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INDECOMPOSABLE MODULES OVER ONE-SIDED
SERIAL LOCAL RINGS AND RIGHT PURE
SEMISIMPLE PI-RINGS
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Daniel SIMSON*

Introduction

Let R be a ring with an identity element and let /=J(R) be the Jacobson
radical. We denote by Mod(R) and by mod(R) the categories of all right R-
modules and finitely generated K-modules, respectively. We recall that a local
ring R is said to be right serial (resp. left serial) if the right (resp. left) ideals
in R are linearly ordered by the inclusion. We call R one-sided serial if R is
either left or right serial.

Following ideas of Nazarova and Nazarova and Rojter we describe
in the present paper a method allowing us to reduce the study of modules over
one-sided serial local rings R to the study of finitely generated modules over

G (;NF
0O F
¢Nr is an G—F-bimodule (comp. [2]). In the paper the method is mainly used

in constructing large indecomposable modules.

In Section 1 we prove that if R is a right serial local ring with J(R)2+#0
which is not left serial then there are subdivision rings GC H of F=R/J(R) both
isomorphic to F such that dimgF=(dimyF)?<4 and the category consisting of
such finitely generated right R-modules M that M/soc(M) is a direct sum of
copies of R/J(R)? is representation-equivalent to the category 1y5(cFr) consisting

GFF . . H HFF
h )——A for which the module X®A( 0 h

) has no simple injective summands. A counterpart of

triangular matrix rings of the form ( ) where G, F are division rings and

of those modules X over the ring ( OG

Fg
F
this result for right modules over a left serial local ring is also proved. Hence

we conclude that if R is a one-sided serial local ring with J(R)®*#0 which is
not both left and right serial then there exists an indecomposable right R-module

over the ring (SI "

which is not finitely generated.
In Sections 2 and 3 we discuss the following open problem (see [10, 11, 12]):
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(pssg) If every right R-module is a direct sum of finitely presented modules,
does R is of finite representation type?

Unfortunately we are not able to solve the problem in the general case.
However, using the positive solution of (pssg) for hereditary Pl-rings given in
together with the result mentioned above we prove in Section 2 that (pssg)
has a positive answer for local Pl-rings. Furthermore, we show that the solution
of (pssz) for one-sided serial local rings R can be reduced to (psss) for hereditary
rings S discussed in [11, Sec. 3].

In Section 3 we prove that the problem (pssg) has a positive solution for
schurian factors of hereditary artinian Pl-rings. This was done by applying the
results obtained recently in [5, 13, 14] on vector space categories and associated
right peak rings. The method presented in Section 3 can be also applied to the
non-schurian right pure semisimple rings. It reduces the problem to rather
difficult questions concerning subspaces of non-schurian vector space Pl-categories
(see [13, Theorem 1.1]).

Indecomposable modules over a one-sided serial local ring R with R/J(R)
commutative were studied by Dlab and Ringel in [2]. The main results obtained
there can be also deduced from our results in Sections 1 and 2 by using the
diagammatic characterization of hereditary Pl-rings of finite representation type
obtained in [3]

Throughout this paper soc(X) denotes the socle of the module X and X*
denotes the direct sum of ¢ copies of X.

1. Modules over one-sided serial local rings.

Throughout this section we fix the following notation. R is a one-sided
serial local ring, B=R/J(R)?>, F=R/J(R) and ¢: R—F denotes the natural ring
epimorphism. We fix z& J(R) such that J(R)=zR provided R is right serial and
J(Ry=Rz provided R is left serial. If R is right serial (resp. left serial) we
define a ring homomorphism

oc: F— F (resp. t: F—F)

by the formula e(r)Z=Zoe(r) (resp. Ze(r)=te(r)z) where reR and z=z+]J(R)*

J(R)/J(R).

We start with the following simple lemma.

LEMMA 1.1 Suppose that J(R)*+#0 and J(R)?*=0. If R is right serial with
J(R)=2zR and r, s€R then rz*=2z"s if and only if e(s)=o%(r). If R is left
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serial with J(R)=Rz then rz*=2z%s if and only if e(r)=1t%e(s).

PROOF. Let cge(#)=e(#’) and o%c(r)=¢c(»”). Then rz+J(R)}=¢e(r)Z=Zoe(r)=
zr'+J(R)®. Hence rz—zr'=t< J(R)* and similarly r’'z—zr"=t'eJ(R)®. By our
assumption we have

z2ie(s)=zis=rz?=(zr'+t)z=zr'z=2z(zr" +t")=2%c%(r) .

