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PEAKLESS AND MONOTONE FUNCTIONS ON $G$-SPACES

By

H. BUSEMANN and B.B. PHADKE

Introduction.

In recent years an extensive and significant theory of convex sets and func-

tions on complete Riemann manifolds has been created. A good and up-to-date

survey is found in Walter [14].

The present paper provides the foundations of an analogous theory for func-

tions on non-Riemannian spaces, namely $G- spaces^{1)}$ , which include the smooth
complete Finsler spaces. The principal difference (unrelated to the possible

absence of smoothness) is that in many cases peaklessness (see below) which is

weaker than convexity, proves the adequate concept for obtaining results corre-
sponding to those in Riemann spaces. Our methods have the somewhat suprising

effect that applied to the Riemannian case from which they originated they often

yield stronger results than the original ones because a peakless function on a
Riemann space need not be convex.

We gratefully emphasize that we sent the original version of this paper as
a preprint to N. Innami. He not only discovered some inaccuracies, but streng-

thened our Theorems (22) and (25) materially and permitted us to include the

results in the present paper.
We are going to introduce various types of peakless functions, one of which

we call ”nearly peakless”. The concept coincides with the continuous “geodesi-

cally quasiconvex” functions (”geodesically” is often omitted) in the Riemannian

case.
Although we dislike changing accepted terminology, the change is practically

forced on us here both by semantic and mathematical reasons. Requiring that

a function is nearly peakless, peakless or convex are increasingly stringent con-
ditions, moreover peaklessness may be considered as a limiting case of convexity,

see Section 1. Thus quasiconvex, if used at all, ought to be reserved for peakless

functions. Also, a completely arbitrary monotone function is “quasiconvex” which

Received March 24, 1982.
1) The term G.space was introduced by the first author in 1944, but disregarded by

others who (much later) used it with a different meaning often encountered in the litera-

ture.
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is surely not related to the intuitive idea of convexity.
As this remark shows “quasiconvex” functions need not be continuous. Never-

theless we will only consider continuous functions, $f$ , because the brevity gained
by knowing that the sets like $[f<\alpha]$ or $[f\leqq\alpha]$ are open resp. closed without
mentioning continuity every time seemed to outweigh the usually not important
generality gained by omitting continuity. Furthermore, only continuous peakless
functions can replace convex functions for many significant results in Riemannian
spaces. At this early stage of a theory of functions on G-spaces we feel that
questions of continuity are secondary to the principal problems; but where we
give a proof valid without continuity we will mark the result by the subscript
$i$, for example (5) .

Because the emphasis here is less on the individual theorems than on the
theory as a whole we refrain from mentioning such theorems here, although we
believe that the reader will find many of independent interest.

Monotone functions are special peakless functions, but they lead to entirely
different problems, so the paper naturally divides into two parts.

An introduction does not usually end with an example. But in our case
there is an outstanding one which may facilitate the understanding for a reader
accustomed to Riemannian geometry.

Hilbert noticed, see [5], Section 18 ([5] will be quoted as $G$), that if in the
definition of the Klein model of hyperbolic geometry the bounding ellipsoid is
replaced by a closed strictly convex hypersurface $C$ and distance is defined as
in the hyperbolic case, the open affine segments with endpoints on $C$ are the
geodesics. Of course, the metric is smooth when $C$ is.

If $z(t)$ is a geodesic in terms of arclength and $p$ a point not on it then the
distance $pz(t)$ is a strictly peakless function of $t$ which in contrast to the hyper-
bolic case need not be convex, see $G$ (18.12) p. 109 and [8]. Moreover, there
are two ways of generalizing negative curvature to G-spaces ( $G$ Sections 36 and
41) which coincide in the Riemannian case. Unless hyperbolic, a Hilbert geometry
has negative curvature only in the weaker sense which is expressible in terms
of peakless functions, whereas the stronger one requires convexity. We will
come back to these facts later in greater detail.

Part I. Peakless functions

1. The basic concepts.

Let $N$ be a connected set with more than one point of the real t-axis. A
continuous real valued function $f(t)$ defined on $N$ is nearly peakless if $t_{1}<t_{2}<t_{3}$ ,
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$t_{i}\in N$ implies
$(^{*})$ $f(t_{2})\leqq\max[f(t_{1}), f(t_{3})]$ .

The function is peakless if it is nearly peakless and equality holds in $(^{*})$ only if
$f(t_{1})=f(t_{2})=f(t_{3})$ . This implies in contrast to near peaklessness that $f(t)=c$ on
a proper interval only if $c=\min f(t)$ .

The function $f(t)$ is strictly peakless when it is peakless and not constant
on any proper interval. This means that $f(t)$ is either strictly monotone or takes
its minimum at exactly one point $t_{0}$ and is strictly monotone for $t\geqq t_{0}$ and $t\leqq t_{0}$ .

As pointed out in $G$ p. 109 peaklessness may be regarded as a degenerate
form of convexity in this sense: If $f(t)$ is positive and convex then so is $f^{a}(t)$ ,
for $\alpha>1$ , so that requiring $f^{\alpha}(t)$ to be convex becomes weaker with increasing
$\alpha$ . For $\alpha\rightarrow\infty$ this leads to peaklessness. Because the proof in $G$ is not satis-
factory we give a better one: The convexity of $f^{\alpha}(t)$ means that for $t_{1}<t_{3}$ and
$t_{2}=(1-\theta)t_{1}+\theta t_{3}(0<\theta<1)$

$f(t_{2})\leqq[(1-\theta)f^{\alpha}(t_{1})+\theta f^{\alpha}(t_{3})]^{1/\alpha}\leqq\max[f(t_{1}), f(t_{3})]$ ,

with equality in either case only if $f(t_{1})=f(t_{2})=f(t_{3})$ . On the other hand
$\lim_{\alpha\rightarrow\infty}[(1-\theta)f^{\alpha}(t_{1})+\theta f^{\alpha}(t_{3})]^{1/\alpha}=\max[f(t_{1}), f(t_{3})]$ .

Let $R$ be a G-space. For the basic definitions and facts we refer to Sections
6, 7, 8 in $G$ . Here we merely repeat some notation. The space $R$ is metric
with distance $xy$ . A segment $T(x, y),$ $(x\neq y)$ is an isometric map of an interval
$\beta\leqq t\leqq\beta+xy=\gamma$ of the real t-axis into $Ri.e$ . $z(\beta)=x,$ $z(\gamma)=y$ and $z(t_{1})z(t_{2})=$

$|t_{1}-t_{2}|$ . A geodesic is a locally isometric map $z(t)$ of the entire t-axis into $R$ ,

and $z(\eta t+\beta),$ $\eta=\pm 1,$ $\beta$ real represents the same geodesic. The point set $\tilde{z}$

carrying $z(t)$ determines $z(t)$ up to the above transformation, see $G$ p. 39.
The restriction of a geodesic $z(t)$ to a closed interval is a geodesic curve

(often called geodesic segment in the literature). This occurs so frequently that,
where there is no chance of ambiguity, we will put $z(t)^{1,2}=z(t)|[t_{1}, t_{2}]$ and $z(t_{i})$

$=z_{i}$ .
A globally isometric map of the t-axis into $R$ is a straight line. If all geo-

desics are straight lines then $R$ is called straight.
$(xyz)$ means that $x\neq y,$ $y\neq z$ and $xy+yz=xz$ . The open sphere $\{x|px<\rho\}$

is denoted by $S(p, \rho)$ . Similarly we put $\{x|px=\rho\}=K(p, \rho)$ and $\{x|px\leqq\rho\}=$

$B(p, \rho)$ .
For functions $f(x)$ defined on $R$ we use, following Hausdorff, $[f<\alpha]=$

$\{x|f(x)<\alpha\}$ when $\alpha>\inf f$ and define $[f=\alpha]$ and $[f\leqq\alpha]$ analogously when
$\alpha\in rangef$ .
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For any set $M$ we denote its boundary by $\dot{M}$ and its closure by $M^{c}$ in parti-
cular $[f<\alpha]$ and $[f<\alpha]^{c}$ are the boundary and closure of $[f<\alpha]$ .

$ M\neq\emptyset$ is convex if with any points $b\neq c$ it contains all $T(b, c)$ . This deviates
from the definition in $G$ p. 117 and also some others, but coincides with that of
Soetens [13]. An open hemisphere shows that the closure of a convex set need
not be convex. By general agreement $M$ is called totally convex if it contains
a geodesic curve $z(t)^{1.2}$ whenever $z(t_{i})\in M$.

We consider continuous functions $f(x)$ defined on $R$ with different degrees

of peaklessness:
$f(x)$ is weakly peakless if $(bqc)$ implies

$(^{**})$ $f(q)\leqq\max[f(b), f(c)]$ ,

or equivalently, if $foz(t)$ is nearly peakless on any segment $z(t),$ $t_{1}\leqq t\leqq t_{2}$ .
$f(x)$ is nearly peakless, peakless, or strictly peakless if for any geodesic $\tilde{z}$

and one (and hence all) of its representations $foz(t)$ has the corresponding property.

In a straight space every weakly peakless function is nearly so. If we had
omitted continuity, then for any strictly monotone $\varphi(t)$ on the t-axis the function
$f(x)=f(x_{1}, x_{2})=\varphi(x_{1})$ would be a peakless function on the cartesian $(x_{1}, x_{2})$ -plane.

We also use the generally adopted term convex function when $foz(t)$ is con-
vex for every geodesic $z(t)$ .

In the Riemann and Finsler spaces convex functions are, according to Ban-
gert [’Analytische Eigenschaften konvexer Funktionen auf Riemannschen Mannig-
faltigkeiten’, J. f\"ur die Reine $u$ . Angew. Math. 307/308 (1979) p. 307-319] always

continuous. His proof cannot be applied to G-spaces, in particular because small
spheres need not be convex (see ’Non-convex Spheres in G-spaces’ by H. Busemann
and B.B. Phadke, J. $Ind$ . Math. Soc. 44 (1979) p. 39-50) and normal co-ordinates
do, in general, not exist. We were not able to prove continuity of convex func-
tions in G-spaces. But a rather simple modification of classical arguments shows
that a function which satisfies locally the condition 2 $f(y)\leqq f(x)+f(z)$ when
$xy=yz=xz/2$ is either continuous and convex or not bounded in any nonempty
open set.

2. Consequences of the definitions.

As far as we know weakly peakless functions have not been studied (did

not even get a name) in the literature, but they will prove important here. We
begin with a nearly obvious remark.

(1) $f(x)$ is weakly peakless (always on the G-space $R$ ) iff each $[f\leqq\alpha]$ is
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convex.

For if $f$ is weakly peakless then any point $q\neq b,$ $c$ on a segment $T(b, c)$

satisfies $(bqc)$ . Therefore $b,$ $c\in[f\leqq\alpha]$ and $ f(q)\leqq\max[f(b), f(c)]\leqq\alpha$ and $T(b, c)$

$\subset[f\leqq\alpha]$ .
Conversely let the $[f\leqq\alpha]$ be convex, then $q$ with $(bqc)$ lies on some (actually

exactly one) $T(b, c)$ . Put $\alpha=\max[f(b), f(c)]$ . Then $T(b, c)\subset[f\leqq\alpha]$ implies
$q\in[f\leqq\alpha]i.e$ . $ f(q)\leqq\alpha$ .

(2) $f(x)$ is nearly peakless iff all $[f\leqq\alpha]$ are totally convex.

The proof is practically the same as for (1), besides (2) is well known2).

For the sake of completeness we prove but will not use

(3) If $f(x)$ is weakly peakless then each $[f<\alpha]$ is a regular open set, $i.e$ .
it is the interior of its closure.

