METRIZABILITY OF PIXLEY-ROY HYPERSPACES

By

Hidenori TANAKA

§1. Introduction.

Throughout this paper, all spaces are assumed to be T_1 -spaces. The *Pixley-Roy hyperspace* $\mathscr{F}[X]$ over a space X, defined by C. Pixley and P. Roy in [30], is the set of all non-empty finite subsets of X with the topology generated by the sets of the form $[F, U] = \{G \in \mathscr{F}[X] : F \subset G \subset U\}$, where $F \in \mathscr{F}[X]$ and U is an open subset in X containing F. In [14], it was pointed out that for any space $X, \mathscr{F}[X]$ is a zero-dimensional hereditarily metacompact space.

Generalized notions of metrizability were introduced by several authors. They still retain many of the desirable features of metric spaces (see [1], [11], [16], [21], [26] and [29]).

Our main purpose of this paper is to discuss these notions and to investigate metrizability in Pixley-Roy hyperspaces. More precisely, we shall establish the following theorems.

THEOREM 1.1. For a space X, the following conditions are equivalent.

- (a) $\mathfrak{F}[X]$ is metrizable,
- (b) $\mathcal{F}[X]$ is a Lašnev space,
- (c) $\mathfrak{F}[X]$ is a paracompact perfectly normal quasi-k-space.

THEOREM 1.2. For a space X, the following conditions are equivalent.

- (a) $\mathcal{F}[X]$ is an M_1 -space,
- (b) $\mathfrak{F}[X]$ is a stratifiable space,
- (c) $\mathfrak{F}[X]$ is a paracompact σ -space,
- (d) $\mathfrak{F}[X]$ is a paracompact perfectly normal space.

THEOREM 1.3. For a space X, the following conditions are equivalent.

- (a) $\mathcal{F}[X]$ is metrizable,
- (b) $\mathfrak{F}[X]$ is a paracompact p-space.

Secondly, we study weakly separated spaces and partially separated spaces Received March 10, 1983 in the sense of M.G. Tkačenko [35] and M.G. Bell [4]. Weakly (partially) separated spaces play the fundamental role for the paracompactness of Pixley-Roy hyperspaces (see [4], [7], [31] and [33]). Several results concerning partially separated spaces are given, one of which asserts that every Pixley-Roy hyperspace is the open finite-to-one image of a paracompact Hausdorff space by using the fact that every Pixley-Roy hyperspace is partially separated. This may be of interest in connection with the following H.J.K. Junnila's problem in [22]: Is every metacompact space the pseudo-open compact image of a paracompact Hausdorff space? Furthermore, we also prove that for generalized ordered spaces, semi-stratifiable spaces or locally Čech complete Tychonoff spaces, weak separatedness is equivalent to partial separatedness.

Our undefined terminology follows [10], [15] and [19]. For Pixley-Roy hyperspaces, the reader is referred to [14], [31], [33] and [34].

§2. Proofs of Theorems 1.1 and 1.2.

DEFINITION 2.1. A space X is said to be a quasi-k-space [28] if, given $A \subset X$, A is closed whenever $A \cap K$ is relatively closed in K for every countably compact $K \subset X$.

Since for any space X, $\mathcal{F}[X]$ is hereditarily metacompact (see E.K. van Douwen [14]), $\mathcal{F}[X]$ is a quasi-k-space if and only if $\mathcal{F}[X]$ is a k-space. Closed images of metric spaces were characterized internally by N.S. Lašnev in [23] (and thus, such spaces bear his name) and K. Morita and T. Rishel obtained

LEMMA 2.2 ([27]). A regular space X is a Lašnev space if and only if the following conditions are satisfied:

(a) X is a quasi-k-space,

(b) there is a sequence $\{\mathfrak{E}_n : n \in \mathbb{N}\}$ of hereditarily closure preserving closed covers of X with the properties below:

(i) for any point $x \in X$, any sequence $\{A_n : n \in N\}$ of sets, such that $A_n \in \mathfrak{E}_n$ and $x \in A_n$ for all $n \in N$, is either hereditarily closure preserving or forms a network at x.

(ii) for any point $x \in X$, there is a network $\{A_n : n \in N\}$ at x such that $A_n \in \mathfrak{G}_n$ for $n \in N$.

A space is said to be σ -discrete if it is the union of countably many closed discrete subspaces.

LEMMA 2.3 (Lutzer [25]). For a space X, the following conditions are equivalent.

- (a) $\mathcal{F}[X]$ is perfect,
- (b) $\mathcal{F}[X]$ is semi-stratifiable,
- (c) $\mathcal{F}[X]$ is a σ -space,
- (d) $\mathcal{F}[X]$ is σ -discrete,
- (e) every point of X is a G_{δ} -point in X.

In order to prove the implication $(c)\rightarrow(b)$ of Theorem 1.1, we show

LEMMA 2.4. If X is σ -discrete and paracompact Hausdorff, then there is a sequence $\{\mathfrak{U}_n : n \in N\}$ of open covers of pairwise disjoint open subsets of X satisfying the following condition:

(*) $\begin{cases} if for each \ x \in X and \ n \in N, \ A_n is the unique element \\ of \ \mathfrak{U}_n such that \ x \in A_n, then \ \{A_n : n \in N\} is a \\ hereditarily closure preserving closed collection of X. \end{cases}$

PROOF. Let $X = \bigcup \{X_n : n \in N\}$, where each X_n is a closed discrete subspace of X. We may assume $X_n \cap X_m = \emptyset$ for $n, m \in N$ and $n \neq m$. Since X is a zerodimensional paracompact Hausdorff space, there is a discrete collection $\mathfrak{U}'_1 = \{U_1(x) : x \in X_1\}$ of open-and-closed subsets of X such that $x \in U_1(x)$ for each $x \in X_1$. Then $U_1 = X - \bigcup \{U(x) : x \in X_1\}$ is an open-and-closed subset of X. Let $\mathfrak{U}_1 = \mathfrak{U}'_1 \cup \{U_1\}$. Inductively, we obtain a sequence $\{\mathfrak{U}_n : n \in N\}$ of open covers of pairwise disjoint open subsets of X such that :

(1) for $n \in N$ and $x \in \bigcup \{X_i : i \leq n\}$, there is an element $U_n(x)$ of \mathfrak{U}_n such that $x \in U_n(x)$ and if $x, y \in \bigcup \{X_i : i \leq n\}$ and $x \neq y$, then $U_n(x) \cap U_n(y) = \emptyset$.

(2) each \mathfrak{U}_{n+1} is a refinement of \mathfrak{U}_n .

