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A MINIMAL FLABBY SHEAF AND AN ABELIAN GROUP
By
Katsuya EpA

In the cohomology theory of sheaves, we may use any flabby extension F of
a sheaf S to define the sheaf cohomology group HXT, S), where T is a topo-
logical space. Consequently, the abelian group consisting of all global sections
of the quotient sheaf F/S gives us little information about the group H(T, S)
in general.

In this paper we define a particular flabby extension Mg which is minimal
in a certain sense, for a simple sheaf S. We shall show that the abelian group
HYT, S) and the one consisting of all global sections of the quotient Ms/S have
common free summands, i.e. a free abelian group F is a summand of the former
iff an isomorphic one is a summand of the latter. We shall use the notations of
and for sheaves and those of for Q-sets to simplify the presentations.
In §1 we define the flabby sheaf M and investigate its property as a flabby
extension. In §2 we study the abelian group consisting of all global sections of
a sheaf which appears in the process to define H¥(T, S) in use of Ms.

§1. A minimal flabby sheaf.

DEFINITION 1. A complete Heyting algebra (cHa) is a complete lattice 2=
(2, A, V) satisfying the infinite distributive law: p/\.;/I qi-——-é/lp/\qi for all

pe and all systems {¢g; =} Q.

We denote the least element of £ by 0 and the greatest by 1. p=g=
Vi{x; pAx<q} for pe R, and pAg=r and p\Vg=r mean p A(g=r) and pV (g=7)
respectively.

An element p of 2 is called dense under g, if p<g and gAp=0=0. In the
case ¢g=1, p is called dense.

R: Q-8 is defined by: R(p)=(p=0)=0. An element p of is called regular
if R(p)=p.

R(2) is the complete Boolean algebra (cBa) which consists of all the regular
elements of 2.
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For a topological space T, O(T) is the ¢Ha which consists of all the open
subsets of 7.

The category of £2-sets with £2-set morphisms is equivalent to that of sheaves
over 2 with sheaf morphisms [8]. We remark that a Boolean extension of the
set theoretical universe by a cBa B is the family of all B-sets.

A sheaf over a cHa 2 is a simple generalization of a sheaf over a topo-
logical space. It is sufficient to notice that in the definition of a presheaf there
appears no element of 7 and we only need open subsets of T.

DEFINITION 2. For a sheaf S=(S, p) over £, we denote all the sections of
S by |S|. For se|S|, Es is the element of £ such that s&S(Es), i.e. s is an
Es-section of S.

Let s and ¢ be elements in |S|: [s=t] is the element of £ such that [s={]
=V {p; p5(s)=pE4t) for p=2}; t is an extension of s if Es<Etand pEit)=s;
s is dense under p if s is dense under p; s is simply called dense if s is dense
under 1; s is maximal under p if Es<p and there exists no proper extension
of s under p, i.e., pEi(f)=s implies EtAp=FEs for any te|S]|; s is called maximal
if it is maximal under 1.

In this paper a sheaf S is always an abelian sheaf, i.e., S(p) is an abelian
group for each p=£. Hence there is at least one global section for every sheaf.
Consequently, if s is a maximal section of a sheaf S then s is dense.

DEFINITION 3. A simple sheaf is a sheaf S such that for each dense section
s of S there is a unique maximal section ¢ of S which is an extension of s, i.e.,
t is an extension of #’ for any extension ¢’ of s.

It is easy to see the following.
A constant sheaf is a simple sheaf. The sheaf of germs of continuous func-
tions whose ranges are a Hausdorff space is a simple sheaf.

LEMMA 1. Let S be a simple sheaf. If s is maximal, then pEirp(s) is maxi-
mal under p for each psfR. If s is dense under p, then there exists a unique
maximal extension s’ of s under p. Cousequently, if s is maximal under p, then
0Ein(s) is maximal under q for each q<p.

