RETRACTION OF SPACES WITH A σ-ALMOST LOCALLY FINITE BASE

By

Takuo MIWA

1. Introduction.

In [3], M. Itō and K. Tamano introduced the notion of almost local finiteness and the class of all spaces with a σ -almost locally finite base. Hereafter, σ - \mathcal{ALF} denotes this class and we call a space of σ - \mathcal{ALF} a σ -ALF-space. σ - \mathcal{ALF} is countably productive, hereditary and the closed image of a σ -ALF-space is M_1 (see [3]). But it is not known whether there exists an M_1 -space which is not a σ -ALF-space. If M_1 -spaces are σ -ALF-spaces, Ceder's long-standing unsolved question will be affirmatively answered; that is, every stratifiable space is M_1 .

In this paper, we shall prove that a σ -ALF-space X can be imbedded in a σ -ALF-space Z(X) as a closed subspace in such a way that X is an $AR(\sigma - \mathcal{A} \mathcal{L} \mathcal{F})$ (resp. $ANR(\sigma - \mathcal{A} \mathcal{L} \mathcal{F})$) if and only if X is a retract (resp. neighborhood retract) of Z(X). Moreover, by using this theorem we shall prove that a space is an $AR(\sigma - \mathcal{A} \mathcal{L} \mathcal{F})$ (resp. $ANR(\sigma - \mathcal{A} \mathcal{L} \mathcal{F})$) if and only if it is an $AE(\sigma - \mathcal{A} \mathcal{L} \mathcal{F})$ (resp. $ANE(\sigma - \mathcal{A} \mathcal{L} \mathcal{F})$). In proofs of these theorems, the construction of Z(X), which is constructed by R. Cauty [1], plays an important role. For the analogous results in the class of stratifiable spaces or M_1 -spaces, see [1] or [4], respectively.

Throughout this paper, all spaces are assumed to be Hausdorff topological spaces and all maps to be continuous. N denotes the set of all natural numbers. Let Q be a class of spaces. For the definitions of AR(Q), ANR(Q), AE(Q) and ANE(Q), see [2].

2. Auxiliary lemma.

For the definitions of uniformly approaching anti-cover and D-space, see [6]. The following lemma essentially proved in the proof of [5, Lemma 3.3].

LEMMA 2.1. Let X be a D-space, F a closed subset of X and f a map from F into a space Y. Let Y also denote the natural imbedding of Y in the adjunction space $X \bigcup_f Y = Z$. If $Y = \{U_\alpha : \alpha \in A\}$ is an almost locally finite open family in Y, then for each $\alpha \in A$ there is a family $\{U'_\beta : \beta \in B_\alpha\}$ of open subsets in Z satis-

fying the following three conditions:

- (C1) $U' = \{U'_{\beta} : \beta \in B_{\alpha}, \alpha \in A\}$ is almost locally finite at each point of Z,
- (C2) for each $\beta \in B_{\alpha}$, $U'_{\beta} \cap Y = U_{\alpha}$, and for every open subset V in Z with $V \cap Y = U_{\alpha}$ there is $\beta \in B_{\alpha}$ such that $U_{\alpha} \subset U'_{\beta} \subset V$, and
- (C3) for every open subset W in Y, there is an open subset W' of Z such that $W' \cap Y = W$ and $W' \cap U'_{\beta} = \emptyset$ whenever $\beta \in B_{\alpha}$ and $W \cap U_{\alpha} = \emptyset$.

PROOF. Let p be the projection from the free union $X \cup Y$ to Z. Since X is monotonically normal, let G be a monotone normality operator for X satisfying the property $G(H, K) \cap G(K, H) = \emptyset$ for a disjoint closed pair (H, K). Since X is a D-space, F has a uniformly approaching anti-cover $\mathcal{CV} = \{V_{\lambda} : \lambda \in \Lambda\}$ in X such that \mathcal{CV} is locally finite in X - F. For each $U_{\alpha} \in \mathcal{U}$, let $U'_{\alpha} = \bigcup \{G(x, F - p^{-1}(U_{\alpha})) : x \in p^{-1}(U_{\alpha})\}$. Then U'_{α} is obviously open in X. For each $\alpha \in A$, let $B_{\alpha} = \{\gamma(\alpha) \subset \Lambda : p^{-1}(U'_{\gamma(\alpha)}) \text{ is open in } U'_{\alpha}\}$, where $U'_{\gamma(\alpha)} = U_{\alpha} \cup p(\bigcup \{V_{\lambda} : \lambda \in \gamma(\alpha)\})$. Let $B = \bigcup \{B_{\alpha} : \alpha \in A\}$, and $\mathcal{U}' = \{U'_{\beta} : \beta \in B\}$. Then it is easy to see that the conditions (C2) and (C3) are satisfied by \mathcal{U}' .

Finally to prove (C1), first we consider the case $x \in Z - Y$. In this case, it is easily verified by the local finiteness of CV in X-F. Next, we consider the case $x \in Y$. Then there exist an open neighborhood V of x in Y and open finite subsets $\{H_1, \dots, H_n\}$ of Y such that

$$U | V = \{U \cap V : U \in U\} \subset \{H_i \cap W : i=1, \dots, n \}$$

and W is a neighborhood of x in Y}.

