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Introduction.

A covariant symmetric tensor field $\xi$ on a Riemannian manifold $(M, g)$ is
called a Killing tensor field if the symmetrization of the covariant derivative of
$\xi$ vanishes identically. A Killing tensor field of order 1 is nothing but a Killing
l-form, $i$ . $e$ . a l-form corresponding to a Killing vector field under the duality by

means of the Riemannian metric $g$ . The space $K(M, g)$ of all Killing tensor

fields on $(M, g)$ becomes an algebra by the symmetric product. If the algebra
$K(M, g)$ is generated by Killing l-forms, then the algebra of all linear differential
operators on $M$ which commutes with the Laplacian of $(M, g)$ is generated by

Killing vector fields (cf. Theorem 1.1).

Sumitomo-Tandai [11] proved the generation of $K(S^{n}, g)$ by Killing l-forms
for the unit sphere $S^{n}$ with the standard metric $g,$ by means of the notion of
pseudo-connections. This was also proved by C. Tsukamoto by representation
theory of compact Lie groups. Sumitomo-Tandai [11] determined moreover the
spectrum of the Lichnerowicz Laplacian $\Delta$ (Lichnerowicz [8]) on $K(S^{n}, g)$ , by

giving explicitly projection $operators_{\backslash }$ of $K(S^{n}, g)$ onto eigenspaces of $\Delta$ .
In this paper, for a two-point homogeneous space of constant curvature, we

compute the dimension of the space of Killing tensor fields spanned by products

of $p$ Killing l-forms, by making use of Bott’s theorem (Bott [2]) on holomorphic

vector bundles over generalized flag manifolds. Together with the upper bound
given by Barbance [1] for the dimension of the space $K^{P}(M, g)$ of Killing tensor

fields of order $p$ on a general Riemannian manifold $(M, g)$ , we prove

If $(M, g)$ is a two-point homogeneous space of constant sectional curvature
with $\dim M=n$ , then the algebra $K(M, g)$ is generated by Killing l-forms, and

$\dim K^{p}(M, g)=\frac{1}{n}\left(\begin{array}{l}n+p\\p+1\end{array}\right)\left(\begin{array}{l}n+p-1\\p\end{array}\right)$ , $p\geqq 0$ .

We give furthemore an alternative determination of the spectrum of $\Delta$ on
$K^{p}(S^{n}, g)$ , applying the theory of spherical functions of E. Cartan to the manifold
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of geodesics of $(S^{n}, g)$ .

\S 1. Killing tensor fields.

Let $V$ be a finite dimensional vector space over $R$ or $C$ . A linear endo-
morphism $S_{p}$ of the p-th tensor product $\otimes^{p}V$ of $V$, called the symmetrization,
is defined by

$S_{p}(v_{1}\otimes\cdots\otimes v_{p})=\frac{1}{p!}\sum_{\sigma\in \mathfrak{S}_{p}}v_{\sigma(1)}\otimes\cdots\otimes v_{\sigma(p)}$ for $v_{i}\in V$,

where $\mathfrak{S}_{p}$ denotes the p-th symmetric group. We put

$S^{p}V=\{s\in\otimes^{p}V;S_{p}s=s\}$ , $p\geqq 0$ .
Then

$S(V)=\sum_{p\geq 0}S^{p}V$

becomes a commutative associative graded algebra by the symmetric product:

$s\cdot t=S_{p+q}(s\otimes t)$ for $s\in S^{p}V,$ $t\in S^{q}V$.
Let $V^{*}$ be the dual space of $V$. Then $S^{p}V^{*}$ is identified with the space of

symmetric p-multilinear forms on $V$ by

$(\xi_{1}\cdot\cdots\cdot\xi_{p})(v_{1}, \cdots, v_{p})=\frac{1}{p!}\sum_{\sigma\in \mathfrak{S}_{p}}\xi_{\sigma(1)}(v_{1})\cdots\xi_{\sigma(p)}(v_{p})$

for $\xi_{i}\in V^{*},$ $v_{i}\in V$. It is also identified with the space of homogeneous polynomials

on $V$ of degree $p$ by

$(\xi\cdot\cdots\cdot\xi_{p})(v)=\xi_{1}(v)\cdots\xi_{p}(v)$ for $v\in V$.
Now let $M$ be a (connected) smooth manifold. Then $S^{p}(T^{*}M)=\bigcup_{x\in M}S^{p}(T_{x}^{*}M)$

where $T_{x}^{*}M$ denotes the dual space of the tangent space $T_{x}M$ of $M$ at $x$ , has a
natural structure of smooth vector bundle over $M$. Let $S^{p}(M)$ denote the space
of all smooth sections of $S^{P}(T^{*}M)$ . Then

$S(M)=\sum_{p\geq 0}S^{p}(M)$

becomes a commutative associative graded algebra over $R$ by the symmetric

product $\xi\cdot\eta$ Let $\mathcal{D}_{p}(M)$ be the space of all linear differential operators of order
$p$ acting on the space $C^{\infty}(M)$ of smooth functions on $M$. Then

$\mathcal{D}(M)=\bigcup_{p\geq 0}\mathcal{D}_{p}(M)$

becomes an associative filtered algebra over $R$.
In what follows we assume that $(M, g)$ is a Riemannian manifold, $\nabla$ the

Riemannian connection for $g$ and $\langle, \rangle$ the inner product of tensors over $M$ defined
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by $g$ . For $\xi,$ $\eta\in S(M)$ with compact supports, the $L^{2}$-inner product $\langle\langle\xi, \eta\rangle\rangle$ is
defied by

$\langle\langle\xi, \eta\rangle\rangle=\int_{M}\langle\xi, \eta\rangle dv_{g}$ ,

where $dv_{g}$ denotes the Riemannian measure for $g$ . We define a linear differential
operator $\delta^{*}:$ $S(M)\rightarrow S(M)$ of order 1 with $\delta^{*}:$ $S^{p}(M)\rightarrow S^{p+1}(M),$ $p\geqq 0$, by

$\delta^{*}\xi=S_{p+1}(\nabla\xi)$ for $\xi\in S^{p}(M)$ .
It is known (Sumitomo-Tandai [11]) that $\delta^{*}$ is a derivation on $S(M),$ $i$ . $e$ .
(1.1) $\delta^{*}(\xi\cdot\eta)=(\delta^{*}\xi)\cdot\eta+\xi\cdot(\delta^{*}\eta)$ for $\xi,$ $\eta\in S(M)$ .
The kernel of $\delta^{*}:$ $S^{P}(M)\rightarrow S^{p+1}(M)$ is denoted by $K^{P}(M)$ . An element of $K^{p}(M)$

is called a Killing p-tensor field on $(M, g)$ . For example, $K^{0}(M)=R$ (constant

functions) and $K^{1}(M)$ is the space of all Killing l-forms on $(M, g)$ . Killing
p-tensor fields for general $p$ are characterized as follows (Sumitomo-Tandai [11]):
Let $\xi\in S^{p}(M)$ . Then $\xi\in K^{p}(M)$ if and only if

(1.2) $\xi(\gamma^{\prime}(t))=constant$ for any geodesic $\gamma$ of $(M, g)$ .
Thus $g\in S^{2}(M)$ is a Killing 2-tensor field. The formula (1.1) implies that

$K(M)=\sum_{p\geq 0}K^{P}(M)$

is a graded subalgebra of $S(M)$ . We define next $\tilde{K}(M)$ to be the subalgebra of
$K(M)$ generated by all Killing l-forms, and put $\tilde{K}^{P}(M)=S^{P}(M)\cap\tilde{K}(M)$ . Then

$\tilde{K}(M)=\sum_{p\geq 0}\tilde{K}^{p}(M)$

is a graded subalgebra of $K(M)$ . The following theorem was proved by Sumi-
tomo-Tandai [11] for the standard sphere.

THEOREM 1.1. Let $J\zeta(M)$ denote the subalgebra of $\mathcal{D}(M)$ generated by all
Killing vector fields on $(M, g)$ . If $\tilde{K}(M)=K(M)$ , then $j\zeta(M)$ coincides with the
centralizer in $\mathcal{D}(M)$ of the Laplacian $\Delta$ of $(M, g)$ .

PROOF. Since any Killing vector field $X\in \mathcal{D}_{1}(M)$ commutes with $\Delta,$ $c\chi(M)$ is
contained in the centralizer of $\Delta$ . So we prove

(1.3) $D\in \mathcal{D}_{p}(M),$ $D\Delta=\Delta D\Rightarrow D\in Jt(M)$ ,

by the induction on $p$ . For this purpose we define a splitting $\xi\leftrightarrow D_{\xi}$ of the exact
sequence:

$\sigma_{p}$

$0-\mathcal{D}_{p- 1}(M)-\mathcal{D}_{p}(M)-S^{P}(M)\rightarrow 0$ ,



236 Masaru TAKEUCHI

where $\sigma_{p}$ is the symbol map which is regarded as $S^{p}(M)$-valued by the duality

by means of the metric $g$ , as follows.

$ D_{\xi}=\xi^{i_{1}\cdots t_{p}}\nabla_{i_{1}}\cdots\nabla$ : for $\xi\in S^{p}(M)$ .
Here $\xi^{i_{1}\cdots i_{p}}$ denotes the contravariant component of $\xi$, and Einstein convention is
used. Then Ricci identity implies (cf. Sumitomo-Tandai [11])

\langle 1.4) $[D_{\xi}, \Delta]\equiv 2D_{\delta*\xi}$ mod $\mathcal{D}_{p}(M)$ .
Now let $D\in \mathcal{D}_{0}(M)$ with $D\Delta=\Delta D$ . Then $D$ is written as

$Df=\phi f$ for $f\in C^{\infty}(M)$ ,

by some $\phi\in C^{\infty}(M)$ . Applying $D\Delta=\Delta D$ to $f\in C^{\infty}(M)$ , we get $f\Delta\phi-2\langle d\phi, df\rangle=0$,

and hence $d\phi=0$ . Thus $\phi=constant$ . Therefore (1.3) holds for $p=0$ . Let next
$D\in \mathcal{D}_{p}(M),$ $p\geqq 1$ , with $D\Delta=\Delta D$, and put $\xi=\sigma_{p}(D)$ . Then $D\equiv D_{\xi}mod \mathcal{D}_{p-1}(M)$ ,

and hence (1.4) and $D\Delta=\Delta D$ imply $\delta^{*}\xi=0$ . Thus, from the assumption: $\tilde{K}(M)$

$=K(M)$ , we may find Killing l-forms $\xi_{1},$
$\cdots,$

$\xi_{r}$ and a homogeneous polynomial

$F(x_{1}, \cdots, x_{r})=\sum_{p_{1}+\cdots+p_{r}=p}a_{p_{1}\cdots p_{r}}x_{1}^{p_{1}}\cdots x_{r}^{p_{r}}$

of degree $p$ in r-variables such that $\xi=F(\xi_{1}, \cdots , \xi_{r})$ . Denoting by $X_{1},$
$\cdots,$

$X_{r}$ the
Killing vector fields corresponding to $\xi_{1},$

$\cdots,$
$\xi_{r}$, we define

$D^{\prime}=D-F(X_{1}, \cdots, X_{r})$ .
Then $D^{\prime}\in \mathcal{D}_{p-1}(M)$ by virtue of $\sigma_{p}(D)=\xi$, and $D^{\prime}\Delta=\Delta D^{\prime}$ . Thus the induction
hypothesis implies $D^{\prime}\in j\zeta(M)$ , and hence $D\in X(M)$ . Therefore (1.3) holds for
$p$ . $q.e.d$ .

