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1. Introduction.

In [3], M. Ito and K. Tamano introduced the notion of almost local finite-
ness and the class of all spaces with a $\sigma$ -almost locally finite base. Hereafter,
$\sigma- d\mathcal{L}\mathcal{F}$ denotes this class and we call a space of $\sigma-\llcorner A\mathcal{L}\mathcal{F}$ a $\sigma- ALF$-space. $\sigma- d\mathcal{L}\mathcal{F}$

is countably productive, hereditary and the closed image of a $\sigma- ALF$-space is $M_{\iota}$

(see [3]). But it is not known whether there exists an $M_{1}$-space which is not a
$\sigma- ALF$-space. If $M_{1}$-spaces are $\sigma- ALF$-spaces, Ceder’s long-standing unsolved
question will be affirmatively answered; that is, every stratifiable space is $M_{1}$ .

In this paper, we shall prove that a $\sigma- ALF$-space $X$ can be imbedded in a
$\sigma- ALF$-space $Z(X)$ as a closed subspace in such a way that $X$ is an $AR(\sigma- \mathcal{A}\mathcal{L}\mathcal{F})$

(resp. $ANR(\sigma-\llcorner fl\mathcal{L}\mathcal{F})$ ) if and only if $X$ is a retract (resp. neighborhood retract) of
$Z(X)$ . Moreover, by using this theorem we shall prove that a space is an
$AR(\sigma-\llcorner A\mathcal{L}\mathcal{F})$ (resp. $ANR(\sigma- A\mathcal{L}\mathcal{F})$ ) if and only if it is an $AE(\sigma- A\mathcal{L}\mathcal{F})$ (resp.

$ANE(\sigma-\llcorner t\mathcal{L}\mathcal{F}))$ . In proofs of these theorems, the construction of $Z(X)$ , which
is constructed by R. Cauty [1], plays an important role. For the analogous

results in the class of stratifiable spaces or $M_{1}$-spaces, see [1] or [4], respectively.
Throughout this paper, all spaces are assumed to be Hausdorff topological

spaces and all maps to be continuous. $N$ denotes the set of all natural numbers.
Let $\mathcal{Q}$ be a class of spaces. For the definitions of $AR(\mathcal{Q}),$ $ANR(Q),$ $AE(\mathcal{Q})$ and
$ANE(\mathcal{Q})$ , see [2].

2. Auxiliary lemma.

For the definitions of uniformly approaching anti-cover and D-space, see [6].

The following lemma essentially proved in the proof of [5, Lemma 3.3].

LEMMA 2.1. Let $X$ be a D-space, $F$ a closed subset of $X$ and $f$ a map from
$F$ into a space Y. Let $Y$ also denote the natural imbedding of $Y$ in the adjunction
space $X\bigcup_{f}Y=Z$ . If $cU=\{U_{\alpha} : \alpha\in A\}$ is an almost locally finite open family in
$Y$, then for each $\alpha\in A$ there is a family $\{U_{\beta}^{\prime} : \beta\in B_{\alpha}\}$ of open subsets in $Z$ satis-

Received Apri119, 1983



318 Takuo MIWA

fying the following three conditions:
(C1) $qj^{\prime}=\{U_{\beta}^{\prime} : \beta\in B_{\alpha}, \alpha\in A\}$ is almost locally finite at each point of $Z$,
(C2) for each $\beta\in B_{\alpha},$ $U_{\beta}^{\prime}\cap Y=U_{\alpha}$ , and for every open subset $V$ in $Z$ with

$V\cap Y=U_{\alpha}$ there is $\beta\in B_{\alpha}$ such that $U_{\alpha}\subset U_{\beta}^{\prime}\subset V$ , and
(C3) for every open subset $W$ in $Y$, there is an open subset $W^{\prime}$ of $Z$ such that

$W^{\prime}\cap Y=W$ and $ W^{\prime}\cap U_{\beta}^{\prime}=\emptyset$ whenever $\beta\in B_{\alpha}$ and $ W\cap U_{\alpha}=\emptyset$ .

