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ORDER OF THE STANDARD ISOMETRIC MINIMAL
IMMERSIONS OF CROSS AS HELICAL

GEODESIC IMMERSIONS

By

Katsuya MASHIMO

0. Introduction.

Let $\phi:M\rightarrow\tilde{M}$ be an isometric immersion of a Riemannian manifold $M$ into
another Riemannian manifold $\tilde{M}$. Let $\gamma$ be an arbitrary geodesic in $M$ para-
metrized by arc-length. If the curve $\phi\circ\gamma$ in $\tilde{M}$ is of rank $d$ and has constant
curvatures $\kappa_{1},$

$\cdots$ , $\kappa_{d-1}$ which are independent of the choise of the geodesic $\gamma$,

then $\phi:M\rightarrow\tilde{M}$ is called a helical geodesic immersion of order $d[7]$ .
The standard isometric minimal immersions of compact rank one symmetric

spaces (CROSS) into spheres, which we will define in \S . 3, are examples of
helical geodesic immersions. In [10] Tsukada calculated the order of the standard
isometric minimal immersions of CROSS as helical geodesic immersions except

the Cayley projective plane. In this paper we calculate the order of the standard
isometric minimal immersions of CROSS in a different manner from the Tsukada’s
one. Namely we prove the following

THEOREM. The k-th standard isometric minimal immersions $\phi_{k}$ of CROSS
into spheres are helical geodesic immersions. And the order of the immersions
are given as follows;

$M$ $|$ order of $\phi_{k}$

$S^{n}$ , $n\geqq 2$ $k$

$CP^{n}$ , $n\geqq 2$ $2k$

$QP^{n}$ , $n\geqq 2$ $2k$

Cay $P^{2}$ $2k$

From Theorems of the author [5], [6], the order of the standard isometric
minimal immersions of CROSS coincide with their degree.
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1. Order of helices in a sphere.

Let $c:I\rightarrow M$ be a curve parametrized by arc-lengrh in a Riemannian manifold
$M$. We assume $that_{\dot{C}}^{-\leftarrow}(t),$ $\nabla_{l}\dot{c}(t),$

$\cdots,$
$\nabla^{(d-1)_{t}}\dot{c}(t)$ are linearly independent on $I$ and

$\dot{c}(t),$ $\nabla_{l}\dot{c}(t),$ $\cdots$ , $\nabla_{t}^{(d)}\dot{c}(t)$ are linearly dependent on $I$ . Then we have the usual
Frenet-Serret’s formula;

$\nabla_{l}\dot{c}(t)=\kappa_{1}(t)Y_{2}(t)$

$\nabla_{l}Y_{2}(t)=-\kappa_{1}(t)\dot{c}(t)+\kappa_{2}(t)Y_{3}(t)$ ,

$\nabla_{t}Y_{d- 1}(t)=-\kappa_{d-2}(t)Y_{d-2}(t)+\kappa_{d- 1}(t)Y_{d}(t)$ ,

$\nabla_{l}Y_{d}(t)=-\kappa_{d-1}(t)Y_{d- 1}(t)$ ,

where $\kappa_{i}$ are positive functions on $I,$ $Y_{i}$ are orthonormal vector fields along the
curve $c$ and $\nabla$ is the Levi-Civita connection of $M$. A curve $c$ is called a helix

of order $d$ , if $\kappa_{i}$ are constants.
Let $S_{1}^{N}$ be the unit sphere in $R^{N+1}$ centered at the origin. Then $f_{0}(t)=c(t)$

$c(0)$ , $f_{1}(t)=c(t)\cdot\dot{c}(0),$ $\cdots$ , $f_{d}(t)=c(t)\cdot Y_{d}(0)$ satisfies the following differntial
equation ([2], p. 177).

(1.1) $\ovalbox{\tt\small REJECT}_{f_{d-1}^{\prime}}^{f^{\prime}}f_{d}^{1}f_{0}\ovalbox{\tt\small REJECT}=\ovalbox{\tt\small REJECT}^{0}1-1\kappa 0_{1}-0^{\kappa_{1}}-\kappa_{2}\kappa_{d-1}0-\kappa_{d-1}0\ovalbox{\tt\small REJECT}$ $f_{d}^{0}f^{d-1}f_{1}f\ovalbox{\tt\small REJECT}$

By a suitable coordinate transformation, a helix in the unit sphere $S_{1}^{N}$ is an
orbit of the one parameter subgroup in $SO(N-\vdash 1)$ generated by the following
vector ([2], p. 177).

