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1. Introduction.

Let $(\Omega, \mathcal{F}, P)$ be a probability space. For any two $\sigma- fieldsd$ and $\mathscr{Q}$ define
the mixing coefficients $\phi$ and $\alpha$ and the maximal correlation coefficient $\rho$ by

$\phi(A, B)=\sup|P(B|A)-P(B)|$ $A\in \mathcal{A},$ $B\in \mathscr{Q}P(A)>0$ ;

$\alpha(\cup t, B)=\sup|P(A\cap B)-P(A)P(B)|$ $A\in A,$ $B\in \mathscr{Q}$ ;

$\rho(_{\cup}l, B)=\sup|Corr(\xi, \eta)|$ $\xi\in L^{2}(d),$ $\eta\in L^{2}(B)$ .
Let $\{X_{j} : -\infty<j<\infty\}$ be a strictly stationary sequence of random variables

on $(\Omega, \mathcal{F}, P)$ . For integers $n$ let $\mathcal{P}_{n}$ be the $\sigma- field$ generated by $\{X_{j} : j\leqq n\}$ and
$\mathcal{F}_{n}$ the $\sigma- field$ generated by $\{X_{j} : j\geqq n\}$ . The sequence $\{X_{j}\}$ is said to be
$\phi$-mixing (or uniformly mixing) if

$\phi(n)\equiv\phi(\mathcal{P}_{0}, \mathcal{F}_{n})\rightarrow 0$ as $ n\rightarrow\infty$

(see Ibragimov [9]), strongly mixing if

$\alpha(n)\equiv\alpha(\mathcal{P}_{0}, \mathcal{F}_{n})\rightarrow 0$ as $ n\rightarrow\infty$

(see Rosenblatt [15]) and completely regular if

$\rho(n)\equiv\rho(\mathcal{P}_{0}, \mathcal{F}_{n})\rightarrow 0$ as $ n\rightarrow\infty$

(see Kolmogorov-Rozanov [13]).

Among these coefficients, the following inequalities always hold:

$4\alpha(n)\leqq\rho(n)\leqq 2\phi^{1/2}(n)$ .
The left-hand inequality is an easy consequence of the definitions of the coeffi-
cients $\alpha(n)$ and $\rho(n)$ , and the right-hand inequality is a consequence of the
Ibragimov fundamental inequality for $\phi$-mixing sequences (see [11, Theorem
17.2.3, p. 309]). Thus a $\phi$-mixing sequence is completely regular (the converse
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is false; see [11, pp. 310-314]), and a completely regular sequence is strongly
mixing (the converse is false; see [16, pp. 206-209], but for Gaussian sequences
complete regularity is equivalent to strong mixing; see [13]). Formulations of
various mixing conditions are given by Ibragimov-Rozanov [12] for stationary
Gaussian sequences in terms of the spectral density, and by Rosenblatt [16] for
stationary Markov sequences in terms of the transition operator.

Let $\{X_{j}\}$ be a strictly stationary sequence with $EX_{j}=0$ and $ EX_{j}^{2}<\infty$ . Set

$S_{n}=\sum_{j=1}^{n}X_{j}$ , $\sigma_{n}^{2}=ES_{n}^{2}$ .

In numerous papers conditions are investigated which guarantee asymptotic
normality of the distribution of the normed sum $\sigma_{n}^{-1}S_{n}$ (see, for example, [2,

Chap. 4], [9], [10] and [11, Chap. 18]).

We are interested in knowing when the rth absolute moment of $\sigma_{n}^{-1}S_{n}(r>2)$

converges to that of the normal distribution. When $X_{j}$ are independent (but not
necessarily identically distributed) random variables, Bernstein [1] presented a
necessary and sufficient condition (the rth Lindeberg condition) for the conver-
gence of absolute moments in the central limit theorem. Brown $[4, 5]$ gave an
alternative proof of Bernstein’s result. Hall [8] extended Bernstein’s theorem in
both the independence and the martingale cases. For stationary $\phi$-mixing and
strongly mixing sequences the author $[17, 18]$ obtained some results on the con-
vergence of moments. Recently, in the $\phi$-mixing case, the following much
broader result was proved; the proof is completely different from those in [17]

and [18].

