THE CONVERGENCE OF MOMENTS IN THE CENTRAL LIMIT THEOREM FOR WEAKLY DEPENDENT RANDOM VARIABLES

By
Ryozo Yokoyama

1. Introduction.

Let (Ω, \mathscr{F}, P) be a probability space. For any two σ-fields \mathcal{A} and \mathscr{B} define the mixing coefficients ϕ and α and the maximal correlation coefficient ρ by

$$
\begin{aligned}
& \phi(\mathcal{A}, \mathscr{B})=\sup |P(B \mid A)-P(B)| \quad A \in \mathcal{A}, \quad B \in \mathscr{B}, P(A)>0 ; \\
& \alpha(\mathcal{A}, \mathscr{B})=\sup |P(A \cap B)-P(A) P(B)| \quad A \in \mathcal{A}, B \in \mathscr{B} ; \\
& \rho(\mathcal{A}, \mathscr{B})=\sup |\operatorname{Corr}(\xi, \eta)| \quad \xi \in L^{2}(\mathcal{A}), \eta \in L^{2}(\mathscr{B}) .
\end{aligned}
$$

Let $\left\{X_{j}:-\infty<j<\infty\right\}$ be a strictly stationary sequence of random variables on (Ω, \mathscr{F}, P). For integers n let \mathscr{P}_{n} be the σ-field generated by $\left\{X_{j}: j \leqq n\right\}$ and \mathscr{I}_{n} the σ-field generated by $\left\{X_{j}: j \geqq n\right\}$. The sequence $\left\{X_{j}\right\}$ is said to be ϕ-mixing (or uniformly mixing) if

$$
\phi(n) \equiv \phi\left(\mathscr{P}_{0}, \mathscr{I}_{n}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

(see Ibragimov [9]), strongly mixing if

$$
\alpha(n) \equiv \alpha\left(\mathscr{P}_{0}, \mathscr{F}_{n}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

(see Rosenblatt [15]) and completely regular if

$$
\rho(n) \equiv \rho\left(\mathscr{P}_{0}, \mathscr{F}_{n}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

(see Kolmogorov-Rozanov [13]).
Among these coefficients, the following inequalities always hold:

$$
4 \alpha(n) \leqq \rho(n) \leqq 2 \phi^{1 / 2}(n)
$$

The left-hand inequality is an easy consequence of the definitions of the coefficients $\alpha(n)$ and $\rho(n)$, and the right-hand inequality is a consequence of the Ibragimov fundamental inequality for ϕ-mixing sequences (see [11, Theorem 17.2 .3 , p. 309]). Thus a ϕ-mixing sequence is completely regular (the converse

[^0]is false ; see [11, pp. 310-314]), and a completely regular sequence is strongly mixing (the converse is false; see [16, pp. 206-209], but for Gaussian sequences complete regularity is equivalent to strong mixing; see [13]). Formulations of various mixing conditions are given by Ibragimov-Rozanov [12] for stationary Gaussian sequences in terms of the spectral density, and by Rosenblatt [16] for stationary Markov sequences in terms of the transition operator.

Let $\left\{X_{j}\right\}$ be a strictly stationary sequence with $E X_{j}=0$ and $E X_{j}^{2}<\infty$. Set

$$
S_{n}=\sum_{j=1}^{n} X_{j}, \quad \sigma_{n}^{2}=E S_{n}^{2}
$$

In numerous papers conditions are investigated which guarantee asymptotic normality of the distribution of the normed sum $\sigma_{n}^{-1} S_{n}$ (see, for example, [2, Chap. 4], [9], [10] and [11, Chap. 18]).

We are interested in knowing when the r th absolute moment of $\sigma_{n}^{-1} S_{n}(r>2)$ converges to that of the normal distribution. When X_{j} are independent (but not necessarily identically distributed) random variables, Bernstein [1] presented a necessary and sufficient condition (the r th Lindeberg condition) for the convergence of absolute moments in the central limit theorem. Brown [4,5] gave an alternative proof of Bernstein's result. Hall [8] extended Bernstein's theorem in both the independence and the martingale cases. For stationary ϕ-mixing and strongly mixing sequences the author [17, 18] obtained some results on the convergence of moments. Recently, in the ϕ-mixing case, the following much broader result was proved; the proof is completely different from those in [17] and [18].

