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1. Introduction.

Let (2, &, P) be a probability space. For any two o-fields A and B define
the mixing coefficients ¢ and « and the maximal correlation coefficient p by

¢(A, B)=sup|P(B|A)—P(B)| Aed, Be 8, P(A)>0;
a(A, B)=sup|P(ANB)—P(A)P(B)| Aed, Be 8;
p(A, B)=sup|Corr(§, 7| §e L¥(A), ne L¥(B).
Let {X;: —co<j<oo} be a strictly stationary sequence of random variables
on (2, ¢, P). For integers n let &, be the o-field generated by {X;: j<n} and
F, the o-field generated by {X;: j=n}. The sequence {X,} is said to be
@-mixing (or uniformly mixing) if
d(n)=@(Po, Fn)—0 as n—co

(see Ibragimov [9]), strongly mixing if
an)=alP,, F,)—0 as n—oo

(see Rosenblatt [15]) and completely regular if
p(n)=p(Ly, Fr)—0 as n—oo

(see Kolmogorov-Rozanov [13]).

Among these coefficients, the following inequalities always hold :
da(n)= p(n)=2¢"*(n) .

The left-hand inequality is an easy consequence of the definitions of the coeffi-
cients a(n) and p(n), and the right-hand inequality is a consequence of the
Ibragimov fundamental inequality for ¢-mixing sequences (see [11, Theorem
17.2.3, p. 309]). Thus a ¢-mixing sequence is completely regular (the converse
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is false; see [11, pp. 310-314]), and a completely regular sequence is strongly
mixing (the converse is false; see [16, pp. 206-209], but for Gaussian sequences
complete regularity is equivalent to strong mixing; see [13]). Formulations of
various mixing conditions are given by Ibragimov-Rozanov for stationary
Gaussian sequences in terms of the spectral density, and by Rosenblatt for
stationary Markov sequences in terms of the transition operator.

Let {X,} be a strictly stationary sequence with FX;=0 and EX2<oco. Set

Sn= ilxj 0L =ES? .
pa

In numerous papers conditions are investigated which guarantee asymptotic
normality of the distribution of the normed sum ¢3S, (see, for example, [2,
Chap. 4], [9], and [11, Chap. 18]).

We are interested in knowing when the »th absolute moment of ¢;'S, (r>2)
converges to that of the normal distribution. When X; are independent (but not
necessarily identically distributed) random variables, Bernstein presented a
necessary and sufficient condition (the »th Lindeberg condition) for the conver-
gence of absolute moments in the central limit theorem. Brown [4, 5] gave an
alternative proof of Bernstein’s result. Hall extended Bernstein’s theorem in
both the independence and the martingale cases. For stationary ¢-mixing and
strongly mixing sequences the author [17, 18] obtained some results on the con-
vergence of moments. Recently, in the @-mixing case, the following much
broader result was proved; the proof is completely different from those in

and [18].

THEOREM A ([191). Let {X,} be a strictly stationary sequence with EX,;=0
and E|X;|"<oco for some r>2. If ¢(n)—0 and gi—c0 as n—oco, then

lim E|S/0al7=|"_@m)*|ul"exp(—u*/2)du

In Theorem A it is not assumed that ¢(n)—0 at a specific rate, while the
series-type conditions on the mixing coefficients were imposed in all the theorems
of (cf. [9, Theorem 1.4]). The purpose of this paper is to generalize the
above ¢-mixing result to the complete regularity case. The basic idea, which
was used in [19], is a martingale representation of the sum S,, and the proof
is based on Ibragimov’s moment inequality (Lemma 2 below) and a martingale
result of Hall [8].
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2. Statement of a result.

First we state a result of Ibragimov [10, Theorem 2.1], which generalizes
an earlier result of his own [9, Theorem 1.4].