THEOREM A ([19]). Let $\{X_{j}\}$ be a strictly stationary sequence with $EX_{j}=0$

and $ E|X_{j}|^{r}<\infty$ for some $r>2$ . If $\phi(n)\rightarrow 0$ and $\sigma_{n}^{2}\rightarrow\infty$ as $ n\rightarrow\infty$ , then

$\lim_{n\rightarrow\infty}E|S_{n}/\sigma_{n}|^{r}=\int_{-\infty}^{\infty}(2\pi)^{-1/2}|u|^{r}\exp(-u^{2}/2)du$ .

In Theorem A it is not assumed that $\phi(n)\rightarrow 0$ at a specific rate, while the
series-type conditions on the mixing coefficients were imposed in all the theorems
of [18] (cf. [9, Theorem 1.4]). The purpose of this paper is to generalize the
above $\phi$-mixing result to the complete regularity case. The basic idea, which
was used in [19], is a martingale representation of the sum $S_{n}$ , and the proof
is based on Ibragimov’s moment inequality (Lemma 2 below) and a martingale
result of Hall [8].
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2. Statement of a result.

First we state a result of Ibragimov [10, Theorem 2.1], which generalizes

an earlier result of his own [9, Theorem 1.4].

THEOREM $B$ (Ibragimov). Let $\{X_{j}\}$ be a strictly stationary sequence with
$EX_{j}=0$ and $ EX_{j}^{2}<\infty$ . (i) If $\lim_{n\rightarrow\infty}\rho(n)=0$ and $\lim_{n\rightarrow}\sup_{\infty}\sigma_{n}^{2}=\infty$ , then $\sigma_{n}^{2}=nh(n)$ ,

where $h(n)$ is a slowly varying function in the sense of Karamata. (ii) If in

addition $ E|X_{j}|^{r}<\infty$ for some $r>2$ , then

$\lim_{n\rightarrow\infty}P\{S_{n}/\sigma_{n}<x\}=\int_{-\infty}^{x}(2\pi)^{-1/2}\exp(-u^{2}/2)du$ .

REMARKS. Theorem $B$ (ii) fails if its hypothesis $E|X_{j}|^{r}<\infty(r>2)$ is omitted;

a counterexample is constructed by Bradley [3]. Lifshits [14] proved some
central limit theorems on Markov chains under $\rho(n)\rightarrow 0$ and other slightly weaker

conditions.

In this article the conditions of Theorem $B$, without any additional conditions,

will be shown to imply the convergence of the rth absolute moments in the

central limit theorem. More precisely, we shall prove

THEOREM C. Let $\{X_{j}\}$ be a strictly stationary sequence with $EX_{j}=0$ and
$ E|X_{j}|^{r}<\infty$ for some $r>2$ . If $\rho(n)\rightarrow 0$ and $\sigma_{n}^{2}\rightarrow\infty$ as $ n\rightarrow\infty$ , then

(1) $\lim_{n\rightarrow\infty}E|S_{n}/\sigma_{n}|^{r}=\int_{-\infty}^{\infty}(2\pi)^{-1/2}|u|^{r}\exp(-u^{2}/2)du$ .

As we have remarked in Sect. 1, the $\phi$-mixing condition implies the complete

regularity condition, thus Theorem $C$ contains Theorem A as a special case. For

strongly mixing sequences the relation (1) holds under the conditions $EX_{j}=0$,

$ E|X_{j}|^{r+\delta}<\infty$ for some $r>2$ and $\delta>0,$ $EX_{1}^{2}+2\sum_{j=2}^{\infty}E(X_{1}X_{j})>0$ and $\sum_{n=1}^{\infty}n^{r/2- 1}(\alpha(n))^{\delta/(r+\delta\rangle}$

$<\infty$ (see [18]).