Theorem A ([19]). Let $\left\{X_{j}\right\}$ be a strictly stationary sequence with $E X_{j}=0$ and $E\left|X_{j}\right|^{r}<\infty$ for some $r>2$. If $\phi(n) \rightarrow 0$ and $\sigma_{n}^{2} \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\lim _{n \rightarrow \infty} E\left|S_{n} / \sigma_{n}\right|^{r}=\int_{-\infty}^{\infty}(2 \pi)^{-1 / 2}|u|^{r} \exp \left(-u^{2} / 2\right) d u .
$$

In Theorem A it is not assumed that $\phi(n) \rightarrow 0$ at a specific rate, while the series-type conditions on the mixing coefficients were imposed in all the theorems of [18] (cf. [9, Theorem 1.4]). The purpose of this paper is to generalize the above ϕ-mixing result to the complete regularity case. The basic idea, which was used in [19], is a martingale representation of the sum S_{n}, and the proof is based on Ibragimov's moment inequality Lemma 2 below) and a martingale result of Hall [8].

2. Statement of a result.

First we state a result of Ibragimov [10, Theorem 2.1], which generalizes an earlier result of his own [9, Theorem 1.4].

Theorem B (Ibragimov). Let $\left\{X_{j}\right\}$ be a strictly stationary sequence with $E X_{j}=0$ and $E X_{j}^{2}<\infty$. (i) If $\lim _{n \rightarrow \infty} \rho(n)=0$ and $\lim _{n \rightarrow \infty} \sup \sigma_{n}^{2}=\infty$, then $\sigma_{n}^{2}=n h(n)$, where $h(n)$ is a slowly varying function in the sense of Karamata. (ii) If in addition $E\left|X_{j}\right|^{r}<\infty$ for some $r>2$, then

$$
\lim _{n \rightarrow \infty} P\left\{S_{n} / \sigma_{n}<x\right\}=\int_{-\infty}^{x}(2 \pi)^{-1 / 2} \exp \left(-u^{2} / 2\right) d u .
$$

Remarks. Theorem B (ii) fails if its hypothesis $E\left|X_{j}\right|^{r}<\infty(r>2)$ is omitted ; a counterexample is constructed by Bradley [3]. Lifshits [14] proved some central limit theorems on Markov chains under $\rho(n) \rightarrow 0$ and other slightly weaker conditions.

In this article the conditions of Theorem B, without any additional conditions, will be shown to imply the convergence of the r th absolute moments in the central limit theorem. More precisely, we shall prove

ThEOREM C. Let $\left\{X_{j}\right\}$ be a strictly stationary sequence with $E X_{j}=0$ and $E\left|X_{j}\right|^{r}<\infty$ for some $r>2$. If $\rho(n) \rightarrow 0$ and $\sigma_{n}^{2} \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E\left|S_{n} / \sigma_{n}\right|^{r}=\int_{-\infty}^{\infty}(2 \pi)^{-1 / 2}|u|^{r} \exp \left(-u^{2} / 2\right) d u \tag{1}
\end{equation*}
$$

As we have remarked in Sect. 1, the ϕ-mixing condition implies the complete regularity condition, thus Theorem C contains Theorem A as a special case. For strongly mixing sequences the relation (1) holds under the conditions $E X_{j}=0$, $E\left|X_{j}\right|^{r+\delta}<\infty$ for some $r>2$ and $\delta>0, E X_{1}^{2}+2 \sum_{j=2}^{\infty} E\left(X_{1} X_{j}\right)>0$ and $\sum_{n=1}^{\infty} n^{r / 2-1}(\alpha(n))^{\delta /(r+\delta)}$ $<\infty$ (see [18]).

3. The proof.

In the proof, limits will be taken as $n \rightarrow \infty$. The symbol K denotes a generic constant, not necessarily the same at each appearance. β_{r} denotes the r th absolute moment of the standard normal distribution. $I(A)$ denotes the indicator function of the event A.

For the proof of Theorem C we need a few well-known inequalities.