Since z2#0 then e(s)=o0%¢(r) as we required. The converse implication as well
as the second equivalence can be proved similarly.

In order to formulate the main result of this section we need some termino-
logy and notation.

A corepresentation of an F—G-bimodule »Ng is a triple (Ug, Vi, ©) where Ug
and Vi are finitely generated modules over the ring G and F, respectively, and
1: Ug—V®pNg is an G-homomorphism. A map form (Ug, Vs, i) into (Ug, Vi, i)
is a pair (g, f) with geHomgU, U’), f=Homg(V, V’) such that (f®l)i=i'g.
The category of corepresentations of N is denoted by ci(xNg).

If N4 is an F—H-bimodule, ¢Ky is an G—H-bimodule, ¢: xNeQcKy—»Ng
is an F— H-bilinear map and V is a right F-module then elements a,, ---, a4 in
VQrNg are called ¢Ky-independent if the equality ¢(a,Qk,)+ -+ +ec(a,RDky)=0
with k;=sKy implies that k,= --- =k,=0. If in addition F, G, H are division
rings then a corepresentation (Ug, Vi, 7) is said to be ¢Ky-independent if given
a basis e;, -+, ¢, of Ug the elements i(e,), ---, i(e,)€VQrNg are ¢ Ky-independent.

We denote by c(zNg)X. the full subcategory of cu(#Ng) consisting of ¢Ky-
independent corepresentations.

Finally, we denote by &(B, F) the full subcategory of mod(R) consisting of
modules M such that M/soc(M)=B* for some ¢t.

We recall that an additive functor between two additive categories is said to
be a representation equivalence if it is full, dense and reflects isomorphisms.

Now we are able to prove the main result of this section.

THEOREM 1.2. Let R be a right noetherian one-sided serial local ring and let
F=R/J(R). If J(R)?+0, J(R)?*=0, and R is not both left and right serial then:

(i) There exist division rings G and H both isomorphic to F, bimodules rNg,
Nt ¢Kyu, and F— H-bimodule map ¢ : PNeQ@eKu—rNi and G-linearly independent
elements e*, x*, y* in pNg such that e*, y* are ¢Ky-independent.

(ii) There exists an additive functor

T:&(B, F) —> cu(zNe)¥.

which is a representation equivalence.
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PrOOF. First we define two subdivision rings G°CH® of F. We put G°=
o¥(F), H°=¢(F) if R is right serial and G°=7%F), H°=7(F) if F is left serial.
Next we fix an element x€H°\G° and an element ye F\H°. The existence of
such elements follows from our assumption that R is not both left and right serial.

Now we define the division rings and bimodules required in (i) by the fol-
lowing formulas:

G?={f*cExti(B, F); f*=Exti(f, F) with f€End(Bg)},
Hr={f*cExth(F, F); f*=Exti(f, F) with feEnd(Fg)},
rNeg=Extk(B, rF) and nf*=f*(n) for n€zNg and f*G,
rNg=Exti(F, pF) and mf*=f*(m) for merNj and f*cH,
cKp=Im[Exti(—, F): Homg(F, B) — Hom(Exti(B, F), ExtA(F, F))],
c(n@g*)=g*(n) for n€pNg, ¢*=Extk(q, F), g=Homg(F, B).

It is easy to see that G and H are factor rings of F and therefore they are
isomorphic to F.

Now we are going to describe matrix representations of G, H and of the
bimodule Ky which will be useful in our further calculations. For this purpose
we fix a basis 7{=Z, 73, -+, 7¢ of the right vector space J(R)/J(R)? over F and
a basis Bi=2% B, -+, Ba of the right vector space J(R)? over F. Next we define
elements 7y, ---, 7. and B,, --- B4 as follows. If R is right serial then c¢=d=1
and we put 7,=f8,=1. Now suppose that R is left serial. Then for any ;=1
there are rj, B7€R such that yj=r7z and Bj=p%z%. We put 7,=¢(/}) and B,=
e(B7). It is easy to check that 7y, -+, y.EFpy* are linearly independent over H°
and B, -+, Ba=Fg- are linearly independent over G°.

