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INDECOMPOSABLE MODULES OVER ONE-SIDED
SERIAL LOCAL RINGS AND RIGHT PURE

SEMISIMPLE PI-RINGS

By

Daniel SIMSON*)

Introduction

Let $R$ be a ring with an identity element and let $J=J(R)$ be the Jacobson
radical. We denote by Mod $(R)$ and by $mod (R)$ the categories of all right R-
modules and finitely generated R-modules, respectively. We recall that a local
ring $R$ is said to be right serial (resp. left serial) if the right (resp. left) ideals
in $R$ are linearly ordered by the inclusion. We call $R$ one-sided serial if $R$ is
either left or right serial.

Following ideas of Nazarova [6] and Nazarova and Rojter [7] we describe
in the present paper a method allowing us to reduce the study of modules over
one-sided serial local rings $R$ to the study of finitely generated modules over
triangular matrix rings of the form $\left(\begin{array}{ll}G & GNF\\0 & F\end{array}\right)$ where $G,$ $F$ are division rings and

$GNF$ is an $G-F$-bimodule (comp. [2]). In the paper the method is mainly used
in constructing large indecomposable modules.

In Section 1 we prove that if $R$ is a right serial local ring with $J(R)^{2}\neq 0$

which is not left serial then there are subdivision rings $G\subset H$ of $F=R/J(R)$ both
isomorphic to $F$ such that $\dim_{G}F=(\dim_{H}F)^{2}\leqq 4$ and the category consisting of
such finitely generated right R-modules $M$ that $M/soc(M)$ is a direct sum of
copies of $R/J(R)^{2}$ is representation-equivalent to the category $r_{H}(F)$ consisting

of those modules $X$ over the ring $\left(\begin{array}{ll}G & GFF\\0 & F\end{array}\right)=A$ for which the module $X\otimes_{A}\left(\begin{array}{ll}H & HFF\\0 & F\end{array}\right)$

over the ring $\left(\begin{array}{ll}H & HFF\\0 & F\end{array}\right)$ has no simple injective summands. A counterpart of

this result for right modules over a left serial local ring is also proved. Hence
we conclude that if $R$ is a one-sided serial local ring with $J(R)^{2}\neq 0$ which is
not both left and right serial then there exists an indecomposable right R-module
which is not finitely generated.

In Sections 2 and 3 we discuss the following open problem (see [10, 11, 12]):
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$(pss_{R})$ If every right R-module is a direct sum of finitely presented modules,

does $R$ is of finite representation type.$p$

Unfortunately we are not able to solve the problem in the general case.
However, using the positive solution of $(pss_{R})$ for hereditary PI-rings given in
[11] together with the result mentioned above we prove in Section 2 that $(pss_{R})$

has a positive answer for local PI-rings. Furthermore, we show that the solution
of $(pss_{R})$ for one-sided serial local rings $R$ can be reduced to $(pss_{S})$ for hereditary

rings $S$ discussed in [11, Sec. 3].

In Section 3 we prove that the problem $(pss_{R})$ has a positive solution for
schurian factors of hereditary artinian PI-rings. This was done by applying the
results obtained recently in [5, 13, 14] on vector space categories and associated
right peak rings. The method presented in Section 3 can be also applied to the

non-schurian right pure semisimple rings. It reduces the problem to rather
difficult questions concerning subspaces of non-schurian vector space PI-categories

(see [13, Theorem 1.1]).

Indecomposable modules over a one-sided serial local ring $R$ with $R/J(R)$

commutative were studied by Dlab and Ringel in [2]. The main results obtained
there can be also deduced from our results in Sections 1 and 2 by using the
diagammatic characterization of hereditary PI-rings of finite representation type

obtained in [3].

Throughout this paper soc(X) denotes the socle of the module $X$ and $X^{t}$

denotes the direct sum of $t$ copies of $X$.