If $x \in X_n$, then, using (1) and (2), $U_m(x) \subset U_n(x)$ for $n \leq m$. Pick an arbitrary element $x \in X$ and let A_n be the unique open subset of \mathfrak{U}_n containing x for each $n \in N$. Since each \mathfrak{U}_n is pairwise disjoint in X, each A_n is an open-and-closed subset of X. Let E_n be a closed subset of X such that $E_n \subset A_n$ for each $n \in N$ and let $y \notin \bigcup \{E_n : n \in N\}$. Then there are $n, m \in N$ such that $x \in X_n$ and $y \in X_m$. Let $s = \max\{n, m\}$. By using (1), (2) and the fact that $A_i = U_i(x)$ for $n \leq i$, we have $U_s(y) \cap (\bigcup \{E_i : s \leq i\}) = \emptyset$. Since $\{E_i : i < s\}$ is a finite collection of closed subsets of X, there is an open neighborhood W of y such that $W \cap (\bigcup \{E_i : i < s\}) = \emptyset$. Thus we have $(U_s(y) \cap W) \cap (\bigcup \{E_i : i \in N\}) = \emptyset$. Hence $\bigcup \{E_i : i \in N\}$ is a closed subset of X. Thus $cl(\bigcup \{E_i : i \in N\}) = \bigcup \{E_i : i \in N\}$. It follows that the collection $\{\mathfrak{U}_n : n \in N\}$ satisfies the condition (*). The proof is completed.

Hidenori TANAKA

LEMMA 2.5. If X is σ -discrete and a paracompact Hausdorff quasi-k-space, then X is a Lašnev space.

PROOF. Let $\{\mathfrak{U}_n : n \in N\}$ be a sequence of open covers of pairwise disjoint open subsets of X constructed in Lemma 2.4 and let $\{X_n : n \in N\}$ be a countable cover of closed discrete subsets of X which were used to construct $\{\mathfrak{U}_n : n \in N\}$. For each $n \in N$, let $\mathfrak{S}_n = \mathfrak{U}_n \cup \{\{x\} : x \in X_n\}$. Then each \mathfrak{S}_n is a hereditarily closure preserving closed cover of X. By Lemma 2.4, the sequence $\{\mathfrak{S}_n : n \in N\}$ satisfies the condition (b) of Lemma 2.2. Thus X is a Lašnev space, which completes the proof.

PROOF OF THEOREM 1.1. The implication $(a)\rightarrow(c)$ is obvious and the implication $(c)\rightarrow(b)$ follows from Lemmas 2.3 and 2.5.

(b) \rightarrow (a). By the well known Morita-Hanai-Stone's theorem, it suffices to prove that $\mathcal{F}[X]$ is first countable. We modify the proof of a theorem in Hyman [20]. Let $f: M \rightarrow \mathcal{F}[X]$ be a closed mapping from a metric space M with a compatible metric d onto $\mathcal{F}[X]$ and let F be a non-isolated point of $\mathcal{F}[X]$. Since $\mathcal{F}[X]$ is a Fréchet space, there is a sequence $\{F_n: n \in N\}$ of points of $\mathcal{F}[X]$ converging to F such that $\{F_n: n \in N\} \subset \mathcal{F}[X] - \{F\}$. Without loss of generality, we may assume that $F \subset F_n$ for each $n \in N$. Let $E = f^{-1}(F)$ and E_n $= f^{-1}(F_n)$ for each $n \in N$. Put

$$U_n = \cup \left\{ S\left(x, \frac{1}{2}d(x, E)\right) \colon x \in E_n \right\}$$

for each $n \in N$, where $S(x, \varepsilon) = \{y \in M : d(x, y) < \varepsilon\}$. Then each $\mathcal{O}_n = \mathcal{F}[X] - f(M - U_n)$ is an open neighborhood of F_n . Then there is an open neighborhood V_n of F_n in X such that $[F_n, V_n] \subset \mathcal{O}_n$ for $n \in N$. Since $F \subset F_n$ for $n \in N$, we have $F \subset V_n$. We shall prove that $\{[F, V_n] : n \in N\}$ is a countable neighborhood base at F in $\mathcal{F}[X]$. To see this, let W be an open neighborhood of F in X and let $G = f^{-1}([F, W])$. Then G is an open neighborhood of E. Put

$$G' = \cup \left\{ S\left(x, \frac{1}{2}d(x, M-G)\right): x \in E \right\}$$

and let $\mathcal{O}' = \mathcal{F}[X] - f(M - G')$. Since \mathcal{O}' is an open neighborhood of F, there is an $n \in N$ such that $F_n \in \mathcal{O}'$. Pick an arbitrary $H \in \mathcal{O}_n$ and let $x \in f^{-1}(H)$. Since $H \in \mathcal{O}_n$, there is an element $y \in E_n$ such that d(x, y) < (1/2)d(y, E). Since $E_n = f^{-1}(F_n) \subset G'$, there is an element $z \in E$ such that d(y, z) < (1/2)d(z, M - G). Thus d(y, E) < (1/2)d(z, M - G). Hence Metrizability of Pixley-Roy hyperspaces

$$d(x, z) \leq d(x, y) + d(y, z)$$

$$< \frac{1}{4} d(z, M-G) + \frac{1}{2} d(z, M-G) = \frac{3}{4} d(z, M-G).$$

Thus $x \in G$ and hence, $f^{-1}(H) \subset G$. Since H is an arbitrary element of \mathcal{O}_n , we have $\mathcal{O}_n \subset [F, W]$. Thus $[F_n, V_n] \subset [F, W]$. It follows that $[F, V_n] \subset [F, W]$. The **J** proof is completed.

LEMMA 2.6 (Przymusiński [31]). For a space X,

(i) the following conditions are equivalent.

(a) $\mathfrak{F}[X]$ is paracompact,

(b) for every non-empty finite subset F of X, one can choose an open neighborhood U(F) so that the inclusions $F \subset U(H)$ and $H \subset U(F)$ imply $F \cap H \neq \emptyset$.

- (ii) the following conditions are equivalent.
 - (a) $\mathcal{F}[X]$ is hereditarily paracompact,

(b) for every non-empty finite subset F of X, one can choose an open neighborhood U(F) so that the inclusions $F \subset U(H)$ and $H \subset U(F)$ imply $F \subset H$ or $H \subset F$.

PROOF OF THEOREM 1.2. The implications $(a) \rightleftharpoons (b) \rightarrow (c) \rightleftharpoons (d)$ follows from Lemma 2.3 and G. Gruenhage [17] or [18].