Now we denote by H* the subring of the full matrix ring M,(H"°) consisting
of all matrices

RY, RY%, e, b
hz[s B ] hiieH,
hcl’ hce} -, hee
whose coefficients satisfy the following equalities
(hP 7™+ oo 7 h Dy = hY+72h - +7ch

for j=2, .-, c. We denote by G* the subring of M,(G°) consisting of all
matrices g=(g%), 1=4, j=<d, satisfying the following equalities

(8" Bog™+ - +Bag )By= g+ Bug"+ -+ +Bag®

for j=2, ---, d. Finally, we denote by K* the set of matrices
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kn, . pic
k:[ :|’ kijEGo,
kdl’ P kdc
whose coefficients satisfy the following equalities

(k11+‘32k21+ +‘8dkdl)7(rj):klj+‘82kzj+ +/9dkdi
for j=2, -+, c.
We will show that there are ring isomorphisms

& G—> G*, {: H— H*,

Given f*e G with feEnd(Bz) we consider the projective resolution of f in mod(R)

D2 2
. P, R* R
O | £ N | 7.
P, > R¢ > R

where p,(x;, ==+, xg)=pix:+ - +Baxq. Let fi=(ri;) with r;;€ R and let fo(1)=r.

First suppose that R is right serial. Then d=1, G¥*=G° and we put §(f*)=
e(ry). Since z?r;;=rz? then by Lemma 1.1 &(r;;)€G° and & is obviously a ring
isomorphism.

Next suppose that R is left serial. Let &(f*)=(z%e(r;;). It is easy to see
that & does not depend on the choice of f, and f;. Moreover, since R is left
serial then z%,;=s;;2® for some s;;€R and it follows from Lemma 1.1 that
r2e(r;;)=¢e(sq;) for all 4, . Then fop,=p.f: if and only if

rBizt=Biz*ry+ - +Biz*ra;
=[BYe(s15)+ -+ +Bae(saz)]2?
for j=1, ---, d. Since z2+0 the equalities hold if and only if

5(7):5(311)+,525(521)+ +,Bd€(5d1)
and

e(r)Bi=e(s1;)+ Bae(se)+ ++ +Pac(sa;)  for j=2.
It follows that &(f*)e G*. Conversely, suppose that g=(g.;)€G*. Letr, ryeR
be such that

e(r)=g"+B.g"+ - +Bag® and ze(ry)=gi;.

It follows from the discussion above that the formulas f,(1)=7 and f;=(r:;)
define R-homomorphisms f,: R—R and f,: R®—>R? such that f,p,=p.f: and
therefore there exits f<=End(Bg) such that &(f*)=g. Since & preserves the ad-
dition and the multiplication then it is a ring isomorphism. The isomorphism {
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is defined in a similar way. The details are left to the reader.

It is easy to see that a matrix which belongs either to G* or to H* is equal
zero if and only if one of its rows or columns is zero.

Now we will define a group isomorphism w: ¢Kyz—K*. Let t*=Exti(t, F)
where teHomg(F, B). Then we have a commutative diagram with exact rows

R LR . F >0
o e

Pa
R¢ > R > B >0

where pi(vy, =, yo)=7izy,+ - +7rizy.. Let t(1)=s and t,=(t;;) where ¢,;ER.

First suppose that R is right serial. Then c¢=d=1, K*=G° and we put
w(t*)=oc0¢e(t;))€0(F)=G"°. It is clear that w is an isomorphism.

Next suppose that R is left serial. Let w(t*)=(z2%e(¢;;)). It is clear that w
does not depend on the choice of #, and ¢;,. In order to show that w(t*)e K* we
can suppose that t+0. Then s=s’z where s’ is an invertible element. Now if
we put k“=rz%¢(t;;) then t,pi=p,t, if and only if

S'2(r e =5"2r 2= 2"+ By 2test o + Bz ay
=(kV+Bok?+ - + Bak)2
for j=1, ---, ¢. Since z?#0 then the equalities hold if and only if

e(s")=R"+ Bk + -+ +Bak®
and
e(s)e(ry)=hkY+ ok + - + B4k for j=2, -, c.

It follows that w(t*)e K* and that w is surjective. Since w is obviously injective
it is an isomorphism.

Now K* can be considered as an G*— H*-bimodule via the isomorphisms &,
£, . It is easy to check that w(gkh) is the multiplication of matrices £(g)w(k)z{(h)
for any g=G, k€K, he H where t(h)=(z(h*)). Moreover, the right G-module
action on zNg corresponds to the usual right matrix action of G* on F¢ via the
natural composed isomorphism

*) rNe=Exth(B, F)=Homg(R%, F)=F*%.