If $[f<\alpha]$ is not regular then there would be a $S(p, \sigma)\subset[f<\alpha]$ with $ p\not\in$

$[f<\alpha];\sigma<\rho(p)$ . There are points $q\in[f<\alpha]\cap S(p, \sigma)$ and since $[f<\alpha]$ is
open there is $S(q, \tau)\subset[f<\alpha]\cap S(p, \sigma)$ . For $x\in S(q, \tau)$ let $D_{x}$ be the diameter

of $\overline{S}(p, \sigma)$ through $x$ and $E_{x}$ that radius on $D_{x}$ which does not contain $x$ . Then
$ E_{x\cap}[f<\alpha]=\emptyset$ because $f$ is weakly peakless. But $\bigcup_{x\in S(q.\tau)}E_{x}$ contains an open

set; which would mean that $[f<\alpha]$ is not dense in $[f<\alpha]^{c}$ . This proves (3).

(4) Let $f(x)$ be nearly peakless. It is peakless iff $[f\leqq\alpha]=[f<\alpha]^{c}$ . The

condition is equivalent to $[f<\alpha]=[f=\alpha]$ .

The equivalence is obvious because $[f<\alpha]^{c}=[f<\alpha]\cup[f<\alpha],$ $[f\leqq\alpha]=$

$[f<\alpha]\cup[f=\alpha]$ and the summands in either union are disjoint.

Let $f$ be peakless. $[f\leqq\alpha]\supset[f<\alpha]^{c}$ is obvious. Assume $u\in[f\leqq\alpha]/[f<\alpha]^{c}$

exists and let $ f(w)<\alpha$ . Coming from $w$ on a segment $T(u, w)$ there is a first
point $v$ with $ f(v)=\alpha$ and $v\neq u$ because $v\in[f<\alpha]^{c}$ . But $(uvw)$ and $f(w)<f(u)$

$=f(v)$ contradicts peaklessness.
Conversely let $f$ be nearly peakless and that $[f\leqq\alpha]=[f<\alpha]^{c}$ for each $\alpha>$

$\inf f$ . Assume for $t_{1}<t_{2}<t_{3},$ $f(z(t_{2}))=\alpha=\max(f(z(t_{1})), f(z(t_{3}))=f(z(t_{1}))>f(z(t_{3}))$

$=\beta$ . Then since $f(x)$ is nearly peakless, $ f(z(t))=\alpha$ for $t_{1}\leqq t\leqq t_{2}$ . Thus there is

a largest $t_{0}$ between $t_{1}$ and $t_{s}$ such that $ f(z(t))=\alpha$ for $t_{1}<t\leqq t_{0}<t_{3}$ . Then we

2) ”Wellknown” without comments means ”known in Riemann spaces with a simple

proof valid under our hypothesis”.
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have points $a_{i}=z(t_{i}),$ $i=1,2,3$, such that $(a_{1}a_{2}a_{3}),$ $ f(a_{1})=f(a_{2})=\alpha$ and $f(a_{3})=$

$\beta<\alpha$ . Put $Q=[f<\alpha]^{c}$ . Then $a_{1}\in Q$ and $a_{3}\in the$ interior of $Q$ . By the result
in [13], p. 204, $a_{2}\in the$ interior of $Qi.e$ . $ f(a_{2})<\alpha$ , a contradiction. Hence $f(x)$

is peakless.

(5) If $f(x)$ is nearly peakless on $R$ then $f(x)$ is constant on each closed
geodesic $z(t)$ .

This is wellknown and an immediate consequence of the periodicity of $z(t)$ .

(6) COROLLARY. If a strictly peakless function $f$ exists on $R$ then $R$ has
no closed geodesics, hence is simply connected if compact and $f$ is not continuous.

The second part holds because in a compact space any nontrivial free homo-
topy class contains a closed geodesic, see $G(32.2)$ . It follows from (11) that $f$

cannot be continuous.
For nearly peakless functions we have

(7) If for all $p\neq q$ a nearly peakless function $f$ exists on $R$ with $f(p)>f(q)$

then all geodesics are simple and none is closed. Hence $R$ is simply connected.

For assume $z(t_{1})=z(t_{2})$ with $t_{1}<t_{2}$ and choose $t$ with $t_{1}<t<t_{2}$ and $z(t)\neq z(t_{i})$ ,
$i=1,2$ . By hypothesis there is a nearly peakless function $f$ with $foz(t)>foz(t_{i})$

which contradicts the near peaklessness of $f$.
If $R$ were not simply connected then every point would be the vertex of a

geodesic monogon (possibly a closed geodesic) not homotopic to $0$, see $G(28.2)$ .
Thus the only 2-dimensional spaces satisfying (7) topologically are the plane

and the sphere. Whether the latter actually occurs is an open question, see end
of this section.

(8) If $\dim R=2$ and $f(x)$ is weakly peakless, moreover constant on two non-
collinear segments $T_{1},$ $T_{2}$ with the same midoint $p$, then $f(x)$ is constant on a (non-

degenerate) geodesic triangle with one vertex at $p$ .

Let $T_{i}=T(q_{i}, q_{i}^{\prime})$ , where we assume $q_{i}p<\rho(p)/2$ , (for the definition of $\rho(p)$

see $G$ p. 33). Let $ f(x)=\alpha$ on $T_{1}\cup T_{2}$ . It follows from weak peaklessness that
$ f(x)\leqq\alpha$ in the triangle $pq_{1}q_{2}$ . If $ f(x)=\alpha$ in $pq_{1}q_{2}$ then there is nothing to prove.
Assume that $ f(x)<\alpha$ at some point $u$ of $pq_{1}q_{2}$ . Then $u\not\in T_{1}\cup T_{2}$ . Because
$q_{i}p<\rho(p)/2$ the segments $T(u, w);w\in T(p, q_{2}^{\prime})$ are unique and intersect $T(p, q_{1})$

for sufficiently small $sp$ and $w\in T(p, s)$ in points $v$ because $\dim R=2$ . Since
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$ f(v)=f(w)=\alpha$ and $(uvw)$ we have $ f(x)=\alpha$ on $T(v, w)$ . If $T(u, q_{1})\cap T(p, q_{1})=r$

then $ f(x)=\alpha$ in the triangle $prs$ . See Figure 1.

Figure 1

A function $f$ is called locally nonconstant if no nonempty open set exists on
which $f$ is constant. These functions play an important r\^ole in the work of
Innami discussed below. A corollary of (5) and (8) is

(9) If $\dim R=2$ and $R$ admits a locally nonconstant nearly peakless function
then no two closed geodesics intersect.

(10) A peakless function does not attain a maximum unless it is constant.
Therefore no strictly peakless function on any G-space attains a maximum.

For if $ f(q)=\alpha$ is its maximum then for $(bqc)$ with $bq,$ $qc<\rho(q)$ we have $\alpha=$

$ f(q)\leqq\max(f(b), f(c))\leqq\alpha$ so that the equalities hold, and, by hypothesis $f(q)=$

$ f(b)=f(c)=\alpha$ . This means that the nonempty set $[f=\alpha]$ contains $S(q, \rho(q))$

whenever it contains $q$ . Therefore $[f=\alpha]$ is open. If $x_{n}\rightarrow x$ , put $\rho(x)=3\epsilon>0$

and choose $n$ so large that $ x_{n}x<\epsilon$ . Then $\rho(x_{n})>2\epsilon>x_{n}x$ , see $G$ p. 33. Thus
$x\in S(x_{n}, \rho(x_{n}))$ and by the above argument, $ f(x)=\alpha$ when $ f(x_{n})=\alpha$ . Hence
$[f=\alpha]$ is also a closed set. As $R$ is connected this means that $R=[f=\alpha]i.e$ .
$f(x)$ is constant.

(11) COROLLARY. On a compact space every peakless function is constant.

The assertion is false for weakly peakless functions as the following example
shows: On the ordinary sphere $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$ in the cartesian $(x_{1}, x_{2}, x_{3})$-space
define $f(x_{1}, x_{2}, x_{3})=0$ if $x_{3}\geqq 0$ and $f(x_{1}, x_{2}, x_{3})=x_{S}$ if $x_{3}\leqq 0$ . This example also
shows explicitly, because of (5), that a weakly peakless function is, in general,
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not nearly peakless, which is implicitly contained in (1) and (2).

The following weaker form of (11) holds for weakly peakless functions:

(12) On a compact space a weakly peakless function cannot be locally non-
constant.

This is an immediate consequence of

(13) If $f(x)$ is weakly peakless and attains its maximum $\alpha$ then $[f=\alpha]$ is
the closure of its nonempty interior which is regular.

For if $ f(q)=\alpha$ and if $(bqc)$ with $b$ and $c$ as diametrically opposite points in
$S(q, \rho),$ $\rho<\rho(p)$ then either $ f(b)=\alpha$ or $ f(c)=\alpha$ as $f(x)$ is weakly peakless.
Similarly if for $x\in T(b, q),$ $ f(x)<\alpha$ then for all $y\in T(q, c),$ $ f(y)=\alpha$ . Thus in
the sphere $S(q, \rho)$ on any diameter $T(b, c)$ at least one radial segment $T(b, q)$

or $T(q, c)$ is such that $ f(x)=\alpha$ on the whole of that radial segment. Hence
$S(q, \rho)$ contains an $S(u, \sigma)\subset[f=\alpha]$ . Thus the interior points of $[f=\alpha]$ are
dense in $[f=\alpha]$ which is therefore the closure of its nonempty interior. As
$[f=\alpha]$ is closed this means that the set of interior points of $[f=\alpha]$ is a regular
open set.

For compact G-surfaces $R$ Innami proved that a locally nonconstant, not
necessarily continuous, nearly peakless function does not exist. From this and
(9) he draws (without continuity) the surprising conclusion that $R$ is homeo-
morphic to the plane, cylinder or Moebius Strip, so that this weak hypothesis

has the same topological implications as for Riemannian surfaces of curvature $0$ .
Innami shows with more complicated arguments involving peakless functions and
a condition on their growth, that the level sets of the function in question have
at most two components. We owe this information to a preprint which Innami

sent us and some correspondence arising from it. Innami’s paper entitled “A
classification of Busemann G-surfaces which possess convex functions” will appear

in Acta Math. 148 (1982).

The statement (10) is false for nearly peakless functions. Define $f(t)=0$ for
$t\leqq 0,$ $f(t)=t$ for $0\leqq t\leqq 1,$ $f(t)=1$ for $t\geqq 1$ , and in a Cartesian $x=(x_{1}, x_{2}, x_{s})$ space

consider the cylinder $C:x_{3}=f(x_{1})$ with generators parallel to the $x_{2}$-axis. $C$ is
with its intrinsic metric isometric to the euclidean plane. The function $f(x)=x_{3}$

on $C$ is nearly peakless but attains its maximum.
This example exhibits a general feature of nearly peakless functions which

attain a maximum $\alpha_{m}$ . If $z(t)^{1,2}$ is a geodesic curve with $f(z(t_{1}))<\alpha_{m}$ and $f(z(t_{2}))$

$=\alpha_{m}$ then $z(t)\in[f=\alpha_{m}]$ for $t\geqq t_{2}$ . If not then $t_{3}>t_{2}$ with $foz(t_{3})\neq\alpha_{m}$ , hence
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$<\alpha_{m}$ , would exist and $f(x)$ would not be nearly peakless.

We do not know whether (11) holds for nearly peakless functions. The
answer is probably affirmative because of the preceding remark and because it
holds in Riemann spaces by a theorem of Bangert [2], quoted as [2.7] in Walter
[14].

3. Surfaces without nonconstant nearly peakless functions.

Some very nice examples for the nonexistence of nonconstant nearly peakless

functions can be obtained for surfaces of revolution in $E^{3}$ .
But we begin with a general observation.

(14) If $f(x)$ is nearly peakless on $R$ and the geodesic $z(t)$ is dense in a set
$M$ which is the closure of a nonempty open set then $f(x)$ is constant on $M$.

If $foz(t)$ is constant on $z(t)$ then trivially $f(x)is$ constant on $M$ so we show
that for an $f$ which is not constant on $M$ no geodesic $z(t)$ can be dense in $M$.
Because $g(t)=foz(t)$ is nearly peakless the limits $\Lambda^{+}=\lim_{l\rightarrow\infty}g(t)$ and $\Lambda^{-}=\lim_{l\rightarrow-\infty}g(t)$

exist if we admit $\pm\infty$ . Since $g(t)$ is not constant in $M$ there is an interior
point $p=z(t_{0})$ of $M$ for which $f(p)\neq\Lambda^{\pm}$ and hence

$\min\{|f(p)-\Lambda^{+}|, |f(p)-\Lambda^{-}|\}\geqq 2\eta>0$ .