The space $K^{p}(M)$ is always of finite dimension. Actually, Barbance [1]

proved that

(1.5) $\dim K^{P}(M)\leqq\left(\begin{array}{l}n+p\\p\end{array}\right)\left(\begin{array}{l}n+p-1\\p\end{array}\right)-\left(\begin{array}{l}n+p\\p+1\end{array}\right)\left(\begin{array}{l}n+p-1\\p-1\end{array}\right)$

$=\frac{1}{n}\left(\begin{array}{l}n+p\\p+1\end{array}\right)\left(\begin{array}{l}n+p-1\\p\end{array}\right)$

for any Riemannian manifold $(M, g)$ with $\dim M=n$ .
We recall next the definition of the Lichnerowicz Laplacian $\Delta:S(M)\rightarrow S(M)$ .

It is an elliptic linear differential operator of order 2 with $\Delta:S^{p}(M)\rightarrow S^{p}(M)$ ,

$p\geqq 0$ , defined by

$(\Delta\xi)_{i\cdots i}=-\nabla^{l}\nabla_{l}\xi_{t_{1}\cdots i}+2\sum_{a<b}R_{i}^{kl}\xi_{i_{1}\cdots k\cdot l\cdot\cdot i_{p}}^{(a)..(b)}+\sum_{a}S_{i_{a}}^{k}\xi_{i_{1}\cdots k\cdots i_{p}}^{(a)}$

for $\xi\in S^{p}(M)$ ,
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where $R$ and $S$ are the Riemannian curvature tensor and the Ricci tensor for $g$,

respectively. It is self-adjoint with respect to the $L^{2}$-inner product $\langle\langle, \rangle\rangle$ , and
coincides on $S^{0}(M)=C^{\infty}(M)$ with the ordinary Laplacian $\Delta$ .

\S 2. Manifolds of geodesics for rank one symmetric spaces.

A Riemannian manifold $(M, g)$ is called a two-point homogeneous space if for
any $p,$ $q,$

$p^{\prime},$ $q^{\prime}\in M$ with $d(p, q)=d(p^{\prime}, q^{\prime}),$ $d$ being the Riemannian distance, there
exists an isometry $\phi$ such that $\phi(p)=p^{\prime}$ and $\phi(q)=q^{\prime}$ . It is known (Wang [14],

Tits [13]) that if $(M, g)$ is two-point homogeneous, $(M, g)$ is a rank one symmetric
space or a Euclidean space. If $\dim M=1,$ $i$ . $e.$ , if $(M, g)$ is a circle or a Euclidean
line, the structure of $(M, g)$ is simple. So we assume throughout in this paper
that a two-point homogenous space has always dimension $\geqq 2$ .

Let $(M, g)$ be a two-point homogeneous space. We fix an expression of $M$

as a coset space by an almost effective symmetric pair $(G, K;\theta)$ with $G$ locally
isomorphic to the identity component $I^{0}(M, g)$ of the group of isometries of
$(M, g)$ (cf. Helgason [5]), $i$ . $e.,$ $(G, K)$ is an almost effective pair of a connected
Lie group $G$ locally isomorphic to $I^{0}(M, g)$ and a compact subgroup $K$ of $G$ such
that we have an identification $G/K=M$, under which $G$ acts on $M$ as isometries
of $g$ . And $\theta$ is an involutive automorphism of $G$ such that the fixed point set
$G_{\theta}$ of $\theta$ satisfies $G_{\theta}^{0}\subset K\subset G_{\theta},$ $G_{\theta}^{0}$ being the identity component of $G_{\theta}$ . Let $\mathfrak{g}$ and
$f$ denote the Lie algebra Lie $G$ of $G$ and Lie $K$, respectively. We define

$\mathfrak{m}=\{X\in \mathfrak{g};\theta X=-X\}$ ,

where the differential of $\theta$ is also denoted by $\theta$ . Then we have the Cartan
decomposition $\mathfrak{g}=f+\mathfrak{m}$ , and thus $\mathfrak{m}$ is identified with the tangent space $T_{0}M$ of
$M$ at the origin $0=K$. The subgroup $K$ acts on $\mathfrak{m}$ as isometries of the Riemannian
metric $g_{0}$ at $0$ . Note that $(M, g)$ is two-point homogeneous if and only if $K$ acts
transitively on the unit sphere of $(\mathfrak{m}, g_{0})$ . Let $r=\dim \mathfrak{g}$ .

Let $\gamma_{1},$ $\gamma_{2}$ be geodesics of $(M, g)$ (defined on $R$ and parametrized by arc-
length). They are said to be oriented equivalent (resp. equivalent) if there exist
$t_{1},$ $t_{2}\in R$ such that $\gamma_{1}(t_{1})=\gamma_{2}(t_{2})$ and $\gamma_{1}^{\prime}(t_{1})=\gamma_{2}^{\prime}(t_{2})$ (resp. $\gamma_{1}^{\prime}(t_{1})=\pm\gamma_{2}^{\prime}(t_{2})$ ). The oriented
equivalence class containing a geodesic $\gamma$ is denoted by $[\gamma]$ . The set of all
oriented equivalence classes (resp. equivalence classes) of geodesics of $(M, g)$ is
denoted by $\hat{M}_{0}$ (resp. by $\hat{M}$ ). Note that $G$ acts on $\hat{M}_{0}$ and $\hat{M}$ transitively in a
natural way. Moreover $Z_{2}$ acts freely on $\hat{M}_{0}$ from the right in a natural way
(reversing the orientation) in such a way that $\hat{M}$ is identified with the quotient
$\hat{M}_{0}/Z_{2}$ . We study in the following the structure of $\hat{M}_{0}$ and $\hat{M}$.

Choose $H_{0}\in \mathfrak{m}$ such that $g_{0}(H_{0}, H_{0})=1$ and define a geodesic $\gamma_{0}$ by
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$\gamma_{0}(t)=(\exp tH_{0})\cdot 0$ for $t\in R$ .
Let $\mathfrak{a}=RH_{0}$ and $A$ the connected (closed) subgroup of $G$ generated by $\mathfrak{a}$ . More-
over put

$K_{0}=$ { $k\in K$ ; Ad $(k)H_{0}=H_{0}$ }, $f_{0}=LieK_{0}$ .
Then $G_{0}=K_{0}A$ is a closed subgroup of $G$ such that Lie $G_{0}$ is $\mathfrak{g}_{0}=f_{0}+\mathfrak{a}$ . Note that
$G_{0}$ is a subgroup of the centralizer $Z_{G}(A)$ of $A$ .

THEOREM 2.1. Let $(M, g)$ be a two-point homogeneous space. Then a G-

equivariant bijection $G/G_{0}\rightarrow\hat{M}_{0}$ is defined by the correspondence:

$aG_{0}\leftrightarrow a\cdot[\gamma_{0}]$ for $a\in G$ .
Thus $\hat{M}_{0}$ and $\hat{M}$ have natural structures of smooth G-manifolds.

PROOF. Let $\pi:UM\rightarrow M$ denote the unit tangent bundle of $(M, g)$ . Since
$(M, g)$ is two-point homogeneous, $G$ acts transitively on $UM$ in a natural way,

and the map $G/K_{0}\rightarrow UM$ defined by $aK_{0}\leftrightarrow a\cdot\gamma_{0}^{\prime}(0)=a\cdot H_{0}(a\in G)$ is a G-diffeo-

morphism.

We show that under this G-diffeomorphism the action of the geodesic flow
$\phi_{t}$ on $UM$ corresponds to the natural right action of $a_{l}=\exp tH_{0}\in A$ on $G/K_{0}$

defined by
$(aK_{0})\cdot a_{t}=aa_{t}K_{0}$ for $a\in G$ .

For $u\in UM$, the geodesic $\gamma$ of $(M, g)$ with $\gamma(0)=\pi(u),$ $\gamma^{\prime}(0)=u$ will be denoted

by $\gamma_{u}$ . Then, by definition $\phi_{l}u=\gamma_{u}^{\prime}(t)$ . Let $u=a\cdot H_{0}(a\in G)$ . Then $\gamma_{u}(t)=$

$a\cdot\gamma_{0}(t)=(a\exp tH_{0})\cdot 0$ , and hence $\gamma_{u}^{\prime}(t)=(aa_{t})\cdot H_{0}$ . This shows the claim.
Now the assertion follows from the fact that for $u,$

$u^{\prime}\in UM,$ $\gamma_{u}$ is oriented

equivalent to $\gamma_{u}$ , if and only if $\phi_{t}u=u^{\prime}$ for some $t\in R$ . $q$ . $e$ . $d$ .

In what follows in this section, we assume that $(M, g)$ is a rank one sym-

metric space. In this case $G$ is semisimple, and so there exists uniquely a non-
degenerate G-invariant symmetric bilinear from $B$ on $\mathfrak{g}$ such that $B(f, \mathfrak{m})=0$ and
$B|\mathfrak{m}\times \mathfrak{m}=g_{0}$ . Note that $B$ is positive-definite if and only if $(M, g)$ is of compact

type. Let
$S_{B}^{r-1}=\{X\in \mathfrak{g};B(X, X)=1\}$ ,

and $P_{r-1}(R)$ the real projective space associated to $\mathfrak{g}$ . We denote by $\pi:\mathfrak{g}-\{0\}$

$\rightarrow P_{r-1}(R)$ the natural projection. It is G-equivariant with respect to natural

actions of $G$ . For a geodesic $\gamma$ of $(M, g)$ , let $\tau_{t}$ denote the transvection associ-

ated to the geodesic segment $\gamma|[0, t]$ . Let $X_{\gamma}$ be the Killing vector field generated

by the l-parameter group of isometries $\{\tau_{l}\}$ . Then it depends only on the class
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$[\gamma]$ . So it will be denoted by $X_{[\gamma]}$ . Identifying $\mathfrak{g}$ with the space of all Killing

vector fields on $(M, g)$ , we define a map $\iota_{0}$ : $\hat{M}_{0}\rightarrow \mathfrak{g}$ by

$\iota_{0}[\gamma]=X_{[\gamma]}$ for $[\gamma]\in\hat{M}_{0}$ .
Under these notations we have the following theorem.