Without loss of generality, we assume that

$$H_i \supset \bigcup \{U_\alpha \in \mathcal{U} : U_\alpha \cap V = H_i \cap W \text{ for some neighborhood } W \text{ of } x\}.$$

Let
$$V' = V \cup p(\cup \{G(y, F - p^{-1}(V)): y \in p^{-1}(V) \cap X\})$$
 and

$$H_i' = H_i \cup p(\cup \{G(y, F - p^{-1}(H_i)) : y \in p^{-1}(H_i) \cap X\})$$

for each $i=1, \dots, n$. Then it is easy to see that V' is a neighborhood of x in Z and

$$U'|V'\subset \{H_i'\cap W: i=1,\cdots,n \text{ and } W \text{ is a neighborhood of } x \text{ in } Z\}.$$

Thus U' is almost locally finite at x. This completes the proof.

3. Main theorems.

Construction 3.1. Let X be a space. M(X) denotes the full simplicial complex which has all points of X as the set of vertices. Then there is a canonical bijection i from the 0-skeleton M^0 of M(X) onto X. Let $Z'=M(X)\bigcup_i X$

be the adjunction space and $p': M(X) \cup X \rightarrow Z'$ the projection. By the aid of p', we identify X with $p'(X) \subset Z'$. Since the restriction of p' to M(X) is a bijection from M(X) onto Z', by the abuse of language, a simplex σ of M(X) is said to be contained in a subset U of Z' if $p'(\sigma)$ is contained in U. Z(X) denotes the space such that Z' is the underlying set of Z(X) and the topology of Z(X) has a base which consists of a collection of sets U, which is open in Z', satisfying the following condition:

(C) If σ is a simplex of M(X) such that all vertices of σ are contained in $U \cap X$, then σ is contained in U.

Let $p: M(X) \cup X \rightarrow Z(X)$ be the projection. Then p is obviously continuous. Let M^n be the n-skeleton of M(X) and $Z^n = p(M^n \cup X)$.

LEMMA 3.2. If X is a σ -ALF-space, then Z(X) is also a σ -ALF-space.

PROOF. For each $n \in N$, let Y be the free union of all (n+1)-simplexes of M(X), F the boundary of Y and $f: F \rightarrow Z^n$ the map defined by f(x) = p(x) for $x \in F$. Then the set $Y \cup_f Z^n$ is equal to the set Z^{n+1} . Let $\{U_\alpha : \alpha \in A\}$ be an almost locally finite open family in Z^n . Since Y is a metric space, Y is a D-space. Therefore the technique of proof of Lemma 2.1 yields that, for each $\alpha \in A$, there is a family $\{U'_\beta : \beta \in B_\alpha\}$ of open subsets in Z^{n+1} satisfying (C1)-(C3). (Note that this proof is slightly different from that of Lemma 2.1; i.e. if σ is (n+1)-simplex and U_α contains all vertices of σ , then σ is contained in U'_β , $\beta \in B_\alpha$.)

Now, let $U_0 = \{U(\alpha_0) : \alpha_0 \in A\}$ be an almost locally finite open family in Z^0 (=X). Then for fixed point $x \in Z^0$ there exist an open neighborhood V_0 of x in Z^0 and open subsets $\{H_1(0), \dots, H_n(0)\}$ of Z^0 such that

$$U_0|V_0\subset\{H_i(0)\cap W:i=1,\cdots,n \text{ and } W \text{ is a neighborhood of } x \text{ in } Z^0\}.$$

From the preceding paragraph, we get that every $U(\alpha_0)$ can be extended to open subsets $\{U(\alpha_0, \alpha_1) : \alpha_1 \in A(\alpha_0)\}$ in Z^1 in such a way that the family

$$U_1 = \{U(\alpha_0, \alpha_1) : \alpha_0 \in A, \alpha_1 \in A(\alpha_0)\}$$

satisfies (C1)-(C3). In particular, we may assume that the method of extensions is the same one of Lemma 2.1. Therefore there exist an open neighborhood V_1 of X in Z^1 and open subsets $\{H_1(1), \dots, H_n(1)\}$ of Z^1 such that

$$\mathcal{U}_1|V_1{\subset}\{H_i(1){\cap}W: i{=}1, \cdots, n \text{ and } W \text{ is a neighborhood of } x \text{ in } Z^1\}$$
,

 $V_1 \cap Z^0 = V_0$ and $H_i(1) \cap Z^0 = H_i(0)$ for $i=1, \dots, n$. Repeating this process we get for each $k \in \mathbb{N}$ an almost locally finite open family

$$\mathcal{U}_k = \{U(\alpha_0, \alpha_1, \cdots, \alpha_k) : \alpha_0 \in A, \alpha_1 \in A(\alpha_0), \cdots, \alpha_k \in A(\alpha_{0k} \cdots, \alpha_{k-1})\}$$

in Z^k , an open neighborhood V_k of x in Z^k and open subsets $\{H_1(k), \dots, H_n(k)\}$ of Z^k such that