THEOREM B (Ibragimov). Let {X;} be a strictly stationary sequence with
EX;=0 and EXi<oo. (i) If lim p(n)=0 and lim sup ¢%=00, then oi=nh(n),

n—oo

where h(n) is a slowly varying function in the sense of Karamata. (i) If in
addition E|X;|"<oco for some r>2, then
lim P(S,/on<xt=|" @n) 1 exp(—ut/Ddu.
REMARKS. Theorem B (ii) fails if its hypothesis E | X;|7<co (»>2) is omitted ;
a counterexample is constructed by Bradley [3] Lifshits proved some

central limit theorems on Markov chains under p(n)—0 and other slightly weaker
conditions. '

In this article the conditions of Theorem B, without any additional conditions,
will be shown to imply the convergence of the rth absolute moments in the
central limit theorem. More precisely, we shall prove

THEOREM C. Let {X,} be a strictly stationary sequence with EX;=0 and
E|X;|"<oo for some r>2. If p(n)—0 and oi—0c0 as n—oo, then
(1) lim E1sn/an|f=S°° @) | u|"exp(—u?/2)du .
n—c0 -0
As we have remarked in Sect. 1, the ¢-mixing condition implies the complete
regularity condition, thus Theorem C contains Theorem A as a special case. For
strongly mixing sequences the relation (1) holds under the conditions EX;=0,

E| X,|7 <o for some r>2 and 0>0, EX{+2 3 E(X,X;)>0and 3 nria(m) T
i= n=
<oo (see [18].

3. The proof.

In the proof, limits will be taken as n—oo. The symbol K denotes a generic
constant, not necessarily the same at each appearance. B- denotes the rth
absolute moment of the standard normal distribution. I(A) denotes the indicator
function of the event A.

For the proof of Theorem C we need a few well-known inequalities.
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LEMMA 1. Suppose that the random variables & and 7, respectively, are meas-

urable with respect to P, and Fpyn;
1) If E&<co and En*<oo, then

(2) |E€n)—E&-En| <(EE)YHEnH)2p(n);
2) if |§|=B a.s. and E|p|*< for some s>1, then
(3) |E(€n)—E§-En|<6B(E| 9| (a(n))-1/s.

The inequality (2) is an immediate consequence of the definition of the
coefficient p(n). The inequality (3) is due to Davydov [7]. The following
inequality, due to Ibragimov is fundamental to our proof.

LEMMA 2. Under the assumptions of Theorem C, there exists a constant C
such that
(4) E|S.|"<Ca%  for all n=1.
We shall divide the sum S, into three parts:
Sa=Sr+S1=0.Tr+0,.T7+S7,

and show that ¢7'S7 and T} are asymptotically negligible, while the rth absolute
moment of T, converges to B, where the variable T, will be chosen to be a

martingale.
The first step is to represent the sum S, in the form

k k+1 ,
Sa= 2 yi+ 3 z=Sa+S4,

where
Jp+(j-1q .
YVi= 2 Xi ’ léj é k ’
t=(Jj-1)(p+@)+1
J(p+) .
z;j= > X, 1=,=<k;

i=jp+(j-1g+1
Zp+1=— > Xi,
i=k(p+q)+1
p=p(n) and g=¢qg(n)e {1, 2, --, n} and satisfy the following conditions:
(5) a) p—oo, g—oo, n7lp—0, pig—0,
b) n'*fgl-Fp-20 for some B>0,
¢) np~lp*(g)—0,
and k=*k(n)=[n/(p+q)]. Here [a] denotes the greatest integer <a. Such
systems of p and ¢ actually exist. In fact, if we set
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A(ny=max {p""([n'/*]), (log n)~'},
p=max {[ne* ([n'*)An))"1], [n**An)"11},
g=[n'"],

then all the conditions in (5) are satisfied;

a) p—oo, g—oo, n7'p—0, pig—0,
b) nltfgl-Bp-2<n-A-SBAR(n)—0, if B<1/3,
c) np~tp¥(g)=A(n)—0.
Now we break the sum S, into two parts. We denote by £,; the o-fields
Pjp+-ng and define the random variables
Ynj:ynj”_E{ynjl-[:n.j—l}; lé]ék,
where y,;=y;/0,. Then {Y,; Ln;: 1=<j=<k} is trivially a martingale difference

sequence for each n=1. Let
k k
T,= _,Z; Ynj: T;:S;L/O'n_Tn: EE{ynJI -E‘n,j-l} .