PrOOF. Let Et<p and EsAp<[s=t]. Then, pEirpso(s) and ¢ are compati-
ble and hence let ¢ be a common extension of them. Since Es is dense and S
is simple, there exists a unique maximal extension 7 of ¢’. Since EsA(pV p=0)



A minimal flabby sheaf and an abelian group 159

is dense and s and f are extensions of pPEirpyps0(S), I=s. Hence Et=EsAp.
Now the first assertion of the lemma has been proved.

Let 0 be the zero element of the abelian group S(1). Since s is dense under
p, a common extension of s and p}.4(0) is a dense section and hence there exists
a unique maximal extension § of them. By the first assertion of the lemma,
0Eirp(5) is maximal under p. Let pEi(t)=s and Et<p. Then, the maximal
section which extends ¢ and p}.o(0) must be 5. Hence, Et<E5Ap. The second
assertion has been proved.

Think of the cHa {g; ¢<p & q=£2} (=£,) and the restriction of S to £2,.
By the second assertion, the restriction of S is also a simple sheaf. Now the
third assertion is followed from the first.

In the following s, means the pair (s, p) where s is a section and p Q.

DEFINITION 4. For a simple sheaf S=(S, p, +), let (Mg, p’, +’) be the
following :

(1) Ms(p)=1{sp; s is a section of S which is maximal under p};

(2) p'8(sp)=(pgRes(8))q;

(3) For s,, t,eMs(p), sp+ptp=u,, where u is the maximal extension of
e£%(8)+,pE () under p (r=EsNED).

My turns out to be a flabby sheaf which extends S for a simple sheaf S.
If a flabby sheaf F is an extension of S, any maximal section of S can be ex-
tended to a global section. If F is the canonical flabby extension of S, it has
many global sections which extend a maximal section of S in general. Since
M has only one global section extends a maximal section of S, Mg is made
tightly. According to the terminology of [8], Mjs turns out to be the direct
image Ry-R(S) of the inverse image R(S), where R: 2—R(£2). Under this point
of view, the following two lemmas are rather trivial.

We denote S(1), ¢(1) and $(Es)(s) by S, & and #(s) respectively, where ¢ i
a sheaf homomorphism. In the following, S always stands for a simple sheaf.

LEMMA 2. p’8®?: Ms(R(p)—Ms(p) is an isomorphism.

PrROOF. Suppose that a section s of S is maximal under p, then it is d
under R(p) and hence there is a unique extension 5§ of s that is maximal u
R(p) by Lemma 1.

LEMMA 3. Mg is a flabby sheaf.

Proor. By Lemma 1 it is a routine to show that My is a sheaf, so
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the proof. We now prove its flabbiness. Let s be a section of S which is
maximal under p and § be a maximal section of S which extends s. Then,
P’ 4(51)=(pE5£:(3))p=5, by Lemma Il and hence any section of Ms can be extended
to a global section.

THEOREM 1. For a simple sheaf S Ms is a flabby extension of S. More
precisely, there is a monomorphism is: S—Ms such that is(s)=sgs for s€ |S].

The proof is clear by Lemma 3 and Definition 4.
Next we show that My is minimal in certain sense.

LEMMA 4. For x, yeMs, [x=y]€R(Q).

The proof is clear by Lemma 2.
LEMMA 5. For maximal sections s and t of S, [s=t]=EsAEtA[s:=t].
The proof is clear by Definition 4.

LEMMA 6. Let F be a flabby sheaf and T a sheaf. If a homomorphism
h: BT satisfies [x=yl1<[h(x)=h(3)] for x, yEF, then there exists a unique
homomorphism ¢: F—T such that $=nh.

PROOF. Let ¢(s)=pks(h(3)) for some global section § which extends s. Then
¢ is well-defined and satisfies the property.

DEFINITION 5. Let T and U (=U, p)) be sheaves and ¢: T—U a homo-
morphism. The reduction "U (=(U, "p)) of U with respect to ¢ and T 1is the

following system :
(1) xe'U(p) iff xeU(p) and p<R(V{[x=9¢]; yITI}H;
(2) "p and "+ are the restrictions of p and + respectively.

