a_{0}$ .

From the $Q^{\mathfrak{B}^{0}}$-initial sequent we have
$a\prec\xi,$ $C(a)\rightarrow\forall x\prec aC(x)\supset T(\{y\}(F(y)), a)$

for every formula $F$ of $LAI_{\xi(\mathcal{B})}^{-}$ .
If follows that

$a\prec\xi,$ $\forall x\prec aC(x)\rightarrow T(\{y\}(F(y)), a)$

and
$a\prec\xi,$ $\forall x\prec aC(x)\rightarrow\forall x\prec aT(\{y\}(F(y)), x)$ .

From the definition of the formula $T$, we have
$a\prec\xi,$ $\forall x\prec aT(\{y\}(F(y)), x)\rightarrow T(\{y\}(F(y)), a)$ .

Hence
$a\prec\xi,$ $\forall x\prec aC(x)\rightarrow T(\{y\}(F(y)), a)$ . (1)

Since $F$ is arbitrary, we could take $X$ instead of $F$,
$a\prec\xi,$ $\forall x\prec aC(x)\rightarrow T(X, a)$ ,

nomely
$a\prec\xi\rightarrow \mathfrak{B}_{0}(X, Q_{\prec}^{\mathfrak{B}0_{a}}, a, 0)$

By $Q^{\mathfrak{B}0}$ : right
$a\prec\xi\rightarrow Q^{\mathfrak{B}0}a_{0}$ .

Hence we have
$\rightarrow\forall x\prec\xi C(x)$ (2)
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From (1) and (2) we conclude that
$\rightarrow\forall x\prec\xi T(\{y\}(F(y)), x)$ .

$q.e.d$.

Let $\{\mathfrak{A}_{1}, \mathfrak{A}_{2},\cdots\}$ be an enumeaation of all positive operator forms. Now we
define the arithmetical form $\mathfrak{B}_{n}$ for each $n\geq 1$ by

$\mathfrak{B}_{n}(X, Y, c_{0}, c_{1})$ $:=\mathfrak{A}_{n}(X, Y, c_{0})\subseteq X.\supset Xc_{1}$

$:=\forall y(\mathfrak{A}_{n}(X, Y, c_{0}, y)\supset Xy)\supset Xc_{1}$ .
Let $X_{0}$ be $\{\mathfrak{B}_{i} : i<\omega\}$ , where $\mathfrak{B}_{0}$ is the arithmetical form defined above. Then we
have:

COROLLARY 1.6. For each sequent $\Gamma(\cdots, P^{\mathfrak{A}n}, )\rightarrow\Delta(\cdots, P^{\mathfrak{A}n}, \cdots)$ of $L_{ID\xi}$ ,

Let $\Gamma(\cdots, Q\mathfrak{B}n\ldots)\rightarrow\Delta(\cdots, Q\mathfrak{B}n\ldots)$ denote the sequent of $L_{AI_{\xi}^{-}}(\ovalbox{\tt\small REJECT}_{0}/\{\mathfrak{B}_{0}\})$ obtained

from $\Gamma(\cdots, P^{\mathfrak{A}n}, )\rightarrow\Delta(\cdots, P^{\mathfrak{A}n}, \cdots)$ by replacing every $P^{\mathfrak{U}n}$ by $Q^{\mathfrak{B}n}$ . Then
$\Gamma(\cdots, P^{\mathfrak{A}n}, \cdots)\rightarrow\Delta(\cdots, P^{\mathfrak{A}n}, \cdots)$ is derivable in $ID_{\xi}$

iff
$\Gamma(\cdots, Q^{\mathfrak{B}n}, \cdots)\rightarrow\Delta(\cdots, Q^{\mathfrak{B}n}, \cdots)$ is derivable in $AI_{\xi}^{-}(X_{0})$ .

We omit a proof of this corollary because its only-if part readily follows from
Proposition 1.5 and a usual argument, and the other half will not be used in the
following.

Note that we can easily see $ID_{\xi}$ is interpretable in $AI_{\xi}^{-}(\ovalbox{\tt\small REJECT}_{0})$ by this Corollary.

2. A consistency proof of $AI_{\xi}^{-}$

Let $\mathfrak{B}$ be an arbitrary but fixed arithmetical form. In this section we will

give a consistency proof of $AI_{\xi}^{-}(\mathfrak{B})$ by Takeuti’s reduction method. Here note the
following well-known propositiom.