(c) \rightarrow (b). Assume that $\mathcal{F}[X]$ is a paracompact σ -space. Then $\mathcal{F}[X]$ is hereditarily paracompact. For each $F \in \mathcal{F}[X]$, let U(F) be an open neighborhood of F in X satisfying the condition (b) of Lemma 2.6 (ii). By Lemma 2.3, every point of X is a G_{δ} -point in X. Thus for each $x \in X$, there is a decreasing sequence $\{V_n(x): n \in N\}$ of open neighborhoods of x such that $\cap \{V_n(x): n \in N\} = \{x\}$. Put

$$\mathcal{G}(n, F) = [F, (\cup \{V_n(x) : x \in F\}) \cap U(F)]$$

for each $n \in N$ and $F \in \mathcal{F}[X]$. Thus for each $F \in \mathcal{F}[X]$, a sequence $\{\mathcal{G}(n, F): n \in N\}$ of open neighborhoods of F is given. By Borges [8], it suffices to prove that for every closed subset \mathcal{E} of $\mathcal{F}[X]$, $\mathcal{E} = \bigcap \{cl_{\mathcal{F}[X]}(\bigcup \{\mathcal{G}(n, F): F \in \mathcal{E}\}): n \in N\}$. Let \mathcal{E} be a closed subset of $\mathcal{F}[X]$ and let $F \notin \mathcal{E}$. Then there is an open neighborhood W of F in X such that (1) $[F, W] \cap \mathcal{E} = \emptyset$, and (2) $W \subset U(F)$. Thus for each $E \in \mathcal{E}$, either $F \oplus E$ or $E \oplus W$. It is clear that if $E \in \mathcal{E}$ and $E \oplus W$, then $[F, W] \cap \mathcal{G}(1, E) = \emptyset$. By using the condition (b) of Lemma 2.6 (ii), it follows that if $[F, W] \cap \mathcal{G}(1, E) \neq \emptyset$ for some $E \in \mathcal{E}$, then E is a proper subset of F. Thus $\mathcal{E}' = \{E \in \mathcal{E}:]F, W] \cap \mathcal{G}(1, E) \neq \emptyset$ is finite. Then there is an $n \in N$ such that if $E \in \mathcal{E}'$, then $F - \cup \{V_n(x): x \in E\} \neq \emptyset$. Then $[F, W] \cap (\cup \{\mathcal{G}(n, E): E \in \mathcal{E}\})$

Hidenori TANAKA

= \emptyset . Thus $F \in cl_{\mathcal{F}[X]}(\cup \{\mathcal{G}(n, E) : E \in \mathcal{E}\})$. It follows that $\mathcal{E} = \bigcap \{cl_{\mathcal{F}[X]}(\cup \{\mathcal{G}(n, E) : E \in \mathcal{E}\}): n \in N\}$. The proof is completed.

§3. Proof of Theorem 1.3.

In [9], it was pointed out that if a Tychonoff space X is a p-space, then the following condition is satisfied:

(there is a sequence $\{\mathfrak{U}_n : n \in N\}$ of open covers of X

(*) { such that if $x \in U_n \in \mathfrak{U}_n$ for $n \in N$, then $\cap \{cl U_n : n \in N\}$ is a compact subset of X

LEMMA 3.1. Let X be a space. If $\mathcal{F}[X]$ satisfies the condition (\ddagger), then every point of X is a G_{δ} -point in X. Hence $\mathcal{F}[X]$ is semi-stratifiable.

PROOF. Let $\{\mathfrak{U}_n : n \in N\}$ be a sequence of open covers of $\mathcal{F}[X]$ satisfying the condition (*). Assume that x is not a G_{δ} -point in X and let \mathcal{U}_n be an element of \mathfrak{U}_n containing $\{x\}$ for $n \in N$. Then $\bigcap \{cl_{\mathcal{F}[X]}\mathcal{U}_n : n \in N\}$ is a compact subset of $\mathcal{F}[X]$. For $n \in N$, let V_n be an open neighborhood of x such that:

- (1) $[{x}, V_n] \subset U_n$ for each $n \in N$, and
- (2) $V_{n+1} \subset V_n$ for each $n \in N$.

Then, using (1), $\cap \{ [\{x\}, V_n] : n \in N \} = [\{x\}, \cap \{V_n : n \in N\}]$ is a compact subset of $\mathcal{F}[X]$. Since x is not a G_{δ} -point in $X, \cap \{V_n : n \in N\}$ contains uncountably many points. Let $\{y_n : n \in N\}$ be a countable distinct points of $\cap \{V_n : n \in N\}$ and put

$$\mathcal{E}_n = [\{x, y_1, \cdots, y_n\}, V_n]$$

for each $n \in N$. Using (2), $\{\mathcal{E}_n : n \in N\}$ is a closed collection which satisfies the finite intersection property. Since each \mathcal{E}_n meets $[\{x\}, \cap \{V_n : n \ni N\}], \cap \{\mathcal{E}_n : n \in N\}$ must be non-empty. However, it is clear that $\cap \{\mathcal{E}_n : n \in N\} = \emptyset$, which is a contradiction. Thus every point of X is a G_{δ} -point in X. By Lemma 2.3, $\mathcal{F}[X]$ is semi-stratifiable. The proof is completed.

Since a paracompact Hausdorff space is metrizable if and only if it is a Moore space (see [15]), Theorem 1.3 follows from the next theorem.

THEOREM 3.2. For a space X, the following conditions are equivalent.

- (a) $\mathcal{F}[X]$ is a p-space,
- (b) $\mathfrak{F}[X]$ is a Moore space,
- (c) X is first countable.

PROOF. The equivalence of (b) and (c) was proved by E. K. van Douwen [14] and the implication $(b)\rightarrow(a)$ is well known. The implication $(a)\rightarrow(b)$ immediately follows from Lemma 3.1 and G. Creede [13].

THEOREM 3.3. For a space X, the following conditions are equivalent.

- (a) $\mathcal{F}[X]$ is metrizable,
- (b) $\mathfrak{F}[X]$ is an M-space.

PROOF. Since a metacompact *M*-space is a paracompact *M*-space (=a paracompact p-space), this follows from Theorem 1.3.

For each $n \in N$, let $\mathcal{F}_n[X] = \{F \in \mathcal{F}[X] : |F| \leq n\}$, where |F| stands for the cardinality of F. Notice that for each $n \in N$, $\mathcal{F}_n[X]$ is a closed subspace of $\mathcal{F}[X]$ and, in particular, $\mathcal{F}_1[X]$ is a closed discrete subspace of $\mathcal{F}[X]$.

We consider compact subsets in Pixley-Roy hyperspaces. Let $A(\omega_1)$ be the one-point compactification of a discrete space of cardinality ω_1 , where ω_1 is the first uncountable ordinal and let ∞ be the non-isolated point of $A(\omega_1)$.