PROOF. Let $p$ be the projection from the free union $X\cup Y$ to $Z$ . Since $X$

is monotonically normal, let $G$ be a monotone normality operator for $X$ satisfying

the property $ G(H, K)\cap G(K, H)=\emptyset$ for a disjoint closed pair $(H, K)$ . Since $X$ is
a D-space, $F$ has a uniformly approaching anti-cover $\mathcal{V}=\{V_{\lambda} : \lambda\in\Lambda\}$ in $X$ such
that $\mathcal{V}$ is locally finite in $X-F$. For each $U_{\alpha}\in qJ$ , let $U_{\alpha}^{\prime}=\cup\{G(x, F-p^{-1}(U_{\alpha}))$ :
$x\in p^{-1}(U_{\alpha})\}$ . Then $U_{\alpha}^{\prime}$ is obviously open in $X$. For each $\alpha\in A$ , let $B_{\alpha}=$

{ $\gamma(\alpha)\subset\Lambda$ : $p^{-1}(U_{\gamma(\alpha)}^{\prime})$ is open in $U_{a}^{\prime}$ }, where $U_{\gamma(\alpha)}^{\prime}=U_{\alpha}\cup p(\cup\{V_{\lambda} : \lambda\in\gamma(\alpha)\})$ . Let
$B=\cup\{B_{a} : \alpha\in A\}$ , and $qJ^{\prime}=\{U_{\beta}^{\prime} : \beta\in B\}$ . Then it is easy to see that the condi-
tions (C2) and (C3) are satisfied by $V^{\prime}$ .

Finally to prove (C1), first we consider the case $x\in Z-Y$ . In this case, it
is easily verified by the local finiteness of $\mathcal{V}$ in $X-F$. Next, we consider the
case $x\in Y$ . Then there exist an open neighborhood $V$ of $x$ in $Y$ and open finite
subsets $\{H_{1}, \cdots, H_{n}\}$ of $Y$ such that

$qj|V=\{U\cap V:U\in q;\}\subset\{H_{i}\cap W:i=1,$ $\cdots,$ $n$

and $W$ is a neighborhood of $x$ in $Y$ }.

Without loss of generality, we assume that

$ H_{i}\supset\cup$ { $U_{\alpha}\in v:U_{a}\cap V=H_{i}\cap W$ for some neighborhood $W$ of $x$ }.

Let $V^{\prime}=V\cup p(\cup\{G(y, F-p^{-1}(V)):y\in p^{-1}(V)\cap X\})$ and

$H_{i}^{\prime}=H_{i}\cup p(\cup\{G(y, F-p^{-1}(H_{i})):y\in p^{-1}(H_{i})\cap X\})$

for each $i=1,$ $\cdots,$ $n$ . Then it is easy to see that $V^{\prime}$ is a neighborhood of $x$ in
$Z$ and

(
$ U^{\prime}|V^{\prime}\subset$ { $H_{i}^{\prime}\cap W:i=1,$

$\cdots,$ $n$ and $W$ is a neighborhood of $x$ in $Z$ }.

Thus $qj^{\prime}$ is almost locally finite at $x$ . This completes the proof.

3. Main theorems.

CONSTRUCTION 3.1. Let $X$ be a space. $M(X)$ denotes the full simplicial
complex which has all points of $X$ as the set of vertices. Then there is a
canonical bijection $i$ from the O-skeleton $M^{0}$ of $M(X)$ onto $X$. Let $Z^{\prime}=M(X)\bigcup_{i}X$
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be the adjunction ,space and $p^{\prime}$ : $M(X)\cup X\rightarrow Z^{\prime}$ the projection. By the aid of $p^{\prime}$ ,
we identify $X$ with $p^{\prime}(X)\subset Z^{\prime}$ . Since the restriction of $p^{\prime}$ to $M(X)$ is a bijection
from $M(X)$ onto $Z^{\prime}$ , by the abuse of language, a simplex $\sigma$ of $M(X)$ is said to
be contained in a subset $U$ of $Z^{\prime}$ if $p^{\prime}(\sigma)$ is contained in U. $Z(X)$ denotes the
space such that $Z^{\prime}$ is the underlying set of $Z(X)$ and the topology of $Z(X)$ has
a base which consists of a collection of sets $U$ , which is open in $Z^{\prime}$ , satisfying
the following condition:

(C) If $\sigma$ is a simplex of $M(X)$ such that all vertices of $\sigma$ are contained in
$U\cap X$, then $\sigma$ is contained in $U$ .