Lemma 1. Suppose that the random variables ξ and η, respectively, are measurable with respect to \mathscr{P}_{k} and \mathscr{F}_{k+n};

1) If $E \xi^{2}<\infty$ and $E \eta^{2}<\infty$, then

$$
\begin{equation*}
|E(\xi \eta)-E \xi \cdot E \eta| \leqq\left(E \xi^{2}\right)^{1 / 2}\left(E \eta^{2}\right)^{1 / 2} \rho(n) ; \tag{2}
\end{equation*}
$$

2) if $|\xi| \leqq B$ a.s. and $E|\eta|^{s}<\infty$ for some $s>1$, then

$$
\begin{equation*}
|E(\xi \eta)-E \xi \cdot E \eta| \leqq 6 B\left(E|\eta|^{s}\right)^{1 / s}(\alpha(n))^{1-1 / s} . \tag{3}
\end{equation*}
$$

The inequality (2) is an immediate consequence of the definition of the coefficient $\rho(n)$. The inequality (3) is due to Davydov [7]. The following inequality, due to Ibragimov [10], is fundamental to our proof.

Lemma 2. Under the assumptions of Theorem C, there exists a constant C such that

$$
\begin{equation*}
E\left|S_{n}\right|^{r} \leqq C \sigma_{n}^{r} \quad \text { for all } n \geqq 1 \tag{4}
\end{equation*}
$$

We shall divide the sum S_{n} into three parts:

$$
S_{n}=S_{n}^{\prime}+S_{n}^{\prime \prime}=\sigma_{n} T_{n}+\sigma_{n} T_{n}^{\prime}+S_{n}^{\prime \prime},
$$

and show that $\sigma_{n}^{-1} S_{n}^{\prime \prime}$ and T_{n}^{\prime} are asymptotically negligible, while the r th absolute moment of T_{n} converges to β_{r}, where the variable T_{n} will be chosen to be a martingale.

The first step is to represent the sum S_{n} in the form

$$
S_{n}=\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k+1} z_{j}=S_{n}^{\prime}+S_{n}^{\prime \prime}
$$

where

$$
\begin{aligned}
& y_{j}=\sum_{i=(j-1)(p+q)+1}^{j p+(j-1) q} X_{i}, \quad 1 \leqq j \leqq k ; \\
& z_{j}=\sum_{i=j p+(j-1) q+1}^{j(p+q)} X_{i}, \quad 1 \leqq j \leqq k ; \\
& z_{k+1}=\sum_{i=k(p+q)+1}^{n} X_{i},
\end{aligned}
$$

$p=p(n)$ and $q=q(n) \in\{1,2, \cdots, n\}$ and satisfy the following conditions:
a) $p \rightarrow \infty, \quad q \rightarrow \infty, \quad n^{-1} p \rightarrow 0, \quad p^{-1} q \rightarrow 0$,
b) $n^{1+\beta} q^{1-\beta} p^{-2} \rightarrow 0 \quad$ for some $\beta>0$,
c) $n p^{-1} \rho^{2 / r}(q) \rightarrow 0$,
and $k=k(n)=[n /(p+q)]$. Here $[a]$ denotes the greatest integer $\leqq a$. Such systems of p and q actually exist. In fact, if we set

$$
\begin{aligned}
& \lambda(n)=\max \left\{\rho^{1 / r}\left(\left[n^{1 / 4}\right]\right),(\log n)^{-1}\right\}, \\
& p=\max \left\{\left[n \rho^{2 / r}\left(\left[n^{1 / 4}\right]\right)(\lambda(n))^{-1}\right],\left[n^{3 / 4}(\lambda(n))^{-1}\right]\right\}, \\
& q=\left[n^{1 / 4}\right],
\end{aligned}
$$

then all the conditions in (5) are satisfied;
a) $p \rightarrow \infty, \quad q \rightarrow \infty, \quad n^{-1} p \rightarrow 0, \quad p^{-1} q \rightarrow 0$,
b) $n^{1+\beta} q^{1-\beta} p^{-2} \leqq n^{-(1-3 \beta) / 4} \lambda^{2}(n) \rightarrow 0$, if $\beta \leqq 1 / 3$,
c) $n p^{-1} \rho^{2 / r}(q) \leqq \lambda(n) \rightarrow 0$.