THEOREM 3.4. For a space X, we consider the following conditions:

(a) $\mathfrak{F}[X]$ contains an uncountable compact subset,

(b) $\mathcal{F}[X]$ contains a copy of $A(\omega_1)$, and

(c) X contains a copy of $A(\omega_1)$.

Then $(c) \rightarrow (a) \rightleftharpoons (b)$. Furthermore, in case X is Hausdorff, all of the above conditions are equivalent.

PROOF. (b) \rightarrow (a). Obvious.

(c) \rightarrow (b). Assume that X contains a copy of $A(\omega_1)$. We denote it by $A(\omega_1)$, too. Let $\mathcal{A} = \{\{x, \infty\} : x \in A(\omega_1) - \{\infty\}\} \cup \{\infty\}$. Then it is clear that \mathcal{A} is a copy of $A(\omega_1)$.

(a) \rightarrow (b). Let \mathcal{K} be a compact subset of $\mathcal{F}[X]$. Since $\mathcal{F}_1[X]$ is a closed discrete subspace of $\mathcal{F}[X]$, $\mathcal{K}_1 = \mathcal{K} \cap \mathcal{F}_1[X]$ is finite. Let $\mathcal{K}_1 = \{\{x_i\} : i \leq n_1\}$ and let $U(x_i)$ be an open subset in X containing x_i for $i \leq n_1$ such that $\{[\{x_i\}, U(x_i)]: i \leq n_1\}$ is pairwise disjoint in $\mathcal{F}[X]$. Let $\mathcal{K}'_2 = \mathcal{K} - \bigcup \{[\{x_i\}, U(x_i)]: i \leq n_1\}$. Then \mathcal{K}'_2 is a compact subset of $\mathcal{F}[X]$. If $\mathcal{K}_2 = \mathcal{K}'_2 \cap \mathcal{F}_2[X]$, then, since \mathcal{K}_2 is a closed discrete subspace of \mathcal{K}'_2 , \mathcal{K}_2 is finite. Let $\mathcal{K}_2 = \{\{y_i, z_i\}: i \leq n_2\}$ and let $U(y_i, z_i)$ be an open set in X containing $\{y_i, z_i\}$ for each $i \leq n_2$ such that:

(1) $[\{y_i, z_i\}, U(y_i, z_i)] \cap (\cup \{[\{x_j\}, U(x_j)]: j \le n_1\}) = \emptyset$ for each $i \le n_2$, and

(2) {[$\{y_i, z_i\}, U(y_i, z_i)$]: $i \leq n_2$ } is pairwise disjoint in $\mathcal{F}[X]$.

Let $\mathcal{K}'_3 = \mathcal{K}'_2 - \bigcup \{ [\{y_i, z_i\}, U(y_i, z_i)] : i \leq n_2 \}$ and let $\mathcal{K}_3 = \mathcal{K}'_3 \cap \mathcal{F}_3[X]$. Then \mathcal{K}_3 is finite. Since \mathcal{K} is a compact subset of $\mathcal{F}[X]$, this process is finished by

finitely many times. Thus there is a finite subset $\{E_i: i \leq n\}$ of \mathcal{K} and a finite family $\{U_i: i \leq n\}$ of open subsets of X, where each E_i is contained in U_i , such that:

- (3) $\{[E_i, U_i]: i \leq n\}$ covers \mathcal{K} , and
- (4) { $[E_i, U_i]: i \leq n$ } is pairwise disjoint in $\mathcal{F}[X]$.

Let \mathcal{K} be an uncountable compact subset of $\mathcal{F}[X]$. By the above consideration, we may assume that \mathcal{K} is contained in a [E, U], where $E \in \mathcal{K}$ and U is an open neighborhood of E in X. Let |E|=n and for each $m \in N$, let $\mathcal{K}_m = \{G \in \mathcal{K} : |G|=m\}$, where $\mathcal{K}_m = \emptyset$ for $m \in N$ and m < n. Since \mathcal{K} is uncountable, there is an $m \in N$ such that \mathcal{K}_m is uncountable. Let m be the least such a natural number. Then n < m. Since $E \in \mathcal{K}$, we have $\{G \in \mathcal{K} : \mathcal{K}_m \cap [G, U]$ is uncountable $\neq \emptyset$. Let s be the largest of $\{t \in N : \mathcal{K}_m \cap [G, U]$ is uncountable for some $G \in \mathcal{K}_t$ and t < m and let $G = \{x_i : i \leq s\} \in \mathcal{K}_s$ such that $\mathcal{K}_m \cap [G, U]$ is uncountable. Let $\mathcal{I} = \mathcal{K} \cap \mathcal{I}_m[X] \cap [G, U] = \bigcup \{[H, U] : H \in \mathcal{K}_t \text{ and } s < t < m\}$. Then \mathcal{I} is an uncountable compact subset of $\mathcal{I}[X]$. If $\mathcal{I}' = \mathcal{I} - \{G\}$, then it is clear that \mathcal{I} is the one-point compactification of the uncountable discrete space \mathcal{I}' . Thus $\mathcal{I}[X]$ contains a copy of $A(\omega_1)$.

Assume that X is a Hausdorff space and let us show the implication $(b)\rightarrow(c)$. Suppose that $\mathcal{F}[X]$ contains a copy of $A(\omega_1)$. We denote it by $\mathcal{J}=\mathcal{J}'\cup\{G\}$, where \mathcal{J}' is a discrete space of cardinality ω_1 . Let $G=\{x_i:i\leq n\}$ and let $U(x_i)$ be an open neighborhood of x_i for $i\leq n$ such that $\{U(x_i):i\leq n\}$ is pairwise disjoint in X. Since $\mathcal{J}-[G, \cup\{U(x_i):i\leq n\}]$ is finite, without loss of generality, we may assume that $\mathcal{J}\subset[G, \cup\{U(x_i):i\leq n\}]$. For $i\leq n$, let $A_i=\{y\in U(x_i): y\in H$ for some $H\in\mathcal{J}$. Then $x_i\in A_i$ for $i\leq n$. Since $|\mathcal{J}|=\omega_1$, we have $|A_i|=\omega_1$ for some i $(i\leq n)$. Since \mathcal{J} is the one-point compactification of \mathcal{J}' , A_i and $A_i - \{x\}$, where $x\in A_i-\{x_i\}$, are compact. Since X is a Hausdorff space, $A_i-\{x\}$ is closed in A_i for each $x\in A_i-\{x_i\}$. Thus $A_i-\{x_i\}$ is discrete and hence, A_i is a copy of $A(\omega_1)$. The proof is completed.

We cannot omit the condition "X is Hausdorff" in Theorem 3.4.