Similarly pNig=F°¢ and the right action of H on N’ corresponds to the right
matrix action of H* on F°. Finally the bilinear map c¢: rNeQRsKy—rNj cor-
responds to the map ¢’ : #(F?)R g K%— p(F°) . defined by the formula ¢’(vQ (k)=
v-(z7Y(kH)).

Now let e*=(1, 0, ---, 0), x*=(x, 0, ---, 0), y*=(y, 0, ---, 0)eF¢=;Ngz. Then
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the equality e*g,+x*g;+v*g.=0 with g, G* implies that each of the matrices
g: has the first row equal zero. Hence they are zero matrices because they
belons to G*. Now suppose that ¢’(e*®ko)+e¢’(v*Qk,)=0 where k,=(k¥)e K*.
Then ¢(ki)+yr(kY)=0 for j=1, ---, ¢. Since y&H’, (ki) H"® then k{/=Fk}’=0
for j=1, ---, ¢ and therefore ¢’(e*®#k;)=0 for s=0, 1. Then (i) will be proved
in the case R is left serial if we show that e* is sKZ.-independent. We will
do it later after the proof of the statement (ii). If R is right serial then it is
easy to see that G=G°, H=H", yNe¢=ypFg°, rNi=rFn*, ¢Kp=¢ Hgp- and c is
induced by the multiplication zF®gc Hys—rFge. If we put e*=1, x*=x and
y*=1y then (i) follows.
In order to proof (ii) we define group isomorphisms

Ain bt,n

Extk(Bt, F™) Hompg(P¢, F™)

HOmG(Gt, Fn®FNG)

for any positive integers ¢t and n, where P,=R¢. For this purpose we consider
a projective resolution

pi i
P » Pt > Rt

of B? in mod (R). Since ExtL(B?, F™) is the first cohomology group of the com-

plex
ty*x t\%k

Homg(R®, F™) Homg(P!, P") ————> Homg(P%, F™) — -

and (pt)*=(pt)*=0 then there is a natural isomorphism Extk(B*, F*)=Homg(P{, F")
and we take it for a;,.
In order to define b,, we denote by ej, ---, e; the standard basis in G* and

by ey, -+, e, the standard basis in F*. Now given heHomg(Pi, F") we put
bin(h)ei=e; @ aiit(hy)+ - +en @ aii(hni)
for i=1, ---, t, where hj=m;hv;, v;: P,—P! is the injection into the 7** coordinate

and 7,;: F"—F is the projection on the j‘* coordinate. It is clear that b, is an
isomorphism.

Now we will prove that:

1°. a,, and b,, are natural maps with respect to R-homomorphisms F"—F™,

2°. If f: B">B! is an R-homomorphism given by the matrix (%), ri;€ER
and

pr
1 . RT

Py
O
ML

>

3
>
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is a projective resolution of 7 then we have a commutative diagram

Qin bin

Extx(B', F") Homa(P%, F™) Homg(G*, F*@rNo)
i [ ooy | wpx

Arp ™

Homg(R", F™)

Extk(B7, F") Homg(G", F* @ rNg)

where h* means the map induced by 4 and the G-linear map w(f) is defined by
the formula

w(flei=ei7h+ - +eiFh
where 7Fi=ExtL(7;;, F)eG.

The property 1° as well as the commutativity of the left hand square in the
diagram above are obvious. In order to complete the proof of 2° we suppose
that f” has the form f’=(fi;) where f;;eHomg(P,, P,). Then for any h=(h;;)
=Hompg(P:, F™) and any s we have

w(FP*ben(hei=bun(Rw(ei= 3 ben(h)esIh
=3 3 e @Fharithy)
=S @ail(fi) hy
=§}§ek®arl‘(hkjf§-s)

= 3 s @aii(hf s
= b/ M (h)e

and (ii) follows.
Now we define a functor 7T : &B, F)—cx(xNg). Given a module M in &(B, F)
we consider the exact sequence

ey:0—soc(M)— M — M/soc (M) — 0.

Since soc (M)=F™ and M/soc (M)=B" for some n and ¢t then ey<ExtL(B¢ Fm)
and we put T(M)=(G?, F"*, ul,) where ul,=b;n,a:.(ey). If t: L—>M is a homo-
morphism in &(B, F) and soc (L)=F™, L/soc (L)=B" then we have a commut-

ative diagram

er:0 Fm L > BT >
e e |
ey:0 F, M — B! 0
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and by 1° and 2° the diagram

L

Urm

G" F™QrNg

j w(t”) j ¥ Qid
ul,

G* F*"@rNg

is also commutative. If we put T(@)=(w(”), t’) then T becomes an additive
functor.