Now we break the sum S_{n}^{\prime} into two parts. We denote by $\mathcal{L}_{n j}$ the σ-fields $\mathscr{P}_{j p+(j-1) q}$, and define the random variables

$$
Y_{n j}=y_{n j}-E\left\{y_{n j} \mid \mathcal{L}_{n, j-1}\right\}, \quad 1 \leqq j \leqq k,
$$

where $y_{n j}=y_{j} / \sigma_{n}$. Then $\left\{Y_{n j}, \mathcal{L}_{n j}: 1 \leqq j \leqq k\right\}$ is trivially a martingale difference sequence for each $n \geqq 1$. Let

$$
T_{n}=\sum_{j=1}^{k} Y_{n j}, \quad T_{n}^{\prime}=S_{n}^{\prime} / \sigma_{n}-T_{n}=\sum_{j=1}^{k} E\left\{y_{n j} \mid \mathcal{L}_{n, j-1}\right\}
$$

Then $S_{n}=\sigma_{n} T_{n}+\sigma_{n} T_{n}^{\prime}+S_{n}^{\prime \prime}$.
The theorem will be proved in three stages:
(i) $E\left|S_{n}^{\prime \prime} / \sigma_{n}\right|^{r} \rightarrow 0$,
(ii) $E\left|T_{n}^{\prime}\right|^{r} \rightarrow 0$,
(iii) $E\left|T_{n}\right|^{r} \rightarrow \beta_{r}$.

In view of (i), (ii), (iii) and the inequality:

$$
\left|\left(E\left|S_{n} / \sigma_{n}\right|^{r}\right)^{1 / r}-\left(E\left|T_{n}\right|^{r}\right)^{1 / r}\right|^{r} \leqq 2^{r-1}\left(E\left|T_{n}^{\prime}\right|^{r}+E\left|S_{n}^{\prime \prime} / \sigma_{n}\right|^{r}\right),
$$

the assertion of the theorem follows.
Proof of (i). Since $\sigma_{n}^{2}=n h(n)$, where $h(n)$ is a slowly varying function (Theorem B), using Lemma 2, Minkowski's inequality and stationarity, and arguing as in [11, p. 337], we obtain

$$
\begin{aligned}
E\left|S_{n}^{\prime \prime} / \sigma_{n}\right|^{r} & \leqq \sigma_{n}^{-r}\left(k\left(E\left|z_{1}\right|^{r}\right)^{1 / r}+\left(E\left|z_{k+1}\right|^{r}\right)^{1 / r}\right)^{r} \\
& \leqq K\left(k \sigma_{q} / \sigma_{n}+\sigma_{q^{\prime}} / \sigma_{n}\right)^{r} \\
& =K\left(\left(\frac{k^{2} q h(q)}{n h(n)}\right)^{1 / 2}+\left(\frac{q^{\prime} h\left(q^{\prime}\right)}{n h(n)}\right)^{1 / 2}\right)^{r} \rightarrow 0,
\end{aligned}
$$

where $q^{\prime}=n-k(p+q)$ is the number of terms in z_{k+1}, and (i) is proved.
Before proving (ii) and (iii), we note that under the requirements imposed on p, q and k,

$$
k \sigma_{p}^{2} / \sigma_{n}^{2}=1+o(1) .
$$

In fact,

$$
E\left(S_{n}^{\prime} / \sigma_{n}\right)^{2}=k \sigma_{p}^{2} / \sigma_{n}^{2}+2 \sum_{j=2}^{k}(k-j+1) E\left(y_{n 1} y_{n_{j}}\right)
$$

by stationarity. Since $y_{n 1}$ is measurable with respect to \mathscr{P}_{p} and $y_{n j}, 2 \leqq j \leqq k$, are measurable with respect to \mathscr{F}_{p+q}, applying the inequality (2),

$$
\sum_{j=2}^{k}(k-j+1)\left|E\left(y_{n_{1}} y_{n j}\right)\right| \leqq\left(k \sigma_{p} / \sigma_{n}\right)^{2} \rho(q) .
$$

Moreover, by condition (5),

$$
k \rho(q) \sim n p^{-1} \rho(q) \leqq n p^{-1} \rho^{2 / r}(q) \rightarrow 0
$$