Let $p:M(X)\cup X\rightarrow Z(X)$ be the projection. Then $p$ is obviously continuous.
Let $M^{n}$ be the n-skeleton of $M(X)$ and $Z^{n}=p(M^{n}\cup X)$ .

LEMMA 3.2. If $X$ is a $\sigma- ALF$-space, then $Z(X)$ is also a $\sigma- ALF$-space.

PROOF. For each $n\in N$, let $Y$ be the free union of all $(n+1)$-simplexes of
$M(X),$ $F$ the boundary of $Y$ and $f:F\rightarrow Z^{n}$ the map defined by $f(x)=p(x)$ for
$x\in F$. Then the set $Y\bigcup_{f}Z^{n}$ is equal to the set $Z^{n+1}$ . Let $\{U_{\alpha} : \alpha\in A\}$ be an
almost locally finite open family in $Z^{n}$ . Since $Y$ is a metric space, $Y$ is a
D-space. Therefore the technique of proof of Lemma 2.1 yields that, for each
$\alpha\in A$ , there is a family $\{U_{\beta}^{\prime} : \beta\in B_{\alpha}\}$ of open subsets in $Z^{n+1}$ satisfying $(C1)-(G)$ .
(Note that this proof is slightly different from that of Lemma 2.1; $i.e$ . if $\sigma$ is
$(n+1)$-simplex and $U_{\alpha}$ contains all vertices of $\sigma$ , then $\sigma$ is contained in $U_{\beta}^{\prime}$ ,
$\beta\in B_{\alpha}.)$

Now, let $qj_{0}=\{U(\alpha_{0});\alpha_{0}\in A\}$ be an almost locally finite open family in
$Z^{0}(=X)$ . Then for fixed point $x\in Z^{0}$ there exist an open neighborhood $V_{0}$ of
$x$ in $Z^{0}$ and open subsets $\{H_{1}(0), \cdots, H_{n}(0)\}$ of $Z^{0}$ such that

$ V_{0}|V_{0}\subset$ { $H_{i}(0)\cap W:i=1,$ $\cdots,$ $n$ and $W$ is a neighborhood of $x$ in $Z^{0}$ }.

From the preceding paragraph, we get that every $U(\alpha_{0})$ can be extended to open
subsets $\{U(\alpha_{0}, \alpha_{1});\alpha_{1}\in A(\alpha_{0})\}$ in $Z^{1}$ in such a way that the family

$V_{1}=\{U(\alpha_{0}, \alpha_{1}):\alpha_{0}\in A, \alpha_{1}\in A(\alpha_{0})\}$

satisfies $(C1)-(C3)$ . In particular, we may assume that the method of extensions
is the same one of Lemma 2.1. Therefore there exist an open neighborhood $V_{1}$

of $x$ in $Z^{1}$ and open subsets $\{H_{1}(1), \cdots, H_{n}(1)\}$ of $Z^{1}$ such that

$ cU_{1}|V_{1}\subset$ { $H_{i}(1)\cap W:i=1,$ $\cdots$ , $n$ and $W$ is a neighborhood of $x$ in $Z^{1}$ },

$V_{1}\cap Z^{0}=V_{0}$ and $H_{i}(1)\cap Z^{0}=H_{i}(0)$ for $i=1,$ $\cdots$ , $n$ . Repeating this process we get

for each $k\in N$ an almost locally finite open family
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$ql_{k}=\{U(\alpha_{0}, \alpha_{1}, \cdots, \alpha_{k}):\alpha_{0}\in A, \alpha_{1}\in A(\alpha_{0}), \cdots, \alpha_{k}\in A(\alpha_{0*}\cdots, \alpha_{k-1})\}$

in $Z^{k}$ , an open neighborhood $V_{k}$ of $x$ in $Z^{k}$ and open subsets $\{H_{1}(k), \cdots, H_{n}(k)\}$

of $Z^{k}$ such that

$ V_{k}|V_{k}\subset$ { $H_{i}(k)\cap W:i=1,$ $\cdots$ , $n$ and $W$ is a neighborhood of $x$ in $Z^{k}$ },