In order to show that 7 is full we take a map (g, ¢’): T(L)-»T(M). If
g=(q:;) with ¢;;=7¥ where 7,;€End (B) and if we define feHomg(B", B') by
the matrix f=(7;;) then obviously w(f)=¢. Next if we denote by p the map
(¢'Qid)utn=ul,w(f)eHome(G", F*"®rNg) and if

e:0 Fr A BT >0

is an exact sequence in mod (R) such that b,,a,,(e)=p then 1° and 2° yield
Extk(f, id)exy=e=Extk(id, ¢’)e; and hence there is a commutative diagram

er:0 > L BT 0

lq’ lh' lz’d

e:0 Fm A > B” 0

o e |7

ey:0 > ' >» M — B! 0.

It follows that T(h”h’)=(q, q’). Moreover, if (g, ¢’) is an isomorphism in cx(zNg)
then ¢ and ¢’ are isomorphisms. We claim that 7 is an isomorphism, too. In
order to prove it we can suppose (without loss of generality) that g=id. It
follows from the definition of w(f) that 7;;=id and 7,;€BJ(R) for i#j, i,
=1, ---, t. Then there is a commutative diagram

Et

Bt > Ft

R

Bt > Fn

where &° is a minimal epimorphism. Hence f is an isomorphism as we claimed.
Consequenly, h”h’ is an isomorphism and therefore T reflects isomorphisms.
Since b;na;, is an isomorphism then in order to finish the proof of (ii) it is
sufficient to show that given an exact sequence in mod (R)
e.0— F" ]rX -» B¢ >0
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the corepresentation (G!, F™, b;na;s(e)) is ¢Ky-independent if and only if Imj
=soc (X). For this purpose given i=(:, ---, i*)=Homg(F, B*) we consider its
projective resolution in mod (R)

pi
> P! .

L

t
2

. — P

and the induced commutative diagram

Qin

Extk(Bt, F™) Hompg(P¢, F™)
l 7* l ¥

al®
ExtL(F, F*) — > Homg(P}, F™)

F"Q@rNgu

where A(hi, -+, hp)=e,Qai’(h)+ - +e.Qair'(hy). I ai.(e)=(hy) and i;=
@@, .-+, i) where hy;€Homg(Py, F), ii€Homg(P], P;) then ay(@*)*=(1)*a,, for

every s and therefore

Ratnir@)=Ahin= 3 e;@air’( 3 huit)
=22¢;@ air' i) *(hys)
=26, @) aii(hsn)

[ Se,@antth@6]

I
=M

S elbinaim(€)e, Q)]

Since Aa,, is an isomorphism then from the above equality follows that the
corepresentation (G, F", b,,a..(e)) is ¢Ky-independent if and only if there is no
nonzero maps 7: F—B? such that /*(e)=0. On the other hand it is easy to see
that Im j#soc (X) if and only if there is a nonzero map :: F— B! such that
i*(e)=0 (cf. [7, Sec. 12]). Consequently, Im j=soc (X) if and only if (G’, F*,
b.na.n(€)) is ¢Ky-independent. Hence T is a representation equivalence and (ii)
follows.

To finish the proof of (i) it remains to show that the element e* is g K*p.-
independent. For this purpose we consider the exact sequence

e:0 J(R)* > R > B > 0.
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Since J(R)*=soc (Rg)=F¢ then according to the statement proved above the G-
linear map bj.a,4(e): G—FQRrN; defines an ¢Ky-independent corepresentation.
Since obviously a;4(e): R¢—F*? is the natural epimorphism ¢¢ then

bisas(e)l=e, R ar(m,eh)+ - e Rari(mqee?).

It follows that the element ajj(m.e?) is ¢Ky-independent. Since e*=F?¢ corre-
sponds to ai!(w,e%) under the isomorphism (*) then e* is g K*g.-independent as
we required. Now the proof of the theorem is complete.

REMARK. Another useful (but not functorial) method for the study of inde-
composable modules over one sided serial local rings R with J(R)?+0 can be
found in [2, Section 6].

2. Right pure semisimple local rings.

We recall from [9] that a ring R is right pure semisimple if every right
R-module is a direct sum of finitely presented modules. We keep the terminology
and notation introduced in where the reader is also referred for a back-
ground of right pure semisimple rings.

We start with the following technical lemma.