LEMMA 7. U is a subsheaf of U.

The proof is a routine.
LEMMA 8. If U is a flabby sheaf, then "U is also flabby.

ROOF. Let s belong to "U(p) and s’ be a common extension of "p%40(0) and
en s’ is a dense section of "U. Hence R(\V {[s’=¢(m]; y=|S|}H=L1L
is a global section 5§ of U such that § extends s’. By the definition of

a global section of "U.
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LEMMA 9. The following diagram commutes.

The proof is clear by the definition.

THEOREM 2. Let S be a simple sheaf and F a flabby extension of it, i.e.,

j . : .
0—S — F. Then, there exists a unique epimorphism ¢ such that the following
diagram commutes and moreover §: " F—Ms is surjective, where "F is the reduc-
tion of F with respect to j and S.

S F
\ lsb
ig
Ms

PROOF. Let ¢ be a global section of "Fand p=\/ {[t=7(s)]; s€|S|}. Then
p is dense. Hence, there is a dense section ¢/ of S such that [¢t=j(")] is dense.
There uniquely exists a maximal section # of S which extends #’.

Let ¢, u be global sections of "F and #, #’ the maximal sections of S defined
in the above manner. By Lemma 4 [({),=(@’),]R(2) and hence [t=ul<
[@):=(@'),]. By Lemma 6 there exists a homomorphism ¢:"F—Ms such that
[¢@®)=(#):]=1 for each global section ¢t of "F. Since [isF)=(F),] and [ HE
j(#)] are dense, the uniqueness of ¢ is followed from Lemmas 4 and 6. Let s
be a maximal section of S and 7(s) a global section of F which extends j(s).
Then 7(s) is a global section of "F. Since Es<[j(s)=7(s)] and Es<[is(s)=s,]
and [¢(G(s))=s,1€ R(Q), [¢(f(s)=s,]=1. Hence, ¢: F—M;s is surjective. ¢ is
an epimorphism, since My is flabby.

Next we show that characterizes M categorically.

THEOREM 3. Let S be a simple sheaf. Suppose that a flabby extension M of

i .
S (0—-S—M) satisfies the following: if 0—>SHF and F is flabby, there exists an
epimorphism 7 : "F—M such that the following diagram commutes, where "F is the
reduction of F with respect to j and S.
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Then, M and Mj; are isomorphic.

PrROOF. There exists an epimorphism 7 : "M—M such that Ex <[i(x)=7-i(x)]
for x=|S|. Let x be a global section of M. Then there exists a global section
y of "M such that [i(x)=7%(y)] is dense. For some dense section z of S,
[:(z)=7v] is dense, so x is a global section of "M. Hence M="M.

Since Ms="(Ms), there is an epimorphism ¢: Ms—M making the diagram
(1) commutative. On the other hand there is an epimorphism ¢ : M— My making
the diagram (2) commutative by [Theorem 2

Let s and ¢ be maximal sections of S. Since Es<[i(s)=¢(s1)], Es<[¢-&(s,)=s,]
and hence 1=[¢ ¢(s))=s,]. By Lemmas 4 and 5, [¢(s,)=¢¢,)]<[s,=?,1. There-
fore ¢ is a monomorphism.

Next we show some functorial properties concerning Msg.

LEMMA 10. Let S and T be simple sheaves and ¢: S—T a homomorphism.

Then, there exists a unique homomorphism ¢ such that the following diagram
commutes.

S ? T
"
Ms 5 “MT

PRrROOF. Let s and ¢ be maximal sections of S. Then ¢(s) is a dense sec-
tion of T and hence it can be uniquely extended to the maximal section ¢(s) of
T. Let p=[s=t]. Es<[ir(¢(s))=(p(s)] by and hence p<[(4(s));
=(¢(®)),] by Lemma 5. By Lemma 4 and the fact that EsAEt is dense [s,=t,]
=R(p)=[(@(s)),={@®).]. By and Lemma 6, the conclusion holds
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THEOREM 4. Let S, T and U are simple sheaves. If the upper sequence is
exact in the following diagram, then the lower is also exact.