PROPOSITION 2.1. Let $F$ be a formula of $L_{PA}$ . If $F$ is derivable in $AI_{\xi}^{-}$ ,

then there exists an arithmetical farm $\mathfrak{B}$ such that $F$ is derivable in $AI_{\xi}^{-}(\mathfrak{B})$ .

For simplicity we will write $Q$ for $Q^{\mathfrak{B}}$ .

We add the following sequents to the mathematical initial sequents of $AI_{\xi}^{-}(\mathfrak{B})$ .
$ s=t\rightarrow$

where $s$ and $t$ are closed terms and under the standard interpretation $s\neq t$ holds.
Since $s\prec t$ denotes the formula $f_{e}(s, t)=0$ , if $s\not\leq t$ holds, then $s\prec t\rightarrow one$ of the

mathematical initial sequents.

And we add the inference rule, called term-replacement:
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$\frac{\Gamma(s)\rightarrow\Delta(s)}{\Gamma(t)\rightarrow\Delta(t)}$

where $s$ and $t$ are closed terms whose values under the standard interpretation
coincide, and $\Gamma(t)\rightarrow\Delta(t)$ denotes the sequent obtained from $\Gamma(s)\rightarrow\Delta(s)$ by replacing

some occurrences of $s$ by $t$ .
Furthermore we add the inference rule, called substitution:

$\frac{\Gamma\rightarrow\Delta}{\Gamma\left(\begin{array}{l}X\\V\end{array}\right)\rightarrow\Delta\left(\begin{array}{l}X\\V\end{array}\right)}$

where $\Gamma\left(\begin{array}{l}X\\V\end{array}\right)\rightarrow\Delta\left(\begin{array}{l}X\\V\end{array}\right)$ denotes the sequent obtained from $\Gamma\rightarrow\Delta$ by substituting a
unary abstract $V$ for $X$ in $\Gamma\rightarrow\Delta$ . $V$ may be an arbitrary abstract of $LAI_{\xi}^{-}(\mathfrak{B})$ .
Here $X$ is called the eigenvariable of this substitution.

If any confusion dose not likely to occur, the system modified in this way is

also denoted by $AI_{\xi}^{-}(\mathfrak{B})$ .

DEFINITI0N 2.2.
2.21. The grade of a formula $F$, denoted by $g(F)$ , is the number of occur-

rences of logical symbols in it.
2.22. Let $P$ be a proof in $AI_{\xi}^{-}(\mathfrak{B})$ and $S$ a sequent in $P$. The hsight of $S$

in $P$, denoted by $h(S;P)$ or simply $h(S)$ , is defined inductively ‘from below to

above’, as follows:
2.22.1. $h(S)=0$

if $S$ is the end-sequent of $P$, or $S$ is the upper sequent of a substitution.
2.22.2. $h(S)=h(S^{\prime})$

if $S$ is an upper sequent of an inference except substitution and cut, where $S^{\prime}$ is
the lower sequent of the inference.

2.22.3. $h(S)=\max\{h(S’), g(D)\}$

if $S$ is an upper sequent of a cut, where $S^{\prime}$ is the lower sequent of the cut and
$D$ is the cut formula of the cut.

DEFINITI0N 2.3. A semi-term $t_{1}$ is said to be numequivalent to a semi-term
$t_{2}$ if there exist a semi-term $t(x_{0}, \cdots, x_{n-1})$ and closed terms $s_{0},$ $r_{0},$ $\cdots,$ $s_{n-1},$ $r_{n-1}$

such that for every $m<n$ the value of $s_{m}$ is equal to that of $r_{m},$ $t_{1}$ is $t(s_{0}, \cdots, s_{n-1})$

and $t_{2}$ is $t(r_{0}, \cdots, r_{n-1})$ .
DEFINIT10N 2.4. The degree of a semi-formula $F$, denoted by $d(F)$ , is defined

inductively as follows:
2.41. $d(t=s)$ $:=d(Xt)$ $:=0$

for all semi-terms $t,$ $s$ and variable $X$.
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2.42.
$d(Qts);=1_{\xi}^{i\oplus 1}$ $otherwiseisiandi\prec\xi holdsiftisaclosedterm$

whose value

2.43.
$d(t_{1}\prec s\wedge Qt_{2}r):=\{_{\xi}^{i}$ $andt_{1}is.numequevalenttootherwiseifsisaclosedtermwhosetv_{2}a$

lue is $ i\prec\xi$

2.44. $d(B\wedge C)$ $:=\max\prec\{d(B), d(C)\}$

if $B\wedge C$ is not of the form in 2.43, where $\max\prec$ denotes the maximum with
respect to $\prec$ .