Therefore $t_{1}<t_{0}<t_{2}$ exist with $|g(t)-f(p)|\geqq\eta$ for $t\leqq t_{1}$ and $t\geqq t_{2}$ . Choose $\rho>0$

such that $|f(p)-f(x)|<\eta$ for $ p_{X}<\rho$ . Then $ z(t)\cap S(p, \rho)=\emptyset$ for $t\leqq t_{1}$ and $t\geqq t_{2}$

and $z(t)^{1,2}$ is not dense in $M\cap S(p, \rho)$ .
Many compact G-surfaces are known to carry dense, even transitive geodesics,

$G$ Theorem (34.14), so that any nearly peakless function is constant on them.
In view of our remark at the end of last section this is probably true for all
compact G-spaces.

However there are many noncompact surfaces with transitive geodesics.
For a particularly attractive example, because of its connection with continued
fractions, see E. Artin [1]. Here ard in other examples the curvature has a
constant sign. We prove that a nearly peakless function must be constant on
many surfaces of revolution in $E^{3}$ where the curvature does change sign. The
discussion is based on the following facts found in Darboux [9], Section 582.

Let $S$ be a surface of revolution about the $x_{3}$-axis in Cartesian $x=(x_{1}, x_{2}, x_{3})-$

space, whose meridian in the $(x_{1}, x_{3})$-plane is $x_{1}=g(x_{3})>0,$ $-\infty<x_{3}<\infty$ , where
$g(x_{3})$ is smooth (class $C^{3}$ suffices). A zone on $S$ is the closed part of $S$ bounded
by two distinct parallels $x_{3}=c_{i}$ .
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A special zone $Z,$ $x_{3}\in[\sigma_{1}, \sigma_{2}]$ is defined by the properties that a $\tau_{1}$ with
$\sigma_{1}<\tau_{1}<\sigma_{2}$ exists with $g^{\prime}(x_{3})>0$ in $[\sigma_{1}, \tau_{1}$ ), $g^{\prime}(x_{3})<0$ in $(\tau_{1}, \sigma_{2}$] and $g(\sigma_{1})=g(\sigma_{2})$ .

The parallel circle $C:x_{3}=\tau_{1}$ is a geodesic because $g^{\prime}(\tau_{1})=0$, but no other
parallel circle in $Z$ is since $g^{\prime}(x_{3})\neq 0$ .

The principal result on special zones in Darboux is that a geodesic tangent
to one $x_{3}=\sigma_{i}$ stays in $Z$ and meanders from $x_{3}=\sigma_{1}$ to $x_{3}=\sigma_{2}$ and back. Each
of these geodesics is either closed or dense in $Z$ . Because all geodesics in $Z$

are obtained from one by rotation about the $x_{3}$-axis, $C$ intersects all of them.
If the geodesics are closed then a nearly peakless function $f(x)$ defined on

$S$ is constant on each of the closed geodesics and also on $C$ by (5). Hence $f(x)$

is constant on $Z$ . In the case of a dense geodesic $f(x)$ is constant by (14). Thus

(15) A nearly peakless function $f(x)$ defined on a surface of revolution in $E^{3}$

is constant on any special zone.

Among various applications we discuss two:

(I) The case whose prototype is $g(x_{3})=\exp(-x_{3}^{2})$ .

The corresponding general case is: $g(x_{3})$ has exactly one maximum, $c$ , say
at $x_{3}=0$ and $g^{\prime}(x_{3})<0$ for $x_{3}>0,$ $g^{\prime}(x_{3})>0$ for $x_{3}<0$ and $\lim_{x_{3^{\rightarrow\infty}}}g(x_{3})=\lim_{x_{3^{\rightarrow-\infty}}}g(x_{3})$

$=b\geqq 0$ .
For any value $a$ with $b<a<c$ there is exactly one special zone $Z_{a}$ bounded

by the two parallel circles with radius $a$ , so that a nearly peakless $f(x)$ on the
surface $S$ is constant in each $Z_{a}$ and hence on $S=\bigcup_{a>b}Z_{a}$ .

(II) The case whose prototype is $g(x_{3})=\sin x_{3}+2$ .

The general case is this: $g(x_{3})$ attains its minimum $m$ at a discrete set
$x_{3}=\sigma_{\nu}$ , $\nu\in I$ with $\sigma_{\nu}<\sigma_{\nu+1},$ $\sigma_{|\nu|}\rightarrow\infty$ for $|\nu|\rightarrow\infty$ , so that $g(\sigma_{\nu})=m$ . In each
$[\sigma_{\nu}, \sigma_{\nu+1}],$ $g(x_{3})$ attains its maximum $m_{\nu}$ at exactly one $\tau_{\nu},$ $\sigma_{\nu}<\tau_{\nu}<\sigma_{\nu+1}$ (note

that the maxima are arbitrary, they need not be equal) and $g^{\prime}(x_{3})\neq 0$ if $x_{3}\neq\sigma_{\nu}$,
$\tau_{\nu}$ . Then $[\sigma_{\nu}, \sigma_{\nu+1}]$ does not define a special zone because $g^{\prime}(\sigma_{\nu})=0$ . Therefore
we choose $\xi_{\nu}^{n}$ and $\eta_{\nu}^{n}$ with $\sigma_{\nu}<\xi_{\nu}^{n}<\tau_{\nu}<\eta_{\nu}^{n}<\sigma_{\nu+1}$ such that $g(\xi_{\nu}^{n})=g(\eta_{\nu}^{n})$ and
$\xi_{\nu}^{n}-\sigma_{\nu}<n^{-1},$ $\sigma_{\nu+1}-\eta_{\nu}^{n}<n^{-1}$ .

Then $[\xi_{\nu}^{n}, \eta_{\nu}^{n}]$ defines a special zone so that $f(x)$ is constant on it and by
continuity on $[\sigma_{\nu}, \sigma_{\nu+1}]$ , hence on $S$ since $\cup[\sigma_{\nu}, \sigma_{\nu+1}]$ is the $x_{3}$-axis.

Thus

(16) A nearly peakless $f(x)$ defined on a surface in $E^{3}$ of type (I) or type
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(II) is constant.

We note also:

(17) There are surfaces of revolution in $E^{3}$ homeomorphic to $R^{2}$ on which no
peakless function exists.

For Walter [14], p. 6 constructs a rather simple surface $S$ of revolution
homeomorphic to $E^{2}$ on which there exists a maximal compact locally convex
connected proper subset $M$ of $S$ . If $f(x)$ were a peakless function on $S$ then
$S=\cup[f\leqq\alpha]$ . For $\beta=\max_{x\in M}f(x)$ we have $[f\leqq\alpha]\supset M$ when $\alpha\geqq\beta$ . Since $M$ is
maximal $[f\leqq\alpha]=M$ for $\alpha\geqq\beta$ or $\beta=\max f(x)$ . But a peakless function does not
have a maximum.

4. The Functions $px$ and $Tx$

We now consider Special functions, the simplest of which are the functions
$px$ , where $p$ is fixed for each function.

(18) THEOREM. If the functions $px$ are weakly peakless then the space has
finite dimension, is straight with strictly convex spheres, or equivalently, the $px$

are strictly peakless.

This theorem weakens materially the hypothesis of the important Theorem
(20.9) in $G$ which contains that in a straight space convexity of the spheres is
equivalent to strict peaklessness of the $px$ . The improvement was made possible
by two deeper theorems not known at the time $G$ was written.

To prove (18) we show first that segments are unique. Assume two seg-
ments $T(a, a^{\prime})$ exist. Then $\rho(a)<aa^{\prime}$ . On the two segments take the points
$b,$ $c$ with $ab=ac=\rho(a)/2$ . If $(bqc)$ then $qa<\rho(a)$ hence $p$ with $(qap)$ exists.
See Figure 2. Then

$pb<ab+ap$ , $pc<ac+ap$ , $qp=qa+ap$ .
$pq\leqq\max(pb, pc)$ , so $qa=pq-pa\leqq\max(pb-ba, pc-- ca)<ab=ac$ .

Also $qa^{\prime}\leqq\max(a^{\prime}b, a^{\prime}c)=a^{\prime}b=a^{\prime}c$ ; hence $aa^{\prime}\leqq aq+qa^{\prime}<ab+a^{\prime}b=aa^{\prime}$ ; which
is false.

The weak peaklessness of the $px$ now means that the $S(p, \rho)$ are convex.
According to Berestovskii [3] this makes the space flnite dimensional and this
together with the uniqueness of segments yields that the space is straight; see
[6], p. 19, (12.12, c).
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Figure 2

This shows that the weak peaklessness of $pz(t)$ for all points $p$ and all lines
$z(t)$ of a straight space implies their strict peaklessness.

If the line is kept fixed and $p$ varies it is shown in [8] that the convexity
of the $px(t)$ for $p\not\in L$ implies their strict convexity. This has an analogue for
peakless functions:

(19) If for a fixed line $L=z(t)$ in a straight space the functions $pz(t)$ are
peakless then they are strictly peakless.

The case $p\in L$ is no exception here because for $p=z(r_{0})$ the function $pz(t)$

$=|t-t_{0}|$ is strictly peakless (but not strictly convex).

Let $p\not\in L$ and assume that $pz(t)$ is not strictly peakless. Then $pz(t)$ is con-
stant in an interval or $t_{1}<t_{2}<t_{3}$ exist such that the $pz(t_{i})$ are equal. If $(qpz(t_{2}))$

then we find as above that $qz(t_{2})>qz(t_{1}),$ $qz(t_{2})>qz(t_{3})$ , thus $qz(t)$ is not even
nearly peakless.

The functions $pz(t)$ provide a good example where convexity in Riemann
spaces must be replaced by peaklessness in general spaces. There are Hilbert
geometries, which in the Riemannian case are hyperbolic, where the $pz(t)$ are
peakless, but not convex, in contrast to the hyperbolic case, see $G$ p. 109 and [8].

The next simplest case of distance functions are the $Tx$ , where $T$ is a
segment.

Assume that a positive continuous function $\lambda(p)$ exists on $R$ such that $Tx$

is a weakly peakless function whenever $T\subset S(p, \lambda(p))$ for suitable $p,$ $i.e$ . $ Tq\leqq$

$\max(Tb, Tc)$ when $(bqc)$ .
Let $T$ be a segment with $p$ as one end point and $u\in T$ with up $<\lambda(p)$ .

Then for $(bqc)$ ,

$T(u, p)q\leqq\max[T(u, p)b, T(u, p)c]$ .

For $u\rightarrow p$ we obtain $pq\leqq\max(pb, pc)$ so that the hypothesis of (14) is satisfied
and the space is straight with strictly convex spheres. For the following see $G$
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sections 36 and 41.
The capsule $C_{T}$ in a G-space $R$ is the set $\{x|Tx\leqq\alpha\}$ . By definition $R$ has

(strictly) convex capsules if every point has a neighborhood $U_{p}$ such that the
capsules in $U_{p}$ are (strictly) convex. The capsules are globally (strictly) convex
if every capsule is (strictly) convex. In the present context the global convexity

would have been perferable as a definition of convex capsules, but the restriction
to $U_{p}$ has an important differential geometric reason. A Riemann space has
nonpositive curvature $(K\leqq 0)$ iff the capsules are convex. $K<0$ implies their
strict convexity, but the converse need not hold everywhere.

The (strict) convexity of the capsules is equivalent to the existence of a
positive continuous function $\eta(p)$ defined on $R$ such that for any two segments
$T(a, b)$ and $T$ in $S(p, \eta(p))$ the function $Tx$ is weakly peakless for $x\in T(a, b)$ ,

(strictly peakless unless $T\cap T(a,$ $b)$ is a proper segment).