3. The proof.

In the proof, limits will be taken as $ n\rightarrow\infty$ . The symbol $K$ denotes a generic

constant, not necessarily the same at each appearance. $\beta_{r}$ denotes the rth

absolute moment of the standard normal distribution. $I(A)$ denotes the indicator

function of the event $A$ .
For the proof of Theorem $C$ we need a few well-known inequalities.



150 Ryozo YOKOYAMA

LEMMA 1. Suppose that the random variables $\xi$ and $\eta$ , respectively, are meas-
urable with respect to $\mathcal{P}_{k}$ and $\mathcal{F}_{k+n}$ ;

1) If $ E\xi^{2}<\infty$ and $ E\eta^{2}<\infty$ , then

(2) $|E(\xi\eta)-E\xi\cdot E\eta|\leqq(E\xi^{2})^{1/2}(E\eta^{2})^{1/2}\rho(n)$ ;

2) if $|\xi|\leqq Ba.s$ . and $ E|\eta|^{s}<\infty$ for some $s>1$ , then

(3) $|E(\xi\eta)-E\xi\cdot E\eta|\leqq 6B(E|\eta|^{s})^{1/S}(\alpha(n))^{1-1/S}$ .

The inequality (2) is an immediate consequence of the definition of the
coefficient $\rho(\eta)$ . The inequality (3) is due to Davydov [7]. The following
inequality, due to Ibragimov [10], is fundamental to our proof.

LEMMA 2. Under the assumptions of Theorem $C$, there exists a constant $C$

such that

(4) $E|S_{n}|^{r}\leqq C\sigma_{n}^{r}$ for all $n\geqq 1$ .
We shall divide the sum $S_{n}$ into three parts:

$S_{n}=S_{n}^{\prime}+S_{n}^{\prime\prime}=\sigma_{n}T_{n}+\sigma_{n}T_{n}^{\prime}+S_{n}^{\prime\prime}$ ,

and show that $\sigma_{\overline{n}}^{1}S_{n}^{\prime\prime}$ and $T_{n}^{\prime}$ are asymptotically negligible, while the rth absolute
moment of $T_{n}$ converges to $\beta_{r}$, where the variable $T_{n}$ will be chosen to be a
martingale.

The first step is to represent the sum $S_{n}$ in the form

$S_{n}=\sum_{j=1}^{k}y_{j}+\sum_{j=1}^{k+1}z_{j}=S_{n}^{\prime}+S_{n}^{\prime\prime}$ ,

where
$\sum^{jp+(j-1)q}$

$X_{i}$ , $1\leqq j\leqq k$ ;
$y_{j}=_{i=(j-1)(p+q)+1}$

$z_{j}=\sum_{i=jp+(j- 1)q+1}^{j(p+q)}X_{i}$ , $1\leqq j\leqq k$ ;

$z_{k+1}=\sum_{i=k(p+q)+1}^{n}X_{i}$ ,

$p=p(n)$ and $q=q(n)\in\{1,2, \cdots, n\}$ and satisfy the following conditions:

(5) a) $ p\rightarrow\infty$ , $ q\rightarrow\infty$ , $n^{-1}p\rightarrow 0$, $p^{-1}q\rightarrow 0$,
b) $n^{1+\beta}q^{1-\beta}p^{-2}\rightarrow 0$ for some $\beta>0$,
c) $np^{-1}\rho^{2/r}(q)\rightarrow 0$,

and $k=k(n)=[n/(p+q)]$ . Here $[a]$ denotes the greatest integer $\leqq a$ . Such
systems of $p$ and $q$ actually exist. In fact, if we set
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$\lambda(n)=\max\{\rho^{1/r}([n^{1/4}]), (\log n)^{-1}\}$ ,

$p=\max\{[n\rho^{2/r}([n^{1/4}])(\lambda(n))^{-1}], [n^{3/4}(\lambda(n))^{-1}]\}$ ,

$q=[n^{1/4}]$ ,

then all the conditions in (5) are satisfied;

a) $ p\rightarrow\infty$ , $ q\rightarrow\infty$ , $n^{-1}p\rightarrow 0$, $p^{-1}q\rightarrow 0$,

b) $n^{1+\beta}q^{1-\beta}p^{-2}\leqq n^{-(1-3\beta)/4}\lambda^{2}(n)\rightarrow 0$, if $\beta\leqq 1/3$,

c) $np^{-1}\rho^{2/r}(q)\leqq\lambda(n)\rightarrow 0$ .