2.45. $d(7B)$ $:=d(B)$ ; $d(B\vee C)$ $;=d(B\supset C)$ : $\max\prec\{d(B), d(C)\}$

2.46. $d(\forall xB)$ $:=d(\exists xB)$ $:=d(B)$ .
The degree of a semi-formula is an $ordinal\preceq\xi$ (in fact it is a natural number).

Note that the following holds for every semi-formula $B(x)$ :

$d(B(x))\prec\xi\Rightarrow d(B(t))=d(B(x))$ for every semi-term $t$ .
In what follows, we assume that $P$ is a proof of the empty $sequent\rightarrow andd$

is a mapping from the set of substitutions in $P$ to the set of $ordinals\prec\xi$ (natural

numbers).

DEFINIT10N 2.5. We call the pair $\langle P, d\rangle$ a proof with degree if the follow-
ing condition is satisfied:

For every substitution $J$ in $P$ and every formula $B$ in the upper sequent

of $J$,

$d(B)\preceq d(J)$

holds.
Here note that $d(J)$ is the value of the mapping $d$ at $J$.

Let $0(\xi+1, 1)$ be the system of o.d.’s (ordinal diagrams) based on $I$ and 1,

where $I$ is the field of $\prec$ , i.e., $I=\{n\in N:n\preceq\xi\}$ . Then we assign an o.d. from
$O(\xi+1,1)$ to a proof with degree. For simplicity we write $(i, \mu)$ for each non-
zero connected o.d. $(i, 0, \mu)$ .

DEFINITION 2.6.
2.61. For each $ i\prec\xi$ , we define a binary relation $\ll i$ on the set of $0.d^{\prime}s$ by

$\mu\ll i\nu$ iff $\mu<j\nu$ holds for every $j$ with $i\preceq j\preceq\xi$ .

2.62. Let $\mu$ be an o.d. and $n$ a natural number. Then an o.d. $\xi(n, \mu)$ is
defined inductively, as follows:

$\xi(0, \mu)$ $:=\mu$ $\xi(n+1, \mu)$ $:=(\xi, \xi(r\iota, \mu))$ .
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The following proposition is easily verified.

PROPOSITION 2.7. For all o.d.’s $\mu,$ $\nu,$
$\theta$ and every $ i\prec\xi$ ,

2.71. if $\mu\ll i\nu$ , then $\xi(n, \mu)\ll i\xi(n, \nu)$ and $\xi(n, \mu\#\theta)\ll i\xi(n, \nu\#\theta)$ .
2.72. if $\mu\ll i\nu$ and $ i\leq\int\prec\xi$ , then $(i, \mu)\ll i(j, \nu)$ .
2.73. if $\mu\# 0\ll 0^{\nu}$ , then $\xi(n, \mu\#\theta)\# 0\ll 0\xi(n, \nu\#\theta)$ and $(i, \mu)\# 0\ll 0(i\nu)$ .

DEFINITION 2.8. Let $\langle P, d\rangle$ be a proof with degree. To each sequent $S$

and each line of an inferench $J$ in $P$, we will assign $0.d^{\prime}s$ in $O(\xi+1,1)$ , denoted
by $O(S;P, d)$ and $O(J;P, d)$ , or simply $O(S)$ and $O(J)$ , inductively ‘from aboved
to below’, as follows:

2.81. Let $S$ be an initial sequent in $P$.
2.81.1. $O(S)=(O, 0)$

if $S$ is an induction axiom.
2.81.2. $O(S)=(\xi, 0)$

if $S$ is a Q-initial sequent.

2.81.3. $O(S)=0$ otherwise.
2.82. Suppose that the $0.d^{\prime}s$ of the upper sequents $\prime_{\vee^{\backslash }}f$ an inference $J$ has been

assigned, and let $J$ be of the form

$\frac{S^{\prime}(S^{\prime\prime})}{S}J$.