 $U_k | V_k \subset \{H_i(k) \cap W : i=1, \dots, n \text{ and } W \text{ is a neighborhood of } x \text{ in } Z^k\},$

 $V_k \cap Z^{k-1} = V_{k-1}$ and $H_i(k) \cap Z^{k-1} = H_i(k-1)$ for $i=1, \dots, n$. Let

$$\Sigma = \{(\alpha_0, \alpha_1, \alpha_2, \cdots) : \alpha_0 \in A, \alpha_1 \in A(\alpha_0), \alpha_2 \in A(\alpha_0, \alpha_1), \cdots\}.$$

For each $(\alpha_0, \alpha_1, \alpha_2, \cdots) \in \Sigma$, let

$$U(\alpha_0, \alpha_1, \alpha_2, \cdots) = \bigcup \{U(\alpha_0, \alpha_1, \cdots, \alpha_k) : k \in \mathbb{N}\}.$$

Then $U(\alpha_0, \alpha_1, \alpha_2, \cdots)$ is an open set of Z(X), because for each $k \in \mathbb{N}$,

$$U(\alpha_0, \alpha_1, \alpha_2, \cdots) \cap Z^k = U(\alpha_0, \alpha_1, \cdots, \alpha_k)$$

is open in Z^k and $U(\alpha_0, \alpha_1, \alpha_2, \cdots)$ satisfies (C) by the construction of $U(\alpha_0, \alpha_1, \cdots, \alpha_k)$. Next, we claim that

$$\mathcal{U} = \{U(\alpha_0, \alpha_1, \alpha_2, \cdots) : (\alpha_0, \alpha_1, \alpha_2, \cdots) \in \Sigma\}$$

is almost locally finite in Z(X). Let $V = \bigcup \{V_k : k=0, 1, 2, \dots\}$ and

$$H_i = \bigcup \{H_i(k): k=0, 1, 2, \cdots\}$$
 for $i=1, \cdots, n$.

Then it is easily verified that V is an open neighborhood of x in Z(X) and H_i open in Z(X) satisfying

$$U|V \subset \{H_i \cap W : i=1, \dots, n \text{ and } W \text{ is a neighborhood of } x \text{ in } Z(X)\}.$$

Thus U is almost locally finite at $x \in Z^0$. By the same method, at each point $y \in Z^k$ for any $k \in N$, U is almost locally finite.

Finally, we shall show that Z(X) has a σ -almost locally finite base. Let $\{\mathcal{U}_n\}$ is a σ -almost locally finite base for Z^0 . Then it is easily seen that the extensions $\{\mathcal{U}'_n\}$ of $\{\mathcal{U}_n\}$ to Z(X), by the same method above, is a σ -almost locally finite local base at each point of Z^0 . Furthermore, since M(X) has a σ -almost locally finite base by [5, Theorem 4.1] and the open subspace $Z(X)-Z^0$ is homeomorphic to an open subspace of M(X), there is a σ -almost locally finite (in Z(X)) local base $\{\mathcal{V}_n\}$ at each point of $Z(X)-Z^0$. Thus $\{\mathcal{V}'_n\}\cup\{\mathcal{V}_n\}$ is a σ -almost locally finite base for Z(X). This completes the proof.

The following lemma was proved in [1, Lemma 1.2].

LEMMA 3.3. Let X be a space. If Y is a stratifiable space, A a closed subset of Y and $f: A \rightarrow X$ a map, then there is a map $F: Y \rightarrow Z(X)$ with F|A=f.

The following theorem is an immediate consequence of Lemma 3.2 and 3.3.

THEOREM 3.4. A σ -ALF-space X is an $AR(\sigma - \mathcal{ALF})$ (resp. $ANR(\sigma - \mathcal{ALF})$) if and only if X is a retract (resp. neighborhood retract) of Z(X).

The following theorem is a direct consequence of Theorem 3.4 and Lemma 3.3.

THEOREM 3.5. A space is an $AR(\sigma-\mathcal{ALF})$ (resp. $ANR(\sigma-\mathcal{ALF})$) if and only if it is an $AE(\sigma-\mathcal{ALF})$ (resp. $ANE(\sigma-\mathcal{ALF})$).

REMARK 3.6. The analogous facts of [4, Section 4] can be proved by the same method in [4].

References

- [1] Cauty, R., Rétractions dans les espaces stratifiables, Bull. Soc. Math. France 102 (1974), 129-149.
- [2] Hu, S.T., Theory of retracts, Wayne State Univ. Press, Detroit, 1965.
- [3] Itō, M. and Tamano, K., Spaces whose closed images are M_1 , Proc. Amer. Math. Soc., 87 (1983), 159-163.
- [4] Miwa, T., Retraction of M_1 -spaces, Topology Proceedings, 6 (1981), 351-361.
- [5] Miwa, T., Complexes are spaces with a σ -almost locally finite base, to appear in Pacific J. Math.
- [6] Nagami, K., The equality of dimensions, Fund. Math., 106 (1980), 239-246.

Department of Mathematics Shimane University Matsue, Shimane Japan