EXAMPLE 3.5. There is a compact space X for which $\mathcal{F}[X]$ contains an uncountable compact subset, but X does not contain a copy of $A(\omega_1)$.

Let X be a set of cardinality ω_1 . We topologize it as follows: closed subsets of X are \emptyset , X and finite subsets of X. It is clear that X does not contain a copy of $A(\omega_1)$. If $\mathcal{A} = \{\{x, y\} : y \in X - \{x\}\} \cup \{x\}$ for some $x \in X$, then \mathcal{A} is an uncountable compact subset of $\mathcal{F}[X]$.

If X is a set linearly ordered by <, then X with the usual order topology

 $\lambda(<)$ induced by < is said to be a *linearly ordered topological space* (=LOTS). Intervals are denoted in the usual way. For example, we denote $\{x \in X : a \leq x \leq b\}$ by [a, b] for $a, b \in X$ satisfying $a \leq b$. A subset C of a LOTS X is said to be *order-convex* if whenever $a, b \in C$ satisfying $a \leq b$, then $[a, b] \subset C$. If Y is a set linearly ordered by < and τ is a topology on Y such that (1) $\lambda(<) \subset \tau$ and (2) τ has a base consisting of order-convex sets, then $X=(Y, \tau)$ is said to be a generalized ordered space (=GO space) [24] and we often say that the GO space X is constructed on the LOTS Y. Every GO space is known to be a hereditarily collectionwise normal space.

A Hausdorff space X is said to be of pointwise countable type [2] if for each $x \in X$, there is a compact subset K of X containing x such that K has a countable character in X. p-spaces and first countable spaces are of pointwise countable type.

For GO spaces, we obtain

THEOREM 3.6. If X is a GO space, then the following conditions are equivalent.

- (a) $\mathcal{F}[X]$ is a Moore space,
- (b) $\mathfrak{F}[X]$ is of pointwise countable type,
- (c) X is first countable.

PROOF. We shall prove the implication $(b) \rightarrow (c)$. By E.K. van Douwen [14], it suffices to prove that $\mathcal{F}[X]$ is first countable. It is well known that $A(\omega_1)$ is not a GO space. Since every subspace of a GO space is also a GO space, by using Theorem 3.4, every compact subset of $\mathcal{F}[X]$ is countable (hence metrizable). Thus for each $F \in \mathcal{F}[X]$, there is a compact metric space $\mathcal{K}(F)$ containing F such that $\mathcal{K}(F)$ has a countable character in $\mathcal{F}[X]$. Hence $\mathcal{F}[X]$ is first countable. The proof is completed.

By a space of ordinals, we mean a subspace of some ordinal.

THEOREM 3.7. If X is a space of ordinals, then the following conditions are equivalent.

(a) $\mathfrak{F}[X]$ is metrizable,

(b) $\mathfrak{F}[X]$ is of pointwise countable type.

PROOF. (a) \rightarrow (b). Obvious.

(b) \rightarrow (a). In [31] or [33], it was pointed out that if X is a space of ordinals, then $\mathcal{F}[X]$ is paracompact. Thus this follows from Theorem 3.6 and [15, 5.4.1].

The proof is completed.

§4. Partially separated spaces.

DEFINITION 4.1. A space X is said to be weakly separated [35] if there is a reflexive and antisymmetric relation \leq defined on X such that for each $x \in X$, $\{y \in X : y \leq x\}$ is an open set of X. If, in addition, the relation is transitive (i.e. the relation is a partial order of X), then X is said to be *partially separated* [4], [7].

As was seen in [35], a space X is weakly separated if and only if for each $x \in X$, there is an open neighborhood U(x) of x in X such that if $y \in U(x)$ and $x \in U(y)$, then x = y, or equivalently, X has an antisymmetric neighbornet in the sense of H. J. K. Junnila [21]. Similarly partially separated spaces are characterized as follows.

LEMMA 4.2. A space X is partially separated if and only if there is a weak separation $\mathfrak{U} = \{U(x) : x \in X\}$ of X such that if $y \in U(x)$, then $U(y) \subset U(x)$, or equivalently, X has an antisymmetric and transitive neighbornet.

A space X is said to be *scattered* if X has no dense-in-itself subsets. It is well known that X is scattered if and only if for some ordinal α , $X^{(\alpha)} = \emptyset$, where $X^{(\alpha)}$ is the α -th derivative of X. A space X is said to be *locally countable* if every point of X has a neighborhood with cardinality at most ω_0 . σ discrete spaces, scattered spaces and locally countable spaces are known to be partially separated spaces by M.G. Bell [4]. Furthermore,

LEMMA 4.3. For a space X, $\mathcal{F}[X]$ is partially separated.

PROOF. For each $F \in \mathcal{F}[X]$, let $\mathcal{U}(F) = [F, X]$ and let $\mathfrak{U} = \{\mathcal{U}(F) : F \in \mathcal{F}[X]\}$. It is to prove easy that \mathfrak{U} is a partial separation of $\mathcal{F}[X]$. The proof is completed.

As mentioned in the introduction, weakly (partially) separated spaces play the fundamental role for the paracompactness of Pixley-Roy hyperspaces.

LEMMA 4.4 (Bell [4], Bennett, Fleissner and Lutzer [7]). If X is partially separated, then $\mathcal{F}[X]$ is paracompact.

LEMMA 4.5 (Przymusiński [31], Tanaka [33]). For a space X, the following conditions are equivalent.

(a) $\mathcal{F}_{2}[X]$ is paracompact,

(b) X is weakly separated.

Let us define $\mathcal{F}^{1}[X] = \mathcal{F}[X]$ and $\mathcal{F}^{n+1}[X] = \mathcal{F}[\mathcal{F}^{n}[X]]$ for each $n \in \mathbb{N}$. The following result is an immediate consequence of Lemmas 4.3 and 4.4. However, it has already obtained by T. Przymusiński in [31].

LEMMA 4.6. Let $n \ge 2$. For a space X, $\mathcal{F}^n[X]$ is paracompact.

THEOREM 4.7. For a space X, there are a paracompact Hausdorff space Y and an open finite-to-one mapping Φ from Y onto $\mathfrak{F}[X]$.