LEMMA 2.1. Let F, G, H be division rings and pNg, ¥Nj, ¢cKy be bimodules
defined in the proof of Theorem 1.2. Then there exists a sequence

u¥ uy
Ll_’Lz—_’"‘ ’Ls >L,+1

in the category cw(pNg)¥, such that L. is indecomposable, u¥ is a proper mono-
morphism for all t and L=colim L, is indecomposable.

PROOF. Let e* x* y* be the elements defined in the proof of Theorem 1.2
and let L,=(U,, F*, i) where F*® is the standard s-dimensional vector space over
F, e, -+, es is the standard basis of F?, U, is the G-subspace of V,=FQrN¢
generated by elements ef=e,Qe*, =1, ---, s, and v;=¢;Qxe*+e;,,Qye*, j=
1, -+, s—1, and 7;: U,—V, is the inclusion map (comp. [1, Sec. 5]).

By the property (i) in Theorem 1.2 the elements e¥, ---, e¥f vy, -+, v,_, are
¢HKy-independent and therefore L, is an object of ¢x(#Ng)X,. The F-linear injec-
tion u;: F*—F**! given by u(e;,)=e;;, for i=1, ---, s defines a map u¥: L,— L,
because (u;RQ1)(e¥)=e¥,, and (4,Q1)(v;)=v;4; for 1=i<s and 1=;=<s—1.

We recall from the proof of Theorem 1.2 that N=F®@ ---@PF. Then for
every neN and f=F we have defined nf <N and hence we have also defined
vfeV, for all veV, and feF.
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Now we prove by induction on s that L, is indecomposable by showing that
any nonzero idempotent in the ring End(L,) is the identity map. For this pur-
pose we note first that L,=(e*G, F, ;) and L. /L,=(e*G+x*G, F, 1) are inde-
composable. Next suppose that L, is indecomposable and let f*<End(L,,,) be a
nonzero idempotent. Since 1— f* is also an idempotent and f*u,#0 or (1—f*)u,

#0 then we may suppose that f*u,#0. Since f* is given by an F-linear map
f: Fs*'—Fs+t guch that (fQ1U,+,CU,,, then

(fQDet=e¥ g+ - +ediiQor1jTV1gu+ o+ +0sqs;

for j=1, ---, s+1, where g;;=(gi}), ¢:;=(q¢4¥) are matrices in G* with gi¥, gi*eG".
Since (fQ®w;=U,,, for i=1, ---, s then
* (f@l)vi:efhu‘{‘ v e hgri okt o Fusky

for some elements h;;=(h%¥), k;;=(ki¥) in G* with A%}, kY= G°. On the other
hand we have

(**) (D, =[(f@DeT]lx+[(f@De¥ ]y .
Now from the comparison of the right side terms in (*) and (**) we easily con-
clude that

hii+xkii—glix—xqiix= gl y+xqitiy

for 7=1, ---, s and t=1. Since xH’ then the left side of the above equality
belongs to H®. It follows that gii;+xgli;,=0 because otherwise ye H°® which is
a contradiction. Hence gif,,=¢it,;=0 for i=1, ---, s, t=1, and hi{=Fk}t=0 for
i=2, -, s, t=1. It follows that the matrices gii+1, ¢1i+1, A1i, By: for 7=1 have
their first rows equal zero and therefore they are zero matrices because they

belongs to G*. Consequently (fQ1)e¥, ---, (fQRDe¥.;, (FRDv,, -+, (fR1)v, belongs
to (us®1)U; and therefore there is a commutative diagram

uf
0 > L > Ly —— Leyy/Ly—0
- * ~
T
0 > L ’Ls+1'—_—_’Ls+1/Ls—’O-

Since L, is indecomposable and f* is a nonzero idempotent in End(L,) then f*
is the identity map. It follows that g;;=1 for /=2, ---, s, g;;=0 for i/, 2=<;=<
s+1, 1=:<s+4+1 and ¢;;=0 for /=1, ---, s, =2, ---, s+1. Note also that from
the equality (f@1et=e;pe*+ -+ +e54105+:Qe* with some p,=F we easily con-
clude that gji=¢}{=0 for j=1 and ¢t=2. Then the equality f**=f* yields (gi}

xqi)?=gii+xqii and therefore ¢i}=0. Hence ¢,;=0 because its first row is equal
zero. Now from the comparison of the right side terms in (*) and (**) for /=1
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we easily conclude that
gHx+Ygiux T xgiix=hii+ykitatxki

for t=1, j=3, .-, s+1 (we put ki%;;=qi%,;=0) and
ghixtxgiix=hii+ykii+xkii for t=22,
gitx+xgiix+y=hii+ykii+xki
gitx=hit+xkit for t=1.