In a straight space the (strict) convexity of the capsules implies their global
(strict) convexity or, equivalently, that the functions $Tx$ are (for $Tc[\tilde{z}$ strictly)

peakless. Collecting our results we have:

(20) THEOREM. If a positive continuous function $\lambda(p)$ exists on $R$ such that
$Tx$ is weakly peakless for any $T$ contained in some $S(p, \lambda(p))$ then $\dim R<\infty$ ,

the space is straight and the capsules are globally convex. The function $Tx$ is
peakless. When $T$ and 2 have at most one point in common $Tz(t)$ is strictly peak-

less when the capsules are strictly convex.

In G-spaces there is a stronger condition than the convexity of the capsules

which is called nonpositive curvature in $G$ and also coincides in the Riemannian
case with nonpositive curvature.

The stronger condition implies that the functions $Tx$ are convex, $G$ (36.12).

In Hilbert Geometry the $Tx$ are in general only peakless, $G$ pp. 110-111 and
[8], in fact the hyperbolic geometry is the only Hilbert Geometry which has

nonpositive curvature in the stronger sense, see Kelly and Straus [11].

5. The distance loci $C^{\alpha}(Q)$ .
In this section we study the distance loci $C^{\alpha}(Q)$ which are defined for a

closed set $Q$ and $\alpha>0$ by $C^{a}(Q)=\{x|xQ\leqq\alpha\}$ .

(21) If, in a simply connected space the capsules are convex then $C^{\alpha}(Q)$ is

convex for any $\alpha>0$ and any closed convex set $Q$ ; the functions $Qx$ are peakless.

If $Q$ is strictly convex then so is $C^{\alpha}(Q)$ and $Qz(t)$ is strictly peakless when $\tilde{z}$
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intersects $Q$ in at most one point.

Clearly the relevant case to which the others can be reduced is $ T(a, b)\subset$

$C^{\alpha}(Q)$ when $a,$ $b\in C^{\alpha}(Q)/Q$ . Because the spheres are convex the feet $c,$
$d$ of

$a,$
$b$ on $Q$ are unique and $T=T(c, d)\subset Q$ . Since $ac\leqq\alpha,$ $ bd\leqq\alpha$ the segment

$T(a, b)\subset C^{\alpha}(T)\subset C^{\alpha}(Q)$ . For $(apb)$ let $q$ be the foot of $p$ on $T$ . If $Q$ is strictly
convex then $q\neq c,$ $d$ is impossible because $T(p, q)$ intersects $\dot{Q}$ in a point $r$ with
$(prq)$ and $pQ\leqq pr<pq$ so that $q$ is not a foot of $p$ on $Q$ . Thus $q=c$ or $q=d$ ,
$i.e$ . $c=d$ . But $B(c, \alpha)$ is strictly convex, hence $p\in S(c, \alpha)\subset C^{\alpha}(Q)$ . Hence $C^{\alpha}(Q)$

is strictly convex. Thus the function $Qx$ is nearly peakless for convex $Q$ , see
$G$ section 36.

Let $t_{1}<t_{2}<t_{3}$ and $\alpha=\max(Qz(t_{1}), Qz(t_{3}))=Qz(t_{1})$ . If $Qz(t_{2})=Qz(t_{1})$ then the
convexity of $C^{a}(Q)$ implies $ Qz(t)\geqq\alpha$ for $t\geqq t_{2}$ by $G(20.1)$ (applied to $z(t)$ with
$t>t_{2}$ and $z(t_{1}))$ . Therefore $ Qz(t_{3})=\alpha$ and $Qz$ is peakless.

If $Q$ and hence the $C^{\alpha}(Q)$ are strictly convex and $\tilde{z}$ intersects $Q$ in one point
then $Qz(t)$ is strictly peakless because it is peakless and attains its minimum $0$

at one point only. If $\tilde{z}\cap Q=\emptyset$, but $Qz(t)$ attains its minimum $\alpha$ at $t_{0}$ say then 2

touches $C^{\alpha}(Q)$ at $z(t_{0})$ only because $C^{\alpha}(Q)$ is strictly convex. Finally, when $Qz(t)$

does not attain a minimum then as a peakless function it is strictly peakless.
Let $R$ be straight and $M(\neq R)$ a closed subset of $R$ . A ray $\tilde{r}:r(t),$ $t\geqq 0$,

with origin $r(0)\in\dot{M}$ is called perpendicular to $\dot{M}$ at $r(O)$ if for every $t$ the point
$r(0)$ is a, and hence by $G(20.6)$ the only, foot of $r(t)$ on $\dot{M}$.

(22) THEOREM. Let $Q(\neq R)$ be a closed convex set in a straight space with
convex spheres. Then at each point $p\in\dot{Q}$ a ray perpendicular to $\dot{Q}$ exists. $R$ is
the union of $Q$ and these rays and every point not in $Q$ lies on exactly one of
these rays.

This version is one of two essential improvements by Innami mentioned in
the introduction. We had only discussed the case where $R$ has convex capsules.

PROOF. Let $y\in R-Q$ and $f$ the (by $G(24.12)$ ) unique foot of $y$ on $Q$ . For
\langle $yxf$ ) the foot of $x$ is $f$ . We must show that this also holds for $(fyx)$ . Denote
the line through $y$ and $f$ by $L$ and let $V$ be the (closed) set formed by all
transversals to $L$ at $f$ . By $G(20.11)$ the set $V$ decOmposes $R$ into two arcwise
connected sets $U$ and $W$ . Let $y\in U$ . We show that $ Q\cap U=\emptyset$ . Assume $a\in Q\cap U$

exists. Since the line through $a$ and $f$ is not a supporting line of $B(y, yf)$ the
segment $T(a, f)\subset Q$ must enter $S(y, yf)$ . Hence for some $b$ with $(abf)$ in $Q$

$yb<yf$ which is a contradiction to $f$ being the foot of $y$ on $Q$ .
Thus $Q\subset V\cup W$ . For $Q\subset L$ the assertion that $f$ is the foot of $x$ is obvious.
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When $w\in Q-L\cap Q$ , then $T(w, x)$ intersects $V$ in some point $w^{\prime}\neq f$ and $ xw\geqq$

$xw^{\prime}\geqq xf$ . Thus $f$ is the foot of $x$ and the ray $\tilde{r}$ from $f$ through $y$ is perpen-

dicular to $\dot{Q}$ at $f$ .
If $\tilde{r}_{v}$ is perpendicular to $\dot{Q}$ at $z_{v}^{\prime}$ and $z_{v}^{\prime}\rightarrow z$, then any converging subsequence

of $\{\tilde{r}_{v}\}$ tends to a ray $\tilde{r}$ perpendicular to $\dot{Q}$ at $z$ . Let $z\in\dot{Q}$ be given and $z_{v}\not\in Q$

with $z_{v}\rightarrow z$ . If $z_{v}^{\prime}$ is the foot of $z_{v}$ on $\dot{Q}$ , then $z_{v}^{\prime}z\leqq zz_{v}\rightarrow 0$ . Since rays perpen-

dicular to $\dot{Q}$ at $z_{v}^{\prime}$ exist, there is a ray perpendicular to $\dot{Q}$ at $z$ .
Finally, since every point $\chi\not\in Q$ has a foot on $\dot{Q},$ $R-Q$ is covered by rays

perpendicular to $\dot{Q}$ and every point of $R-Q$ lies on exactly one perpendicular

since it has only one foot on $Q$ . This completes the proof of (22).

In the Riemannian case this result is found in parts (1), (2) and (3) of (3.4)

in [4]. The proof in [4] which is much shorter uses a typically Riemannian
fact (in addition to nonpositive curvature which is stronger than convex capsules

in Finsler spaces) namely that perpendicularity of line elements corresponds to

their forming an angle of measure $\pi/2$ . This implies, of course, that perpen-
dicularity is symmetric which is not the case in Finsler spaces of dimension $>2$

unless they are Riemannian and only for a few very special cases when $n=2$

see $G$ pp. 84, 103, 104.

(23) THEOREM. If $M$ is a closed set, $\dot{C}^{\alpha}(M)=\{Mx=\alpha\},$ $\alpha>0$ , and $C^{\beta}(M)$ is
convex for $\beta\leqq\alpha$, moreover $z(t)$ is a geodesic with $ Mz(t_{0})=\max_{t}Mz(t)=\alpha$ then
$ Mz(t)\equiv\alpha$

First, $t_{1},$ $t_{2}$ with $t_{1}<t_{0}<t_{2},$ $|t_{i}-t_{0}|<\rho(z(t_{0}))/2=\sigma$ and $ Mz(t_{i})<\alpha$ cannot exist.
For if $\beta=Mz(t_{2})\geqq Mz(t_{1})$ then $T(z_{1}, z_{2})$ has $z_{i}\in C^{\beta}(M),$ $(z_{i}=z(t_{i}))$ but does not lie

in $C^{\beta}(M)$ .
If follows that $ Mz_{1}=\beta<\alpha$ implies $ z(t)=\alpha$ for $ t_{0}\leqq t\leqq t_{0}+\sigma$ . But $ Mz_{1}=\beta<\alpha$

for $ t_{0}-t_{1}\leqq\sigma$ is also impossible because $S(z_{1}, \alpha-\beta)\subset C^{\alpha}(M)$ implies that $z_{1}$ is an
interior point of $C^{\alpha}(M)$ . By hypothesis $z(t_{0})\in\dot{C}^{\alpha}(M)$ whereas by Soetens [13]

$z(t_{0})$ would have to be an interior point of $C^{\alpha}(M)$ . Thus $ Mz(t)=\alpha$ in $[t_{0}-\sigma, t_{0}+\sigma]$ .
We can apply the same argument to $z(t_{0}\pm\sigma)$ replacing $\sigma$ by $\sigma^{\prime}=\rho(z(t_{0}\pm\sigma))/2$ .

Repetition of this argument yields the assertion.
The following observation is simple and important and has almost certainly

been made by others for Riemann spaces but we did not see it anywhere in
print.

(24) If $\overline{R}$ is a covering space of $R$ related to $R$ by a locally isometric map
$\Omega$ of $\overline{R}$ onto $R$ and $M$ is a totally convex set in $R$, then $\Omega^{-1}M=\overline{M}$ is totally con-
vex in $\overline{R}$ .
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NOTE. The total convexity of $M$ is essential. For convex $M$ the set $\Omega^{-1}M$

will in general not be connected and Soetens [13] has pointed out various unex-
pected phenomena which can occur in $\Omega^{-1}M$.

The proof of (24) is trivial: If $\overline{z}(t)^{1.2}$ is a geodesic curve in $\overline{R}$ with $\overline{z}_{i}\in\overline{M}$,

then $z(t)=\Omega\overline{z}(t)$ is a geodesic curve in $R$ from $z_{1}=\Omega\overline{z}_{1}$ to $z_{2}=\Omega\overline{z}_{2}$ . By hypothesis
$z(t)^{1,2}\subset M$ where $\overline{z}(t)^{1.2}\subset\overline{M}$.

Whereas the previous theorems, especially (22), contain the first 3 parts of
[4], (3.2) the fourth (and last) part (as proved) depends on non-trivial analysis

and the Riemannian metric. In fact, simple (smooth) examples show that part 4
does not have a complete analogue under our weak conditions. But the most
important implication of part 4 is a simple consequence of (22) and (24).

(25) THEOREM. Let $M$ be a closed totally convex set in a space $R$ with con-
vex capsules. Let $p_{1},$ $p_{2}$ ( $p_{1}=p_{2}$ admitted) be points of $\dot{M}(M\neq R)$ and $z_{i}(t)$ dis-
tinct halfgeodesics, $i=1,2,$ $t\geqq 0,$ $z_{i}(0)=p_{i}$ such that for some $\beta>0$ the point $z_{i}(0)$

is the foot of $z_{i}(t)$ on $\dot{M}$ for $ t\leqq\beta$ . Then $z_{1}(t_{1})\neq z_{2}(t_{2})$ for any $t_{i}>0$ . $R$ is not
compact.