THEOREM 2.2. Let $(M, g)$ be a rank one symmetric space. Then

1) The map $\iota_{0}$ ; $\hat{M}_{0}\rightarrow \mathfrak{g}$ is a G-equivariant imbedding such lhat $\prime_{0}(\hat{M}_{0})\subset S_{B}^{r-1}$

and $\iota_{0}[\gamma_{0}]=H_{0}$ ;
2) The composite $\pi\circ\iota_{0}$ : $\hat{M}_{0}\rightarrow P_{r-1}(R)$ induces a G-equivariant imbedding

$\iota:\hat{M}\rightarrow P_{r-1}(R)$ .

PROOF. 1) We show first that under the identification $G/G_{0}=\hat{M}_{0}$ our map
$c_{0}$ corresponds to the map $aG_{0}$ }$\rightarrow Ad(a)H_{0}(a\in G)$ . Let $\gamma=\gamma_{u}$ with $u=a\cdot H_{0}(a\in G)$ .
Then $\gamma(t)=(a\exp tH_{0})\cdot 0=\exp t(Ad(a)H_{0})a\cdot 0$ and hence $\tau_{l}$ for $\gamma$ is the left trans-
lation by $\exp t(Ad(a)H_{0})$ . Therefore $X_{\gamma}=Ad(a)H_{0}$ , which shows the claim.

It remains therefore to show $G_{0}=Z_{G}(A)$ . Assume first that $(M, g)$ is of
compact type. In this case $G$ is compact and hence $Z_{G}(A)$ is connected by Hopf’s
theorem (cf. Helgason [5]). Since $G_{0}\subset Z_{G}(A)$ and Lie $Z_{G}(A)=\mathfrak{g}_{0}$ , we get $G_{0}=$

$Z_{G}(A)$ . Assume next that $(M, g)$ is of non-compact type. Let $\mathfrak{g}^{u}=f+\sqrt{-1}\mathfrak{m}$ ,
which is a compact real form of the complexification $\mathfrak{g}^{C}$ of $\mathfrak{g}$ , and $G^{u}$ the com-
pact simply connected Lie group with Lie $G^{u}=\mathfrak{g}^{u}$ . Denoting by $\sigma$ the complex
conjugation of $\mathfrak{g}^{C}$ with respect to $\mathfrak{g}$ , we extend $\sigma$ to a smooth automorphism $\sigma$

of the complexification $G^{C}$ of $G^{u}$ such that $\sigma(G^{u})=G^{u}$ . We define a compact
subgroup $K^{u}$ of $G^{u}$ with Lie $K^{u}=f$ by

(2.1) $K^{u}=\{a\in G^{u} ; \sigma(a)=a\}$ ,

which is known to be connected (E. Cartan [4]). Let $G^{\prime}$ be the connected sub-
group of $G^{C}$ generated by $\mathfrak{g}$ . We have then an identification $M=G^{\prime}/K^{u}$ since
$M$ is simply connected, and therefore we have an identification $\hat{M}_{0}=G^{\prime}/G_{0}^{\prime}$ with
$G_{0}^{\prime}=K_{0^{u}}A^{\prime}$ by the previous construction for the pair $(G^{\prime}, K^{u})$ . We show $G_{0}^{\prime}=$

$Z_{G^{\prime}}(A^{\prime})$ ; this will imply that $c_{0}$ is an imbedding, which means $G_{0}=Z_{G}(A)$ . We
define a subgroup $G_{0}^{C}$ of $G^{C}$ with $\sigma(G_{0}^{C})=G_{0}^{c}$ by

$G_{0}^{C}=$ { $a\in G^{C}$ ; Ad $(a)H_{0}=H_{0}$ }.

Then $G_{0}^{C}$ contains $Z_{G},(A^{\prime})$ and has the polar decomposition:

(2.2) $G_{0}^{C}=G_{0}^{u}\exp\sqrt{-1}\mathfrak{g}_{0}^{u}$ ,

with $G_{0}^{u}=G_{0}^{C}\cap G^{u}$ and $\mathfrak{g}_{0}^{u}=LieG_{0}^{u}=f_{0}+\sqrt{-1}\mathfrak{a}$ , which are stable under $\sigma$ . Let
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$a\in Z_{G},(A^{\prime})$ be arbitrary. Decompose it by (2.2) as

$a=a_{0}\exp\sqrt{-1}X_{0}$ , $a_{0}\in G_{0}^{u}$ , $X_{0}\in \mathfrak{g}_{0}^{u}$ .
Since $\sigma(a)=a$ , we have $\sigma(a_{0})=a_{0}$ and $\sigma X_{0}=-X_{0}$ . Therefore $a_{0}\in K^{u}$ by (2.1)

and $X_{0}\in\sqrt{-1}\mathfrak{a}$ . Thus $a_{0}\in K_{0}^{u}$ and $\exp\sqrt{-1}X_{0}\in A^{\prime}$ , which implies $a\in K_{0}^{u}A^{\prime}=G_{0}^{\prime}$ .
This proves $G_{0}^{\prime}=Z_{G},(A^{\prime})$ .

2) This follows from that $Z_{2}$ acts on $\mathfrak{g}-\{0\}$ from the right in a natural way

and the map $c_{0}$ : $\hat{M}_{0}\rightarrow \mathfrak{g}-\{0\}$ is $Z_{2}$-equivariant. $q.e.d$ .

We define
(2.3) $\hat{\mathfrak{m}}=\{X\in \mathfrak{g};B(X, \mathfrak{g}_{0})=0\}$ .

Then it is stable under $G_{0},$ $\mathfrak{g}=\mathfrak{g}_{0}+\hat{\mathfrak{m}}$ (direct sum as vector space) and $B|\hat{\mathfrak{m}}\times\hat{\mathfrak{m}}$

is a $G_{0}$-invariant non-degenerate symmetric bilinear form. In fact, since $\mathfrak{g}_{0}=$

$f_{0}+\mathfrak{a}$ with $B(f_{0}, \mathfrak{a})=0$ and both $B|f_{0}\chi f_{0}$ and $B|$ a $\times$ a are definite, $B|\mathfrak{g}_{0}\times \mathfrak{g}_{0}$ is
non-degenerate. Thus the assertions follow.

Therefore $B$ defines a normal homogeneous pseudo-Riemannian metric on
$\hat{M}_{0}=G/G_{0}$ , which will be denoted by $\hat{g}$ . Note that $\hat{g}$ is Riemannian if and only

if $(M, g)$ is of compact type.

In the following we assume further that $(M, g)$ is a compact rank one
symmetric space, and identify as $\hat{M}_{0}\subset \mathfrak{g}$ and $\hat{M}\subset P_{r-1}(R)$ through the imbeddings
$f_{0}$ and $f$ respectively. Let $(S\mathfrak{g}^{*})^{G}$ denote the algebra of all G-invariant polynomials

on $\mathfrak{g}$ .

LEMMA 2.3. There exist homogeneous elements $I_{1},$
$\cdots,$

$I_{l- 1}$ of $(S\mathfrak{g}^{*})^{G}$ , where
$l=rank\mathfrak{g}$ , such that

$\hat{M}_{0}=$ { $X\in \mathfrak{g};B(X)=1,$ $I_{i}(X)=0$ for each $i,$ $1\leqq i\leqq l-1$ }.

Here $B$ is regarded as a homogeneous element of $(S\mathfrak{g}^{*})^{G}$ of degree 2.

PROOF. If homogeneous elements $I_{1},$ $\cdots$ , $I_{l-1}$ of $(S\mathfrak{g}^{*})^{G}$ satisfy

(2.4) $B,$ $I_{1},$
$\cdots,$

$I_{l-1}$ generate $(S\mathfrak{g}^{*})^{G}$ ,

(2.5) $B(H_{0})=1$ , $I_{i}(H_{0})=0$ $(1\leqq i\leqq l-1)$ ,

then they have the required property, since the correspondence:

$X\}\rightarrow{}^{t}(B(X), I_{1}(X),$
$\cdots,$

$I_{l-1}(X))\in R^{l}$

induces an injection from the orbit space $G\backslash \mathfrak{g}$ into $R^{l}$ (cf. Helgason [5]). So we
shall find $I_{1},$

$\cdots,$
$I_{l-1}$ with (2.4) and (2.5).

Case (a): $M$ is the n-sphere, real projective n-space with $n$ even, quaternion

projective n-space with $n\geqq 2$ or Cayley projective plane.
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In this case the degrees of homogeneous generators of $(S\mathfrak{g}^{*})^{G}$ are all even (cf.

Bourbaki [3]). Choose $I_{1}^{\prime},$

$\cdots,$
$I_{l-1}^{\prime}$ such that $B,$ $I_{1}^{\prime},$

$\cdots,$
$I_{l-1}^{\prime}$ generate $(S\mathfrak{g}^{*})^{G}$ , and

suppose that $\deg I_{i}^{\prime}=2n_{i}$ and $I_{i}^{\prime}(H_{0})=a_{i}(1\leqq i\leqq l-1)$ . Put

$I_{i}=I_{i}^{\prime}-a_{i}B^{n}i$ $(1\leqq i\leqq l-1)$ .

Then $I_{1},$
$\cdots,$

$I_{l-1}$ have the properties (2.4) and (2.5).

Case (b): $M$ is the n-sphere or real projective n-space with $n$ odd.
We may assume (cf. \S 3) that $\mathfrak{g}=o(n+1),$ $f=o(n)$ and

$H_{0}=(\frac{0-1100}{010}]$ .