Hence we inductively conclude that g;;=¢;-11=h;;=k;-11=0 for j=s+1, s, ---, 3,
ga1=hs=0, k}{=0 for t>2 and kil=1. Now from the last equality above fol-
lows hy;;=0, glt=0 for t>2 and gl!=1. It follows that the idempotent f* is
nonzero. Since L,,,/L, is indecompossable then f* is the identity map and
therefore f* is also the identity map, as we required. Consequently L, is
indecomposable. The indecomposability of L can be proved in a similar way
and we leave it to the reader. Then the lemma is proved.

Now we are able to prove a result which shows that the open question (pssg)

for a one-sided serial local ring R can be reduced to (psss) for a hereditary ring
S discussed in [11, Section 3.

THEOREM 2.2. If R is a one-sided serial local right pure semisimple ring
then either R is both left and right serial or J(R)*=0.

PROOF. Suppose that R is not both left and right serial and that J(R)%+#0.
Then by Theorem 1.2 there is a representation equivalence T : &(B, F)—cu(zNg)k..
It follows from Lemma 2.1 that there exists a sequence

d1 ds
D, > D, > e D, > Dyyy

where D; are indecomposable modules in &(B, F), d; is not bijective for 7>1 and
djdj-y - d;#0 for any j. On the other hand R is right pure semisimple. Then
by [8, Theorem 6.3] there is an integer m such that d,dn-;--- d;=0 and we
get a contradiction. Then the theorem is proved.

Now we are able to prove the following result announced in [11, Note Added in
Proof] which answers the question (pssz) in affirmative for any local Pl-ring R.

COROLLARY 2.3. Let R be a local ring such that the division ring F=R/]J(R)
is finite dimensional over its center and let d=dimg(J(R)/J(R)%), d'=
dim(J(R)/J(R)®p. Then the following conditions are equivalent:

(@) R is of finite representation type,

(b) R is right pure semisimple,
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() R is artinian and either dd’=1 or J(R)*=0 and 2<dd’<3.

PROOF. (a)—(b) follows from [8, Theorem 6.3] and (a)—(c) was proved in
[3]. In order to prove that (b) implies (c) we note that by the right pure semi-
simplicity of R and [11, Corollary 3.4] R is right artinian and R/J(R)? is of
finite representation type. It follows that R is one-sided serial because we know
from [3] that dd’<3. Now (c) is a consequence of Theorem 2.2 and the proof
is complete.

REMARK 1. An explicite description of indecomposable modules over a local
ring R satisfying the conditions in Corollary 2.3 can be found in [3, Section 2]
(see also [2]).

REMARK 2. The problem (pssz) remains open for arbitrary local rings R as
well as for arbitrary hereditary rings R (see [117).

3. Right pure semisimple factors of hereditary PI-rings.

In this section we give a positive solution of the problem (pssz) for schurian
factors of hereditary Pl-rings by applying the results on vector space categories
and right peak rings obtained in [5, 13, 14]. We use the terminology and nota-
tion introduced in where the reader is referred for details.

THEOREM 3.1. If R is aright pure semisimple schurian factor of a hereditary
Pl-ring then R is of finite representation type.

PROOF. Suppose that R is an indecomposable right pure semisimple schurian
Pl-ring. Then R is right artinian. We will prove by induction on the length
[(Rg) that R is of finite representation type and that the endomorphism ring of
any indecomposable right R-module in mod(R) is a division Pl-ring.

The case /(Rg)=0 is obvious. Suppose /(Rz)>0. Since R is a factor of a
hereditary ring then R has a simple injective right module and therefore there

is a ring isomorphism
F pMg
R =
0 S

where F is a division Pl-ring and M5 is an F—S-bimodule. Since (Ss)<!/(Rg)
then by the inductive assumption S is of finite representation type and End(Xj)
is a division Pl-ring for any indecomposable module Xs in mod(S).

First we will show that the dimension of UZ=Homg(zMs, Xs) is finite for
any indecomposable module X5 in mod(S). Assume the contrary (i.e. that
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dim U¥ is infinite) and consider the right R-module CZ defined by the triple
(UE, Xs, v) where v: UFQrMs—Xs is the S-homomorphism adjoint to the identity
map on UZ. Since Xs is indecomposable then C% is indecomposable. Moreover,
C% is not finitely generated because dim UZ is infinite. Hence R is not right
pure semisimple and we get a contradiction.