(1.2) $\ovalbox{\tt\small REJECT}^{0}1-\kappa 0_{1}^{1}-0^{\kappa_{1}}-\kappa_{2}\kappa_{d-1}0-\kappa_{0}0^{d-1}0$

$00$

$00\ovalbox{\tt\small REJECT}$
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Then the helix is contained in the totally geodesic submanifold $S_{1}^{d}=\{(x_{0},$ $x_{1},$
$\cdots$ ,

$x_{d},$ $0,$ $\cdots$ , $0$) $|\sum_{i}^{a_{=0}}(x_{i})^{2}=1$ } and is not contained in any totally geodesic submani-
fold of $S_{1}^{a_{;}}$

The order of a helix in the unit sphere is characterized by the following

LEMMA 1.1. Let $c:I\rightarrow S_{1}^{N}$ be a helix of order $d$ . Then there exists a
polynomial $P$ of degree $d+1$ such that

(1.3) $P(d/dt)(f_{0})=0$ , $t\in I$ ,

where $f_{0}(t)=c(t)\cdot c(0)$ . For any polynomial of which degree is less that $d+1$

(1.3) does not hold.

PROOF. Let $P(t)$ be the charasteristic polynomial of (1.2). Then $f_{0}(t)$

satisfies (1.3) ([3], p. 161).

We may assume that $N=d,$ $i.e.$ , there does not exists any totally geodesic
submanifold which contains the helix $c$ .

By the differential equation (1.1) we get the following

(1.4) $(d/dt)^{n}f_{0}=a_{n.n}f_{n}+a_{n.n-1}f_{n- 1}+$ $\cdot$ .. $+a_{n.0}f_{0}$ , $1\leqq n\leqq d$ ,

where $a_{n,i},$ $0\leqq i\leqq n$ , are constants and $a_{n.n}\neq 0,1\leqq n\leqq d$ . Let $P=\sum_{j0}^{m_{=}}b_{j}x^{m-j}$,
$1\leqq m\leqq d$ . Now we assume that (1.3) holds for $P$. Then by (1.3) and (1.4) we get

(1.5) $0=c_{m}f_{m}+c_{m-1}f_{m- 1}+\cdots+c_{0}f_{0}$

where $c_{m}=a_{m.m},$ $c_{m-1},$ $\cdots$ , $C_{0}$ are constants. (1.5) implies that $c(t)$ is contained
in the linear subspace which is perpendicular to a non-zero vector $(c_{0},$ $c_{1},$

$\cdots$ ,

$c_{m},$ $0,$
$\cdots,$

$0$), which is a contradiction. So we get the Lemma. Q. E. D.

REMARK 1.2. (i) The above Lemma is also true, if the parameter $t$ is pro-
portional to the arc-length.
(ii) The polynomial with the smallest degree for which (1.3) holds is unique up

to constant factor.

2. Jaccbi polynomials and their finite cosine expansion.

Let $p,$ $q$ be real numbers which are greater than $-1$ . Then for each non-
negative integer $k$ Jacobi polynomial $P_{k}^{(p.q)}(t)$ is defined by

$P_{k}^{(p.q)}(t)=((p+1)_{k}/k)_{2}F_{1}(-k, k+p+q+1;p+1;(1-t)/2)$ , $t\in R$ ,

where $2F1$ is the hypergeometric function of Gauss and $(p+1)_{k}=(p+1)\cdot(p+2)\cdots$

$(p+k)$ . The Jacobi polynomials are characterized by the following
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LEMMA 2.1. The Jacobi polynomial $P_{k}^{(p.q)}(t)$ is the unique analytic solution of
the following differential equation with $y(1)=1$ ,

$(1-t^{2})d^{2}y/dt^{2}-((p+q+2)t+(p-q))dy/dt+k(p+q+k+1)y=0$ .
When $p=q=n/2-1$ ( $n$ ; positive integer), the Jacobi polynomial $P_{k}^{(p,q)}(\cos\theta)$

has finite cosine expansion.

LEMMA 2.2. ([8], p. 94).

$P_{k}^{(n/2-1.n/2-1)}(\cos\theta)$

$=a_{0}\cos k^{\theta}-\vdash a_{1}\cos(k-2)\theta+$ – $+$

$\left\{\begin{array}{l}a_{[k/2]}cos\theta,ifkisanoddinteger,\\a_{[k/2]} ,ifkisaneveninteger,\end{array}\right.$

where $a_{j},$ $0\leqq j\leqq[k/2]$ , are positive constants.