1. Modules over one-sided serial local rings.

Throughout this section we fix the following notation. $R$ is a one-sided

serial local ring, $B=R/J(R)^{2},$ $F=R/J(R)$ and $\epsilon:R\rightarrow F$ denotes the natural ring

epimorphism. We fix $z\in J(R)$ such that $J(R)=zR$ provided $R$ is right serial and
$J(R)=Rz$ provided $R$ is left serial. If $R$ is right serial (resp. left serial) we
define a ring homomorphism

$\sigma:F\rightarrow F$ (resp. $\tau;F\rightarrow F$ )

by the formula $\epsilon(r)\overline{z}=\overline{z}\sigma\epsilon(r)$ (resp. $\overline{z}\epsilon(r)=\tau\epsilon(r)\overline{z}$) where $r\in R$ and $\overline{z}=z+J(R)^{2}\in$

$J(R)/J(R)^{2}$ .
We start with the following simple lemma.

LEMMA 1.1 Suppose that $J(R)^{2}\neq 0$ and $J(R)^{3}=0$ . If $R$ is right serial with

$J(R)=zR$ and $r,$ $s\in R$ then $rz^{2}=z^{2}s$ if and only if $\epsilon(s)=\sigma^{2}\epsilon(r)$ . If $R$ is left
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serial with $J(R)=Rz$ then $rz^{2}=z^{2}s$ if and only if $\epsilon(r)=\tau^{2}\epsilon(s)$ .

PROOF. Let $\sigma\epsilon(r)=\epsilon(r^{\prime})$ and $\sigma^{2}\epsilon(r)=\epsilon(r^{\prime\prime})$ . Then $rz+J(R)^{2}=\epsilon(r)\overline{z}=\overline{z}\sigma\epsilon(r)=$

$zr^{\prime}+J(R)^{2}$ . Hence $rz-zr^{\prime}=t\in J(R)^{2}$ and similarly $r^{\prime}z-zr^{\prime\prime}=t^{\prime}\in J(R)^{2}$ . By our
assumption we have

$z^{2}\epsilon(s)=z^{2}s=rz^{2}=(zr^{\prime}+r)z=zr^{\prime}z=z(zr^{\prime\prime}+t^{\prime})=z^{2}\sigma^{2}\epsilon(r)$ .

Since $z^{2}\neq 0$ then $\epsilon(s)=\sigma^{2}\epsilon(r)$ as we required. The converse implication as well
as the second equivalence can be proved similarly.

In order to formulate the main result of this section we need some termino-
logy and notation.

A corepresentation of an $F-G$-bimodule $FNG$ is a triple $(U_{G}, V_{F}, i)$ where $U_{G}$

and $V_{F}$ are finitely generated modules over the ring $G$ and $F$, respectively, and
$i:U_{G}\rightarrow V\otimes_{F}N_{G}$ is an G-homomorphism. A map form $(U_{G}, V_{F}, i)$ into $(U_{G}^{\prime}, V_{F}^{\prime}, i^{\prime})$

is a pair $(g, f)$ with $g\in Hom_{G}(U, U^{\prime}),$ $f\in Hom_{F}(V, V^{\prime})$ such that $(f\otimes 1)i=i^{\prime}g$ .
The category of corepresentations of $FNG$ is denoted by $ct(N)$ .

If $FN_{H}^{\prime}$ is an $F-H$-bimodule, $c^{K_{H}}$ is an $G-H$-bimodule, $c:_{F}N_{G}\otimes_{G}K_{H}\rightarrow_{p}N_{H}^{\prime}$

is an $F-H$-bilinear map and $V_{F}$ is a right F-module then elements $a_{1},$ $\cdots,$ $a_{q}$ in
$V\otimes_{F}N_{G}$ are called $GK_{H}$-independent if the equality $c(a_{1}\otimes k_{1})+\cdots+c(a_{q}\otimes k_{q})=0$

with $k_{jG}\in K_{H}$ implies that $k_{1}=\cdots=k_{q}=0$ . If in addition $F,$ $G,$ $H$ are division
rings then a corepresentation $(U_{G}, V_{F}, i)$ is said to be $GK_{H}$-independent if given

a basis $e_{1},$ $\cdots,$ $e_{q}$ of $U_{G}$ the elements $i(e_{1}),$ $\cdots$ , $i(e_{q})\in V\otimes_{F}N_{G}$ are $GK_{H}$-independent.

We denote by $c\iota(FN_{G})_{N^{\prime}}^{K}$ the full subcategory of $cz(FN_{G})$ consisting of $GK_{H^{-}}$

independent corepresentations.
Finally, we denote by $\mathcal{E}(B, F)$ the full subcategory of $mod (R)$ consisting of

modules $M$ such that $M/soc(M)\cong B^{t}$ for some $t$ .
We recall that an additive functor between two additive categories is said to

be a representation equivalence if it is full, dense and reflects isomorphisms.