We define a Cartan subalgebra $t$ of $\mathfrak{g}$ with $H_{0}\in l$ by

$t=|\int\ovalbox{\tt\small REJECT}^{\lambda 0}0_{1}-\lambda_{1}\neg_{o|_{\lambda_{l}}^{\overline{0-\lambda_{l}}}}^{1_{1_{\underline{\lambda_{2}0}}^{0-\lambda_{2}}}}0_{0}\ovalbox{\tt\small REJECT};\lambda_{i}\in R\},$
$l=\frac{n+1}{2}$ ,

and regard each $\lambda_{i}$ as an element of 1*. It is known that $(S\mathfrak{g}^{*})^{G}$ is isomorphic
to the algebra of W-invariant polynomials on $t$ by the restriction, where $W$ is the
Weyl group of $\mathfrak{g}$ . Therefore there exist $I_{1},$

$\cdots,$
$I_{l-1}\in(S\mathfrak{g}^{*})^{G}$ such that $I_{i}$ $|t=(i+1)$-th

elementary symmetric polynomial of $\lambda_{1}^{2},$ $\cdots$ , $\lambda_{l}^{2}(1\leqq i\leqq l-2)$ and $I_{l-1}|t=\lambda_{1}\cdots\lambda_{l}$ .
They have then the properties (2.4) and (2.5).

Case (c): $M$ is the complex projective n-space with $n\geqq 2$ .
We may assume that $\mathfrak{g}=\S u(n+1),$ $f=\S(u(1)\oplus n(n))$ and

$H_{0}=\sqrt{-1}\left(\begin{array}{llll}0 & & 1 & \\ & & & 0\\1 & & 0 & \\ & 0 & & 0\end{array}\right)$ .

In the same way as in Case (b), we define
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$t=|\sqrt{-1}\{x^{0}y_{0}^{0}y_{0_{0^{X}}}|_{0}\frac{0}{x_{2}...0}x_{n});2y_{0}+^{0}x_{2}+^{2}\cdot\cdot.\cdot.\cdot\dotplus^{X\in R}x_{0},y,x,x_{n}^{n}=0\}$ ,

and put $\lambda_{1}=x_{0}+y_{0},$ $\lambda_{2}=x_{2},$ $\cdots$ , $\lambda_{n}=x_{n},$ $\lambda_{n+1}=y_{0}-x_{0}$ . Then there exist $I_{1},$
$\cdots,$

$I_{l-1}$

$\in(S\mathfrak{g}^{*})^{G}$ with $l=n$ such that $I_{i}$ $|t=(i+2)$-th elementary symmetric polynomial of
$\lambda_{1},$

$\cdots,$
$\lambda_{n+1}(1\leqq i\leqq l-1)$ . They have the required properties. $q$ . $e$ . $d$ .

LEMMA 2.4. We define
$C(\hat{M})=\{tY;t\in R-\{0\}, Y\in\hat{M}_{0}\}$ .

Then we have

$C(\hat{M})=$ { $X\in \mathfrak{g}-\{0\};I_{i}(X)=0$ for each $i,$ $1\leqq i\leqq l-1$ }.

PROOF. Let $X\in \mathfrak{g}-\{0\}$ with $I_{i}(X)=0(1\leqq i\leqq l-1)$ . Then $B(X)>0$ since

$X\neq 0$ . Putting $t=\sqrt{B(X)}$ , we define $Y=\frac{1}{t}X$. Then $B(Y)=1$ and $I_{i}(Y)=$

$I_{i}(X)/t^{m}i=0(1\leqq i\leqq l-1)$ , where $m_{i}=\deg I_{i}$ . Therefore $X=tY$ with $Y\in\hat{M}_{0}$ by

Lemma 2.3, and thus $X\in C(\hat{M})$ .
Conversely, for $X=tY$ with $t\in R-\{0\},$ $Y\in\hat{M}_{0}$ , we have $I_{i}(X)=t^{m}il_{i}(Y)=0$

$(1\leqq i\leqq l-1)$ . $q$ . $e$ . $d$ .

Now Lemma 2.4 implies the following

THEOREM 2.5. If $(M, g)$ is a compact rank one symmetric space, then $\hat{M}$ is

a real projective algebraic manifold defined by

$\hat{M}=$ { $(x)\in P_{r-1}(R);I_{i}(x)=0$ for each $i,$ $1\leqq i\leqq l-1$ },

where $(x)$ denotes the l-dimensional subspace of $\mathfrak{g}$ spanned by $x\in \mathfrak{g}-\{0\}$ . If we
denote by

$J=\sum_{p\geq 0}J^{p}\subset S(\mathfrak{g}^{*})$

the homogeneous ideal for $\hat{M}\subset P_{r-1}(R)$ , then $J^{p}$ coincides with the kernel of the

restriction map $f_{0}^{*}:$
$S^{p}\mathfrak{g}^{*}\rightarrow C^{\infty}(\hat{M}_{0})$ .

Let $P_{r-1}(C)$ be the complex projective space associated to the complexification
$\mathfrak{g}^{C}$ of $\mathfrak{g}$ , and $P_{r- 1}(R)$ be regarded as a submanifold of $P_{r-1}(C)$ . We identify $S^{p}\mathfrak{g}^{*}$

with a real form of $S^{p}(\mathfrak{g}^{C})^{*}$ , and define a complex projective algebraic set $\hat{M}^{c}$ of
$P_{r-1}(C)$ with $\hat{M}=\hat{M}^{c}\cap P_{r- 1}(R)$ by



Killing tensor fields on spaces of constant curvature 243

$\hat{M}^{C}=$ { $(z)\in P_{r- 1}(C);F(z)=0$ for each $F\in J^{p},$ $p\geqq 0$ }.

We denote by

$J^{c}=\sum_{p\geq 0}(J^{c})^{p}\subset S((\mathfrak{g}^{C})^{*})$

the homogeneous ideal for $\hat{M}^{C}\subset P_{r-1}(C)$ . Each $(J^{c})^{p}$ is stable under the complex
conjugation $F-\overline{F}$ of $S^{p}(\mathfrak{g}^{C})^{*}$ with respect to $S^{p}\mathfrak{g}^{*}$ . We call $\hat{M}^{c}$ the smooth
complexification of $\hat{M}$ if $\hat{M}^{c}$ is a connected complex submanifold of $P_{r-1}(C)$ .
Note that then for each $x\in\hat{M}$ there exists a holomorphic coordinate $\{z^{i}\}$ of $\hat{M}^{c}$

around $x$ such that $\hat{M}$ is given by $\overline{z}^{i}=z^{i}$ around $x$ .

LEMMA 2.6. Suppose that $\hat{M}^{c}$ is the smooth complexification of $\hat{M}$. Then

1) We have
$J^{p}=\{F\in(J^{C})^{p} ; \overline{F}=F\}$ ;

2) Let $L$ denote the holomorphic line bundle over $\hat{M}^{c}$ associated to a hyper-
plane section, and $\Gamma(\hat{M}^{C}, L^{p})$ the space of all holomorphic sections of the p-th
tensor product $L^{p}$ of L. Suppose that the canonical map $\psi:S^{p}(\mathfrak{g}^{C})^{*}\rightarrow\Gamma(\hat{M}^{C}, L^{p})$

is surjective. Then we have

$\dim S^{p}\mathfrak{g}^{*}/J^{p}=\dim_{C}\Gamma(\hat{M}^{c}, L^{p})$ .

PROOF. 1) It is obvious that $J^{p}$ contains the right hand side. Let $F$ be an
arbitrary element of $J^{P}$ . Then the holomorphic section $\psi(F)$ of $L^{p}$ vanishes on
$\hat{M}$. Since $\hat{M}^{c}$ is the smooth complexification of $\hat{M},$ $\psi(F)$ vanishes around a
point of $\hat{M}$, and hence it vanishes on $\hat{M}^{c}$ by the maximum principle, which
means $F\in(]^{C})^{p}$ . This shows that $J^{p}$ is contained in the right hand side.

2) From the assumption we have

$\dim_{C}S^{p}(\mathfrak{g}^{C})^{*}/(J^{C})^{p}=\dim_{C}\Gamma(\hat{M}^{c}, L^{p})$ .
On the other hand, by 1) we have

$\dim S^{p}\mathfrak{g}^{*}/J^{p}=\dim_{C}S^{p}(\mathfrak{g}^{C})^{*}/(J^{C})^{p}$ .

Thus we get the required equality. $q$ . $e$ . $d$ .

\S 3. Manifolds of geodesics of spheres.

In this section we give explicitly $\hat{M}_{0}$ and $\hat{M}$ for the standard n-sphere $M$.
In this case, $r=\dim \mathfrak{g}$ is given by $r=\frac{1}{2}n(n+1)$ .

We recall first the Pl\"ucker imbedding of a Grassmann manifold. Let $\wedge^{2}R^{n+1}$
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denote the second exterior product of the Euclidean $(n+1)$-space $R^{n+1}$ . Note that
$\dim\wedge^{2}R^{n+1}=r$ . Making use of the standard inner product $(, )$ of $R^{n+1}$, we
define an inner product $(, )$ on $\wedge^{2}R^{n+1}$ by

$(u\wedge v, x\wedge y)=(u, x)(v, y)-(v, x)(u, y)$ .

We identify $\wedge^{2}R^{n+1}$ with the space $A_{n+1}(R)$ of all real alternating $(n+1)\times(n+1)$

matrices by the correspondence:

$u\wedge v\mapsto v^{t}u-u^{t}v$ for $u,$ $v\in R^{n+1}$ .

The inner product $(, )$ on $A_{n+1}(R)$ corresponding to $(, )$ on $\wedge^{2}R^{n+1}$ is given by

$(A, B)=-\frac{1}{2}Tr(AB)$ for $A,$ $B\in A_{n+1}(R)$ .

The unit sphere in $A_{n+1}(R)$ and the real projective space associated to $A_{n+1}(R)$

are denoted by $S^{r-1}$ and $P_{r-1}(R)$ , respectively.
Let $\tilde{G}_{2.n-1}(R)$ (resp. $G_{2,n-1}(R)$ ) denote the Grassmann manifold of all oriented

2-dimensional subspaces (resp. all 2-dimensional subspaces) of $R^{n+1}$ . We define
an imbedding $\tilde{p}:\tilde{G}_{2,n-1}(R)\rightarrow A_{n+1}(R)$ as follows: For $P\in\tilde{G}_{2.n-1}(R)$ , choose a
positively oriented orthonormal basis $\{u, v\}$ of $P$. Then $u\wedge v\in A_{n+1}(R)$ depends

only on $P$. We define
$\tilde{p}(P)=u\wedge v$ .