Now we break the sum $S_{n}^{\prime}$ into two parts. We denote by $\mathcal{L}_{nj}$ the $\sigma- fields$

$\mathcal{P}_{jp+(j- 1)q}$ , and define the random variables

$Y_{nj}=y_{nj}-E\{y_{nj}|\mathcal{L}_{n,j-1}\}$ , $1\leqq J\leqq k$ ,

where $y_{nj}=y_{j}/\sigma_{n}$ . Then $\{Y_{nj}, \mathcal{L}_{nj} : 1\leqq j\leqq k\}$ is trivially a martingale difference
sequence for each $n\geqq 1$ . Let

$T_{n}=\sum_{j=1}^{k}Y_{nj}$ , $T_{n}^{\prime}=S_{n}^{\prime}/\sigma_{n}-T_{n}=\sum_{j=1}^{k}E\{y_{nj}|\mathcal{L}_{n,j-1}\}$ .

Then $S_{n}=\sigma_{n}T_{n}+\sigma_{n}T_{n}^{\prime}+S_{n}^{\prime\prime}$ .
The theorem will be proved in three stages:

(i) $E|S_{n}^{\prime\prime}/\sigma_{n}|^{r}\rightarrow 0$,

(ii) $E|T_{n}^{\prime}|^{r}\rightarrow 0$,

(iii) $E|T_{n}|^{r}\rightarrow\beta_{r}$ .
In view of (i), (ii), (iii) and the inequality:

$|(E|S_{n}/\sigma_{n}|^{r})^{1/r}-(E|T_{n}|^{r})^{1/r}|^{r}\leqq 2^{r- 1}(E|T_{n}^{\prime}|^{r}+E|S_{n}^{\prime\prime}/\sigma_{n}|^{r})$ ,

the assertion of the theorem follows.

PROOF OF (i). Since $\sigma_{n}^{2}=nh(n)$ , where $h(n)$ is a slowly varying function
(Theorem B), using Lemma 2, Minkowski’s inequality and stationarity, and arguing
as in [11, p. 337], we obtain

$E|S_{n}^{\prime\prime}/\sigma_{n}|^{r}\leqq\sigma_{n}^{-r}(k(E|z_{1}|^{r})^{1/r}+(E|z_{k+1}|^{r})^{1/r})^{r}$

$\leqq K(k\sigma_{q}/\sigma_{n}+\sigma_{q^{\prime}}/\sigma_{n})^{r}$

$=K((\frac{k^{2}qh(q)}{nh(n)})^{1/2}+(\frac{q^{\prime}h(q^{\prime})}{nh(n)})^{1/2})^{r}\rightarrow 0$ ,

where $q^{\prime}=n-k(p+q)$ is the number of terms in $z_{k+1}$ , and (i) is proved.

Before proving (ii) and (iii), we note that under the requirements imposed on
$p,$ $q$ and $k$ ,
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(6) $k\sigma_{p}^{2}/\sigma_{n}^{2}=1+o(1)$ .
In fact,

$E(S_{n}^{\prime}/\sigma_{n})^{2}=k\sigma_{p}^{2}/\sigma_{n}^{2}+2\sum_{j=2}^{k}(k-J+1)E(y_{n1}y_{nj})$

by stationarity. Since $y_{n1}$ is measurable with respect to $\mathcal{P}_{p}$ and $y_{nj},$ $2\leqq j\leqq k$ ,

are measurable with respect to $\mathcal{F}_{p+q}$ , applying the inequality (2),

$\sum_{f=2}^{k}(k-j+1)|E(y_{n1}y_{nj})|\leqq(k\sigma_{p}/\sigma_{n})^{2}\rho(q)$ .