In particular, $M$ is a simple Tchebyshev set.

A closed set in a G-space is a Tchebyshev set when each point has a unique

foot on it and is simple when in addition the segment from a point $p\not\in M$ on $M$

is unique. It is clear that the last statement in (25) follows from the case $p_{1}=p_{2}$ .
0riginally we had proved only $z_{1}(t)\neq z_{2}(t)$ for $t>0$ . The stronger statement

is the second improvement due to Innami who bases his argument on the follow-

ing interesting

LEMMA. Let $M$ be closed set in the G-space $R$ with $\overline{R}$ as universal covering
space and $\Omega$ as locally isometric map of $\overline{R}$ on R. Define $f(x)=xM$ on $R$ and
$\overline{f}(\overline{x})=\overline{x}\overline{M}$ where $\overline{M}=\Omega^{-1}M$ on R. Then $\overline{f}=f\circ\Omega$ .

For, let $\overline{x}\in\overline{R}$ and $z\in R$ be the foot of $\Omega\overline{x}=x$ on $M$, moreover $T(\overline{x},\overline{z})$ the

segment over $T(x, z)$ . We can assume $x\not\in M$ then $\overline{x}\not\in\overline{M}$. We have $xz=xM$,
$\overline{x}\overline{z}=xz,\overline{x}\overline{M}=xM$. If the latter were false the $\overline{u}\in\overline{M}$ with $\overline{x}\overline{u}<xM=xz$ would

exist, hence $xu<xz,\overline{x}\overline{u}<xz$ and $xu\leqq\overline{x}\overline{u}<xz$ , so that $z$ would not be the foot

of $x$ . Thus $\overline{f}(\overline{x})=f\circ\Omega\overline{x}=zx=\overline{z}\overline{x}\geqq\overline{f}(\overline{x})$ , which proves the Lemma.

It has various applications. The one needed for (25) is where $M$ is a closed

totally convex set in a space $R(\neq M)$ with convex capsules. Since $xM$ is peak-

less on $R$ , the space is by (11) non-compact. Under the hypothesis of (25) it

follows from the lemma and $z(t)M=t$ for $ t\leqq\beta$ that $z(t)M=t$ for all $t$ for if $\overline{z}(t)$
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lies over $z(t)$ then (22) yields $\overline{z}(t)\overline{M}=t$ for all $t$ when $\overline{M}=\Omega^{-1}M$.
We mention that a space with convex capsules is straight when some point

$q$ exists for which $\{q\}$ is totally convex. This follows from the simple observa-
tion that any G-space in which such a $q$ exists is simply connected, because, if
not, then a non-trivial homotopy class based on $q$ contains a geodesic monogon
(which may be a closed geodesic), so that $\{q\}$ is not totally convex. Therefore
the space is straight when its universal covering space is straight.

(26) If $R$ has convex capsules and $\tilde{z}$ is a closed geodesic not contained in (and

hence disjoint from) the closed totally convex set $ M\neq\phi$ then $\tilde{z}$ lies entirely in
some $[Mx=\alpha]$ .

Moreover 2 is freely homotopic to a closed geodesic in $M$ and the homotopy

can be accomplished by gliding $\tilde{z}$ along a cylinder consisting of segments $T$ of
length $\alpha$ connecting points of $\tilde{z}$ to their feet on $M$, and for each $ 0<\beta<\alpha$ the
points on these $T$ with distance $\beta$ from $M$ form a closed geodesic.

If the capsules are strictly convex then all closed geodesics lie in $M$.

The first part follows at once from (23). The sets $[Mx\leqq\alpha]$ are totally

convex and contain a closed geodesic with one of its points. (4) yields $\dot{C}^{\alpha}(M)=$

$\{Mx=\alpha\}$ . Therefore, if $\max_{t}Mz(t)=\alpha$ then $ Mz(t)\equiv\alpha$ by (23).

To prove the assertion on homotopy we pass to the universal covering

space $\overline{R}$ of $R$ which is straight (see $G(38.2)$ ). This theorem assumes domain
invariance which holds because the space has a finite dimension by Berestovskii
[3] and hence domain invariance by [6], p. 16. The function $\overline{M}\overline{x}$ is peakless.

Let $z(t_{0})$ be a simple point of 2 (see $G(9.4)$ ) and $f_{t_{0}}$ be a foot of $z(t_{0})$ on $M$,

moveover $T$ a segment from $z(t_{0})$ to $f_{t_{0}}$ . If $\overline{f}_{t_{0}}$ lies over $f_{t_{0}}$ then a unique seg-

ment $\overline{T}$ over $T$ beginning at $\overline{f}_{t_{0}}$ and ending at a point $\overline{z}_{0}$ over $z(t_{0})$ exists and $\overline{T}$

also has length $\alpha$ . Because $z(t_{0})$ is a simple point of 2, there is exactly one
geodesic $\overline{z}(t)$ over $z(t)$ with $\overline{z}(t_{0})=\overline{z}_{0}$ , see $G$ p. 169. $\overline{z}(t)$ is a straight line, let $\overline{f}_{l}$

be the foot of $\overline{z}(t)$ on $\overline{M}$. Since $z(t)$ is periodic and $\overline{M}\overline{z}(t)$ is peakless we have
$\overline{z}(t)\overline{f}_{t}\equiv\alpha$ , which could also have been seen from the first part of the proof.

If $t_{1}<t_{2}<t_{3}$ and $\overline{z}_{i}$ has the foot $\overline{f}_{t_{i}}=f_{i}$ on $M,$ $ 0<\beta<\alpha$ and $(\overline{z}_{i}\overline{u}_{i}\overline{f}_{i})$ with uifi
$=\beta$ then we want to prove that $(\overline{u}_{1}\overline{u}_{2}\overline{u}_{3})$ . If $\overline{v}$ is the foot of $\overline{u}_{2}$ on $T(\overline{u}_{1},\overline{u}_{3})$

and the geodesic $\overline{y}(t)$ carries $T(\overline{u}_{1},\overline{u}_{3})$ then the peaklessness of $\overline{y}(t)M$ and $\overline{y}(t)\overline{v}$

yield
$\alpha=\overline{z}_{i}\overline{f}_{i},\overline{z}_{1}\overline{u}_{1}=\overline{z}_{3}\overline{u}_{3}\geqq\overline{z}_{2}\overline{v}$ , $\beta=\overline{u}_{1}\overline{f}_{1}=\overline{u}_{3}\overline{f}_{3}\geqq\overline{v}\overline{f}_{2}$ and

$\alpha=\overline{z}_{2}\overline{f}_{2}\leqq\overline{z}_{2}\overline{v}+\overline{v}\overline{f}_{2}\leqq\overline{z}_{1}\overline{u}_{1}+\overline{u}_{1}\overline{f}_{1}=\alpha$ .
This implies $ vf_{2}=\beta$ . Therefore the points $\overline{u}(t)$ with $\overline{u}(t)\overline{f}_{t}=\beta$ and $(\overline{z}(t)\overline{u}(t)\overline{f}_{l})$
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form a straight line.
Translating this back into $R$ we find the assertion on homotopy.
The constancy of $\overline{z}(t)\overline{f}_{t}$ is incompatible with strictly convex capsules which

yields the last remark in (26).

This has the following corollary noted in [4] (for convex $f$).

(27) If $R$ has strictly convex capsules and admits a peakless function $f(x)$ ,
then no closed geodesics exist when $f$ does not have a minimum. If $f$ has a mini-
mum $\beta$ then all closed geodesics lie in $[f=\beta]$ .

By the last remark in (26) each closed geodesic must be in $[f\leqq\alpha]$ . If $f$ has
no minimum then $\bigcap_{\alpha\in range}$

of
$ J[f\leqq\alpha]=\emptyset$ . If $\min f=\beta$ then $[f=\beta]=[f\leqq\beta]$ is

totally convex and contains all closed geodesics.
We stop here following [4] because the preceding results, in particular (27),

elucidate clearly our contention that convexity is often too strong a condition
and that peaklessness suffices.

Without major difficulties many more results of [4] can be established for
G-spaces with nonpositive curvature; see $G$ Section 36, but this does hot belong
here because convexity enters instead of peaklessness. Most of the results are
nontrivial and the question, whether or to which extent convex capsules would
suffice, is often difficult to decide.

But some of the results were largely known to E. Cartan, (for example [14],
(7.1) which is ascribed to [4]) and are merely disguised by recent terminology.

$f(x)$ defined on $R$ is an exhaustion function or exhaustive when all $[f\leqq\alpha]$

$\neq\emptyset$ are compact. [14], (7.1) states that on any Hadamard manifold all $px$ are
exhaustive and convex, that the $h(\tilde{r}, x)$ (see next section) are convex but neither
the $h(\tilde{r}, x)$ nor the $-h(\tilde{r}, x)$ are exhaustive.

Now the $px$ are exhaustive in any G-space (and according to Hopf-Rinow $\ln$

any complete Finsler space, see [6], Section 1). In any straight space (hence

any simply connected complete Finsler space without conjugate points) the $h(\tilde{r}, x)$

and $-h(\tilde{r}, x)$ are nonexhaustive, see $G(23.1,2)$ . That (on an Hadamard manifold)

the $px$ are convex was proved by Cartan and without smoothness in $G(36.7)$ .
This leads readily to the convexity of the $h(\tilde{r}, x)$ , see (29) below.

6. The Functions $h(\tilde{r}, x)$ .
The function $h(\tilde{r}, x)$ where $\tilde{r}$ is a ray ($i.e$ . $r(t)$ is defined for $t\geqq k$ and

$r(k)r(t)=t-k)$ by the always existing (see $G$ p. 131)
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$h(\tilde{r}, x)=\lim_{t\rightarrow\infty}(xr(t)-t)$

$|h(\tilde{r}, x)-h(\tilde{r}, y)|\leqq xy$ so that $h(\tilde{r}, x)$ is continuous in $x$ .
If $\tilde{r}^{\prime}$ is a subray, $t\geqq t_{0}$ , of $\tilde{r}$ then

$h(\tilde{r}^{\prime}, x)=\lim(xr(t_{0})-t)=\lim(xr(t)-t-t_{0})=h(\tilde{r}, x)+t_{0}$ .
These functions play a considerable r\^ole in G-spaces and lately also in Rie-

mann spaces, where they are known as Busemann functions. The definition of
$h(\tilde{r}, x)$ presupposes that a ray exists, which is the case whenever the space is
not bounded. In general there are few essentially different functions $h$ . Taking
the ordinary cylinder as an example the rays are parallel to one of the orienta-
tions of the axis (or a generator) and for parallel rays the functions differ only
by a constant, so that there are, up to constants, only two distinct functions $h$ .
There is only one if we take a semicylinder and cap it by a hemisphere.

To assure the existence of sufficiently many $h(\tilde{r}, x)$ we assume that the
space is straight. In comparison to monotone $h(\tilde{r}, x)$ , see Part II 4, the require-
ment that the $h(\tilde{r}, x)$ are weakly peakless is relatively weak.

(28) In a straight space the $h(\tilde{r}, x)$ are weakly peakless iff the spheres are
convex or the $px$ are strictly peakless. Also $h(\tilde{r}, x)$ are peakless if $the)^{t}$ are
weakly peakless.

For a proof denote the balls $S(p, \rho)\cup K(p, \rho)$ by $B(p, \rho)$ . Similarly the limit
sphere $K_{\infty}(\tilde{r}, p)$ with central ray $\tilde{r}$ through $p$ is given by $h(\tilde{r}, x)=\alpha=h(\tilde{r}, p)$ .
Its interior is by definition $ h(\tilde{r}, x)<\alpha$ (See $G$ Section 22). The limit sphere and
its interior form the limit ball $B_{\infty}(\tilde{r}, p),$ $i.e$ . the set $[h(\tilde{r})\leqq\alpha]$ in our previous
notation.