The image $\tilde{p}(G_{2.n-1}(R))$ is a compact smooth submanifold of $S^{r-1}$ . The imbedding
$\tilde{p}$ induces an imbedding $p:G_{2.n-1}(R)\rightarrow P_{r-1}(R)$ , whose image $p(G_{2.n-1}(R))$ is a
real projective algebraic submanifold of $P_{r-1}(R)$ . In the following $\tilde{G}_{2.n-1}(R)$ and
$G_{2.n-1}(R)$ will be identified with submanifolds of $S^{r-1}$ and $P_{r-1}(R)$ , respectively,

through these imbeddings $\tilde{p}$ and $p$ .
Now let $M$ be the unit sphere:

$M=\{x\in R^{n+1} ; \sum_{i}x_{i}^{2}=1\}$ ,

with the metric $g$ induced from the standard Riemannian metric $(, )$ on $R^{n+1}$ .
We take $G=SO(n+1)$ and

$K=\{\left\{\begin{array}{ll}1 & 0\\0 & \alpha\end{array}\right\}$ ; $\alpha\in SO(n)\}\cong SO(n)$ .

We have then an identification $M=G/K$ such that the point ${}^{t}(1, 0, \cdots , 0)$ corre-
sponds to the origin $0$ . We have $\mathfrak{g}=o(n+1)=A_{n+1}(R),$ $f=o(n)$ and

$\mathfrak{m}=\{\left\{\begin{array}{ll}0 & -tX\\x & 0\end{array}\right\}$ ; $x\in R^{n}\}$ .
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Moreover $B(X, Y)=-\frac{1}{2}Tr(XY)=(X, Y)$ for $X,$ $Y\in \mathfrak{g}=A_{n+1}(R)$ . We choose $H_{0}\in \mathfrak{m}$

as in Lemma 2.3, Case (b). Then

$G_{0}=\{\left\{\begin{array}{ll}\alpha & 0\\0 & \beta\end{array}\right\}$ ; $\alpha\in SO(2)\beta\in SO(n-1)\}\cong SO(2)XSO(n-1)$ .

The imbedding $\iota_{0}$ ; $\hat{M}_{0}\rightarrow \mathfrak{g}=A_{n+1}(R)$ is given by

$\iota_{0}[\gamma]=\gamma(0)\wedge\gamma^{\prime}(0)$ for $[\gamma]\in\hat{M}_{0}$ .
The image $\iota_{0}(\hat{M}_{0})$ coincides with $\tilde{G}_{2,n-1}(R)$ , and hence we have $\iota(\hat{M})=G_{2.n- 1}(R)$ .

\S 4. Killing tensor fields on spaces of constant curvature.

Let $(M, g)$ be a two-point homogeneous space. As is seen in the proof of
Theorem 2.1, the subgroup $A$ of $G$ acts on the unit tangent bundle $UM$ from the
right in such a way that $\hat{M}_{0}$ is diffeomorphic to the quotient $UM/A$ . So we
identify $C^{\infty}(\hat{M}_{0})$ with the space $C^{\infty}(UM)^{A}$ of all smooth functions on $UM$ which
is invariant under $A$ . We define the evaluation map $\epsilon;S(M)\rightarrow C^{\infty}(UM)$ by

regarding $\xi_{x}$ as a polynomial on $T_{x}M$ for each $\xi\in S(M)$ and $x\in M$. Note that
the map $\epsilon$ is a G-homomorphism with respect to natural actions of $G$ and that
$K(M)$ is stable under $G$ . By (1.2) the map $\epsilon$ induces a G-homomorphism
$\epsilon;K(M)\rightarrow C^{\infty}(\hat{M}_{0})$ . The map $\epsilon$ is injective on $S^{p}(M)$ or on $K^{p}(M)$ . But it is
not injective on $S(M)$ nor on $K(M)$ . Actually we have the following lemma.

LEMMA 4.1. The kernel of $\epsilon$ : $K(M)\rightarrow C^{\infty}(\hat{M}_{0})$ coincides with $(1-g)\cdot K(M)$ .

PROOF. Suppose $\xi\in K(M)$ with $\epsilon(\xi)=0$ . At each $x\in M,$ $\xi_{x}\in S(T_{x}^{*}M)$ vanishes
on the unit sphere of $T_{x}M$. Therefore there exists uniquely $\eta_{x}\in S(T_{x}^{*}M)$ such
that $(1-g_{x})\cdot\eta_{x}=\xi_{x}$ . Now $\{\eta_{x}\}_{x\in M}$ defines a section $\eta\in S(M)$ such that
$(1-g)\cdot\eta=\xi$ . By (1.1) we have

$ 0=\delta^{*}\xi=\delta^{*}(1-g)\cdot\eta+(1-g)\cdot\delta^{*}\eta=(1-g)\cdot\delta^{*}\eta$ ,

and hence $\eta\in K(M)$ . Thus we have proved that the kernel of $\epsilon$ : $K(M)\rightarrow C^{\infty}(\hat{M}_{0})$

is contained in $(1-g)\cdot K(M)$ . The converse inclusion is obvious from the above
argument. $q$ . $e$ . $d$ .

LEMMA 4.2. Let $(M, g)$ be a rank one symmetric space. Then the G-homo-
morphism:

$S^{p}\mathfrak{g}^{*}\cong BS^{p}\mathfrak{g}\cong gS^{p}(K^{1}(M))\tilde{K}^{p}(M)C^{\infty}(\hat{M}_{0})\overline{\mu}\overline{\epsilon}$

coincides with $\iota_{0}^{*}:$ $S^{P}\mathfrak{g}^{*}\rightarrow C^{\infty}(\hat{M}_{0})$ . Here the first map (resp. the second map) is the
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duality by means of $B$ (resp. by means of g) and $\mu$ is the multiplication. There-

fore we have
$\iota_{0}^{*}S^{p}\mathfrak{g}^{*}=\epsilon\tilde{K}^{p}(M)$ .

PROOF. Let $\lambda\in \mathfrak{g}^{*}$ and $X\in \mathfrak{g}$ correspond to $\lambda$ by $B,$ $\xi\in K^{1}(M)$ correspond to
$X$ by $g$ . Let $\gamma$ be a geodesic of $(M, g)$ . Choose $a\in G$ such that $\gamma(0)=a\cdot 0$ and
$\gamma^{\prime}(0)=a\cdot H_{0}$ . Then

$\epsilon(\xi)[\gamma]=\xi(\gamma^{\prime}(0))=\langle X_{a\cdot 0}, a\cdot H_{0}\rangle$

$=$ \langle $a$ . (Ad $(a^{-1})X$ ) , $ a\cdot H_{0}\rangle$ $=B(Ad(a^{-1})X, H_{0})$

$=B$ ($X$, Ad $(a)H_{0}$) $=\lambda(Ad(a)H_{0})$

$=\lambda(c_{0}[\gamma])=(C_{0}^{*}\lambda)[\gamma]$ .
Therefore we have $\epsilon(\xi)=\iota_{0}^{*}\lambda$ , which implies the assertion. $q$ . $e$ . $d$ .

By Theorem 2.5 we have the following

COROLLARY. If $(M, g)$ is a compact rank one symmetric space, $\tilde{K}(M)$ is

isomorphic to $S(\mathfrak{g}^{*})/J$. In particular, we have

$\dim\tilde{K}^{p}(M)=\dim S^{p}\mathfrak{g}^{*}/J^{p}$ , $p\geqq 0$ .

LEMMA 4.3. Let $M=S^{n}$ be the unit sphere with the standard metric $g$ . Then

we have

$\dim\tilde{K}^{p}(M)=\frac{1}{n}\left(\begin{array}{l}n+p\\p+1\end{array}\right)\left(\begin{array}{l}n+p-1\\p\end{array}\right)$ , $p\geqq 0$ .

PROOF. By \S 3, $\hat{M}=G_{2,n-1}(R)\subset P_{r-1}(R)$ . Thus $\hat{M}^{c}$ is the complex Grassmann

manifold $G_{2,n-1}(C)$ of all 2-dimensional subspaces of $C^{n+1}$ imbedded in the complex

projective space $P_{r-1}(C)$ associated to the space $A_{n+1}(C)$ of complex alternating

$(n+1)\times(n+1)$ matrices. Therefore $\hat{M}^{c}$ is the smooth complexification of $\hat{M}$. In
thie case the canonical map $\psi:S^{p}(\mathfrak{g}^{c})^{*}\rightarrow\Gamma(\hat{M}^{C}, L^{p})$ is surjective for each $p\geqq 0$

(cf. Sakane-Takeuchi [10]), and so we may apply Lemma 2.6 to get $\dim S^{p}\mathfrak{g}^{*}/J^{p}$

$=\dim_{C}\Gamma(\hat{M}^{C}, L^{p})$ . Therefore, by the above Corollary we have

$\dim\tilde{K}^{P}(M)=\dim_{C}\Gamma(\hat{M}^{C}, L^{p})$ .

Now $\dim_{C}\Gamma(\hat{M}^{C}, L^{p})$ is computed as follows. We take the Cartan subalgebra $\mathfrak{h}$

of $S\mathfrak{l}(n+1, C)$ consisting of all diagonal matrices in $s\mathfrak{l}(n+1, C)$ . Then the real

part $\mathfrak{h}_{R}$ of $\mathfrak{h}$ is given by

$\mathfrak{h}_{R}=\{\left\{\begin{array}{lll}\lambda_{1} & & 0\\ & \ddots & \\0 & & \lambda_{n+1}\end{array}\right\}$ ; $\lambda_{i}\in R,$ $\Sigma\lambda_{i}=0\}$ .



Killing tensor fields on spaces of constant curvature 247

We introduce a lexicographic order $>$ on $\mathfrak{h}_{R}^{*}$ by $\lambda_{1}>\cdots>\lambda_{n}$ . Then by Bott’s
theorem (Bott [2]), $\dim_{C}\Gamma(\hat{M}^{C}, L^{p})$ is the degree of irreducible representation of
$5\mathfrak{l}(n+1, C)$ with the highest weight $p(\lambda_{1}+\lambda_{2})$ , which is equal to

$\frac{1}{n}\left(\begin{array}{l}n+p\\p+1\end{array}\right)\left(\begin{array}{l}n+p-1\\p\end{array}\right)$

by Weyl’s degree formula. $q$ . $e$ . $d$ .

THEOREM 4.4. Let $(M, g)$ be a two-point homogeneous space of constant
sectional curvature with $\dim M=n$ . Then the algebra $K(M)$ of Killing tensor

fields on $(M, g)$ is generated by Killing l-forms, and

$\dim K^{p}(M)=-\frac{1}{n}\left(\begin{array}{l}n+p\\p+1\end{array}\right)\left(\begin{array}{l}n+p-1\\p\end{array}\right)$ , $p\geqq 0$ .