Then S,=0,T,+0,Tr+Si.

The theorem will be proved in three stages:

(i) E|S7/0.1™0,

(ii) E|[Tn|™0,

(iii) E|Ta|™ 8-
In view of (i), (ii), (iii) and the inequality :

[E|Sn/onl VW= (E|TH| )" <2 E|TH|"™+E|S7/04l")

the assertion of the theorem follows.

PROOF OF (i). Since ¢2=nh(n), where h(n) is a slowly varying function
(Theorem B), using Minkowski’s inequality and stationarity, and arguing
as in [11, p. 337], we obtain

E|S}/on"=07"(R(E |2+ (E|2p41 1DV
<K(koy/on+og/0)
. k2qh<q) 1/2 q’h(q/) 1/2
_K« nh(n) nh(n)) )
where ¢'=n—k(p+q) is the number of terms in z,.,, and (i) is proved.
Before proving (ii) and (iii), we note that under the requirements imposed on

p, g and &,
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(6) ka%/o%t=140(1).
In fact,

E(Sh/on)=ka%/o%+2 j>3 (b= 4+ 1DE(Yniyny)

by stationarity. Since y,; is measurable with respect to 2, and ynj, 255k,
are measurable with respect to F,.q applying the inequality (2),

;: (b= 1) Eniyng) | S(kop/02)20(q) -

Moreover, by condition (5),

ko(g)y~nptp(g)=np~'p*"(g)—0.

Hence

(7) E(S7/03)'=(ka%/a7)(1+0(1)).

On the other hand,

(8) E(S3/00)*=E(Sn/02)*+E(S7/04)"—2E(S,5%/0%)

=1+o0(1)
by (i). The equality (6) now follows from (7) and (8).

PRrROOF OF (ii). For simplicity we put
wnj:E{ynjl'fn,j—l}y lé.]_g_k;
and because of the stationarity, we put

an:Elynjlr, lé]_-g_k
By Holder’s inequality,

E | wnjlrzE(wnjwnjl wnjlr—z)
=E(E {ynjwnjl wnjlr_zl-fn.j—l})
:E(ynjwnjl Whnj | 7_2)

S(E| ynjwas|7T(E |wa; |18,

so that we have
Elwn|"SE| yajwa;|™

Since w,; is measurable with respect t0 £ ¢-1p+y-24q and y,; is measurable with
respect t0 F (-1 p+e fOr €ach 1=;= k, using (2) and Jensen’s inequality,

E|yaswail"*S(E|yas|VHE [was ) 20(@)+E | s E | wns| ™

<a,p(q)+ai’E|wq;|"
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Using (2) and Jensen’s inequality again,
Elwan;|"?=E(ypwnilwa; 7?72 (Jwa; | >0))
S(EYaNYElwas1 %) 0(g)
=ai?o(q).
Combining the estimates above, we find that
(9) Elwa|"=2a.p(g) .

We obtain from Minkowski’s inequality, (4)-(6) and (9) that
, k r
BT <( 3 (Bl was|nM7)
j=1

=2k7a,p(g)

=K(ko%/0%)"2k™?p(q)—0,
and hence (ii) is proved.