Hence

$$
\begin{equation*}
E\left(S_{n}^{\prime} / \sigma_{n}\right)^{2}=\left(k \sigma_{p}^{2} / \sigma_{n}^{2}\right)(1+o(1)) \tag{7}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
E\left(S_{n}^{\prime} / \sigma_{n}\right)^{2} & =E\left(S_{n} / \sigma_{n}\right)^{2}+E\left(S_{n}^{\prime \prime} / \sigma_{n}\right)^{2}-2 E\left(S_{n} S_{n}^{\prime \prime} / \sigma_{n}^{2}\right) \tag{8}\\
& =1+o(1)
\end{align*}
$$

by (i). The equality (6) now follows from (7) and (8).
Proof of (ii). For simplicity we put

$$
w_{n j}=E\left\{y_{n j} \mid \mathcal{L}_{n, j-1}\right\}, \quad 1 \leqq j \leqq k,
$$

and because of the stationarity, we put

$$
a_{n}=E\left|y_{n j}\right|^{r}, \quad 1 \leqq j \leqq k .
$$

By Hölder's inequality,

$$
\begin{aligned}
E\left|w_{n j}\right|^{r} & =E\left(w_{n j} w_{n j}\left|w_{n j}\right|^{r-2}\right) \\
& =E\left(E\left\{y_{n j} w_{n j}\left|w_{n j}\right|^{r-2} \mid \mathcal{L}_{n, j-1}\right\}\right) \\
& =E\left(y_{n j} w_{n j}\left|w_{n j}\right|^{r-2}\right) \\
& \leqq\left(E\left|y_{n j} w_{n j}\right|^{r / 2}\right)^{2 / r}\left(E\left|w_{n j}\right|^{r}\right)^{1-2 / r}
\end{aligned}
$$

so that we have

$$
E\left|w_{n j}\right|^{r} \leqq E\left|y_{n j} w_{n j}\right|^{r / 2} .
$$

Since $w_{n j}$ is measurable with respect to $\mathscr{P}_{(j-1) p+(j-2) q}$ and $y_{n j}$ is measurable with respect to $\mathscr{F}_{(j-1)(p+q)}$ for each $1 \leqq j \leqq k$, using (2) and Jensen's inequality,

$$
\begin{aligned}
E\left|y_{n j} w_{n j}\right|^{r / 2} & \leqq\left(E\left|y_{n j}\right|^{r}\right)^{1 / 2}\left(E\left|w_{n j}\right|^{r}\right)^{1 / 2} \rho(q)+E\left|y_{n j}\right|^{r / 2} E\left|w_{n j}\right|^{r / 2} \\
& \leqq a_{n} \rho(q)+a_{n}^{1 / 2} E\left|w_{n j}\right|^{r / 2}
\end{aligned}
$$

Using (2) and Jensen's inequality again,

$$
\begin{aligned}
E\left|w_{n j}\right|^{r / 2} & =E\left(y_{n j} w_{n j}\left|w_{n j}\right|^{r / 2-2} I\left(\left|w_{n j}\right|>0\right)\right) \\
& \leqq\left(E y_{n j}^{2}\right)^{1 / 2}\left(E\left|w_{n j}\right|^{r-2}\right)^{1 / 2} \rho(q) \\
& \leqq a_{n}^{1 / 2} \rho(q)
\end{aligned}
$$

Combining the estimates above, we find that

$$
\begin{equation*}
E\left|w_{n j}\right|^{r} \leqq 2 a_{n} \rho(q) . \tag{9}
\end{equation*}
$$

We obtain from Minkowski's inequality, (4)-(6) and (9) that

$$
\begin{aligned}
E\left|T_{n}^{\prime}\right|^{r} & \leqq\left(\sum_{j=1}^{k}\left(E\left|w_{n j}\right|^{r}\right)^{1 / r}\right)^{r} \\
& \leqq 2 k^{r} a_{n} \rho(q) \\
& \leqq K\left(k \sigma_{p}^{2} / \sigma_{n}^{2}\right)^{r / 2} k^{r / 2} \rho(q) \rightarrow 0
\end{aligned}
$$

and hence (ii) is proved.
Proof of (iii). Define $w_{n j}$ and a_{n} as before. For simplicity of notation we also define