The o.d.’s $O(J)$ and $O(S)$ are then determined, as follows:
2.82.1. If $J$ is a weak structural inference or term-replacement, then $O(i)$

is $O(S^{\prime})$

2.82.2. If $J$ is a logical inference with one upper sequent or $Q$ : right, then
$O(J)$ is $O(S^{\prime})\# 0$ .
2.82.3. If $J$ is a cut, $\vee$ : left or $\supset$ : left, then $O(J)$ is $O(S^{\prime})\# O(S^{\prime\prime})$ .
2.82.4. If $J$ is a $\wedge$ : right, then $O(J)$ is $O(S^{\prime})\# O(S^{\prime\prime})\#O$ .
2.82.5. If $J$ is a substitution, then $O(J)$ is $(\xi, O(S^{\prime}))$ .
2.82.6. If $J$ is not a substitution, then $O(S)$ is $\xi(h(S^{\prime})-h(S), O(J))$ .
2.82.7. If $J$ is a substitution, then $O(S)$ is $(d(J), O(J))$ .

And the $0.d$ . $O(P, i)$ of $\langle P, d\rangle$ is defined to be $(\xi, O(S;P, d))$ where
$S$ is the end-sequent of $P$.

MAIN LEMMA. If $\langle P, d\rangle$ is a proof with degree, then we can construct
another proof with degree $\langle P^{\prime}, d^{\prime}\rangle$ such that

$O(P^{\prime}, d^{\prime})\ll oO(P, d)$

hence a fortiori
$O(P^{\prime}, d^{\prime})<oO(P, d)$ .
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From this lemma the consistency of $AI_{\xi}^{-}(\mathfrak{B})$ follows, since the system $O(\xi+$

$1,1)$ with respect to $<_{0}$ is accessible. (cf. Corollary 1.6 and Proposition 2.1.)

$PR\infty F$ of the Main Lemma.
Ml. We substitute $0$ for every free number variable in $P$ except if it is used

as an eigenvariable. Then the resulting figure under the ’same’ degree-assignment,
is also a proof with degree and the $0.d$ . does not change. Here note the remark
after Definition 2.4.

M2. Remember the definition of the end-piece of a proof $P$ ending $with\rightarrow$ .
The end-piece of $P$ consists of the following trunk of proof tree:

i) the end-sequent of $P$ belongs to the end-piece of $P$ ;

ii) if the lower sequent of a structural inference, term-replacement or sub-
stitution belongs to the end-piece of $P$, so do its upper sequents.

Suppose $P$ contains an induction axiom in its end-piece. Then $P^{\prime}$ is defined by
an obvious way. The o.d. decreases.

M3. Suppose $P$ contains an equality axiom, logical initial sequent or weak-
ening in its end-piece. Then the reduction steps are defined as usual $(cf[2$,

p. 26]).

M4. Suppose the end-piece of $P$ contains neither weakening nor initial sequent

other than mathematical or Q-initial one. Then $P$ differs from its end-piece and
contains a suitable cut $J$. Here a suitable cut is a cut in the end-piece of $P$

satisfying:
both of its cut formulae have ancestors which are principal formulae of
i) boundary logical inferences,

or
ii) a boundary $Q$ : right and Q-initial sequent.

Remember that a boundary inference in $P$ is an inference whose lower sequent
belongs to the end-piece of $P$ but not its upper sequents.

Let $D$ be the cut formula of a suitable cut $J$.
M41. $D$ is of the form $Qts$.

Then $t$ is a closed term by Ml. Let $j$ be the value of $t$ . Let $P$ be the following
form:
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$\lambda^{:}$

$\frac{\Gamma_{1}\rightarrow\Delta_{1},\mathfrak{B}(X,Q_{\prec t_{1}},t_{1},s_{1})}{\lambda\# 0}$

$(\xi, 0)$

$\Gamma_{1}\rightarrow\Delta_{1},$ $Qt_{1}s_{1}$ $t_{2}\prec\xi,$ $Qt_{2}s_{2}\rightarrow \mathfrak{B}(V, Q\prec t_{2}t_{2},s_{2})$

$\tau$

:
$\rho^{:}$

$\frac{\Gamma_{2}\rightarrow\Delta_{2},QtsQts,\Pi\rightarrow\Lambda}{\Gamma_{2},\Pi\rightarrow\Delta_{2},\Lambda}$