If the $S(p, \rho)$ , hence the $K(p, \rho)$ and $B(p, \rho)$ are convex then the $K_{\infty}(p, x)$

or $ h(\tilde{r}, x)=\alpha$ are convex as limits of spheres and so are the limit balls $[h(\tilde{r})\leqq\alpha]$ ;
hence $h(\tilde{r}, x)$ is a weakly peakless function by (1).

Conversely let $h(\tilde{r}, x)$ be a weakly peakless function, then the $B_{\infty}(\tilde{r}, p)$ are
convex. Consider $K(p, \rho)$ and denote by $\tilde{r}_{x}$ the ray from $x\in K(p, \rho)$ through $p$ .
From $G$ pp. 132, 133 we know that $B_{\infty}(\tilde{r}, x)$ contains $B(p, \rho)$ in its interior
except for $x$ . Therefore

$B(p, \rho)=\bigcap_{x\in K(p.\rho)}B_{\infty}(\tilde{r}_{x}, x)$
,

and $B(p, \rho)$ is convex as intersection of convex sets.
We note that the interior of $B_{\infty}(\tilde{r}, p)$ is $[h(\tilde{r})<h(\tilde{r}, p)]$ . Hence from (4)

we see that $h(\tilde{r}, x)$ are peakless if they are weakly peakless. This completes
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the proof of (28).

If $px$ is convex then

$2(r(t)b-t)\leqq r(t)a-t+r(t)c-t$ hence

$2h(\tilde{r}, b)\leqq h(\tilde{r}, a)+h(\overline{r}, c)$ where $ab=bc=ac/2$ .
Because $h(\tilde{r}, z(t))$ is continuous this implies that it is convex. Thus:

(29) If $px$ are convex then $h(\tilde{r}, x)$ are convex.

As an application (well known in Riemann spaces) we have:

(30) If $R$ is simply connected and has nonpositive curvature in the sense of
G Section 36 then the functions $h(\tilde{r}, x)$ are convex.

We also have:

(31) If in a straight space $R$ the $h(\overline{r}, x)$ are convex then the $px$ are convex.

For given $(bqc)$ with $q$ as midpoint of $b$ and $c$ and given $p$ let $r(t)$ be the
ray emanating from $q$ and containing $p$ . We note, see [8, p. 26], that

$[2r(t)q-r(t)b-r(t)c]=[2(r(t)q-t)-(r(t)b-t)-(r(t)c-t)]$

increases with $t$ . Hence $2pq-pb-pc\leqq 2h(\tilde{r}, q)-h(\tilde{r}, b)-h(\tilde{r}, c)\leqq 0$ . Therefore
$px$ is convex.

In [8] we proved that $px$ is convex if $px^{a}$ is convex for some $\alpha>1$ .

7. A special peakless function.

The principal result of this section rests on two lemmas which we discuss
first.

(32) If in a straight space for a fixed line $L$ the function $xL$ is weakly
peakless, then a line parallel to $L$ is equidistant from $L$ .

We remind the reader of the concept “parallel”. If $z(t)$ represents $L$ and
$q\not\in L$ denote by $A_{l}$ the line through $q$ and $z(t)$ . For $t\rightarrow\infty A_{l}$ tends to a line $A^{+}$

and for $ t\rightarrow-\infty$ to a line $A^{-}$ , the asymptotes to $L$ through $q,$ $G$ p. 138. If $A^{+}$

and $A^{-}$ fall on the same line $P$, then $P$ is the parallel to $L$ through $q$ (and any
other point of $P,$ $1.c.$ ).

Let $a_{t}(\tau)$ represent $A_{l}$ such that $a_{t}(0)=q$ . Since $xL$ is weakly, hence nearly
peakless $a_{t}(\tau)L$ is nonincreasing for $\tau\geqq 0$ . When $ t\rightarrow\pm\infty$ then $a_{t}(\tau)$ tends for
$ t\rightarrow\pm\infty$ to the two opposite orientations of $P$. Therefore, if $u(t)$ represents $P$,
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then $u(t)L$ is both nondecreasing and nonincreasing, hence constant.
The Parallel Axiom ( $G$ p. 141) requires that $A^{+}=A^{-}$ for any $q$ and $L$ and

in addition that $L$ be parallel to $P$ (which is not always the case, 1. $c.$ ). The
above arguments then yield readily:

(33) If $xL$ is weakly peakless for all lines $L$ in a straight space and the
Parallel Axiom holds, then parallels $P_{1},$ $P_{2}$ are equidistant from each other. If
$v_{i}\in P_{i}$ is a foot of $v_{j}\in P_{j}$ on $P_{i}$ then $v_{j}$ is a foot of $v_{i}$ on $P_{J}$ .

We note that since $h(\tilde{r}, r(t))=-t$ no $h(\tilde{r}, x)$ is constant and that we observed
before that the conditions $(C)$ and $(B)$ of our previous paper [8] are satisfied if
the functions $h(\tilde{r}, x)$ are respectively peakless and convex. We call a function
$f(x)$ defined on $R$ linear if $f(x)$ is not constant on $R$ and $f\circ z(t)$ is linear for
each geodesic $z(t)$ . The condition $(D)$ of [8] is equivalent to the linearity of
$h(\tilde{r}, x)$ . In [8] we have (for straight spaces) a further condition $(A)$ related to

peaklessness which lies between $(D)$ and $(B)i.e$ . $D\rightarrow A\rightarrow B\rightarrow C$.
This condition $(A)$ requires that the functions $xL$ have a very special form:

If $L$ is a line and if $z(t)$ is a representation of another line such that $z(0)\in L$

then $z(t)L=\lambda_{1}(\tilde{z})t$ for $t\geqq 0$ and $z(t)L=\lambda_{2}(\tilde{z})|t|$ for $t\leqq 0$ .
$z(t)L$ is then a very special strictly peakless (and also convex) function for

$\tilde{z}\neq L$ . We proved in [8] that this condition characterizes the Minkowskian
geometries.

We want to show here that the special form can be replaced by the condi-
tion that $R$ satisfies the parallel axiom and that $z(t)L$ is convex.

(34) THEOREM. If in a straight space satisfying the parallel axiom, the

functions $xL$ are convex for any line $L$ then the space is Minkowskian. The

converse is also true.

In a Minkowskian space parallel lines make equal intercepts on a pair of
parallel lines so that the converse is easy. To prove the main statement let the

parallel axiom hold and assume that the functions $xL$ are convex in a straight

space $R$ .
Let $L$ and $M$ be lines meeting at $z$ . Then by convexity of $xL$ , the func-

tions $xL$ are increasing on each ray of $M$ starting at $z$ . This implies, since the

parallel axiom holds, that parallel lines are equidistant from each other, see (33).

Now consider points $a^{\prime},$ $a$ on $M$ with $(a^{\prime}za)$ and $a^{\prime}z=za$ . Let $L^{\prime}$ be the

parallel to $L$ through $a^{\prime}$ . Let $f$ be a foot of $a$ on $L$ and $h$ be a foot of $f$ on
$L^{\prime}$ . Let $m$ be a foot of $z$ on $L^{\prime}$ and $f^{\prime}$ be a foot of $a^{\prime}$ on $L$ . See figure 3.
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By convexity of $xL^{\prime},$ $2zm\leqq aL^{\prime}\leqq af+fh$ . Since $L$ and $L^{\prime}$ are equidistant,
$zm=fh$ . Thus $zm\leqq af$ . Also $a^{\prime}f^{\prime}=zm$ . Hence $a^{\prime}f^{\prime}\leqq af$ . Similarly we can
show that a $f\leqq a^{\prime}f^{\prime}$ . Therefore $a^{\prime}f^{\prime}=af$ .

Now $ah\geqq aL^{\prime}\geqq 2zm=zm+zm=af+fh\geqq ah$ , thus $(afh)$ .
Similarly if we draw the parallel $L^{\prime\prime}$ to $L$ through $a$ and $u$ is a foot of $b$

on $L^{\prime\prime}$ ( $b$ is a point on $M$ such that $az=ab$), $g$ is a foot of $u$ on $L$ and $k$ is a
foot of $g$ on $L^{\prime}$ then we have (bug) and $(ugk)$ and $bu=ug=gk$ .

It follows, in particular therefore, that a$f=ug=1/2.bg$ ; so the condition $(A)$

is satisfied. From [8], Theorem 2 the space $R$ is now Minkowskian. This com-
pletes the proof of (34).

Figure 3

Part II. Monotone functions

1. Basic properties

The continuous function $f(x)$ defined on $R$ is weakly (strictly) monotone if
$foz(t)$ is (strictly) monotone on each geodesic $z(t)$ . We will see presently that
the strictly monotone functions are uninteresting.

A weakly monotone function is nearly peakless. From our previous results
(4) and (2) we conclude that such a function is constant on each closed geodesic
and that the sets $[f\leqq\alpha]$ are totally convex. But we can say more:

(35) $f(x)$ is weakly monotone iff the $[f\leqq\alpha]$ and $[f=\alpha]$ or the $[f\geqq\alpha]$ and
the $[f=\alpha]$ are totally convex.

For if $f$ is weakly monotone, then $t_{1}<t_{2}$ and $f(z(t_{i}))=\alpha;i=1,2$ ; implies
$ foz(t)=\alpha$ in $[t_{1}, t_{2}]$ . The other parts of (35) follow from the observation that
$-f$ is monotone with $f$ .
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Conversely assume $[f=\alpha]$ and $[f\leqq\alpha]$ to be totally convex. Then $f(x)$ is
nearly peakless by (2). If $f$ were not weakly monotone then a geodesic $z(t)$

would exist on which $foz(t)$ is not monotone. Since it is nearly peakless this

means that it must attain its minimum at some $t_{1}$ or in a finite interval $[t_{1}, t_{2}]$ .
Then $t^{\prime}<t_{1}<t^{\prime\prime}$ resp. $t^{\prime}<t_{1}<t_{2}<t^{\prime\prime}$ exist with $foz(t^{\prime})>f(t_{1}),$ $foz(t^{\prime\prime})>f(t_{1})$ and
$ foz(t^{\prime})=foz(t^{\prime\prime})=\alpha$ . But then $[f=\alpha]$ would not be totally convex.

The function constructed to show that (11) is false for nearly peakless func-
tions (where several steps could have been constructed instead of one) illustrates
(35) well.

For a strictly monotone function no $[f=\alpha]$ can contain a proper segment,

so that each $[f=\alpha]$ consists of a point. Since a strictly monotone function is
strictly peakless it does not attain a maximum by (10) and hecause $-f$ is also
strictly monotone it does not attain a minimum. Therefore each $[f=\alpha]$ separates

the space, hence $\dim R=1$ . $R$ is a straight line or a great circle, but the latter
is impossible, so that a strictly monotone function is nothing but an ordinary
strictly monotone function on the t-axis.

The most interesting class of monotone functions with which we will deal
exclusively and for which we reserve the term monotone is this:

$f(x)$ is monotone on $R$ if on each geodesic $z(t)$ either $foz(t)=constant$ or
$foz(t)$ is strictly monotone.

To avoid trivialities we also require that $f(x)$ is not constant on all of $R$ .
Because a monotone function is peakless we conclude from (10):

(36) On a compact space no monotone function exists.

A flat subset of a G-space $R$ is a set which with the metric of $R$ is a G-
space. Here we encounter flats satisfying a much stronger condition.

A flat subset $S$ of $R$ is totally flat or a total flat if any geodesic curve
$z(t)|[t_{1}, t_{2}],$ $t_{1}\neq t_{2}$ , for which $z(t_{1})$ and $z(t_{2})$ lie in $S$ lies entirely in $S$ .

This implies among other properties that $S$ contains a closed geodesic with
one of its points and a geodesic with one of its multiple points. But notice that
in straight spaces flats are always total.

The ordinary cylinder $\xi_{1}^{2}+\xi_{2}^{2}=r^{2}$ in a Cartesian $(\xi_{1}, \xi_{2}, \xi_{3})$ -space provides a
good example. Its flat subspaces are the generators and circles but the generators

are not totally flat, whereas the circles are. They are the level sets $ f(\xi)=\alpha$ of
the linear function $f(\xi)=\xi_{3}$ . (A linear function is monotone.)