Now we are able to prove the main result of this section.

THEOREM 1.2. Let $R$ be a right noetherian one-sided serial local ring and let
$F=R/J(R)$ . If $J(R)^{2}\neq 0,$ $J(R)^{s}=0$ , and $R$ is not both left and right serial then;

(i) There exist division rings $G$ and $H$ both isomorphic to $F$, bimodules $FN_{G}$ ,
$FN_{H}^{\prime},$ $GK_{H}$ , and $F-H$-bimodule map $c:_{F}N_{G}\otimes_{G}K\rightarrow N_{H}^{\prime}$ and G-linearly independent

elements $e^{*},$ $x^{*},$ $y^{*}$ in $N$ such that $e^{*},$ $y^{*}$ are $K$ -independent.
(ii) There exists an additive functor

$T:\mathcal{E}(B, F)\rightarrow cr(N)_{\eta}^{K,}$.

which is a representation equivalence.
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PROOF. First we define two subdivision rings $G^{o}\subset H^{o}$ of $F$. We put $G^{o}=$

$\sigma^{2}(F),$ $H^{o}=\sigma(F)$ if $R$ is right serial and $G^{o}=\tau^{2}(F),$ $H^{o}=\tau(F)$ if $F$ is left serial.
Next we fix an element $x\in H^{o}\backslash G^{O}$ and an element $y\in F\backslash H^{o}$ . The existence of
such elements follows from our assumption that $R$ is not both left and right serial.

Now we define the division rings and bimodules required in (i) by the fol-
lowing formulas:

$G^{op}=$ { $f^{*}\in Ext_{R}^{1}(B,$ $F);f^{*}=Ext_{R}^{1}(f,$ $F)$ with $f\in End(B_{R})$},

$H^{op}=$ { $f^{*}\in Ext_{R}^{1}(F,$ $F);f^{*}=Ext_{R}^{1}(f,$ $F)$ with $f\in End(F_{R})$},

$FN_{G}=Ext_{R}^{1}(B, FF)$ and $nf^{*}=f^{*}(n)$ for $n\in_{F}N_{G}$ and $f^{*}\in G$ ,

$FN_{H}^{\prime}=Ext_{R}^{1}(F, FF)$ and $mf^{*}=f^{*}(m)$ for $m\in FN_{H}^{\prime}$ and $f^{*}\in H$ ,

$GK_{H}={\rm Im}[Ext_{R}^{1}(--, F):Hom_{R}(F, B)\rightarrow Hom_{Z}(Ext_{R}^{1}(B, F), Ext_{R}^{1}(F, F))]$ ,

$c(n\otimes q^{*})=q^{*}(n)$ for $n\in_{F}N_{G},$ $q^{*}=Ext_{R}^{1}(q, F),$ $q\in Hom_{R}(F, B)$ .
It is easy to see that $G$ and $H$ are factor rings of $F$ and therefore they are

isomorphic to $F$.
Now we are going to describe matrix representations of $G,$ $H$ and of the

bimodule $GK_{H}$ which will be useful in our further calculations. For this purpose
we fix a basis $\gamma_{I}^{\prime}=\overline{z},$ $\gamma_{2}^{\prime},$ $\cdots$ $\gamma_{c}^{\prime}$ of the right vector space $J(R)/J(R)^{2}$ over $F$ and
a basis $\beta_{1}^{\prime}=z^{2},$ $\beta_{2}^{\prime},$ $\cdots$ $\beta_{d}^{\prime}$ of the right vector space $J(R)^{2}$ over $F$. Next we define
elements $\gamma_{1},$ $\cdots$ , $\gamma_{c}$ and $\beta_{1},$ $\cdots\beta_{d}$ as follows. If $R$ is evright serial then $c=d=1$

and we put $\gamma_{1}=\beta_{1}=1$ . Now suppose that $R$ is left serial. Then for any $j\geqq 1$

there are $\gamma_{j}^{\prime\prime},$ $\beta_{j}^{\prime\prime}\in R$ such that $\gamma_{j}^{\prime}=\gamma_{j}^{\prime\prime}z$ and $\beta_{j}^{\prime}=\beta_{j}^{\prime\prime}z^{2}$ . We put $\gamma_{j}=\epsilon(\gamma_{j}^{\prime\prime})$ and $\beta_{j}=$

$\epsilon(\beta_{j}^{J/})$ . It is easy to check that $\gamma_{1},$ $\cdots,$
$\gamma_{c}\in F_{H}\circ$ are linearly independent over $H^{\circ}$

and $\beta_{1},$
$\cdots,$ $\beta_{d}\in F_{G}\circ$ are linearly independent over $G^{o}$ .