$$
\begin{aligned}
& u_{n j}=y_{n j}^{2}-E y_{n j}^{2}, \quad 1 \leqq j \leqq k \\
& v_{n j}=E\left\{u_{n j} \mid \mathcal{L}_{n, j-1}\right\}, \quad 1 \leqq j \leqq k
\end{aligned}
$$

and (because of the stationarity)

$$
b_{n}=E\left|u_{n j}\right|^{r / 2}, \quad 1 \leqq j \leqq k
$$

Now by stationarity,

$$
\sum_{j=1}^{k} E Y_{n j}^{2}=k \sigma_{p}^{2} / \sigma_{n}^{2}-\sum_{j=1}^{k} E\left(y_{n j} w_{n j}\right)
$$

and using (2),

$$
\sum_{j=1}^{k} E\left(y_{n j} w_{n j}\right) \leqq\left(k \sigma_{p}^{2} / \sigma_{n}^{2}\right) \rho(q)
$$

Thus, taking account of (6), we see that

$$
\sum_{j=1}^{k} E Y_{n j}^{2}=1+o(1)
$$

Therefore, according to Hall's [8] theorem, the proof of (iii) will be complete if we can show that

$$
\begin{gather*}
\max _{j \leq k} E\left\{Y_{n j}^{2} \mid \mathcal{L}_{n, j-1}\right\} \rightarrow 0 \quad \text { in probability, } \tag{10}\\
\sum_{j=1}^{k} E\left|Y_{n j}\right|^{r} \rightarrow 0 \tag{11}
\end{gather*}
$$

and

$$
\begin{equation*}
E\left|\sum_{j=1}^{k} E\left\{Y_{n j}^{2} \mid \mathcal{L}_{n, j-1}\right\}-1\right|^{r / 2} \rightarrow 0 \tag{12}
\end{equation*}
$$

However, (11) immediately implies the conditional Lindeberg condition :

$$
\text { for all } \varepsilon>0, \quad \sum_{j=1}^{k} E\left\{Y_{n j}^{2} I\left(\left|Y_{n j}\right|>\varepsilon\right) \mid \mathcal{L}_{n, j-1}\right\} \rightarrow 0 \quad \text { in probability. }
$$

Hence (10) is a consequence of (11) combined with (12) (see Brown [6, Theorem 1 and Lemma 1]). We have from Jensen's inequality, (4) and (6) that

$$
\begin{aligned}
\sum_{j=1}^{k} E\left|Y_{n j}\right|^{r} & \leqq 2^{r-1} \sum_{j=1}^{k}\left(E\left|y_{n j}\right|^{r}+E\left|w_{n j}\right|^{r}\right) \\
& \leqq 2^{r} k a_{n} \\
& \leqq K\left(k \sigma_{p}^{2} / \sigma_{n}^{2}\right)^{r / 2} k^{-r / 2+1} \rightarrow 0
\end{aligned}
$$

and thus (11) holds.
Our goal is to show that (12) holds. Now,

$$
\begin{aligned}
& E\left|\sum_{j=1}^{k} E\left\{Y_{n j}^{2} \mid \mathcal{L}_{n, j-1}\right\}-1\right|^{r / 2} \\
& =E\left|\sum_{j=1}^{k} E\left\{y_{n j}^{2} \mid \mathcal{L}_{n, j-1}\right\}-\sum_{j=1}^{k} w_{n j}^{2}-1\right|^{r / 2} \\
& \leqq 2^{r / 2-1}\left\{E\left|\sum_{j=1}^{k} E\left\{y_{n j}^{2} \mid \mathcal{L}_{n, j-1}\right\}-1\right|^{r / 2}+E\left(\sum_{j=1}^{k} w_{n j}^{2}\right)^{r / 2}\right\}
\end{aligned}
$$

Making use of the inequality (9), and arguing just as in the proof of (ii), we get

$$
\begin{aligned}
E\left(\sum_{j=1}^{k} w_{n j}^{2}\right)^{r / 2} & \leqq 2 k^{r / 2} a_{n} \rho(q) \\
& \leqq K\left(k \sigma_{p}^{2} / \sigma_{n}^{2}\right)^{r / 2} \rho(q) \rightarrow 0
\end{aligned}
$$