S 4 > = U
s Z.Tl
MS .___é’_—.’. MT M

PROOF. It is'clear that ¢-$=0. Let t be a maximal section of T and p=
[¢¢)=0]. Then, PAEL<[PGEr@)=0]1<[ir(®)=0]1<[¢@#)=0]. By the exact-
ness of the upper sequence, p A Et< \/ EsA[¢(s)=t]. Since Et is dense, there

SEIS|
exist a family {s,; @I} of sections of S and a pairwise disjoint family

{pa; @I} of Q suchthat EtAp,<Es,A[o(s.)=t] and }E/Ip‘t is dense under p.

Then there exists a maximal section s. of S such that EtAp.<[se=s.] for
each al. Hence EtNAp<[¢d(s.)=t]. Since EtAp<[P(sw)=t]1<[ir- P(sa)=17()]
<[@Gs(se))=ir(t)], EsaAEIADP<Z[H((sw)1)=t] by Lemma 5. Therefore, p<
[¢((se)1)=t;] by Lemma 4 and the fact that Es.AFEt is dense. Since My is
flabby, the above shows that ¢: Mg—Ker ¢ is an epimorphism. '

COROLLARY 1. Let S, T and U be simple sheaves. If the upper sequence of
the following diagram is exact, then the lower is also exact.

0O > S - T > U > O
is | iz | iv |
0] —> M — My My O

PROOF. Since the zero sheaf O is simple and M,=0, it is clear by

In the rest of this section, we must show that ]\/.7; is the abelian group which
consists of the global sections of some abelian group G in the Boolean extension
V® where B=R(2). We shall directly define G and do not use the general
theory of change of base for Q2-sets. Our notations are common with 3],
and [5] (Ref. m) and consistent with the preceding ones of this paper.

For SEMS, s* is the element of V® such that dom s*={{; teMs} and
s*(O)=R(V {p; p2°(s)=pEt)}). G and + are elements of V® satisfy the fol-
lowing :

(1) dom G={s*; se]\/f;} ;
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(2) dom += {Ku*{s*t*>B»8. y is the maximal extension o{\pg’(s)—{—p i),
where p=EsAEt and s, te Mg} ;
(3) range G=range+={1}.
By Lemmas 3, 4 and 5, [+ is the operation on G]®=1 is assured. Hence
[<G, +> is an abelian group]®=1. By the simplicity of S é\ :A@ as abelian
groups.

§2. An abelian group consisting of all the global sections of a sheaf.

First We investigate ZT, where Zr is the constant Z-sheaf over a topological

space T. ZT is the abelian group which consists of all the continuous functions
from T to Z.

N\
PrROPOSITION 1. (G.M. Bergmann or [O1) If T is compact, then Zr is
free.

PROPOSITION 2. If T is discrete, then Hom (Z/;, Z) is free.
PROOF. Since Zp~Z7, it holds by of [3].

PROPOSITION 3. Let T be a topological space such that auy countable inter-
AN
section of open subsets is still open. Then, Hom (Zy, Z) is free.™®

PrROOF. Let CO(T) be the Boolean algebra consisting of all clopen subsets
of T. Then, CO(T) is countably complete and \/ ¢°Dp,= \J b, for b,=CO(T)

neEN neN
by the cond1t10n for T. Hence, ZT is isomorphic to the Boolean power Z €0,

Hom (Zy, Z) is free, by [Corollary 1| of [3] and the remark at the end of Theo-
rem 1 of [3].