Therefore (by Theorem 1.1) the centralizer in $\mathcal{D}(M)$ of the Laplacian is generated
by Killing vector fields.

PROOF. We show first that for any open set $U$ of $M$ the restriction map
$r:\tilde{K}^{p}(M)\rightarrow\tilde{K}^{p}(U),$ $p\geqq 0$, is an isomorphism. It is known (Barbance [1]) that the
restriction $r:K^{p}(M)\rightarrow K^{p}(U)$ is injective for a general Riemannian manifold. In

our case, $\dim K^{1}(M)=\dim \mathfrak{g}=\frac{1}{2}n(n+1)$ and $\dim K^{1}(U)\leqq\frac{1}{2}n(n+1)$ by (1.5), and

hence $r:K^{1}(M)\rightarrow K^{1}(U)$ is an isomorphism. It follows that $r:\tilde{K}^{p}(M)\rightarrow\tilde{K}^{p}(U)$ is
surjective, which implies the assertion.

Now, since our $(M, g)$ is of constant curvature, it is locally projectively

equivalent to the standard sphere $S^{n},$ $i.e.$ , there are open sets $U$ of $M$ and $V$ of
$S^{n}$ and a diffeomorphism $\varphi:U\rightarrow V$ which maps a geodesic of $U$ to a geodesic of
$V$ (up to parametrization). Now it is not hard to see that the correspondence
$\xi\mapsto(\varphi^{-1})^{*}[(\varphi^{*}v_{V}/v_{U})^{2/n+1}\xi],$ $v$ . being the volume element, gives an isomorphism
$K^{1}(U)\rightarrow K^{1}(V)$ . Thus $\tilde{K}^{p}(U)$ is isomorphic to $\tilde{K}^{p}(V)$ for each $p\geqq 0$ . Therefore
by the above fact we get $\dim\tilde{K}^{p}(M)=\dim\tilde{K}^{p}(S^{n})$ . Thus by Lemma 4.3 we
obtain

$\dim\tilde{K}^{p}(M)=\frac{1}{n}\left(\begin{array}{l}n+p\\p+1\end{array}\right)\left(\begin{array}{l}n+p-1\\p\end{array}\right)$ ,

and hence $\tilde{K}^{p}(M)=K^{p}(M)$ by (1.5). This implies the assertions of the theorem.
$q$ . $e$ . $d$ .

\S 5. Lichnerowicz Laplacian on symmetric spaces.

Let $(M, g)$ be a symmetric space. Take a coset space expression $M=G/K$

as in the beginning of \S 2. We decompose the pair $(\mathfrak{g}, f)$ as the direct sum:
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$(\mathfrak{g}, f)=(\mathfrak{g}_{0}, f_{0})\oplus(\mathfrak{g}_{1}, f_{1})$

of the Euclidean part $(\mathfrak{g}_{0}, f_{0})$ and the semisimple part $(\mathfrak{g}_{1}, f_{1})$ , with Cartan decom-
positions $g_{0}=f_{0}+\mathfrak{m}_{0}$ and $\mathfrak{g}_{1}=f_{1}+\mathfrak{m}_{1}$ , respectively (cf. Helgason [5]). We further
decompose $\mathfrak{m}_{0}$ as the direct sum:

$\mathfrak{m}_{0}=\mathfrak{m}_{0}^{\prime}\oplus \mathfrak{m}_{0^{\prime}}^{\prime}$

of the trivial part $\mathfrak{m}_{0}^{\prime}$ and the non-trivial part $\mathfrak{m}_{0}^{\prime\prime}$ with respect to the action of
$f_{0}$ . We put

$\mathfrak{g}^{\prime}=\mathfrak{m}_{0}^{\prime}\oplus \mathfrak{g}_{1}$ , $f^{\prime}=f_{1}$ , $\mathfrak{m}^{\prime}=\mathfrak{m}_{0}^{\prime}\oplus \mathfrak{m}_{1}$ , $\mathfrak{g}^{\prime\prime}=f_{0}+\mathfrak{m}_{0}^{\prime\prime}$ .

We have then another decomposition:

$(\mathfrak{g}, f)=(\mathfrak{g}^{\prime}, f^{\prime})\oplus(\mathfrak{g}^{\prime\prime}, f_{0})$ ,

with Cartan decompositions $\mathfrak{g}‘=f^{\prime}+\mathfrak{m}^{\prime}$ and $\mathfrak{g}^{\prime\prime}=f_{0}+\mathfrak{m}_{0}^{\prime\prime}$ . Now there exists uniquely
a g’-invariant non-degenerate symmetric bilinear form $B$ on $\mathfrak{g}^{\prime}$ such that $B(f^{\prime}, \mathfrak{m}^{\prime})$

$=0$ and $B|\mathfrak{m}^{\prime}\times \mathfrak{m}^{\prime}=g_{0}|\mathfrak{m}^{\prime}\times \mathfrak{m}^{\prime}$ . Choosing basis $\{X_{i}\},$ $\{Y_{i}\}$ for $\mathfrak{g}^{\prime}$ and a basis
$\{Z_{k}\}$ for $\mathfrak{m}_{0}^{\prime\prime}$ such that $B(X_{i}, Y_{j})=\delta_{ij}$ and $g_{0}(Z_{k}, Z_{l})=\delta_{kl}$ , we define an element
$C$ of the universal enveloping algebra of $\mathfrak{g}$ by

$C=-\sum_{i}X_{i}Y_{i}-\sum_{k}Z_{k}^{2}$ ,

which is independent of the choice of basis. Then $C$ acts on $C^{\infty}(G)$ as a two-
sided invariant linear differential operator.

Let $\sigma$ : $K\rightarrow GL(S^{p}\mathfrak{m}^{*})$ denote the natural action of $K$ on $S^{p}\mathfrak{m}^{*}$ , and $R(k)$ :
$C^{\infty}(G)\rightarrow C^{\infty}(G)$ the right translation by $k\in K,$ $i.e.,$ $(R(k)f)(a)=f(ak)$ for $f\in C^{\infty}(G)$ ,
$a\in G$ . Now $K$ acts on $C^{\infty}(G)\otimes S^{p}\mathfrak{m}^{*}$ by the tensor product $ R\otimes\sigma$ , and the space
$(C^{\infty}(G)\otimes S^{p}\mathfrak{m}^{*})^{K}$ of all K-invariants in $C^{\infty}(G)\otimes S^{p}\mathfrak{m}^{*}$ is canonically identified with
$S^{p}(M)$ . It is seen that $C\otimes 1$ leaves $(C^{\infty}(G)\otimes S^{p}\mathfrak{m}^{*})^{K}$ invariant. Under these
definitions we have

THEOREM 5.1 (Koiso [7]). For a symmetric space $(M, g)$ , the Lichnerowicz
Laplacian $\Delta$ on $S^{p}(M)$ corresponds to $C\otimes 1$ on $(C^{\infty}(G)\otimes S^{p}\mathfrak{m}^{*})^{K}$ under the canonical

identification $S^{p}(M)=(C^{\infty}(G)\otimes S^{p}\mathfrak{m}^{*})^{K}$ .

For $\xi\in S(\mathfrak{m}^{*})$ (resp. $\xi\in S(M)$ ) the multiplication by $\xi$ is denoted by $\mu(\xi),$
$i$ . $e.$ ,

$\mu(\xi)\eta=\xi\cdot\eta$ for $\eta\in S(\mathfrak{m}^{*})$ (resp. $\eta\in S(M)$ ). The action of $X\in \mathfrak{g}$ on $C^{\infty}(G)$ as a
left invariant vector field is denoted by $\nu(X)$ .

LEMMA 5.2. Let $\{X_{i}\}$ be a basis for $\mathfrak{m}$ and $\{\xi_{i}\}$ the basis for $\mathfrak{m}^{*}$ dual to
$\{X_{i}\},$ $i.e.,$ $\xi_{i}(X_{j})=\delta_{ij}$ . Then the operator $\delta^{*}:$ $S^{p}(M)\rightarrow S^{p+1}(M)$ identified with the
map $(C^{\infty}(G)\otimes S^{p}\mathfrak{m}^{*})^{K}\rightarrow(C^{\infty}(G)\otimes S^{p+1}\mathfrak{m}^{*})^{K}$ is given by
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$\delta^{*}=\sum_{i}\nu(X_{i})\otimes\mu(\xi_{i})$ .
PROOF. If we write $ e(\xi)\tau=\xi\otimes\tau$ for $\xi\in \mathfrak{m}^{*}$ and $\tau\in\otimes^{p}\mathfrak{m}^{*}$, the covariant

derivation $\nabla:C^{\infty}(\otimes^{p}T^{*}M)\rightarrow C^{\infty}(\otimes^{p+1}T^{*}M)$ identified with the map

$(C^{\infty}(G)\otimes(\otimes^{p}\mathfrak{m}^{*}))^{K}\rightarrow(C^{\infty}(G)\otimes(\otimes^{p+1}\mathfrak{m}^{*}))^{K}$

is given (cf. Koiso [7]) by

$\nabla=\sum_{i}\nu(X_{i})\otimes e(\xi_{i})$ .

Thus $\delta^{*}=S_{p+1}\nabla$ is given by the above formula. $q$ . $e$ . $d$ .

THEOREM 5.3. (Sumitomo-Tandai [11]). Let $(M, g)$ be a locally symmetric
space. Then

1) $\Delta\delta^{*}=\delta^{*}\Delta$. Therefore $\Delta K^{p}(M)\subset K^{p}(M)$ for each $p\geqq 0$ ;
2) $\Delta\mu(g)=\mu(g)\Delta$ .

PROOF. We may assume that $(M, g)$ is a symmetric space.
1) Since $\nu(X)C=\nu(X)C$ on $C^{\infty}(G)$ for each $X\in \mathfrak{g}$ , by Theorem 5.1 and Lemma

5.2 we get $\Delta\delta^{*}=\delta^{*}\Delta$ .
2) Since the operator $\mu(g):S^{p}(M)\rightarrow S^{p+2}(M)$ identified with the map

$(C^{\infty}(G)\otimes S^{P}\mathfrak{m}^{*})^{K}\rightarrow(C^{\infty}(G)\otimes S^{p+2}\mathfrak{m}^{*})^{K}$ is given by $\mu(g)=1\otimes\mu(g_{0})$ , by Theorem 5.1
we get $\Delta\mu(g)=\mu(g)\Delta$ . $q.e.d$ .