Moreover, by condition (5),

$k\rho(q)\sim np^{-1}\rho(q)\leqq np^{-1}\rho^{2/r}(q)\rightarrow 0$ .
Hence

(7) $E(S_{n}^{\prime}/\sigma_{n})^{2}=(k\sigma_{p}^{2}/\sigma_{n}^{2})(1+o(1))$ .

On the other hand,

(8) $E(S_{n}^{\prime}/\sigma_{n})^{2}=E(S_{n}/\sigma_{n})^{2}+E(S_{n}^{r/}/\sigma_{n})^{2}-2E(S_{n}S_{n}^{\prime\prime}/\sigma_{n}^{2})$

$=1+0(1)$

by (i). The equality (6) now follows from (7) and (8).

PROOF OF (ii). For simplicity we put

$w_{nj}=E\{y_{nj}|\mathcal{L}_{n.j-1}\}$ , $ 1\leqq$ ] $\leqq k$ ,

and because of the stationarity, we put

$a_{n}=E|y_{nj}|^{r}$, $1\leqq j\leqq k$ .
By Holder’s inequality,

$E|w_{nj}|^{r}=E(w_{nj}w_{nj}|w_{nj}|^{r- 2})$

$=E(E\{y_{nj}w_{nj}|w_{nj}|^{r- 2}|\mathcal{L}_{n,j-1}\})$

$=E(y_{nj}w_{nj}|w_{nj}|^{r-2})$

$\leqq(E|y_{nj}w_{nj}|^{r/2})^{2/r}(E|w_{nj}|^{r})^{1-2/r}$,

so that we have
$E|w_{nj}|^{r}\leqq E|y_{nj}w_{nj}|^{r/2}$ .

Since $w_{nj}$ is measurable with respect to $\mathcal{P}_{(j-1)p+(i-2)q}$ and $y_{nj}$ is measurable with

respect to $\mathcal{F}_{(j- 1)(p+q)}$ for each $1\leqq j\leqq k$ , using (2) and Jensen’s inequality,

$E|y_{nj}w_{nj}|^{r/2}\leqq(E|y_{nj}|^{r})^{1/2}(E|w_{nj}|^{r})^{1/2}\rho(q)+E|y_{nj}|^{r/2}E|w_{nj}|^{r/2}$

$\leqq a_{n}\rho(q)+a_{n}^{1/2}E|w_{nj}|^{r/2}$ .
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Using (2) and Jensen’s inequality again,

$E|w_{nj}|^{r/2}=E(y_{nj}w_{nj}|w_{nj}|^{r/2-2}I(|w_{nj}|>0))$

$\leqq(Ey_{nj}^{2})^{1/2}(E|w_{nj}|^{r- 2})^{1/2}\rho(q)$

$\leqq a_{n}^{1/2}\rho(q)$ .

Combining the estimates above, we find that

(9) $E|w_{nj}|^{r}\leqq 2a_{n}\rho(q)$ .
We obtain from Minkowski’s inequality, (4) $-(6)$ and (9) that

$E|T_{n}^{\prime}|^{r}\leqq(\sum_{j=1}^{k}(E|w_{nj}|^{r})^{1/r})^{r}$

$\leqq 2k^{r}a_{n}\rho(q)$

$\leqq K(k\sigma_{p}^{2}/\sigma_{n}^{2})^{r/2}k^{r/2}\rho(q)\rightarrow 0$ ,
and hence (ii) is proved.