Now we denote by $H^{*}$ the subring of the full matrix ring $M_{c}(H^{O})$ consisting
of all matrices

$h=\left\{\begin{array}{llll}h^{11}, & h^{12}, & \ldots & h^{1c}\\\vdots & \vdots & & \vdots\\ h^{c1}, & h^{c2}, & \cdots & h^{cc}\end{array}\right\}$ , $h^{ij}\in H^{O}$

whose coefficients satisfy the following equalities

$(h^{11}+\gamma_{2}h^{21}+\cdots+\gamma_{c}h^{c1})\gamma_{j}=h^{1j}+\gamma_{2}h^{2j}+\cdots+\gamma_{c}h^{cj}$ ,

for $j=2,$ $\cdots$ , $c$ . We denote by $c*$ the subring of $M_{d}(G^{\circ})$ consisting of all
matrices $g=(g^{ij}),$ $1\leqq i,$ $j\leqq d$ , satisfying the following equalities

$(g^{11}+\beta_{2}g^{21}+\cdots+\beta_{d}g^{d1})\beta_{j}=g^{1j}+\beta_{2}g^{2j}+\cdots+\beta_{d}g^{dj}$

for $j=2,$ $\cdots$ , $d$ . Finally, we denote by $K^{*}$ the set of matrices
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$k=\left\{\begin{array}{lll}k^{11}, & \ldots & k^{1C}\\\vdots & & \vdots\\ dk1 & \ldots & dkc\end{array}\right\}$ , $k^{ij}\in G^{o}$ ,

whose coefficients satisfy the following equalities

$(k^{11}+\beta_{2}k^{21}+\cdots+\beta_{d}k^{d1})\tau(\gamma_{j})=k^{1j}+\beta_{2}k^{2j}+\cdots+\beta_{d}k^{di}$

for $j=2,$ $\cdots,$ $c$ .
We will show that there are ring isomorphisms

$\xi:G\rightarrow c*$ , $\zeta:H\rightarrow H^{*}$ .
Given $f^{*}\in G$ with $f\in End(B_{R})$ we consider the projective resolution of $f$ in $mod (R)$

$...-P_{2}R^{d}R\underline{p_{2}}\underline{p_{1}}$

$\downarrow f_{2}$

$p_{2}$

$\downarrow f_{1}$

$p_{1}$

$\downarrow f_{0}$

$...-P_{1}-R^{d}-R$
where $p_{1}(x_{1}, \cdots, x_{d})=\beta_{1}^{\prime}x_{1}+\cdots+\beta_{d}^{\prime}x_{d}$ . Let $f_{1}=(r_{ij})$ with $r_{ij}\in R$ and let $f_{0}(1)=r$ .

First suppose that $R$ is right serial. Then $d=1,$ $G^{*}=G^{o}$ and we put $\xi(f^{*})=$

$\epsilon(r_{11})$ . Since $z^{2}r_{11}=rz^{2}$ then by Lemma 1.1 $\epsilon(r_{11})\in G^{\circ}$ and $\xi$ is obviously a ring
isomorphism.