$V_{k}\cap Z^{k-1}=V_{k-1}$ and $H_{i}(k)\cap Z^{k-1}=H_{i}(k-1)$ for $i=1,$ $\cdots,$ $n$ . Let

$\Sigma=\{(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots):\alpha_{0}\in A, \alpha_{1}\in A(\alpha_{0}), \alpha_{2}\in A(\alpha_{0}, \alpha_{1}), \cdots\}$ .
For each $(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots)\in\Sigma$, let

$U(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots)=\cup\{U(\alpha_{0}, \alpha_{1}, \cdots, \alpha_{k}):k\in N\}$ .
Then $U(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots)$ is an open set of $Z(X)$ , because for each $k\in N$,

$U(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots)\cap Z^{k}=U(\alpha_{0}, \alpha_{1}, \cdots, \alpha_{k})$

is open in $Z^{k}$ and $U(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots)$ satisfies (C) by the construction of $U(\alpha_{0},$ $\alpha_{1}$ ,
$\ldots$

$\alpha_{k}$ ). Next, we claim that

$v=\{U(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots):(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots)\in\Sigma\}$

is almost locally finite in $Z(X)$ . Let $V=\cup\{V_{k} : k=0,1,2, \cdots\}$ and

$H_{i}=\cup\{H_{i}(k):k=0,1,2, \cdots\}$ for $i=1,$ $\cdots,$ $n$ .
Then it is easily verified that $V$ is an open neighborhood of $x$ in $Z(X)$ and $H_{i}$

open in $Z(X)$ satisfying

$\subset U|V\subset$ { $H_{i}\cap W:i=1,$ $\cdots,$ $n$ and $W$ is a neighborhood of $x$ in $Z(X)$ }.

Thus $\epsilon U$ is almost locally finite at $x\in Z^{0}$ . By the same method, at each point
$y\in Z^{k}$ for any $k\in N,$ $cU$ is almost locally finite.

Finally, we shall show that $Z(X)$ has a $\sigma$ -almost locally finite base. Let
$\{V_{n}\}$ is a $\sigma$ -almost locally finite base for $Z^{0}$ . Then it is easily seen that the
extensions $\{q1_{n}^{\prime}\}$ of $\{^{c}U_{n}\}$ to $Z(X)$ , by the same method above, is a $\sigma$ -almost
locally finite local base at each point of $Z^{0}$ . Furthermore, since $M(X)$ has a $\sigma-$

almost locally finite base by [5, Theorem 4.1] and the open subspace $Z(X)-Z^{0}$

is homeomorphic to an open subspace of $M(X)$ , there is a $\sigma$ -almost locally flnite
(in $Z(X)$ ) local base $\{\mathcal{V}_{n}\}$ at each point of $Z(X)-Z^{0}$ . Thus $\{L_{n}^{7^{\prime}}\}\cup\{\mathcal{V}_{n}\}$ is a
$\sigma$ -almost locally finite base for $Z(X)$ . This completes the proof.

The following lemma was proved in [1, Lemma 1.2].

LEMMA 3.3. Let $X$ be a space. If $Y$ is a stratifiable space, $A$ a closed subset

of $Y$ and $f:A\rightarrow X$ a map, then there is a map $F:Y\rightarrow Z(X)$ with $F|A=f$ .

The following theorem is an immediate consequence of Lemma 3.2 and 3.3.
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THEOREM 3.4. A $\sigma- ALF$-space $X$ is an $AR(\sigma- A\mathcal{L}\mathcal{F})$ (resp. $ANR(\sigma- \mathcal{A}\mathcal{L}\mathcal{F})$ )

if and only if $X$ is a retract (resp. neighborhood retract) of $Z(X)$ .

The following theorem is a direct consequence of Theorem 3.4 and Lemma 3.3.

THEOREM 3.5. A space is an $AR(\sigma- A\mathcal{L}\mathcal{F})$ (resp. $ANR(\sigma-\llcorner A\mathcal{L}\mathcal{F})$ ) if and only
if it is an $AE(\sigma-\llcorner A\mathcal{L}\mathcal{F})$ (resp. $ANE(\sigma- d\mathcal{L}\mathcal{F})$).

REMARK 3.6. The analogous facts of [4, Section 4] can be proved by the
same method in [4].
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