PROOF. By Lemma 4.6, $\mathcal{F}^{2}[X]$ is a paracompact Hausdorff space. As the space Y, we take $\mathcal{F}^{2}[X]$ and define $\boldsymbol{\Phi}: \mathcal{F}^{2}[X] \to \mathcal{F}[X]$ by $\boldsymbol{\Phi}(\{F_{1}, \dots, F_{n}\}) = F_{1} \cup \dots \cup F_{n}$, where $F_{i} \in \mathcal{F}[X]$ for $i \leq n$. It is clear that the mapping $\boldsymbol{\Phi}$ is finite-to-one. For $\{F_{1}, \dots, F_{n}\} \in \mathcal{F}^{2}[X]$, let $[\{F_{1}, \dots, F_{n}\}, [F_{1}, U_{1}] \cup \dots \cup [F_{n}, U_{n}]]$ be a basic open neighborhood of $\{F_{1}, \dots, F_{n}\}$. Then

 $\Phi([\{F_1, \dots, F_n\}, [F_1, U_1] \cup \dots \cup [F_n, U_n]])$ $= [F_1 \cup \dots \cup F_n, U_1 \cup \dots \cup U_n].$

Thus Φ is an open mapping. It is similar to the above argument that Φ is a continuous mapping. The proof is completed.

COROLLARY 4.8. For a space X, the following conditions are equivalent.

- (a) $\mathfrak{F}[X]$ is a Moore space,
- (b) $\mathfrak{F}[X]$ is the open finite-to-one image of a metric space,
- (c) $\mathfrak{P}[X]$ is contained in MOBI in the sense of A.V. Arhangel'skii [3].
- (d) X is first countable.

RROOF. We shall prove the implications $(a)\rightarrow(b)$ and $(c)\rightarrow(d)$.

(a) \rightarrow (b). If $\mathscr{F}[X]$ is a Moore space, then $\mathscr{F}^2[X]$ is a paracompact Moore space and hence, metrizable. Thus this implication follows from the proof of Theorem 4.7.

(c) \rightarrow (d). If $\mathcal{F}[X]$ is contained in the class MOBI, then $\mathcal{F}[X]$ is first countable. Hence X is first countable. The proof is completed.

REMARK 4.9. In [12], J. Chaber characterized open finite-to-one images of metric spaces as follows: A space X is the open finite-to-one image of a metric space if and only if X is a metacompact developable space having a countable

cover by closed metrizable subspaces.

Next we prove that partial separatedness is preserved by perfect mappings.

THEOREM 4.10. Let $f: X \rightarrow Y$ be a perfect mapping from X onto Y. Then (a) if X is partially separated, then so is Y, and

(b) if Y is partially separated, X is a Hausdorff space and $\mathcal{F}[X]$ is paracompact, then X is partially separated.

PROOF. (a) Let $\mathfrak{U} = \{U(x) : x \in X\}$ be a partial separation of X. For each $F \in \mathfrak{F}[X]$, let $U(F) = \bigcup \{U(x) : x \in F\}$. Then $\mathfrak{U}' = \{U(F) : F \in \mathfrak{F}[X]\}$ satisfies the condition (b) of Lemma 2.6 (i) (for details, see M. G. Bell [4] and H. R. Bennett, W. G. Fleissner and D. J. Lutzer [7]). For each $y \in Y$, let F_y be a finite subset of $f^{-1}(y)$ such that $f^{-1}(y) \subset U(F_y)$. Since \mathfrak{U} is a partial separation of X, for each $y \in Y$, $\bigcup \{U(x) : x \in f^{-1}(y)\} = U(F_y)$. For each $y \in Y$, let $V(y) = Y - f(X - U(F_y))$ and let $\mathfrak{B} = \{V(y) : y \in Y\}$. We shall prove that \mathfrak{B} is a partial separation of Y. To see this, assume that $y \in V(z)$ and $z \in V(y)$ for some $y, z \in Y$. Then $f^{-1}(y) \subset U(F_z)$ and $f^{-1}(z) \subset U(F_y)$. Since \mathfrak{U} is a partial separation of X, $U(F_y) = U(F_z)$. Thus $F_y \cap F_z \neq \emptyset$ and hence, y = z. Thus \mathfrak{B} is a weak separation of Y. Since \mathfrak{U} is a partial separation of Y.

(b) Let $\mathfrak{U} = \{U(y): y \in Y\}$ be a partial separation of Y. By T. Przymusiński [31], every fiber is a scattered subset of X. For $x \in f^{-1}(y)$ and $y \in Y$, if $x \in (f^{-1}(y))^{(\alpha)} - (f^{-1}(y))^{(\alpha+1)}$ for some α , let $V(x) = f^{-1}(V(y)) - ((f^{-1}(y))^{(\alpha)} - \{x\})$. Let $\mathfrak{B} = \{V(x): x \in X\}$. Assume that $x \in V(z)$ and $z \in V(x)$ for some $x, z \in X$. Then $f(x) \in U(f(z))$ and $f(z) \in U(f(x))$. It follows that f(x) = f(z). By the definition of \mathfrak{B} , x = z. Hence \mathfrak{B} is a weak separation of X. Since \mathfrak{U} is a partial separation of Y, it is easy to prove that \mathfrak{B} is transitive. Thus \mathfrak{B} is a partial separation of X. The proof is completed.

EXAMPLE 4.11. We cannot omit the condition " $\mathcal{F}[X]$ is paracompact" in Theorem 4.10 (b).

Let X be a partially separated space and let $f: X \times I \rightarrow X$ be a perfect mapping from $X \times I$ onto X, where I is the closed unit interval. By M.E. Rudin's theorem in [32], $\mathcal{F}[X \times I]$ is not normal. Thus by Lemma 4.4, $X \times I$ is not partially separated.

In [33], the author has shown that for any GO space X, $\mathcal{F}[X]$ is paracom-

pact if and only if X is weakly separated (i.e., $\mathcal{F}_2[X]$ is paracompact by Lemma 4.5) as the affirmative answer to H.R. Bennett's problem in [5]. Furthermore, we obtain the following theorem.

THEOREM 4.12. Let X be a GO space. Then X is partially separated if and only if X is weakly separated.

PROOF. It suffices to prove the "if" part. Let X be a GO space constructed on a LOTS (Y, <). Let $\mathfrak{U} = \{U(x) : x \in X\}$ be a weak separation of X. Without loss of generality, we may assume that each U(x) is order-convex. For each $x \in X$, define a subset V(x) of X as follows: $y \in V(x)$ if and only if there is a finite sequence $\{x_1, \dots, x_n\}$ of points of X such that $x_1 \in U(x)$, $x_{i+1} \in U(x_i)$ for i < n and $y \in U(x_n)$.

We shall prove that the collection $\mathfrak{B} = \{V(x) : x \in X\}$ is a partial separation of X. It suffices to prove that \mathfrak{B} satisfies the following conditions:

- (1) V(x) is an open neighborhood of x for each $x \in X$,
- (2) if $x \in V(y)$ and $y \in V(z)$, then $x \in V(z)$, and
- (3) if $x \in V(y)$ and $y \in V(x)$, then x = y.