It should be noted that without any hypothesis for 7", \/ coy, .\ BOINR

neN nEN

and U b, (= V °%p,) are not equal in general.
neN neN

Neither ZT nor Hom (Zy, Z) has such a simple structure in general

DEFINITION 5. ([12] or [2]) An abelian group is a Z-kernel group, if it can
be obtained from Z by iterating direct products and direct sums, i.e.,
(1) Z is a Z-kernel group;

(*) We have now the following. Let G*=G and G+L*x=Hom (G™*, Z). Suppose
that X is a 0-dimensional Hausdorff space. (C(X, Z))2** is free iff X is pseudo-compact.
(C(X, Z))@n+D* s free iff any compact subset of the N-compactification of X is finite.
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2) TIG. and P G, are Z-kernel groups in the case that G, is a Z-kernel

acl acl
group for each a</;

(3) No other group than defined in the above manner is a Z-kernel group.

PROPOSITION 4. For any Z-kernel group G, there exists a topological space
T such that Z/;:G.

ProOF. If G is a Z-kernel group and not isomorphic to @Z for any finite
F, G is isomorphic to ZPG.

Now let T be a space with one point, then Z/;: Z.

Suppose that Z/;a:Ga for each acl. Let T (=X T.) be the topological

ac’t

sum of the T, then Z/;: II G, Next T (=X T.,J{co}) be the extension

acl acl

space of the topological sum 3 T, such that the neighborhoods of ccare X T.

acl acl-F

for finite subsets F of I. Then, Z/;:ZEBGBGQ. We may assume that [ is

a€l

infinite. In the case that ZBG,=G, for some acl, Zr= @ G,. Otherwise,

aEI

every G, is isomorphic to @Z for some finite F. Hence ZTz@Z =~ P G,.

acl

Concerning Hom (G, Z) for Z-kernel group G, we refer the reader to 2],
4], [61 and [9]. R

Next we investigate Mg for a simple sheaf S. For a slender group and a
Fuchs-44-group, we refer the reader to and respectively.

A topological space T satisfies r-c.c. if there exists no pairwise disjoint
family of non-empty open subsets of T with the cardinality x. Therefore, T
satisfies k-c.c. iff the ¢Ba R(O(T)) satisfies x-c.c.. If T is a Hausdorff space
without an isolated point, then R(O(T)) is atomless, i.e., for any nonzero element
b there is a nonzero element which is strictly less than b.

As in [3] and [4], M. is the least measurable cardinal. (Ref. and [9])

THEOREM 5. Let T be a Hausdorff space which satisfies M-c.c. and has no
isolated poznt Let S be a szmple sheaf over T. If G is a slender group, then
Hom (MS, G)=0. In addition, MS is a Fuchs-44-group.

PrROOF. By the comment preceding the theorem and Lemma 2 of [3]
R(O(TY)) has no c.c. max-filter. (Ref. [3] and [4]) Hence the conclusions follow
Theorem 1 of [4], Corollary 3 of [5] and the fact that Ms is isomorphic to G
where G is an abelian group in V(&N

In the following we say that an abelian group is a summand of A, if it is
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isomorphic to a summand of A.

COROLLARY 2. Let G, be a slender group for each a<I. Under the same
N
conditions of Theorem 5, if HIG,, is a summand cf Mg/S, then it is a summand
ac
of H\T, S).

A oA B . N

PROOF. Let 0—S—Ms— Ms/S be the derived exact sequence. Let og, : Ms/S

—G, be the projection for each a<l, then gg,-2#=0 by Hence,
II G, is a summand of HY T, S).

acl

COROLLARY 3. Under the same condition of Theorem 1, a free abelian group
is a summand of Mg/\S iff it is a summand of HNT, S).

PROOF. If a free abelian group is a summand of a quotient group of an
abelian group G, then it is a summand of G. The conclusion follows from this

and [Corollar since a free abelian group is slender.

COROLIj\\RY 4. Under the same condition of Theorem 5, let % G; be a sum-
mand of Ms/S with the following :
(1) Gy is reduced for each i<l ;
(2) For each m there exists a finite subset F of I such that every non-zero
element of G; has the order greater than m for each i< F.
Then, there exists a finite subset F* of I such that & G; is a summand of

icI-F*
HYT, S).