:
$\nu$

$\Gamma_{3}$ $\rightarrow\Delta_{3}$

$(\xi, \nu)$

:.
$\sigma$

$(\vec{\xi,\sigma})$

where $\Gamma_{3}\rightarrow\Delta_{3}$ is the i-resolvent of $\Gamma_{2},$ $\Pi\rightarrow\Delta_{2},$ $\Lambda,$ $i$ being $d(\mathfrak{B}(X, Q\prec t, t, s))$ .
Remember the definition of the i-resolvent of a sequent $S$ in a proof with

degree $<P,$ $d>$ . The i-resolvent of $S$ is the upper sequent of the uppermost

substitution $J$ under $S$ whose degree $d(J)$ is not greater than $i$, i.e., $d(J\gamma\preceq i$, if
such exists; otherwise, the i-resolvent of $S$ is the end-sequent of $P$.

M41.1 $ J\prec\xi$ .
Let $P^{\prime}$ be the following:

$\lambda^{:}$

$\Gamma_{1}\rightarrow\Delta_{1},$ $\mathfrak{B}(X, Q\prec\iota_{1}, t_{1}, s_{1})$

$\overline{\overline{\Gamma_{1}\rightarrow \mathfrak{B}(X,Q_{\prec t_{1}},t_{1},s_{1}),\Delta_{1},Qt_{1}s_{1}}}$

$\tau^{:,}$ $\rho^{:}$

$\frac{\Gamma_{2}\rightarrow \mathfrak{B}(X,Q\prec\iota,t,s),\Delta_{2}QtsQts,\Pi\rightarrow\Lambda}{\Gamma_{2},\Pi\rightarrow \mathfrak{B}(X,Q\prec\iota,t,s),\Delta_{2}\Lambda}$

$\Gamma_{3}\frac{\theta^{:}}{(\xi,\theta)}\rightarrow\Delta_{3},$

$\mathfrak{Q}(X, Q\prec t, t, s)$

$(i, (\xi, \theta))$

$\Gamma_{3}-\rightarrow\Delta_{3}\mathfrak{B}(V, Q\prec t, t, s)$

$\overline{\overline{t_{2}\prec\xi,Qt_{2}s_{2},\Gamma_{3}\rightarrow\Delta_{3}\mathfrak{B}(V,Q_{\prec t_{2}},t_{2},s_{2})}}$

$\tau$

:
$\rho^{:,}$

$\frac{\Gamma_{2}\rightarrow\Delta_{2},QtsQts,\Pi,\Gamma_{3}\rightarrow\Delta_{3},\Lambda}{\Gamma_{2},\Pi,\Gamma_{3}\rightarrow\Delta_{2},\Delta_{3},\Lambda}$

$\overline{\overline{\Gamma_{2},\Pi,\Gamma_{3}\rightarrow\Delta_{3},\Delta_{2},\Lambda}}$

:
$\Gamma_{3},$ $\Gamma_{3}\rightarrow\Delta_{3},$ $\Delta_{3}$

$\nu^{\prime}$

$\Gamma_{3}\rightarrow\Delta_{3}$

$(\xi, \nu)$

$\sigma^{:,}$

$(\xi, \sigma^{\prime})$
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From $j\succeq i$ we see that $(\xi, \sigma^{\prime})\ll 0(\xi, \sigma)$ as usual (cf. [2, p. 28]).

M41.2 $ j\not\leq\xi$ .
Replace the Q-initial sequent by

$\frac{\frac{t_{2}\prec\xi\rightarrow 0}{}}{t_{2}\prec\xi,Qt_{2}s_{2}\rightarrow \mathfrak{B}(V,Q_{\prec t_{2}},t_{2},s_{2})}$

M42. $D$ is of the form $t_{1}\prec s\wedge Qt_{2}r$ and $t_{1}$ is numequivalent to $t_{2}$ .
Then $t_{1},$ $t_{2}$ and $s$ are closed terms by Ml, and the value of $t_{1}$ equals to that

of $t_{2}$ . Let $i$ and $j$ be the values of $t_{1},$ $s$, respectively. Let $P$ be the following:

: : :
$\frac{\Gamma_{1}\rightarrow\Delta_{1},B_{1}\Gamma_{1}\rightarrow\Delta_{1},B_{2}}{\Gamma_{1}\rightarrow\Delta_{1},B_{1}\wedge B_{2}}$ $\frac{C_{n,1}\Pi\rightarrow\Lambda_{1}}{C_{1}\wedge C_{2},\Pi_{1}\rightarrow\Lambda_{1}}$

$J\frac{\Gamma_{2}\rightarrow\dot{\Delta}_{2}^{:},t_{1}\prec s\wedge Qt_{2}rt_{1}\prec sQt_{2}r,\Pi_{2}\rightarrow\Lambda_{2}:}{\Gamma_{2},\Pi_{2}\rightarrow\Delta_{2},\Lambda_{2}}$

:
$\Phi\rightarrow\Psi$

:

where $\Phi\rightarrow\Psi$ denotes the uppermost sequent below $J$ whose height is less than
that of the upper sequent of $J(n=1,2)$ .