For each $x \in X$, we have $U(x) \subset V(x)$. Since \mathfrak{U} is a weak separation of X, \mathfrak{B} satisfies (1). From the definition of \mathfrak{B} , it is clear that \mathfrak{B} satisfies (2). It follows from the following claim that \mathfrak{B} satisfies (3).

CLAIM. Let $\{x_1, \dots, x_n\}$ be a finite sequence of points of X such that $x_{i+1} \in U(x_i)$ for each $i \leq n$, where $x_{n+1} = x_1$. Then $x_1 = \dots = x_n$.

PROOF OF CLAIM. Let us call such a sequence $\{x_1, \dots, x_n\}$ a cycle with length n. We shall prove by induction on the length. If n=1, the claim is obvious. Let n>1 and we have already proven the claim with length < n. Let $\{x_1, \dots, x_n\}$ be a cycle with length n. Then there is an $i \leq n$ such that $x_{i-1} \leq x_i$ and $x_{i+1} \leq x_i$, or $x_{i-1} \geq x_i$ and $x_{i+1} \geq x_i$, where $x_0 = x_n$ and $x_{n+1} = x_1$. We consider the first case only. If $x_{i+1} \leq x_{i-1}$ ($\leq x_i$), then $x_{i-1} \in [x_{i+1}, x_i] \subset U(x_i)$, because $U(x_i)$ is order-convex. Since \mathfrak{U} is a weak separation of X, $x_{i-1} = x_i$ and hence, $x_{i+1} \in U(x_{i-1})$. If $x_{i-1} \leq x_{i+1}$ ($\leq x_i$), then $x_{i+1} \in [x_{i-1}, x_i] \subset U(x_{i-1})$. In either case, we have $x_{i+1} \in U(x_{i-1})$. Hence $\{x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n\}$ is a cycle with length n-1. By the induction hypothesis, $x_1 = \dots = x_{i-1} = x_{i+1} = \dots = x_n$. Moreover $x_i = x_{i+1}$, because $x_i \in U(x_{i-1}) = U(x_{i+1})$ and $x_{i+1} \in U(x_i)$. The proof is completed.

THNOREM 4.13. Let X be a GO space. Then the following conditions are equivalent.

- (a) $\mathfrak{F}[X]$ is paracompact,
- (b) $\mathcal{F}_{2}[X]$ is paracompact,
- (c) X is partially separated.

PROOF. This follows from Lemmas 4.4, 4.5 and Theorem 4.12 immediately.

COROLLARY 4.14. Let X be a GO space. Then the following conditions are equivalent.

- (a) $\mathfrak{F}[X]$ is metrizable,
- (b) $\mathcal{F}_{2}[X]$ is metrizable,
- (c) X is a first countable partially separated space.

PROOF. By D. J. Lutzer [25], $\mathcal{F}_2[X]$ is first countable if and only if X is first countable. Thus this follows from Theorem 4.13.

We furthermore characterize GO spaces constructed on separable LOTS's whose Pixley-Roy hyperspaces are metrizable.

THEOREM 4.15. Let $X=(Y, \tau)$ be a GO space constructed on a separable LOTS (Y, <). Then the following conditions are equivalent.

- (a) $\mathcal{F}[X]$ is metrizable,
- (b) $\mathcal{F}_2[X]$ is metrizable,
- (c) if we define

$$I = \{x \in Y : \{x\} \in \tau\},\$$

$$L = \{x \in Y - I :] \leftarrow, x] \in \tau\},\$$

$$R = \{x \in Y - I : [x, \rightarrow [\in \tau]\},\$$

$$E = Y - (I \cup L \cup R),\$$

then

(i) E is countable,

(ii) R (resp. L) can be written as $R = \bigcup \{R_n : n \in N\}$ (resp. $L = \bigcup \{L_n : n \in N\}$) such that $cl_{\tau}R_n \cap L = \emptyset$ (resp. $cl_{\tau}L_n \cap R = \emptyset$) for each $n \in N$,

(iii) if $x \in E \cap cl_{\tau}R_n$, then for some y < x, $]y, x[\cap R_n = \emptyset, and$

(iv) if $x \in E \cap cl_\tau L_n$, then for some z > x, $]x, z[\cap L_n = \emptyset$.

REMARK 4.16. In [6], H.R. Bennett, W.G. Fleissner and D.J. Lutzer obtained another characterization.

PROOF OF THEOREM 4.15. (a) \rightarrow (b). Obvious. (b) \rightarrow (c). This implication was in fact proved by H. R. Bennet, W. G. Fleissner and D.J. Lutzer in [6].

 $(c) \rightarrow (a)$. By Theorem 4.12, it suffices to prove that X is weakly separated. (Notice that X is first countable.) Since $X = E \cup (\cup \{cl_{\tau}R_n : n \in N\}) \cup (\cup \{cl_{\tau}L_n : n \in N\}) \cup (J, by M.G. Bell [4], it suffices to prove that <math>cl_{\tau}R_n$ and $cl_{\tau}L_n$ are weakly separated for $n \in N$. Fix n and we shall prove that $cl_{\tau}R_n$ is weakly separated. Using (ii), $cl_{\tau}R_n \cap L = \emptyset$. Clearly $cl_{\tau}R_n \cap I = \emptyset$. For each $x \in cl_{\tau}R_n$, define an open neighborhood U(x) of x in X as follows:

(1) if $x \in R \cap cl_{\tau}R_n$, let $U(x) = [x, \rightarrow [.$

(2) if $x \in E \cap cl_{\tau}R_n$, then, using (iii), there is a y < x such that $]y, x[\cap R_n = \emptyset$. Let $U(x) =]y, \rightarrow [$.

Let $\mathfrak{U} = \{U(x) : x \in cl_{\tau}R_n\}$. Then \mathfrak{U} is a weak separation of $cl_{\tau}R_n$. To see this, assume that $y \in U(x)$ and $x \in U(y)$ for some $x, y \in cl_{\tau}R_n$. We devide two cases.

CASE 1. $x \in R \cap cl_{\tau}R_n$. Since $U(x) = [x, \to [$, we have $x \leq y$. If $y \in E \cap cl_{\tau}R_n$, then there is a z < y such that $]z, y[\cap R_n = \emptyset$ and $U(y) =]z, \to [$. Then $]z, y[\cap cl_{\tau}R_n = \emptyset$. Thus it follows that $x \leq z$ and hence, $x \notin U(y)$, which is a contradiction. Thus $y \in R \cap cl_{\tau}R_n$. Hence $y \leq x$. We have x = y.