Next suppose that $R$ is left serial. Let $\xi(f^{*})=(\tau^{2}\epsilon(r_{ij}))$ . It is easy to see
that $\xi$ does not depend on the choice of $f_{0}$ and $f_{1}$ . Moreover, since $R$ is left
serial then $z^{2}r_{ij}=s_{ij}z^{2}$ for some $s_{ij}\in R$ and it follows from Lemma 1.1 that
$\tau^{2}\epsilon(r_{ij})=\epsilon(s_{ij})$ for all $i,$ $j$ . Then $f_{0}p_{1}=p_{1}f_{1}$ if and only if

$r\beta_{j}^{\prime\prime}z^{2}=\beta_{1}^{\prime\prime}z^{2}r_{1j}+\cdots+\beta_{a}^{\prime\prime}z^{2}r_{dj}$

$=[\beta_{1}^{\prime\prime}\epsilon(s_{1j})+\cdots+\beta_{d}^{1/}\epsilon(s_{dj})]z^{2}$

for $j=1,$ $\cdots,$
$d$ . Since $z^{2}\neq 0$ the equalities hold if and only if

$\epsilon(r)=\epsilon(s_{11})+\beta_{2}\epsilon(s_{21})+\cdots+\beta_{d}\epsilon(s_{d1})$

and
$\epsilon(r)\beta_{j}=\epsilon(s_{1j})+\beta_{2}\epsilon(s_{2j})+\cdots+\beta_{d}\epsilon(s_{dj})$ for $j\geqq 2$ .

It follows that $\xi(f^{*})\in c*$ . Conversely, suppose that $g=(g_{ij})\in G^{*}$ . Let $r,$ $r_{ij}\in R$

be such that

$\epsilon(r)=g^{11}+\beta_{2}g^{21}+\cdots+\beta_{d}g^{d1}$ and $\tau^{2}\epsilon(r_{ij})=g_{ij}$ .
It follows from the discussion above that the formulas $f_{0}(1)=r$ and $f_{1}=(r_{ij})$

define R-homomorphisms $f_{0}$ : $R\rightarrow R$ and $f_{1}$ : $R^{d}\rightarrow R^{d}$ such that $f_{0}p_{1}=p_{1}f_{1}$ and
therefore there exits $f\in End(B_{R})$ such that $\xi(f^{*})=g$ . Since $\xi$ preserves the ad-
dition and the multiplication then it is a ring isomorphism. The isomorphism $\zeta$
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is defined in a similar way. The details are left to the reader.
It is easy to see that a matrix which belongs either to $c*$ or to $H^{*}$ is equal

zero if and only if one of its rows or columns is zero.
Now we will define a group isomorphism $\omega:_{G}K_{H}\rightarrow K^{*}$ . Let $t^{*}=Ext_{R}^{1}(t, F)$

where $t\in Hom_{R}(F, B)$ . Then we have a commutative diagram with exact rows

$R^{c}\underline{p_{1}^{\prime}}R-F-0$

$\downarrow t_{1}$ $\downarrow t_{0}$ $\downarrow t$

$p_{1}$

$R^{d}-R-B-0$
where $p_{1}^{\prime}(y_{1}, \cdots , y_{c})=\gamma_{1}^{J/}zy_{1}+\cdots+\gamma_{0}^{\prime\prime}zy_{c}$ . Let $t_{0}(1)=s$ and $t_{1}=(t_{ij})$ where $t_{ij}\in R$ .

First suppose that $R$ is right serial. Then $c=d=1,$ $K^{*}=G^{O}$ and we put
$\omega(t^{*})=\sigma\epsilon(t_{11})\in\sigma^{2}(F)=G^{o}$ . It is clear that $\omega$ is an isomorphism.

Next suppose that $R$ is left serial. Let $\omega(t^{*})=(\tau^{2}\epsilon(t_{ij}))$ . It is clear that $\omega$

does not depend on the choice of $t_{0}$ and $t_{1}$ . In order to show that $\omega(t^{*})\in K^{*}$ we
can suppose that $t\neq 0$ . Then $s=s^{\prime}z$ where $s^{J}$ is an invertible element. Now if
we put $k^{ij}=\tau^{2}\epsilon(t_{ij})$ then $r_{0}p_{1}^{\prime}=p_{1}t_{1}$ if and only if

$s^{\prime}\tau(\gamma_{j})z^{2}=s^{\prime}z\gamma_{j}^{\prime\prime}z=z^{2}t_{1j}+\beta_{2}^{\prime\prime}z^{2}t_{2j}+\cdots+\beta_{d}^{\prime\prime}z^{2}t_{dj}$

$=(k^{1j}+\beta_{2}k^{2j}+\cdots+\beta_{d}k^{dj})z^{2}$

for $j=1,$ $\cdots,$
$c$ . Since $z^{2}\neq 0$ then the equalities hold if and only if

$\epsilon(s^{\prime})=k^{11}+\beta_{2}k^{21}+\cdots+\beta_{d}k^{d1}$

and
$\epsilon(s^{\prime})\tau(\gamma_{j})=k^{1j}+\beta_{2}k^{2j}+\cdots+\beta_{d}k^{dj}$ for $j=2,$ $\cdots,$ $c$ .