(37) A continuous function on a G-space is monotone iff the sets $[f=\alpha]\neq\emptyset$

are totally flat.
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For if $f$ is monotone and $ foz(t_{1})=foz(t_{2})=\alpha$ with $t_{1}\neq t_{2}$ , then $foz(t)$ is not
strictly monotone, hence constant so that $\tilde{z}\subset[f=\alpha]$ .

Assume the $[f=\alpha]$ are totally flat. Any geodesic $z(t)$ for which $foz(t)$ is
not constant intersects an $[f=\alpha]$ at most once and $foz(t)$ is therefore strictly

monotone.
G-spaces and hence flats in G-spaces have the same dimension at all points.

We notice next

(38) If $f(x)$ is a monotone function on $R$ and $\dim R=n$ then each $[f=\alpha]\neq\emptyset$

has dimension $n-1$ .

Put $m=\dim[f=\alpha]$ . Because $f$ is not constant there is a point $r\not\in[f=\alpha]$ .
For any point $p\in[f=\alpha]$ the segment $T(r, p)$ and the geodesic containing it
intersect $[f=\alpha]$ only in $p$ . Choose $q$ with $(qup)$ and $qp\leqq\rho(p)/4$ . Then $M=$

$[f=\alpha]\cap\overline{S}(p, \rho(p)/4)$ is compact and so is $N=\bigcup_{x\in M}T(q, x)$ . Moreover the $T(q, x)$

have only $q$ in common. A theorem of Hurewicz [10] yields $\dim N=m+1$ , so
that $\dim[f=\alpha]\leqq n-1$ .

Because $qp\leqq\rho(p)/4$ we have $qx\leqq\rho(p)/2$ for $x\in M$ and $\rho(q)\geqq\rho(p)-pq\geqq$

$3\rho(p)/4$ . Therefore if $u$ is the midpoint of $q$ and $p$ and $U$ is a sufficienty small
neighborhood of $u$ , every segment of length $\rho(q)$ from $q$ meeting $\overline{U}$ intersects $M$

in some point $y$ . The union $N^{\prime}$ of these $T(q, y)$ has dimension $n$ since $N^{\prime}\supset U$ .
On the other hand $N\supset N^{\prime}$ so $\dim[f=\alpha]=n-1$ .

The method of this proof gives more generally

(39) If the total flat $S_{1}$ is a proper subset of the flat $S_{2}$ wish $\dim S_{2}<\infty$

then $\dim S_{1}<\dim S_{2}$ .

We give some examples. An n-dimensional Desarguesian space is a G-space

defined on a nonempty open set of the real projective space $P^{n}$ whose geodesics

fall on projective lines. The space is either all of $P^{n}$ or a convex subset of the

affine space $A^{n}$ , see [6], p. 37. Since $P^{n}$ is compact, it does not carry a mono-

tone function, but every $R\subset A^{n}$ does. In fact if $f(x)=\sum_{i=1}^{n}k_{i}x_{i}+\lambda_{i}$ is any affine

function in $A^{n}$ (the $x_{i}$ are affine c\"oordinates) which is not constant, then the
restriction of $f(x)$ to $R$ is monotone, but in general not linear. If $n$ points

$a_{1},$ $a_{2},$ $\cdots,$ $a_{n}$ are given then an $f$ and an $\alpha$ exist such that $a_{i}\in[f=\alpha],$ $i=$

$1,2,$ $\cdots,$ $n$ .
For any strictly monotone function $h(u),$ $u\in(-\infty, \infty)$ , of one variable $h\circ L(x)$

will be monotone when $L(x)$ is linear, so that the range of a monotone function

can be any open interval.



Peakless and Monotone Functions on G-spaces 129

Individual linear functions for which an arbitrary G-space $R^{\prime}$ appears as a
$[f=\alpha]$ are easily constructed. As $R$ we take the product of $R^{\prime}$ with the real
t-axis so that the points of $R$ have the form $(p, t),$ $p\in R^{\prime}$ . The distance is
defined by

$(p_{1}, t_{1})(p_{2}, t_{2})=[p_{1}p_{2}^{\alpha}+|t_{1}-t_{2}|^{\alpha}]^{1/\alpha}$ , $\alpha>1$ .
The discussion in $G$ , pp. 42, 43 shows that $f(p, t)=t$ is linear and each $[f=\alpha]$

is congruent to $R^{\prime}$ .

2. Desarguesian spaces.

Assume that $f$ is monotone on $R,$ $\alpha<\beta$ and $[f=\alpha]\neq\emptyset,$ $[f=\beta]\neq\emptyset,$ $\alpha<\gamma<\beta$ .
Let $z(t)|[t_{1}, t_{2}]$ be a geodesic curve connecting a point of $[f=\alpha]$ to a point of
$[f=\beta]$ . It intersects $[f=\gamma]$ in exactly one point $z(\overline{t})$ with $t_{1}<\overline{t}<t_{2}$ and

$\frac{foz(t_{2})-foz(\overline{t})}{foz(t_{2})-foz(t_{1})}=\frac{\beta-\gamma}{\beta-\alpha}$ .

If $f$ is linear and $foz(t)$ is not constant, say $ foz(t)=kt+\lambda$ , $k\neq 0$, then no
$[f=\alpha]=\emptyset$, Moreover if $t_{2}>t_{1}$ , then

$foz(t_{2})-foz(t_{1})=k(t_{2}-t_{1})=k\lambda_{t_{1}}^{t_{2}}z(t)$

where $\lambda_{t_{1}^{2}}^{t}$ is the length of $z(t)^{1.2}$ . If $z(t)$ represents a segment in $[t_{1}, t_{2}]$ then
$\lambda_{t_{1}^{2}}^{l}z(t)=t_{2}-t_{1}$ and we obtain with the above notation

$\frac{t_{2}-\overline{t}}{t_{2}-t_{1}}=\frac{\beta-\gamma}{\beta-\alpha}$ .

In particular

(40) If $f$ is linear on $R,$ $\alpha\neq\beta$ , then the points which divide geodesic arcs
$z(t),$ $(0\leqq t\leqq l),$ $z(O)=x\in[f=\alpha],$ $z(l)=y\in[f=\beta]$ in the ratio $\rho:1(i.e. xw;xy=\rho)$

all lie on $[f=\gamma]$ with $\gamma=(1-\rho)\alpha+\rho\beta$ .
We observe next:

(41) If $\dim R=2$ and for any $p\neq q$ a monotone $f$ with $f(p)=f(q)$ exists then
$R$ is straight.

By (38) an $[f=\alpha]$ has dimension 1 and is therefore a straight line or a
great circle. There are no other geodesics since each $T(p, q)$ lies on some $[f=\alpha]$

by hypothesis. We conclude from $G(31.3)$ that $R$ is straight or compact. The
latter is excluded by (36).

(42) If $\dim R=2$ and for any $p\neq q$ a linear $f$ with $f(p)=f(q)$ exists then $R$
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is Minkowskian.

It follows from (41) and its proof that $R$ is straight and any line is an $[f=\alpha]$

and from (40) applied to a fixed $p\in[f=\alpha]$ and $[f=\beta]=\tilde{z}$ that $[f=(\alpha+\beta)/2]$

bisects every segment $T(p, z(t))$ . It now follows from the two papers [7] and
[12] that $R$ is Minkowskian.

We now prove a strengthened analogue of (41) for $n>2$ .

(43) THEOREM. If $\dim R=n>2$ and for any $n$ points $a_{1},$ $a_{2},$ $\cdots$ , $a_{n}$ a mono-
tone $f$ and $\alpha$ exist with $a_{i}\in[f=\alpha],$ $i=1,2,$ $\cdots,$ $n$ then $R$ is straight and Desar-
guesian.

Moreover for any plane $(=2- flat)P$ in $R$ and given $p\neq q$ in $P$ there is a
monotone function $\overline{f}$ on $P$ with $\overline{f}(p)=\overline{f}(q)$ .

NOTE. We saw earlier that Desarguesian spaces satisfy the hypothesis of
(43).

PROOF. Let points $a_{1},$ $a_{2},$ $\cdots,$ $a_{n}$ be given. Let $f_{1}$ be a monotone function
and $\alpha_{1}$ a number such that $a_{i}\in[f_{1}=\alpha_{1}]=F_{1},$ $i=1,2,$ $\cdots,$ $n$ . Then as $f_{1}$ is not
constant on $R,$ $F_{1}\neq R$ . Hence there exists $b_{1}\not\in F_{1}$ . Let $f_{1}^{1}$ be a monotone func-
tion and $\alpha_{1}^{1}$ a number such that $[f_{1}^{1}=\alpha_{1}^{1}]=F_{1}^{1}$ contains $a_{1},$ $a_{2},$

$\cdots$ $a_{n-1},$ $b_{1}$ . Since
$b_{1}\not\in F_{1}$ and $f_{1}^{1}$ is not constant on $R$ the restriction of $f_{1}^{1}$ to $F_{1}$ is not constant on
$F_{1}$ also. That $b_{1}\not\in F_{1}$ further implies that $F_{1}^{1}\supset F_{1}\cap F_{1}^{1}$ so that by (39) $\dim F_{1}\cap F_{1}^{1}$

$<\dim F_{1}^{1}=n-1$ and $a_{1},$ $a_{2},$ $\cdots,$ $a_{n-1}$ lie in the total flat $H_{1}=F_{1}\cap F_{1}^{1}$ .
Let $h_{1}$ denote the restriction of $f_{1}^{1}$ to $F_{1}$ and put $\beta_{1}=\alpha_{1}^{1}$ . We have thus

shown that for any $a_{1},$ $a_{2},$ $\cdots,$ $a_{n-1}$ on the total flat $F_{1}$ there exists a (noncon-

stant) monotone function $h_{1}$ on $F_{1}$ such that $a_{1},$ $a_{2},$
$\cdots$ $a_{n-1}$ lie in the total fiat

$H_{1}=[h_{1}=\beta_{1}]$ . In other words, the hypothesis of (43) is satisfied if we replace
$R$ by $F_{1}i.e$ . this hypothesis is hereditary on any total flat of co-dimension 1.

Applying the above argument therefore to $F_{1}$ and $H_{1}$ (instead of $R$ and $F_{1}$ )

we see that the points $a_{1},$ $a_{2},$ $\cdots,$ $a_{n-2}$ lie in a total flat $G_{1}$ of $H_{1}$ with $\dim G_{1}$

$\leqq n-3$ .
Clearly this procedure continues. For two distinct points it yields a total

l-flat $L$ (since $<1$ is impossible), hence a great circle or a straight line. Any

geodesic which has two common points with $L$ coincides with $L$ since $L$ is total.
Thus the geodesic through two points is unique and $R$ is straight or of the
elliptic type, see $G$ section 31. The latter is excluded by (36).

Next consider three noncollinear points $a_{1},$ $a_{2},$ $a_{3}$ . They lie in a 2-flat $P$,

therefore the space is Desarguesian, see $G(14.1)$ .
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Our procedure above of constructing monotone functions on flats of succes-
sively lower dimensions shows that for $p\neq q$ in the 2-flat $P$ there is a monotone
function $\overline{f}$ defined on $P$ with $\overline{f}(p)=\overline{f}(q)$ .

A corollary of Beltrami’s Theorem and (43) is

(44) A Riemann space of dimension $n>2$ in which for $n$ given points a
monotone function $f$ and an $\alpha$ exists such that $[f=\alpha]$ contains these points is
euclidean or hyperbolic.

Another consequence of (42) and (43) is

(45) If $\dim R=n>1$ and for any $n$ points a linear function $f$ and an $\alpha$

exists such that $[f=\alpha]$ contains these points, then $R$ is Minkowskian.
For, the assertion is (42) for $n=2$ . If $n>2$ then $R$ is Desarguesian by (43)

and any three noncollinear points lie in a Minkowski plane. This makes the
metric of $R$ Minkowskian. For the parallel axiom holds, hence $R$ is all of $A^{n}$

and the affine midpoint of two points is also the metric midpoint. This charac-
terizes Minkowskian geometry, see $G$ p. 94.