M42.1 $i*j$.
Let $P^{\prime}$ be the following:

:
$\Gamma_{1}\rightarrow\Delta_{1},$ $B_{1}$

$\overline{\overline{\Gamma_{1}\rightarrow B_{1},\Delta_{1},B_{1}\wedge B_{2}}}$

: :
$\Gamma_{2}\rightarrow t_{1}\prec s,$ $\Delta_{2},$ $t_{1}\prec s\wedge Qt_{2}r$ $t_{1}\prec s\wedge Qt_{2}r,$ $\Pi_{2},$ $\rightarrow\Lambda_{2}$

$\overline{\Gamma_{2},\Pi_{2}\rightarrow t_{1}\prec s,\Delta_{2},\Lambda_{2}}$

$\overline{\overline{\Gamma_{2},\Pi_{2}\rightarrow\Delta_{2},\Lambda_{2},t_{1}\prec s}}t_{1}\prec s\rightarrow$

$\overline{\Gamma_{2},\Pi_{2}\rightarrow\Delta_{2},\Lambda_{z}}$

:

By Proposition 2.3, the o.d. decreases.
M42.2 $i\prec j$.

M42.21 $n=2$ .
Let $P^{\prime}$ be the following:
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:. .:
$\Gamma_{1}\rightarrow\Delta_{1},$ $B_{2}$ $C_{2},$ $\Pi_{1}\rightarrow\Lambda_{1}$

$\overline{\overline{\Gamma_{1}\rightarrow B_{2},\Delta_{1}B_{1}\wedge B_{2}}}$ $\overline{\overline{C_{1}\wedge C_{2},7_{1},C_{2}\rightarrow\Lambda_{1}}}$

$\frac{\Gamma_{2}\rightarrow Qt_{2}r,\Delta_{2},t_{1}\prec s\wedge Qt_{2}rt_{1}\prec s\wedge Qt_{2}r,\Pi_{2}\rightarrow\Lambda_{2}::}{I_{2}^{\gamma},\Pi_{2}\rightarrow Qt_{2}r,\Delta_{2},\Lambda_{2}}\frac{\Gamma_{2}\rightarrow\Delta_{2},t_{1}\prec s\wedge Qt_{2}rt_{1}\prec s\wedge Qt_{2}r,\Pi_{2},Qt_{2}r\rightarrow\Lambda_{2}::}{\Gamma_{2}\Pi_{2},Qt_{2}r\rightarrow\Delta_{2},\Lambda_{2}}$

: :
$\Phi\rightarrow Qt_{2}r,$ $\Psi$ $\Phi,$ $ Qt_{2}r\rightarrow\Psi$

$\frac{\overline{\overline\Phi\rightarrow\Psi,Qt_{2}r}\overline{\overline{Qt_{2}r,\Phi\rightarrow\Psi}}}{\Phi,\Phi\rightarrow\Psi,\Psi}$

$\overline{\overline{\Phi\rightarrow\Psi}}$

:.
We assign the same degree as the corresponding substitution in $P$ to every sub-
stitution in $P^{\prime}$ . To see that $<P^{\prime}$ , $d’>$ is a proof with degree, note that if $ j\prec\xi$,

then

$d(Qt_{2}r)=i\oplus 1\prec j=d(t_{1}\prec s\wedge Qt_{2}r)$ .

We see that the o.d. decreases by the usual calculation.
M42.22 $n=1$ .
The case is treated in the same way as M42.21 but simpler.

M43. $D$ is of the from $B\wedge C$ but not the case in M42.
M44. $D$ is one of the forms 7 $B,$ $BC$ and $B\supset C$.
M45. $D$ is one of the forms $\forall xB$ and $\exists xB$ .

These cases M43-45 are treated as usual. In M45, note the remark after Defini-
tion 2.4.

This completes a proof of Main Lemma.
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