PROOF OF (iii). Define $w_{nj}$ and $a_{n}$ as before. For simplicity of notation we
also define

$u_{nj}=y_{nj}^{2}-Ey_{nj}^{2}$ , $1\leqq j\leqq k$ ,

$v_{nj}=E\{u_{nj}|\mathcal{L}_{n,j-1}\}$ , $1\leqq j\leqq k$

and (because of the stationarity)

$b_{n}=E|u_{nj}|^{r/2}$ , $1\leqq j\leqq k$ .
Now by stationarity,

$\sum_{j=1}^{k}EY_{nj}^{2}=k\sigma_{p}^{2}/\sigma_{n}^{2}-\sum_{j=1}^{k}E(y_{nj}w_{nj})$ ,

and using (2),

$\sum_{j=1}^{k}E(y_{nj}w_{nj})\leqq(k\sigma_{p}^{2}/\sigma_{n}^{2})\rho(q)$ .
Thus, taking account of (6), we see that

$\sum_{j=1}^{k}EY_{nj}^{2}=1+o(1)$ .

Therefore, according to Hall’s [8] theorem, the proof of (iii) will be complete if
we can show that

(10)
$\max_{j\leq k}E\{Y_{nj}^{2}|\mathcal{L}_{n,j-1}\}\rightarrow 0$ in probability,

(11) $\sum_{j=1}^{k}E|Y_{nj}|^{r}\rightarrow 0$

and
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(12) $E|\sum_{j=1}^{k}E\{Y_{nj}^{2}|\mathcal{L}_{n.j-1}\}-1|^{r/2}\rightarrow 0$ .

However, (11) immediately implies the conditional Lindeberg condition:

for all $\epsilon>0$, $\sum_{j=1}^{k}E\{Y_{nj}^{2}I(|Y_{nj}|>\epsilon)|\mathcal{L}_{n,j-1}\}\rightarrow 0$ in probability.

Henoe (10) is a consequenoe of (11) combined with (12) (see Brown [6, Theorem
1 and Lemma 1]). We have from Jensen’s inequality, (4) and (6) that

$\sum_{j=1}^{k}E|Y_{nj}|^{r}\leqq 2^{r-1}\sum_{j=1}^{k}(E|y_{nj}|^{r}+E|w_{nj}|^{r})$

$\leqq 2^{r}ka_{n}$

$\leqq K(k\sigma_{p}^{2}/\sigma_{n}^{2})^{r/2}k^{-r/2+1}\rightarrow 0$ ,

and thus (11) holds.
Our goal is to show that (12) holds. Now,

$E|\sum_{j=1}^{k}E\{Y_{nj}^{2}|\mathcal{L}_{n,j-1}\}-1|^{r/2}$

$=E|\sum_{j=1}^{k}E\{y_{nj}^{2}|\mathcal{L}_{n.j-1}\}-\sum_{j=1}^{k}w_{nj}^{2}-1|^{r/2}$

$\leqq 2^{r/2-1}\{E|\sum_{j=1}^{k}E\{y_{nj}^{2}|\mathcal{L}_{n.j-1}\}-1|^{r/2}+E(\sum_{j=1}^{k}w_{nf}^{2})^{r/2}\}$ .

Making use of the inequality (9), and arguing just as in the proof of (ii), we get

$E(\sum_{j=1}^{k}w_{nj}^{2})^{r/2}\leqq 2k^{r/2}a_{n}\rho(q)$

$\leqq K(k\sigma_{p}^{2}/\sigma_{n}^{2})^{r/2}\rho(q)\rightarrow 0$ .

Moreover, we have from (6) and Minkowski’s inequality that

$E|\sum_{j=1}^{k}E\{y_{nj}^{2}|\mathcal{L}_{n.j-1}\}-1|^{r/2}$

$\sim E|\sum_{j=1}^{k}E\{y_{nj}^{2}|\mathcal{L}_{n.j-1}\}-k\sigma_{p}^{2}/\sigma_{n}^{2}|^{r/2}$