It follows that the category Kr=Homs(zMs, mod(S)) together with the em-
bedding functor |—|: Kp—mod(F) is a vector space category. Then by the
inductive assumption on S and by [14, Lemma 4.6] the ring Rk associated to
K, (see [14, Sec. 3]) is a schurian artinian right peak Pl-ring. Hence the as-
sumptions required in [14, Theorem 4.1] are satisfied and therefore there is an
equivalence of categories

) mod (R)/[mod(S)]=mod;»(D)

where D=(Rk)x. Now it follows from the formula following the definition of
the functor G in [14, Sec. 3] that D is an artinian schurian right peak Pl-ring.
Moreover, since R is right pure semisimple then by [8, Theorem 6.3] the Jacobson
radical of the category mod,,(D) is indecomposably right T-nilpotent in the sense
that for any sequence of D-homomorphisms

where X, are pairwise nonisomorphic indecomposable modules in mod;,(D) there

is an integer m such that fn - f2f1=0.
Now we are going to prove that the value scheme (Ip, d) of D does not
contain as an upper value subscheme one of the value schemes

(@ oLBso, dar>4,

(b) o @, d), o, dd’'=3,

() o (d, dl)';o: o

d o d, 47, (e ¢) o, 2<dd’, ee’<3,

(e) o Lol 4y 0 o, dd’=2and o o means either
O——————30 Or O——0,

@ o——o- 2o gar=3,

(g) partially ordered sets of the form K* where K is one of the Kleiner’s
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critical posets (1, 1,1, 1), (2, 2, 2), (1, 3, 3), (1, 2, 5), (N, 4) and K* denotes
the enlargement of K by a unique maximal element.

For the definition of the upper value subscheme of a given one the reader
is referred to [5, 13].

Let D=PD --- QP,PPn+; where P; are indecomposable right ideals of D
and Pn,, is the right peak of D. We recall that given an upper value subscheme
(L, d) of (Ip, d) there is a pair of adjoint functors

T,
-mod,, (D) T= mod;,(D)
rp

where Dp=End(Dje.P;), ri.(—)=Homp(@;c.P;, —) and
T (—)=Homp,(Homp(P e P;, D), —).

The functor T is full, faithful, reflects isomorphisms and carries over indecom-
posable modules into indecomposable ones. Then, in view of the observation
above, it follows that the Jacobson radical of mod,,(Dy) is indecomposably right
T-nilpotent for any upper value subscheme (L, d) of (I, d). On the other hand
if (L, d) is of one of the forms (a)—(g) except the poset (N, 4)* then by
and [11, Corollary 3.3] the hereditary artinian Pl-ring D, is not right pure
semisimple. Hence by [8, Theorem 6.3] theJacobson radical of mod(D;) is not
indecomposably right T-nilpotent. This is a contradiction because one can easily
show that for any such value scheme (L, d) the category mod;,,(Dy) is cofinite
in mod(D;) in the sense that all but a finite number of indecomposable modules
in mod(D,) belongs to mod,,(D.). Now suppose that (L, d) is the poset (N, 4)*.
Applying the Nazarova-Rojter differentiation procedure to (N, 4)* in a finite
number of steps we get a poset of width >4. This means that there exists a
representation equivalence A—mod,,(4) where A is a full additive subcategory
of mod,,(D;) and A is a hereditary Pl-ring of the extended Dynkin type

Z>O<Z. It follows that the Jacobson radical of the -category
mod,,(4) is indecomposably right T-nilpotent. On the other hand we know from
[3, 11] that A4 is not right pure semisimple and therefore by [8, Theorem 6.3]
the Jacobson radical of mod(4) is not indecomposably right T-nilpotent. This
is a contradiction because mod,,(4) is obviously cofinite in mod (/).
Consequently, (Ip, d) does not contain as an upper value subscheme one of
the value schemes (a)—(g) and it follows from [5, Theorem 2] (see also [13,
Theorem 3.1]) that mod,,(D) is of finite representation type. Moreover, it follows
from the proof of [14, Theorem 4.4] that End(Z) is a division Pl-ring for any
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indecomposable module Z in mod,,(D). Hence, using the equivalence (*) and the
inductive assumption we easily conclude that R is of finite representation type
and that the endomorphism ring of any indecomposable module in mod(R) is a
division Pl-ring. Then the proof is complete.
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