It follows that $\omega(t^{*})\in K^{*}$ and that $\omega$ is surjective. Since $\omega$ is obviously injective
it is an isomorphism.

Now $K^{*}$ can be considered as an $G^{*}-H^{*}$-bimodule via the isomorphisms $\xi$,
$\zeta,$ $\omega$ . It is easy to check that $\omega(gkh)$ is the multiplication of matrices $\xi(g)\omega(k)\tau\zeta(h)$

for any $g\in G,$ $k\in K,$ $h\in H$ where $\tau(\overline{h})=(\tau(\overline{h}^{ij}))$ . Moreover, the right G-module
action on $FNG$ corresponds to the usual right matrix action of $c*$ on $F^{d}$ via the
natural composed isomorphism

$(^{*})$ $FN_{G}=Ext_{R}^{1}(B, F)\cong Hom_{R}(R^{d}, F)\cong F^{d}$ .
Similarly $FNH^{\prime}\cong F^{c}$ and the right action of $H$ on $N^{\prime}$ corresponds to the right
matrix action of $H^{*}$ on $F^{c}$ . Finally the bilinear map $c:FN_{c}\otimes_{G}K\rightarrow N_{H^{\prime}}$ cor-
responds to the map c’ : $F(F^{d})\otimes_{G^{s}}K_{H^{*}}.\rightarrow F(F^{c})_{H}$ . defined by the formula $c^{\prime}(v\otimes(k^{ij}))=$

$v\cdot(\tau^{-1}(k^{ij}))$ .
Now let $e^{*}=(1,0, \cdots, 0),$ $x^{*}=(x, 0, \cdots, 0),$ $y^{*}=(y, 0, \cdots, 0)\in F^{d}\cong N$ . Then
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the equality $e^{*}g_{0}+x^{*}g_{1}+y^{*}g_{2}=0$ with $g_{i}\in G^{*}$ implies that each of the matrices
$g_{i}$ has the first row equal zero. Hence they are zero matrices because they

belons to $c*$ . Now suppose that $c^{\prime}(e^{*}\otimes k_{0})+c^{\prime}(y^{*}\otimes k_{1})=0$ where $k_{s}=(k_{s}^{ij})\in K^{*}$ .
Then $\tau(k_{0}^{1j})+y\tau(k_{1}^{1j})=0$ for $j=1,$ $\cdots,$

$c$ . Since $y\not\in H^{O},$ $\tau(k_{s}^{1j})\in H^{O}$ then $k_{0}^{1j}=k_{1}^{1j}=0$

for $j=1,$ $\cdots$ , $c$ and therefore $c^{\prime}(e^{*}\otimes k_{s})=0$ for $s=0,1$ . Then (i) will be proved

in the case $R$ is left serial if we show that $e^{*}$ is $G^{*K}H^{*}$ -independent. We will
do it later after the proof of the statement (ii). If $R$ is right serial then it is
easy to see that $G\cong G^{o},$ $H\cong H^{\circ},N\cong F_{G^{\circ}},$ $FHFH^{\circ},$ $GK_{HG^{o}}\cong H_{H^{o}}^{\circ}$ and $c$ is

induced by the multiplication $ FF\otimes_{G}\circ H_{H^{Q}}^{o}\rightarrow_{F}F_{H}\circ$ . If we put $e^{*}=1$ , $x^{*}=x$ and
$y^{*}=y$ then (i) follows.