We can derive the finite cosine expansion for some Jacobi polynomials by

the following

LEMMA 2.3. ([8], p. 250). Let $p,$ $q,$ $r$ be real numbers such that $r\geqq p\geqq 0$,
$q>-1$ . Then

$P_{k}^{(r.q)}(t)=\sum_{j=0}^{k}$ a $k,{}_{J}P_{J}^{(p.q)}(t)$

where $a_{k.j}$ are positive constants.

3. Proof of the Theorem.

Let $(G, K)$ be an irreducible symmetric pair of compact type. Let $\mathfrak{g}$ [resp.
$f]$ be the Lie algebra of $G$ [resp. $K$], and $\mathfrak{p}$ be the orthogonal complement of
$f$ in $\mathfrak{g}$ with respect to the Killing form $B$ of $\mathfrak{g}$ . Let $g_{0}$ be the G-invariant
Riemannian metric on $M=G/K$, which is a G-invariant extension of $-B|_{pxp}$ .
Then $(M, g_{0})$ is a Riemannian symmetric space.

Let $V$ be a real irreducible representation of $G$ with a G-invariant inner
product $\langle$ , $\rangle$ , which contains a K-fixed unit vector $v_{0}$ (such a representation is
called a class one representation of the pair). Then

(3.1) $\phi:M-V;gK-g\cdot v_{0}$

realizes an isometric immersion of $(M, c^{2}g_{0})$ for some constant $c$ into the unit
sphere in $V$ centered at the origin [11].

Define a linear map $A:V\rightarrow C^{\infty}(M)$ by
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$ A(v)(gK)=\langle v, g\cdot v_{0}\rangle$ , $g\in G$ .

Then $A(v)$ is an eigen-function of the Laplace-Beltrami operator $\Delta$ of $(M, g_{0})$

[11]. Actually $A$ is a G-homomorphism. Since $\Delta\circ g=g\circ\Delta$, $\Delta$ is a scalar
operator on $A(V),$ $i.e.,$ $A(V)$ is contained in some eigin-space of $\Delta$, say the k-th
eigen-space $V^{k}$ . If $M$ is of rank one $A(V)=V^{k}[1]$ . So we denote by $\phi_{k}$ the
immersion defined by (3.1) when $A(V)=V^{k}$ , and call the k-th standard isometric
minimal immersion of $M$.

Hereafter we assume that $M$ is of rank one. The $v_{0}$ is unique up to sign
for each class one representation [1]. It is easily seen that $\phi_{k}$ is a helical
geodesic immersion.

Since $v_{0}$ is a K-fixed vector $h=A(v_{0})$ satisfies

(3.2) $h(k\cdot p)=h(p)$ , $k\in K$ , $p\in M$ .
The function in $V^{k}$ which satisfies (3.2) is called a zonal spherical function of
$V^{k}$ , which is unique up to sign (since $v_{0}$ is so).

Now we give a explicit expression of $h=A(v_{0})$ using Jacobi polynomials.
Assume that a function $h\in C^{\infty}(M)$ satisfies (3.2), then thre exists a function

$h_{0}$ defined on $[0, \pi]$ , where $\pi$ is the diameter of $(M, g_{0})$ , such that

(3.3) $h(p)=h_{0}(d(p))$

where $d(p)$ is the distance of $p$ from the origin $eK$ on $M$. For such functions
there exists a differential operator $\partial(\Delta)$ on $(0, \pi)$ such that

(3.4) $(\Delta h)(p)=(\partial(\Delta)h_{0})(d(p))$ , $d(p)\in(0, \pi)$ .
From [4, p. 270] or [9, p. 203], $\partial(\Delta)$ is calculated as follows

LEMMA 3.1.

$-d^{2}/d\theta^{2}$ , if $M=S^{1}$ ,

$-d^{2}/d\theta^{2}-(n-1)\cot\theta d/d\theta$ , if $M=S^{n},$ $n\geqq 2$

$\partial(\Delta)=-d^{2}/d\theta^{2}-((n-1)\cot\theta/2+\cot\theta)d/d\theta$ if $M=CP^{n},$ $n\geqq 2$ ,

$|_{-d^{2}/d\theta^{2}-(4\cot\theta/2+7\cot\theta)d/d\theta}^{-d_{2}/d\theta_{2}-(2(n-1)\cot\theta/2+3cot\theta)d/d\theta},$’ if $M=QP^{n},$ $n\geqq 2$ ,

if $M=CayP^{2}$ .
After a change of variable $t=\cos\theta,$ $\partial(\Delta)$ is given as follows.
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LEMMA 3.2.