Now let $(M, g)$ be two-point homogeneous. We use the notation in the
previous sections. The space $C^{\infty}(G)^{K_{0}}$ (resp. $C^{\infty}(G)^{G_{0}}$ ) of all smooth functions on
$G$ which is invariant under the right translation by $K_{0}$ (resp. by $G_{0}$) will be
identified with $C^{\infty}(UM)$ (resp. with $C^{\infty}(\hat{M}_{0})$ ). Then the map $\epsilon_{H_{0}}$ : $C^{\infty}(G)\otimes S^{p}\mathfrak{m}^{*}$

$\rightarrow C^{\infty}(G)$ defined by $\epsilon_{H_{0}}(f\otimes\xi)=\xi(H_{0})f(f\in C^{\infty}(G), \xi\in S^{p}\mathfrak{m}^{*})$ induces the map
$\epsilon_{H_{0}}$

; $(C^{\infty}(G)\otimes S^{P}\mathfrak{m}^{*})^{K}\rightarrow C^{\infty}(G)^{K_{0}}$ , which corresponds to the evaluation map $\epsilon$ : $S^{p}(M)$

$\rightarrow C^{\infty}(UM)$ .
We assume further that $(M, g)$ is a compact rank one symmetric space. We

denote by $\varpi^{\prime}$ : $C^{\infty}(UM)\rightarrow C^{\infty}(\hat{M}_{0})$ the orthogonal projection with respect to the
$L^{2}$-inner product \langle \langle , \rangle \rangle . If it is identified with the map $C^{\infty}(G)^{K_{0}}\rightarrow C^{\infty}(G)^{G_{0}}$ , then

$(\varpi f)(b)=\int_{A}f(ba)da$ for $f\in C^{\infty}(G)^{K_{0}},$ $b\in G$ ,

where $da$ is the normalized Haar measure of the total subgroup $A$ . Both $C^{\infty}(G)^{K_{0}}$

and $C^{\infty}(G)^{G_{0}}$ are stable under $C$ , and we have $C\sigma=\varpi^{\prime}C$ on $C^{\infty}(G)^{K_{0}}$ , which follows

from the above expression for $’\sigma$ .
Now it is known that any geodesic of a compact rank one symmetric space
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$(M, g)$ is periodic and has the same period, say 1. We define a linear map
$\wedge:S(M)\rightarrow C^{\infty}(\hat{M}_{0})$ , called the Randon transform, by

$\hat{\xi}([\gamma])=\frac{1}{l}\int_{0}^{\iota}\xi(\gamma^{\prime}(t))dt$ for $\xi\in S^{p}(M),$ $[\gamma]\in\hat{M}_{0}$ .

The following lemma is an immediate consequence of definitions.

LEMMA 5.4. Let $(M, g)$ be a compact rank one symmetric space. Then the
$\epsilon$ $’\sigma$

composite $S^{P}(M)\rightarrow C^{\infty}(UM)-->C^{\infty}(\hat{M}_{0})$ coincides with the Radon transform on
$S^{p}(M)$ . In particular, the evaluation $\epsilon:K^{p}(M)\rightarrow C^{\infty}(\hat{M}_{0})$ coincides with the Radon
transform on $K^{p}(M)$ .

The following theorem was proved by Sumitomo-Tandai [11] for standard
spheres, and by Michel [9] for $p=2$ .

THEOREM 5.5. Let $(M, g)$ be a compact rank one symmetric space, $\hat{\Delta}$ the
Laplacian of $(\hat{M}_{0},\hat{g})$ , where $\hat{g}$ is the Riemannian metric on $\hat{M}_{0}$ defined in \S 2.
Then

$\hat{\Delta\xi}=\hat{\Delta}\hat{\xi}$ for each $\xi\in S^{p}(M)$ .

PROOF. Since $C\varpi^{\prime}=\varpi C$ on $C^{\infty}(G)^{K_{0}}$ , the following diagram is commutative.

$(C^{\infty}(G)\otimes S^{p_{1}}\mathfrak{n}^{*})^{K}C\otimes 1\rightarrow^{\epsilon_{\Pi_{0}}}C^{\infty}(G)^{K_{0}}\rightarrow^{\varpi^{\prime}}C^{\infty}(G)^{G_{0}}\downarrow C$

$(C^{\infty}(G)\otimes S^{p_{1}}\mathfrak{n}^{*})^{K}\rightarrow^{\epsilon_{lI_{0}}}C^{\infty}(G)^{K_{0}}\rightarrow^{\varpi^{\prime}}C^{\infty}(G)^{G_{0}}$ .
On the other hand, since $\hat{g}$ is a normal homogeneous Riemannian metric on $\hat{M}_{0}$,

the operator $C$ on $C^{\infty}(G)^{G_{0}}$ corresponds to the Laplacian $\hat{\Delta}$ on $C^{\infty}(\hat{M}_{0})$ . Therefore,
by Theorem 5.1 and Lemma 5.4 we get the required equality. $q$ . $e$ . $d$ .

We define

$P^{P}(M)=\{\xi\in K^{P}(M);\{\langle\xi, g\cdot K^{p-2}(M)\rangle\rangle=0\}$ , $p\geqq 0$ ,

under the convention: $K^{p}(M)=0$ for $p<0$ . An element of $P^{p}(M)$ is called
a primitive Killing p-tensor field on $(M, g)$ . From Theorem 5.3 and the self-
adjointness of $\Delta$ , we have $\Delta P^{p}(M)\subset P^{p}(M)$ . Recall that $K^{p}(M)$ is stable under
$G$ , and hence $P^{p}(M)$ is also stable under $G$ . We put

$P(M)=\sum_{p\geq 0}P^{p}(M)$ .
It is seen by the induction on $p$ that
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(5.1)
$K^{p}(M)=\sum_{0\leq k\leq[p/2]}g^{k}\cdot P^{p- 2k}(\lrcorner lf)$ .

Therefore, if we denote the spectrum of $\Delta$ by $Spec\Delta,$ by Theorem 5.3 we have

(5.2) $Spec\Delta$ on $K^{p}(M)=_{0S}\bigcup_{k\leq[p/2]}$ ( $Spec\Delta$ on $P^{p-2k}(M)$).

LEMMA 5.6. The evaluation map $\epsilon$ : $P(M)\rightarrow C^{\infty}(\hat{M}_{0})$ on $P(M)$ is injective.

PROOF. Suppose $\xi\in P(M),$ $\epsilon(\xi)=0$ . Assuming that

$\xi=\xi_{0}+\xi_{1}+\cdots+\xi_{p}$ , $\xi_{i}\in P^{i}(M)$ , $\xi_{p}\neq 0$ ,

we shall lead to a contradiction. By Lemma 4.1 there exists $\eta\in K(M)$ such that
$\xi=(1-g)\cdot\eta$ . Therefore we have $p\geqq 2$ . Now $\eta$ can be written as

$\eta=\eta_{0}+\eta_{1}+\cdots+\eta_{p-2}$ , $\eta_{i}\in K^{i}(M)$ .
Then we have $\xi_{p}=g\cdot\eta_{p- 2}$ . From $\langle\langle P^{P}(M), g\cdot K^{p-2}(M)\rangle\rangle=0$ we get $\xi_{p}=0$ . This
is a contradiction. $q$ . $e$ . $d$ .

In the following, for various real vector spaces $V$ defined previously, the
complexification of $V$ will be denoted by $V^{C}$, and the C-linear extensions of
various real linear maps will be denoted by the same notation.

We denote by $S(\hat{M}_{0})$ the space of all functions $f\in C^{\infty}(\hat{M}_{0})^{C}$ such that the C-linear
span of $\{a\cdot f;a\in G\}$ is of finite dimension. Note that $S(\hat{M}_{0})$ is a G-submodule
of $C^{\infty}(\hat{M}_{0})^{C}$ . An element of $S(\hat{M}_{0})$ is called a spherical function on $\hat{M}_{0}=G/G_{0}$ .

THEOREM 5.7. Let $(M, g)$ be a compact rank one symmetric space. Then the
evaluation $\epsilon$ : $K(M)\rightarrow C^{\infty}(\hat{M}_{0})$ induces a G-isomorphism $\epsilon$ : $P(M)^{C}\rightarrow S(\hat{M}_{0})$ such that
$\epsilon\Delta=\hat{\Delta}\epsilon$ .

PROOF. Note first that $\epsilon K(M)^{C}\subset S(\hat{M}_{0})$ . This follows from that $K^{p}(M)$ is
a finite dimensional G-module and $\epsilon$ is a G-homomorphism. Now, by Lemma 2.3
$\hat{M}_{0}$ is affine algebraic in $\mathfrak{g}$ , and so by Iwahori-Sugiura [6] we have $\iota_{0}^{*}S((\mathfrak{g}^{C})^{*})=$

$S(\hat{M}_{0})$ . On the other hand, by Lemma 4.2 we have $\iota_{0}^{*}S((\mathfrak{g}^{C})^{*})=\epsilon\tilde{K}(M)^{C}$ . There-
fore we get $\epsilon K(M)^{C}=S(\hat{M}_{0})$ . Now (5.1) implies the surjectivity of $\epsilon;P(M)^{C}\rightarrow$

$S(\hat{M}_{0})$ . The injectivity follows from Lemma 5.6. The commutativity $\epsilon\Delta=\hat{\Delta}\epsilon$

follows from Lemma 5.4 and Theorem 5.5. $q$ . $e$ . $d$ .

\S 6. Spectrum of Lichnerowicz Laplacian on $K^{p}(S^{n})$ .
We recall first the definition of a weight of a compact connected Lie group

$G$ . Let $\mathfrak{g}=LieG$ and $t$ a Cartan subalgebra of $\mathfrak{g}$ . Let $V$ be a finite dimensional
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$];\lambda_{1},$ $\lambda_{2}\in R\}$ ,

G-module (over $C$). It becomes a $\mathfrak{g}$ -module by differentiation. We mean by a
weight of $V$ relative to $t$ an element $\lambda$ of $t^{*}$ such that there exists $v\in V-\{0\}$

with $H\cdot v=\sqrt{-1}\lambda(H)v$ for each $H\in t$ .
In what follows, let $M$ be the unit sphere $S^{n}$ of dimension $n\geqq 2$ with the

standard metric $g$ . We use the notation in \S 3, and let $\hat{\mathfrak{m}}$ be the subspace of $\mathfrak{g}$

defined by (2.3).