$=E|\sum_{j=1}^{k}v_{nj}|^{r/2}$

$\leqq(\sum_{j=1}^{k}(E|v_{nj}|^{r/2})^{2/r})^{r/2}$

Consequently, to prove (12) it is sufficient to show that

(13) $\sum_{j=1}^{k}(E|v_{nj}|^{r/2})^{2/r}\rightarrow 0$ .
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We shall separate the proof of (13) in three cases; $r>4,$ $r=4$ and $2<r<4$ .
Suppose first that $r>4$ . By replacing $y_{nj},$ $w_{nj},$ $a_{n}$ and $r$ in the proof of (9)

by $u_{nj},$ $v_{nj},$
$b_{n}$ and $r/2$ respectively, we deduce that

$E|v_{nj}|^{r/2}\leqq 2b_{n}\rho(q)$ .
Since

$b_{n}\leqq 2^{r/2-1}\{E|y_{nj}|^{r}+(Ey_{nj}^{2})^{r/2}\}\leqq 2^{r/2}a_{n}$ ,

then, by virtue of (4) and (6), we see that

(14) $\sum_{j=1}^{k}(E|v_{nj}|^{r/2})^{2/r}\leqq k(2b_{n}\rho(q))^{2/r}$

$\leqq k(2^{r/2+1}a_{n}\rho(q))^{2/r}$

$\leqq K(k\sigma_{p}^{2}/\sigma_{n}^{2})\rho^{2/r}(q)\rightarrow 0$ ,

and thus (13) is proved for the case $r>4$ .
When $r=4$ , using (2) and Jensen’s inequality, we get

$E|v_{nj}|^{r/2}=E(u_{nj}v_{nj})$

$\leqq(Eu_{nj}^{2})^{1/2}(Ev_{nj}^{2})^{1/2}\rho(q)$

$\leqq Eu_{nf}^{2}\rho(q)$ .

Hence (13) also holds for $r=4$ .
Finally, we assume that $2<r<4$ . By Holder’s inequality,

(15) $E|v_{nj}|^{r/2}=E(u_{nj}v_{nj}|v_{nj}|^{r/2- 2}I(|v_{nj}|>0))$

$\leqq E(|u_{nj}|^{2-r/2}|u_{nj}v_{nj}|^{r/2-1})$

$\leqq b_{n}^{4/r- 1}(E|u_{nj}v_{nj}|^{r/4})^{2- 4/r}$ .

Using (2) and Jensen’s inequality, and noting that $r/4<1$ ,

(16) $E|u_{nj}v_{nj}|^{r/4}\leqq(E|u_{nj}|^{r/2})^{1/2}(E|v_{nj}|^{r/2})^{1/2}\rho(q)+E|u_{nj}|^{r/4}E|v_{nf}|^{r/4}$

$\leqq b_{n}\rho(q)+b_{n^{\prime 2}}^{1}(E|v_{nj}|)^{r/4}$ .

Since $\alpha(n)\leqq\rho(n)$ , applying the inequality (3) with $\xi=v_{nj}|v_{nj}|^{-1}I(|v_{nj}|>0),$ $\eta=u_{nj}$

and $s=r/2$ ,

(17) $E|v_{nj}|=E(u_{nj}v_{nj}|v_{nj}|^{-1}I(|v_{nj}|>0))$

$\leqq 6(E|u_{nj}|^{r/2})^{2/r}(\rho(q))^{1- 2/r}$ .
Inserting the inequalities (16) and (17) into (15), we have

$E|v_{nj}|^{r/2}\leqq b_{n^{\prime r- 1}}^{4}\{b_{n}\rho(q)+6^{r/4}b_{n}(\rho(q))^{r/4-1/2}\}^{2-4/r}$

$\leqq Kb_{n}(\rho(q))^{(r- 2)^{2}/2r}$.
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Just as in (14), we obtain that for $2<r<4$,

$\sum_{j=1}^{k}(E|v_{nj}|^{r/2})^{2/r}\leqq K(k\sigma_{p}^{2}/\sigma_{n}^{2})(\rho(q))^{(r- 2)^{2}/r^{2}}\rightarrow 0$ ,

and hence (13) follows as desired.
The proof of Theorem $C$ is now complete.
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