PROOF. By of Ms is a Fuchs-4d-group. Hence, #(Ms) is
P
also a Fuchs-44-group. Let o: Mg/S— éBI G; be the projection. Then, there exist

m and a finite subset F’ of I such that ma'fr(]\{/{;)_C_ @D G;. By the condition of
1€F’

the theorem, there exists a finite subset F* of I such that 0"7?(]\2.\;)@ @.Gi.
Hence, & G, is a summand of HY(T, S).

i€l -F*

For the next corollary we must know the structure of the quotient sheaf
Ms/S. We use higher-order Q2-sets [8] For the intuitionistic argument, we
define “torsion free” and “pure” explicitly. A group G is torsion free if nx=0
implies n=0 or x=0 for any n€N and x=G. A subgroup H of G is pure if
nxeH implies nxenH.

LEMMA 11. For an abelian sheaf A over a cHa 2, A(p) is torsion free for
each p 8, iff [A is torsion free]=1.
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PrOOF. Suppose that [A is torsion free]=1, then there exist x and n+#0
such that [nx=0]A[x€ A]<[x=0] does not hold. Let p=[nx=0]A[x<A],
then A(p) is not torsion free. The other implication is obvious.

LEMMA 12. Let S be a constant sheaf Ar. Then, [S is a pure subgroup of
Ms]=1.

Proor. By [Theorem 1, [S is a subgroup of Ms]=1. Let h=[n(s),=is(®)]
for neN, a maximal section s of S and an A-section ¢ of S. Then, EsAh<
[nis(s)=ist)]=[ns=t]. Since S is a constant sheaf, there exists an h-section
s’ of S such that ~A<[ns’=t]. Hence, the conclusion holds.

COROLLARY 5. In addition to the condition of Theorem 5, let S be a constant
sheaf Ar, where A is a torsion-free abelian group. If DD @ G, is a direct
el

PR
decomposition of Mg/S, where D is divisible and D G; is reduced, then there exists
. ier .

a finite subset F of I such that & G; is a summand of H T, S).

i€I-F

PROOF. By virtue of Cemma 11, [Ms is torsion free]=1. Since the proof
of the fact that the quotient group of a torsion-free abelian group by a pure
subgroup is torsion free can be done intuitionistically, [Ms/S is torsion free]=1
by Hence, Ms//\S is torsion-free by Lemma 11. By of

5], ./V/L\g is a Fuchs-44-group and so ﬁ(]\/f;) is also a Fuchs-44-group. Hence, there

exists an integer m>0 and a finite subset F of [ such that mﬁ(ﬂ@);D@ P G,.
i€EF

S
Since Mg/S is torsion free, ﬁ(A@)gDEB D G; and hence @ G; is a summand of
er tel-F
HYT, S).

REMARK. Here we contrast the minimal flabby extension Ms with an injec-
tive extension Ig and the canonical flabby extension Fs of a simple sheaf S.
Let DAPR be the direct decomposition of IS//\S such that D is the maximal divi-
sible subgroup and R is reduced. Since f\s is divisible, R becomes a summand
of HY(T, S). Hence Corollaries 2, 3, 4 and 5 hold for an injective
extension [g, though the minimal flabby extension is seldom injective.

Suppose that T is a non-trivial connected Hausdorff space which is acyclic
for a constant co-efficient sheaf and of cardinality less than M, e.g., the unit

interval, Let 0—»S—Fg— Fg/S—0.
(1) Let S be the constant sheaf Z,. Then, ﬁ‘;: Z7T and 3‘\ corresponds to
N
the subgroup of Z7 consisting of constant functions. Hence, #’(Fs)=Z7. Since
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PN
HYT, Z;)~=0, Fs/S must be isomorphic to Z7. Compare this fact with Corollaries
2 and 3.

(2) Let S be the constant sheaf Ar where A= @ R, for some non-trivial
neEN

torsion free reduced groups R, (neN). Then, F;/\S is isomorphic to AT
(=ATP P R,) as above.

neN
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