In this case, the pair $(G, G_{0})=(SO(n+1), SO(2)\times SO(n-1))$ is a compact

symmetric pair with the associated Cartan decomposition $\mathfrak{g}=\mathfrak{g}_{0}+\hat{\mathfrak{m}}$ . The G-module
structure of $S(M_{0})$ for such a pair is determined in the following way by the
theory of E. Cartan on spherical functions (cf. Takeuchi [12]). Let $\hat{\mathfrak{a}}$ be a
maximal abelian subalgebra in $\hat{\mathfrak{m}}$ , and put

$\hat{\Gamma}=\{H\in\hat{\mathfrak{a}} ; \exp H\in G_{0}\}$ .

Choose a Cartan subalgebra $t$ of $\mathfrak{g}$ containing $\hat{\mathfrak{a}}$ and put $\hat{b}=t\cap \mathfrak{g}_{0}$ . Let $(, )$ denote
the inner product on $t^{*}$ defined by $B|\{Xt$ . Take a compatible lexicographic
order $>$ on $t^{*}$ . Let $D$ be the set of all $\lambda\in\downarrow*such$ that $(\lambda, \alpha)\geqq 0$ for each positive

root $\alpha$ of $\mathfrak{g},$

$\lambda|\hat{\mathfrak{b}}=0$ and $\lambda(\hat{\Gamma})\in 2\pi Z$ . Let finally denote by $\rho\lambda$ the irreducible
representation of $G$ with the highest weight $\lambda\in D$ . Then the $decomposition^{v_{-}}of$

$S(\hat{M}_{0})$ as G-module is given by

(6.1) $S(\hat{M}_{0})=\sum_{\lambda\in\hat{D}}\rho_{\lambda}$

We assume first $n\geqq 3$ . We take

$\hat{\mathfrak{a}}=\{[\frac{\frac{0}{\lambda_{1}}0\lambda_{2}0^{-\frac{-\lambda 00-\lambda_{2}}{0}}1}{0}|$

$00$

$1=\int|\ovalbox{\tt\small REJECT}^{\frac{0}{\lambda_{1}0}\underline{|^{-\lambda_{0^{1}}0}}}\underline{0\lambda}_{2}|_{\overline{\left|\begin{array}{ll}0 & -\lambda_{l}\\\lambda_{l} & 0\end{array}\right|}}\frac{0-\lambda_{2}}{0}\underline{|_{\lambda_{3}0}\overline{0-\lambda_{3}}}..$

.

(0)

$\ovalbox{\tt\small REJECT};\lambda_{i}\in R\},$ $l=[\frac{n+1}{2}]$ .
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Define $\lambda_{1}>\cdots>\lambda_{l}>0$ . Then we have

(6.2) $D=\{m_{1}\lambda_{1}+m_{2}\lambda_{2} ; m_{1}, m_{2}\in Z, m_{1}\equiv m_{2}(mod 2), m_{1}\geqq m_{2}\geqq 0\}$

if $n\geqq 4$,

(6.3) $D=\{m_{1}\lambda_{1}+m_{2}\lambda_{2} ; m_{1}, m_{2}\in Z, m_{1}\equiv m_{2}(mod 2), m_{1}\geqq|m_{2}|\}$

if $n=3$ .
In case $n=2$, we take

$\hat{\mathfrak{a}}=1=\{[\div|\frac{0}{0-\lambda_{1}}];\lambda_{1}\in R\}$ .

Define $\lambda_{1}>0$ . Then we have

(6.4) $D=\{m_{1}\lambda_{1} ; m_{1}\in Z, m_{1}\geqq 0\}$ .

LEMMA 6.1 (Tsukamoto). The following sum is equal to

$\frac{1}{n}\left(\begin{array}{l}n+p\\p+1\end{array}\right)\left(\begin{array}{l}n+p-1\\p\end{array}\right)(=\dim K^{p}(S^{n}))$ .

$\sum_{0\leq k\leq l\leq[p/2]}\deg\rho_{(p-2k)\lambda_{1}+(p-2l)\lambda_{2}}$ if $n\geqq 4$,

$\sum_{0\leq k\leq l\leq[p/2]}(\deg\rho_{(p-2k)\lambda_{1}+(p-2l)\lambda_{2}}+\deg\rho_{(p-2k)\lambda_{1}-(p-2l)\lambda_{2}})$

if $n=3$ ,

$\sum_{0\leq k\leq[p/2]}\deg\rho_{(p-2k)\lambda_{1}}$ if $n=2$ .

This can be proved by Weyl’s degree formula and an elementary calculation.

LEMMA 6.2. The representation $\rho^{p}0.fG$ on $P^{p}(M)^{C}$ is decomposed as follows.
$\rho^{p}=\sum_{0\leq k\leq[p/2]}\rho_{p\lambda_{1}+(p-2k)\lambda_{2}}$ if $n\geqq 4$ ,

$\rho^{p}=\sum_{0\leq k\leq[p/2]}(\rho_{p\lambda_{1}+(p-2k)\lambda_{2}}+\rho_{p\lambda_{1}-(p-2k)\lambda_{2}})$ if $n=3$ ,

$\rho^{p}=\rho_{p\lambda_{1}}$ if $n=2$ .

PROOF. Assume first $n\geqq 4$ . Then, by Theorem 5.7, (6.1) and (6.2) we have

(6.5)
$\sum_{p\geq 0}\rho^{p}=\sum_{m\geq 0}$ . $\rho_{m\lambda_{1}+(m-2k)\lambda_{2}}$

$0\leq k\leq[m/2]$

Now we prove the assertion by the induction on $p$ . Since $P^{0}(M)^{C}=C$ and
$\rho^{0}=\rho_{0}$ , the required decomposition holds for $p=0$ . Let $p\geqq 1$ . Let $\rho_{\lambda}$ be an
irreducible component of $\rho^{p}$ . Then, by (6.5) $\lambda$ is of the form $\lambda=m\lambda_{1}+(m-2k)\lambda_{2}$ ,
$m\geqq 0,0\leqq k\leqq[m/2]$ . Moreover, the induction hypothesis and (6.5) imply that



254 Masaru TAKEUCHI

$m\geqq p$ . On the other hand, since $\epsilon K^{P}(M)^{C*}=\prime_{0}S^{p}(\mathfrak{g}^{C})^{*}$ by Lemma 4.2 and Theorem
4.6, $K^{p}(M)^{C}$ is G-isomorphic to a G-submodule of $S^{p}(A_{n+1}(C)^{*})$ . But $A_{n+1}(C)$ is
an $SU(n+1)$-module and there exist a Cartan subalgebra 9 of $6u(n+1)$ with t\subset @

and linear forms $x_{1},$ $\cdots,$ $x_{n+1}$ on 9 such that the set of weights of $SU(n+1)-$

module $A_{n+1}(C)$ is $\{x_{i}+x_{j} ; i<j\}$ and that $\chi_{i}|1=\lambda_{i},$ $x_{l+i}|t=-\lambda_{i}(1\leqq i\leqq l)(x_{n+1}|t=0$

if $n$ is even). Therefore we must have $m\leqq p$ . Thus we have proved that $\lambda$ is
of the form $\lambda=p\lambda_{1}+(p-2k)\lambda_{2},0\leqq k\leqq[p/2]$ .

On the other hand, by Lemma 6.1 we have

$\deg\rho^{p}=\sum_{0\leq k\leq[p/2]}\deg\rho_{p\lambda_{1}+(p-2k)\lambda_{2}}$ .

Since the multiplicity of $\rho\lambda$ in $\rho^{p}$ is 1, we get the required decomposition for $p$ .
The assertion for $n=3,2$ is proved in the same way, making use of (6.3),

(6.4). $q$ . $e$ . $d$ .

Now, for the determination of $Spec\Delta$ on $K^{p}(S^{n})$ , it is sufficient to determine
$Spec\Delta$ on each $P^{P}(S^{n})$ , since (5.2) holds. The latter spectrum is given by the
following theorem.

THEOREM 6.3 (Sumitomo-Tandai [11]). We define
$\mu_{p.k}=(n+p-1)p+(n+p-2k-3)(p-2k)$ if $n\geqq 3$ ,

$\mu_{p}=p(p+1)$ if $n=2$ .

Then $Spec\Delta$ on $P^{p}(S^{n})$ is given by

$\{\mu_{p.k} ; 0\leqq k\leqq[p/2]\}$ if $n\geqq 3$ ,

$\{\mu_{p}\}$ if $n=2$ .

PROOF. By Theorem 5.7 the problem reduces to the determination of the
eigenvalue $c_{\lambda}$ of the operator $C$ acting on the representation space of each
irreducible component $\rho\lambda$ of $\rho^{p}$ . The eigenvalue $c_{\lambda}$ is given by Freudenthal’s
formula:

$c_{\lambda}=(\lambda+2\delta, \lambda)$ ,

where $ 2\delta$ denotes the sum of positive roots of $\mathfrak{g}$ . In our case, $ 2\delta$ is given by

$2\delta=\left\{\begin{array}{l}\sum_{i=1}^{l}(n+1-2i)\lambda_{i}\\\lambda_{1}\end{array}\right.$
$ifif$ $n\geqq 3n=2’$

.

If $n\geqq 4$, for $\lambda=p\lambda_{1}+(p-2k)\lambda_{2}$ with $0\leqq k\leqq[p/2]$ we have
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$c_{\lambda}=(p\lambda_{1}+(p-2k)\lambda_{2}+(n-1)\lambda_{1}+(n-3)\lambda_{2}, p\lambda_{1}+(p-2k)\lambda_{2})$

$=(n+p-1)p+(n+p-2k-3)(p-2k)$

$=\mu_{p,k}$ .
If $n=3$ , for $\lambda=p\lambda_{1}\pm(p-2k)\lambda_{2}$ with $0\leqq k\leqq[p/2]$ we have

$c_{\lambda}=(p\lambda_{1}\pm(p-2k)\lambda_{2}+2\lambda_{1}, p\lambda_{1}\pm(p-2k)\lambda_{2})$

$=(p+2)p+(p-2k)^{2}$

$=\mu_{p.k}$ .
If $n=2$ , for $\lambda=p\lambda_{1}$ we have

$c_{\lambda}=(p\lambda_{1}+\lambda_{1}, p\lambda_{1})=p(p+1)=\mu_{p}$ .
Thus, together with Lemma 6.2 we obtain the theorem. $q$ . $e$ . $d$ .
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