However (45) can be considerably improved, see (49).

3. A dual approach.

We now discuss a method which may be considered as the dual to that of
Section 2.

Instead of requiring that $n$ given points lie in an $[f=\alpha]$ , we postulate that
a point is the intersection of $[f_{i}=\beta_{i}]$ . We prove that $n$ of these suffice if
$\dim R=n$ . It turns out that under certain conditions on the ranges of $f$ and
$foz(t)$ , parts of (45) hold when a single point is the intersection of $[f_{i}=\alpha_{i}]$ and
that the space is Minkowskian when linear $f_{i}$ exist such that one point
$q=\bigcap_{i}[f_{i}=\alpha_{i}]$ .

We say that a set $M$ of monotone functions $f$ isolates the point $q$ if

$(^{*_{*}*})$

$\bigcap_{f\in M}[f=f(q)]=q$ .

(46) If $\dim R=n>1$ and $(^{*_{*}*})$ holds then a minimal set of monotone functions
isolating $q$ consists of exactly $n$ functions.

The considerations of the preceding section imply that any level sets $F_{1},$ $F_{2},$ $\cdots$

through $q$ satisfy

$\dim\bigcap_{i=1}^{j}F_{i}\geqq n-j$ , $j\leqq n$ ,



132 H. BUSEMANN and B.B. PHADKE

hence a minimal set isolating $q$ consists of at least $n$ functions. We will con-
struct one with exactly $n$ functions.

Take any $f_{1}$ and put $F_{1}=[f_{1}=f_{1}(q)]$ . Then $\dim F_{1}=n-1$ . Because $q$ can
be isolated there is an $f_{2}$ such that $F_{2}=[f_{2}=f_{2}(q)]\mathfrak{D}F_{1}$ and $\dim F_{1}\cap F_{2}=n-2$

because the restriction of $f_{2}$ to $F_{1}$ is monotone on $F_{1}$ . For $n=2$ we are finished.
If $n>2$ we proceed in the same way: Because of $(^{*_{*}*})$ there is an $f_{3}$ such that
$F_{3}=[f_{3}=f_{3}(q)]$ does not contain $F_{1}\cap F_{2}$ , then $\dim(F_{1}\cap F_{2}\cap F_{3})=n-3$, etc.

The next statement although simple is the clue to our present method.

(47) LEMMA. If $f_{1}$ and $f_{2}$ are monotone and the range of every nonconstant
$f_{1}\circ z(t)$ contains the range of $f_{1}$ , the level sets $[f_{1}=\alpha_{1}]$ and $[f_{2}=\alpha_{2}]$ intersect but
are distinct, then for any point $q$, putting $f_{i}(q)=\beta_{i}$ the sets $[f_{i}=\beta_{i}]$ are distinct.

Since $[f_{1}=\alpha_{1}]\neq[f_{2}=\alpha_{2}]$ there is a segment $T$ in $[f_{2}=\alpha_{2}]$ which intersects
$[f_{1}=\alpha_{1}]$ in a point. If $z(t)$ is the geodesic containing $T$ , then $z(t)$ lies in $[f_{2}=\alpha_{2}]$

and $f_{1}\circ z(t)$ is not constant and range $f_{1}\circ z(t)\supset rangef_{1}$ implies that $f_{1}\circ z(t)$ takes
the value $\beta_{1}$ , so that $[f_{1}=\beta_{1}]=[f_{2}=\beta_{2}]$ would imply $[f_{2}=\alpha_{2}]\cap[f_{2}=\beta_{2}]\neq\emptyset$

which is impossible.
The general form of (47) is

(48) THEOREM. If $\dim R=n$ , the monotone functions $f_{1},$ $f_{2},$
$\cdots,$

$f_{n}$ isolate a
point $q$, moreover range $f_{i}\circ z(t)\supset rangef_{i}$ for each nonconstant $f_{i}\circ z(t),$ $i=1,2,$ $\cdots$ ,
$n-1$ then $f_{1},$

$\cdots,$
$f_{n}$ isolate any point $y$ . The space is homeomorphic to $R^{n}$ .

For $n=2$ this follows from (47). Let $n\geqq 3,$ $f_{i}(q)=\alpha_{i},$ $f_{i}(y)=\beta_{i}$ . Put $[f_{i}=\alpha_{i}]$

$=F_{i},$ $[f_{i}=\beta_{i}]=F_{i}^{\prime}$ . By (47) $\dim F_{1}\cap F_{2}=\dim F_{I}^{\prime}\cap F_{2}^{\prime}=n-2$ and the hypothesis
guarantees $\dim F_{1}\cap F_{2}\cap F_{3}=n-3$ . The general theory gives $\dim F_{1}^{\prime}\cap F_{2}^{\prime}\cap F_{3}^{\prime}\geqq$

$n-3$ . We want to prove equality. Without restriction we assume $F_{3}^{\prime}\neq F_{3}$ and
work in $F_{3}^{\prime}$ as space; denoting the restriction to $F_{3}^{\prime}$ of a function $f$ in $R$ by $\overline{f}$.
Then $F_{3}^{\prime}\cap F_{1}=[\overline{f}_{1}=\alpha_{1}]\neq F_{3}^{\prime}\cap F_{2}=[\overline{f}_{2}=\alpha_{2}]$ , by (47) and $ F_{3}^{\prime}\cap F_{3}=\emptyset$ as $\beta_{s}\neq\alpha_{3}$ since
$F_{3}^{\prime}\neq F_{3}$ .

Now $\dim F_{1}^{\prime}\cap F_{2}^{\prime}\cap F_{3}^{\prime}=n-2$ would imply $F_{3}^{\prime}\cap F_{1}^{\prime}=F_{3}^{\prime}\cap F_{2}^{\prime}$ , hence $[\overline{f}_{1}=\beta_{1}]=$

$[\overline{f}_{2}=\beta_{2}]$ contradicting (47).

This settles the case $n=3$ and shows at the same time that a repeated
application of (48) yields the theorem, except for the last statement. Putting
$f_{i}(y)=y^{i}$ we see that $(y^{1}, \cdots, y^{n})$ and $y$ determine each other uniquely (so that
the $y^{i}$ may be considered as coordinates of y) and proves that $R$ is homeomor-
phic to $R^{n}$ .

We notice that if under hypothesis of (48) the space is Desarguesian, then
with suitable affine coordinates $x$ ‘, $x^{2},$ $\cdots$ , $x^{n}$ the space has the form $ R=I_{1}\times I_{2}\times$
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... $\times I_{n}$ where the $I_{i}$ are the ranges of $f_{i}$ . This shows that very few Desar-

guesian spaces possess monotone functions isolating a point.

A good example is the strip $-\pi/2<x_{1}<\pi/2$ of an $(x_{1}, x_{2})$-plane metrized as a
Desarguesian space by $xy=[(x_{1}-y_{1})^{2}+(x_{2}-y_{2})^{2}]^{1/2}+|\tan x_{1}-\tan y_{1}|$ . The natural

functions are here $f_{1}(x)=x_{1},$ $f_{2}(x)=x_{2}$ . For a geodesic $z(t)=(z_{1}(t), z_{2}(t))(t$ is
arclength) we have $f_{i}\circ z(t)=z_{i}(t)$ . For all geodesics other than $(a, t)$ on which $f_{1}$

is constant, we have range $f_{1}\circ z(t)=(-\pi/2, \pi/2)$ . Thus the conditions for the
ranges in (48) are satisfied.

If $f(x)$ is linear then for any $z(t)$ either $f\circ z(t)$ is constant or range $f\circ z(t)=$

$(-\infty, \infty)$ . This and (48) enable us to prove the promised improvement of (45).

(49) THEOREM. Let $\dim R=n\geqq 2$ and let linear functions $f_{1},$ $f_{2},$ $\cdots$ $f_{n}$ exist

which isolate a point $q$ . Then $R$ is Minkowskian.

The condition on the ranges in (48) holds because the $f_{i}$ are linear. Indro-

duce coordinates $x^{1},$ $x^{2},$ $\cdots$ , $x^{n}$ as above.
We show that the homeomorphism $\psi$ with $\psi(z(t))=(z^{1}(t), \cdots z^{n}(t)),$ $z^{i}(t)=$

$f_{i}(z(t))=k_{i}t+\lambda_{i}$ sends each geodesic onto an affine line. For this we simply

have to observe that the equations $z^{i}(t)=k_{i}t+\lambda_{i}$ define in $A^{n}$ a line through
$(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n})$ parallel to the cartesian vector $(k_{1}, k_{2}, \cdots, k_{n})$ . From this one
can see that $\psi$ is an incidence preserving bijective homeomorphism of $R$ onto $A^{n}$ .
In particular, therefore, $R$ is straight.

We may thus identify $A^{n}$ and $R$ taking $x^{1},$ $x^{2},$
$\cdots,$

$x^{n}$ as affine co-ordinates

for $R$ . Because of linearity we know that for any $t^{\prime},$
$t^{\prime\prime}$ the midpoint of $z(t^{\prime})$

and $z(t^{\prime\prime})$ is $z(t_{m})$ where $t_{m}=(t^{\prime}+t^{\prime\prime})/2$ . Affine midpoints and metric midpoints

therefore coincode and hence the space is Minkowskian, see $G$ p. 94.

4. Monotone $h(\tilde{r}, x)$ .
Whereas requiring $h(\tilde{r}, x)$ to be nearly peakless (in a straight space) proved

a relatively mild condition, see (18), the $h(\tilde{r}, x)$ are monotone in only very special

spaces.
The loci $ h(\tilde{r}, x)=\alpha$ (or $[h(\tilde{r})=\alpha]$) are the limit spheres with central ray $\tilde{r}$.

Thus:

(50) In a straight space the $h(\tilde{r}, x)$ are monotone iff the limit spheres are

flat.
As corollaries of (50) and $G$ (24.13) and (24.14) we have:

(51) In a straight space the functions $h(\tilde{r}, x)$ are monotone iff a set on which
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each point has exactly one foot is convex and closed.

(52) A straight space of dimension greater than 2 is Minkowskian with

differentiable spheres iff the $h(\tilde{r}, x)$ are monotone.

Whether (52) holds for $n=2$ has been an open question since 50 years. The
case $n=2$ can be covered by strengthening the hypothesis of (52).

(53) A straight space is Minkowskian with differentiable spheres iff the $h(\tilde{r}, x)$

are linear.

For if the $h(\tilde{r}, x)$ are linear then the condition $(D)$ of [8] holds and hence
$R$ is Minkowskian with differentiable spheres. The converse is obvious.

We give an example of the nonexistance of a monotone $h(\tilde{r}, x)$ in a straight

space.
A simply connected space with strictly convex capsules is straight, therefore

it suffices by (50) to show:

(54) In a simply connected space with strictly convex capsules no limit sphere
is flat.

Assume that $H_{0}$ given by $h(\tilde{r}_{0}, x)=0$ is flat. Let $\tilde{\gamma}$ be a proper subray of $\tilde{\gamma}_{0}$

and consider $H=h(\tilde{r}, x)=0$ . $H$ is flat or convex, its interior is convex and does
not contain $H_{0}$ .

Let $p\neq q$ lie on $H$ and $(puq)$ . Denote their (unique, see $G$ (22.18), (23.2))

feet on $H_{0}$ by $p_{0},$ $u_{0},$ $q_{0}$ . Then $T(u, u_{0})$ intersects $H$ in a point $v$ and $\sigma=pp_{0}=$

$qq_{0}=u_{0}v\leqq uu_{0}$ .
If $u^{\prime}$ is the foot of $u$ on $T(p_{0}, q_{0})$ then $uu_{0}\leqq uu^{\prime}$ because $T(p_{0}, q_{0})\subset H_{0}$ .

Thus $u^{\prime}$ does not lie in the interior of $C=C(T(p, q),$ $\sigma$ ) although $p_{0}\in C$ and $q_{0}\in C$,

so that $C$ is not strictly convex.
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