CASE 2. $x \in E \cap cl_{\tau}R_n$. Then there is a z < x such that $]z, x[\cap R_n = \emptyset$ and $U(x) =]z, \rightarrow [$. Hence $]z, x[\cap cl_{\tau}R_n = \emptyset$. Since $y \in cl_{\tau}R_n$, we have $x \leq y$. If $y \in R \cap cl_{\tau}R_n$, then $x \neq y$ and hence, x < y, which contradicts the fact that $x \in U(y)$. Thus $y \in E \cap cl_{\tau}R_n$. Hence we obtain $y \leq x$ similarly. We have x = y. The proof is completed.

REMARK 4.17. The collection $\mathfrak{U} = \{U(x) : x \in cl_{\tau}R_n\}$ constructed in the proof of Theorem 4.15 is in fact a partial separation of $cl_{\tau}R_n$.

As other classes of spaces for which weak separatedness implies partial separatedness,

THEOREM 4.18. Let X be a semi-stratifiable space. Then the following conditions are equivalent.

- (a) $\mathfrak{F}[X]$ is paracompact,
- (b) $\mathfrak{F}_2[X]$ is paracompact,
- (c) X is σ -discrete,
- (d) X is partially separated.

PROOF. This follows from H. J. K. Junnila [21].

The following results are essentially proved by T. Przymusiński (see $[31, \S 4]$) and thus, the proofs are omitted.

THEOREM 4.19. Let X be a locally Čech complete Tychonoff space. Then the following conditions are equivalent.

- (a) $\mathfrak{F}[X]$ is paracompact,
- (b) $\mathcal{F}[X]$ is normal,
- (c) $\mathfrak{F}_{2}[X]$ is paracompact,
- (d) $\mathcal{F}_{2}[X]$ is normal,
- (e) X is scattered,
- (f) X is partially separated.

THEOREM 4.20. Let X be a compact Hausdorff space. Then the following conditions are equivalent.

- (a) $\mathfrak{F}[X]$ is metrizable,
- (b) $\mathcal{F}_{2}[X]$ is metrizable,
- (c) X is countable,
- (d) X is a first countable partially separated space.

References

- [1] Arhangel'skii, A.V., On a class of spaces containing all metric and all locally bicompact spaces, Soviet Math. Dokl. 4 (1963), 751-754.
- [2] —, Bicompact sets and the topology of spaces, Trans. Moskow Math. Soc. 13 (1965), 1-62.
- [3] —, Mappings and spaces, Russian Math. Surveys 21 (1966), 115-162.
- [4] Bell, M.G., Hyperspaces of finite subsets, Topological Structures II, Math. Centre Tracts 115 (1979), 15-28.
- [5] Bennett, H.R., Pixley-Roy spaces and Heath planes, Topology Proceedings 3 (1978), 313-318.
- [6] —, Fleissner, W.G. and Lutzer, D.J., Metrizability of certain Pixley-Roy hyperspaces, Fund. Math. 110 (1980), 51-61.
- [7] ——, Ultraparacompactness in certain Pixley-Roy hyperspaces, Fund. Math. 111 (1981), 11-18.
- [8] Borges, C. J., On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16.
- [9] Burke, D.K., On *p*-spaces and *w* Δ -spaces, Pacific J. Math. 35 (1970), 105-126.
- [10] and Lutzer, D. J., Recent advances in the theory of generalized metric spaces, Topology, ed. by S. P. Franklin and B. V. S. Thomas, Marcel Dekker, Inc. New York, 1976, 1-70.
- [11] Ceder, J., Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105-125.
- [12] Chaber, J., Open finite-to-one images of metric spaces, Top. and its Appl. 14 (1982), 241-246.
- [13] Creede, G., Concerning semistratifiable spaces, Pacific J. Math. 32 (1972), 47-54.
- [14] van Douwen, E. K., The Pixley-Roy topology on spaces of subsets, Set Theoretical Topology, ed. by G. M. Reed, Academic Press, 1977, 111-134.

314

- [15] Engelking, R., General Topology, Polish Scientific Publishers, 1977.
- [16] Gruenhage, G., Stratifiable spaces are M_2 , Topology Proceedings 1 (1976), 221-226.
- [17] —, Stratifiable σ -discrete spaces are M_1 , Proc. Amer. Math. Soc. 72 (1978), 189-190.
- [18] ——, On the $M_3 \Rightarrow M_1$ Question, Topology Proceedings 5 (1980), 77-104.
- [19] ——, Generalized metric spaces, to appear.
- [20] Hyman, D. M., A note on closed maps and metrizability, Proc. Amer. Math. Soc. 21 (1969), 109-112.
- [21] Junnila, H. J. K., Neighbornets, Pacific J. Math. 76 (1978), 83-108.
- [22] ——, Three covering properties, Surveys in General Topology, ed. by G. M. Reed, Academic Press, 1980, 195-245.
- [23] Lašnev, N.S., Closed images of metric spaces, Soviet Math. Dokl. 7 (1966), 1219-1221.
- [24] Lutzer, D. J., On generalized ordered spaces, Dissertationes Math. 89 (1971).
- [25] ——, Pixley-Roy topology, Topology Proceedings 3 (1978), 139-158.
- [26] Morita, K., Products of normal spaces with metric spaces, Math. Ann. 154 (1964), 365-382.
- [27] and Rishel, T., Closed images of *M*-spaces. II, Proc. Japan Acad. 47 (1971), 1008-1011.
- [28] Nagata, J., Quotient and bi-quotient images of *M*-spaces, Proc. Japan Acad. 45 (1969), 910-912.
- [29] Okuyama, A., Some generalizations of metric spaces, their metrization theorems and product spaces, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, **9** (1967), 236-254.
- [30] Pixley, C. and Roy, P., Uncompletable Moore spaces, Proc. Auburn Univ. Conf. (Auburn, Alabama, 1969), ed. by W.R.R. Transue, 1969, 75-85.
- [31] Przymusiński, T., Normality and paracompactness of Pixley-Roy hyperspaces, to appear in Fund. Math..
- [32] Rudin, M.E., Pixley-Roy and the Souslin line, Proc. Amer. Math. Soc. 74 (1979), 128-134.
- [33] Tanaka, H., Paracompactness of Pixley-Roy hyperspaces. I, Proc. Amer. Math. Soc. 85 (1982), 108-112.
- [34] —, Paracompactness of Pixley-Roy hyperspaces. II, Proc. Amer. Math. Soc. 85 (1982), 113-118.
- [35] Tkačenko, M.G., Chains and cardinals, Soviet Math. Dokl. 19 (1978), 382-385.

Institute of Mathematics

University of Tsukuba

Sakura-mura, Niihari-gun, Ibaraki, 305

Japan