PROOF OF (iii). Define w,; and a, as before. For simplicity of notation we

also define
Unj=yhi—Ey%;, 1=/=k4,

Vai=E{unj| Ln, -1}, ==k
and (because of the stationarity)

bn=EFE|u,;|™? 1=/<k.
Now by stationarity,

k
ZIEY%jzkoi,/a%— iaE(ynjwnj) s
Jj= =

and using (2),

k
jZ_l E(ynjwa)=(ko%/0%)p(q).
Thus, taking account of (6), we see that
_}":1 EY%,=140(l).
P=

Therefore, according to Hall’s [8] theorem, the proof of (iii) will be complete if
we can show that

(10) max E{Y%;| L, j-}—0 in probability,
k
(11) Z)lElYn,-lr-»O
£

and
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r/2

k
(12) E EE{Y%jl-En.j-l}_l —0.
However, immediately implies the conditional Lindeberg condition:
k
for all ¢>0, ELE{Y%.J-I(IYMI>s)|.£n,j_1}—>0 in probability.
=

Hence (10) is a consequence of combined with (see Brown [6, Theorem
1 and Lemma 1]). We have from Jensen’s inequality, (4) and (6) that

k k
B EIY o727 B (Elynsl ™+ Elway|)

=2ka,

=K(ko%/0%)?k"7?*1>0,
and thus holds.
Our goal is to show that holds. Now,

T/2

E

k
EE{Y%J’I—Cn,j—l}_l

r/2

k k
=E| 2 E{yhyl Lasi — Z wh—1
Jj=1 J=1

<2 [E| S Byl Lot —1| +E( Zut,) )
— j=1 yn,) n,Jj-1 j=1 ny .
Making use of the inequality (9), and arguing just as in the proof of (ii), we get
k r/2
E(g}lwﬁ,j) =2k™"anp(q)
=K(ko%/a%)"?0(g)—0.
Moreover, we have from (6) and Minkowski’s inequality that
k r/2
B| 35 E1y4l Lo} —1|

/2

k
~E| 2 E 94l Lo, o) —kab/

r/2

=F

k
2 Unj
Jj=1

k r/2
<( 2 (ElvasI7)
=1
Consequently, to prove it is sufficient to show that

(13) 35 (Bl 719970
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We shall separate the proof of in three cases; r>4, »r=4 and 2<r<A4.
Suppose first that »>4. By replacing y,j; waj, @, and 7 in the proof of (9)
by unj, Unj; b, and r/2 respectively, we deduce that

Elv,;|"*=2b,p(q) .
Since
ba 27 HE | yus|+(E 3% £27a,,

then, by virtue of (4) and (6), we see that

k
(14) ;]1 (E|va |78 k(2bnp(g))*'"
< k(2’/2“anp(q))2"
=<K(ko%/0%)p*(q9)—0,

and thus [13) is proved for the case »>4.
When r=4, using (2) and Jensen’s inequality, we get

E| Unj | "P=FE(UnjVn;j)
=(Eui)"*(Ev )" p(q)
=FEu%;p(q).

Hence also holds for r=4.
Finally, we assume that 2<»<4. By Holder’s inequality,

(15) E|vn;| "= E(UnVnj|vas| " 2 ([v5;] >0))
SE(uni > Unjvas| 77
S0 TTHE [Unjvas |74
Using (2) and Jensen’s inequality, and noting that »/4<1,
(16) E|tnjvnsl " S(E | un;|"VHE [va; |75 2 0(QFE | tns|E |vps] 7
=b,0(g)+by*(E|vaz)

Since a(n)=p(n), applying the inequality (3) with §=v,;|va;| " (|vg;| >0), p=1u,;
and s=r/2,

(17) E\vn;| =Eunvnslva;| 7 (|vas] >0))
S6(E | un; |7 (0(g)) 2"
Inserting the inequalities and into we have
E a7 =by ™ {bap(@)+674br(p(g)) /422 24T
= Kbn(p(q) -2,
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Just as in [14), we obtain that for 2<r<4,

33 (E lvay |27 S KR/ a8)(p(g) 72750,

and hence follows as desired.
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(6]
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[9]
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[13]
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[15]
[16]
[17]
[18]

[19]

The proof of Theorem C is now complete.
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