$\partial(\Delta)=|_{-(1-t^{2})d^{2}/d^{t}r^{2}+(12^{+1)+2(n-1))d/dt}\prime}^{-(1-t)d_{2}/d_{t^{2}}+ntd_{t}/d_{1)t+(-1))d/dt}}-(1-t^{2})dd+(2(n,$ $i^{ifM=Q^{n}P^{n_{n}},n\geqq^{2_{2\prime}}}ifM=SifM=CP’,n\geqq fM=CayP^{n_{2}\geqq 1}$

By a formula of Freudenthal [9] we can calculate the eigenvalue of $\Delta$ .

LEMMA 3.3. The k-th eigen-value of $\Delta$ is

$k(k+n-1)$ , if $M=S^{n},$ $n\geqq 1$

$k(k+n)$ , if $M=CP^{n},$ $n\geqq 2$

$k(k+2n+1)$ , if $M=QP^{n},$ $n\geqq 2$

$k(k+11)$ , if $M=CayP^{2}$ .

Let $k$ be an eigen-function of $\Delta$ corresponding to the k-th eigen-value which
satisfies (3.2). Then $h_{0}$ (defined by $(3.3)$ ) $is$ an eigen-function of $\Delta$ corresponding
to the same eigen-value. So from Lemma 2.1, Lemma 3.2 and Lemma 3.3 we
get the following

LEMMA 3.4. $\tau_{le}$ zonal spherical function $h$ of $(M, g_{0})$ which is contained in
$V^{k}$ is $h(p)=h_{0}(d(p))$ , where $h_{0}$ is

$\int_{P_{k}^{(n-1.0)}(\cos\theta)}^{P_{k}^{(n/2-1.n/2-1)}(\cos\theta)}$

,
$ififM=CP^{n},n\geqq 2M=S^{n},n\geqq 1$

,

$h_{0}(\theta)=|_{P_{k}^{(7,3)}(\cos\theta)}^{P_{k}^{(2n-1,1)}(\cos\theta)}$

,
$ififM=Cay^{n}P^{2}M=QP,n\geqq 2$

,

Let $\gamma_{X}(t)$ be a geodesic in $M$ issuing from the origin $eK$ in the unit direction
$X\in T_{eK}M=\mathfrak{p}$ . Since $M$ is of rank one (3.2) implies that $A(v_{0})(\gamma_{X}(t))=\gamma_{X}(t)\cdot\gamma_{X}(0)$

is independent of the choise of $X$. From the uniqueness of the zonal spherical

function we get $A(v_{0})(\gamma_{X}(t))=kh_{0}(t),$ $t\in(O, \pi)$ , for some non-zero constant $k$ . So
we have only to calculate the smallest degree of the polynomial such that (1.3)

holds.

CASE 1. $M=S^{n}(n\geqq 2)$ . Since $h_{0}$ has finite cosine expansion by Lemma 2.2,
$h_{0}$ satisfies (1.3) for
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$P(t)=(t^{2}+k^{2})\cdot(t^{2}+(k-2)^{2})\cdots\cdots\{(r^{2}(t^{2}I_{4)t,ifkisaneveninteger}^{1),.ifkisanoddinteger}$

.

It is easily verified that (1.3) does not hold for any polynomial of which degree

is less that $k+1$ . So the Theorem is proved.

CASE 2. $M=CP^{n}(n\geqq 2),$ $M=QP^{n}(n\geqq 2)$ or $M=CayP^{2}$ . Since $h_{0}$ has finite
expansion by Jacobi polynomials from Lemma 2.3, $h_{0}$ has finite cosine expansion

$ h_{0}(\theta)=\sum_{j\Leftarrow 0}^{k}a_{j}\cos j\theta$ ,

where $a_{j}$ are positive constants. So $h_{0}$ satisfies (1.3) for

$P(t)=(\prod_{j=0}^{k}(t^{2}+j^{2}))\cdot t$ .

Also in this case it is easily verified that (1.3) does not hold for any polynomial
of which degree is less than $2k+1$ . So the Theorem is proved.
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