Moreover, we have from (6) and Minkowski's inequality that

$$
\begin{aligned}
& E\left|\sum_{j=1}^{k} E\left\{y_{n j}^{2} \mid \mathcal{L}_{n, j-1}\right\}-1\right|^{r / 2} \\
& \sim E\left|\sum_{j=1}^{k} E\left\{y_{n j}^{2} \mid \mathcal{L}_{n, j-1}\right\}-k \sigma_{p}^{2} / \sigma_{n}^{2}\right|^{r / 2} \\
& =E\left|\sum_{j=1}^{k} v_{n j}\right|^{r / 2} \\
& \leqq\left(\sum_{j=1}^{k}\left(E\left|v_{n j}\right|^{r / 2}\right)^{2 / r}\right)^{r / 2}
\end{aligned}
$$

Consequently, to prove (12) it is sufficient to show that

$$
\begin{equation*}
\sum_{j=1}^{k}\left(E\left|v_{n j}\right|^{r / 2}\right)^{2 / r} \rightarrow 0 . \tag{13}
\end{equation*}
$$

We shall separate the proof of (13) in three cases ; $r>4, r=4$ and $2<r<4$.
Suppose first that $r>4$. By replacing $y_{n j}, w_{n j}, a_{n}$ and r in the proof of (9) by $u_{n j}, v_{n j}, b_{n}$ and $r / 2$ respectively, we deduce that

$$
E\left|v_{n j}\right|^{r / 2} \leqq 2 b_{n} \rho(q) .
$$

Since

$$
b_{n} \leqq 2^{r / 2-1}\left\{E\left|y_{n j}\right|^{r}+\left(E y_{n j}^{2}\right)^{r / 2}\right\} \leqq 2^{r / 2} a_{n},
$$

then, by virtue of (4) and (6), we see that

$$
\begin{align*}
\sum_{j=1}^{k}\left(E\left|v_{n j}\right|^{r / 2}\right)^{2 / r} & \leqq k\left(2 b_{n} \rho(q)\right)^{2 / r} \tag{14}\\
& \leqq k\left(2^{r / 2+1} a_{n} \rho(q)\right)^{2 / r} \\
& \leqq K\left(k \sigma_{p}^{2} / \sigma_{n}^{2}\right) \rho^{2 / r}(q) \rightarrow 0,
\end{align*}
$$

and thus (13) is proved for the case $r>4$.
When $r=4$, using (2) and Jensen's inequality, we get

$$
\begin{aligned}
E\left|v_{n j}\right|^{r / 2} & =E\left(u_{n j} v_{n j}\right) \\
& \leqq\left(E u_{n j}^{2}\right)^{1 / 2}\left(E v_{n j}^{2}\right)^{1 / 2} \rho(q) \\
& \leqq E u_{n j}^{2} \rho(q) .
\end{aligned}
$$

Hence (13) also holds for $r=4$.
Finally, we assume that $2<r<4$. By Hölder's inequality,

$$
\begin{align*}
E\left|v_{n j}\right|^{r / 2} & =E\left(u_{n j} v_{n j}\left|v_{n j}\right|^{r / 2-2} I\left(\left|v_{n j}\right|>0\right)\right) \tag{15}\\
& \leqq E\left(\left|u_{n j}\right|^{2-r / 2}\left|u_{n j} v_{n j}\right|^{r / 2-1}\right) \\
& \leqq b_{n}^{4 / r-1}\left(E\left|u_{n j} v_{n j}\right|^{r / 4}\right)^{2-4 / r} .
\end{align*}
$$

Using (2) and Jensen's inequality, and noting that $r / 4<1$,

$$
\begin{align*}
E\left|u_{n j} v_{n j}\right|^{r / 4} & \leqq\left(E\left|u_{n j}\right|^{r / 2}\right)^{1 / 2}\left(E\left|v_{n j}\right|^{r / 2}\right)^{1 / 2} \rho(q)+E\left|u_{n j}\right|^{r / 4} E\left|v_{n j}\right|^{r / 4} \tag{16}\\
& \leqq b_{n} \rho(q)+b_{n}^{1 / 2}\left(E\left|v_{n j}\right|\right)^{r / 4} .
\end{align*}
$$

Since $\alpha(n) \leqq \rho(n)$, applying the inequality (3) with $\xi=v_{n j}\left|v_{n j}\right|^{-1} I\left(\left|v_{n j}\right|>0\right), \eta=u_{n j}$ and $s=r / 2$,

$$
\begin{align*}
E\left|v_{n j}\right| & =E\left(u_{n j} v_{n j}\left|v_{n j}\right|^{-1} I\left(\left|v_{n j}\right|>0\right)\right) \tag{17}\\
& \leqq 6\left(E\left|u_{n j}\right|^{r / 2}\right)^{2 / r}(\rho(q))^{1-2 / r} .
\end{align*}
$$

Inserting the inequalities (16) and (17) into (15), we have

$$
\begin{aligned}
E\left|v_{n j}\right|^{r / 2} & \leqq b_{n}^{4 / r-1}\left\{b_{n} \rho(q)+6^{r / 4} b_{n}(\rho(q))^{r / 4-1 / 2}\right\}^{2-4 / r} \\
& \leqq K b_{n}(\rho(q))^{(r-2)^{2} / 2 r} .
\end{aligned}
$$

Just as in (14), we obtain that for $2<r<4$,

$$
\sum_{j=1}^{k}\left(E\left|v_{n j}\right|^{r / 2}\right)^{2 / r} \leqq K\left(k \sigma_{p}^{2} / \sigma_{n}^{2}\right)(\rho(q))^{(r-2)^{2 / r^{2}} \rightarrow 0}
$$

and hence (13) follows as desired.
The proof of Theorem C is now complete.

References

[1] Bernstein, S., Quelques remarques sur le théorème limite Liapounoff. Dokl. Akad. Nauk SSSR 24 (1939), 3-8.
[2] Billingsley, P., Convergence of Probability Measures, Wiley, New York, 1968.
[3] Bradley, R.C., A remark on the central limit question for dependent random variables. J. Appl. Probability 17 (1980), 94-101.
[4] Brown, B. M., Moments of a stopping rule related to the central limit theorem. Ann. Math. Statist. 40 (1969), 1236-1249.
[5] Brown, B. M., Characteristic functions, moments and the central limit theorem. Ann. Math. Statist. 41 (1970), 658-664.
[6] Brown, B. M., Martingale central limit theorems. Ann. Math. Statist. 42 (1971), 59-66.
[7] Davydov, Yu. A., Convergence of distributions generated by stationary stochastic processes. Theor. Probability Appl. 13 (1968), 691-696.
[8] Hall, P., The convergence of moments in the martingale central limit theorem. Z. Wahrscheinlichkeitstheorie verw. Gebiete 44 (1978), 253-260.
[9] Ibragimov, I. A., Some limit theorems for stationary processes. Theor. Probability Appl. 7 (1962), 349-382.
[10] Ibragimov, I.A., A note on the central limit theorem for dependent random variables. Theor. Probability Appl. 20 (1975), 135-141.
[11] Ibragimov, I. A. and Linnik, Yu. V., Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen, 1971.
[12] Ibragimov, I. A. and Rozanov, Yu. A., Gaussian Random Processes, Springer-Verlag, New York, 1978.
[13] Kolmogorov, A. N. and Rozanov, Yu. A., On strong mixing conditions for stationary Gaussian processes. Theor. Probability Appl. 5 (1960), 204-208.
[14] Lifshits, B. A., On the central limit theorem for Markov chains. Theor. Probability Appl. 23 (1978), 279-296.
[15] Rosenblatt, M., A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci. USA 42 (1956), 43-47.
[16] Rosenblatt, M., Markov Processes. Structure and Asymptotic Behavior, SpringerVerlag, Berlin, 1971.
[17] Yokoyama, R., Convergence of moments in the central limit theorem for stationary ϕ-mixing sequences. Tsukuba J. Math. 3, No. 2 (1979), 1-6.
[18] Yokoyama, R., Moment bounds for stationary mixing sequences. Z. Wahrscheinlich. keitstheorie verw. Gebiete 52 (1980), 45-57.
[19] Yokoyama, R., The convergence of moments in the central limit theorem for stationary ϕ-mixing processes. Analysis Math. (to appear)

Department of Mathematics
Osaka Kyoiku University
Tennoji, Osaka 543

[^0]: Received October 27, 1982.