In order to proof (ii) we define group isomorphisms

$Ext_{R}^{1}(B^{l}, F^{n})Hom_{R}(P_{1}^{l}\underline{a_{tn}}F^{n})Hom_{G}(G^{t}\underline{b_{ln}}F^{n}\otimes_{F}N_{G})$

for any positive integers $t$ and $n$ , where $P_{1}=R^{d}$ . For this purpose we consider
a projective resolution

$p_{2}^{l}$ $p_{1}^{l}$

$...-P_{2}^{l}-P_{1}^{t}-R^{t}$

of $B^{l}$ in $mod (R)$ . Since $Ext_{R}^{1}(B^{t}, F^{n})$ is the first cohomology group of the com-
plex

$(p_{1}^{t})^{*}$ $(p_{2}^{l})^{*}$

$Hom_{R}(R^{l}, F^{n})-Hom_{R}(P_{1}^{t}, P^{n})-Hom_{R}(P_{2}^{l}, F^{n})\rightarrow\cdots$

and $(p_{1}^{l})^{*}=(p_{2}^{t})^{*}=0$ then there is a natural isomorphism $Ext_{R}^{1}(B^{t}, F^{n})\cong Hom_{R}(P_{1}^{l}, F^{n})$

and we take it for $a_{ln}$ .
In order to define $b_{ln}$ we denote by $e_{1}^{\prime},$

$\cdots,$
$e_{l}^{\prime}$ the standard basis in $G^{t}$ and

by $e_{1},$
$\cdots$ , $e_{n}$ the standard basis in $F^{n}$ . Now given $h\in Hom_{R}(P_{1}^{t}, F^{n})$ we put

$b_{ln}(h)e_{i}^{\prime}=e_{1}\otimes a_{11}^{-1}(h_{1i})+\cdots+e_{n}\otimes a_{11}^{-1}(h_{ni})$

for $i=1,$ $\cdots,$
$t$ , where $h_{ji}=\pi_{j}h\nu_{i},$ $\nu_{i}$ ; $P_{1}\rightarrow P_{1}^{l}$ is the injection into the $i^{ih}$ coordinate

and $\pi_{j}$ ; $F^{n}\rightarrow F$ is the projection on the $j^{th}$ coordinate. It is clear that $b_{tn}$ is an
isomorphism.

Now we will prove that:
1. $a_{tn}$ and $b_{tn}$ are natural maps with respect to R-homomorphisms $F^{n}\rightarrow F^{m}$ .
$2^{O}$ . If $\overline{f}:B^{r}\rightarrow B^{t}$ is an R-homomorphism given by the matrix $(\overline{r}_{ij}),$ $r_{ij}\in R$

and
$...-P_{1}^{r}R^{r}\underline{p_{1}^{r}}$

$\downarrow f^{\prime}$ $\downarrow f$

$...-P_{1}^{l}R^{t}\underline{p_{1}^{t}}$
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is a projective resolution of $\overline{f}$ then we have a commutative diagram

$Ext_{R}^{1}(B^{t}, F^{n})Hom_{R}(P_{1}^{l}\underline{a_{ln}}F^{n})Hom_{G}(G^{t}\underline{b_{ln}}F^{n}\otimes_{F}N_{G})$

$\downarrow\overline{f}^{*}$ $\downarrow(f^{\prime})^{*}$ $\downarrow w(\overline{f})^{*}$

$Ext_{R}^{1}(B^{r}, F^{n})Hom_{R}(R^{r}, F^{n})Hom_{G}(G^{r}\underline{a_{rn}}\underline{b_{rn}}F^{n}\otimes_{F}N_{G})$

where $h^{*}$ means the map induced by $h$ and the G-linear map $w(\overline{f})$ is defined by
the formula

$w(\overline{f})e_{i}^{\prime}=e_{1}^{\prime}\overline{r}_{i1}^{*}+\cdots+e_{l}^{\prime}\overline{r}_{il}^{*}$

where $\overline{r}_{ij}^{*}=Ext_{R}^{1}(\overline{r}_{ij}, F)\in G$ .
The property 1o as well as the commutativity of the left hand square in the

diagram above are obvious. In order to complete the proof of 2 we suppose
that $f^{\prime}$ has the form $f^{\prime}=(f_{ij}^{\prime})$ where $f_{ij}^{\prime}\in Hom_{R}(P_{1}, P_{1})$ . Then for any $h=(h_{ij})$

$\in Hom_{R}(P_{1}^{t}, F^{n})$ and any $s$ we have

$w(\overline{f})^{*}b_{ln}(h)e_{s}^{\prime}=b_{ln}(h)w(f)e_{s}^{\prime}=\sum_{j\Rightarrow 1}^{t}[b_{ln}(h)e_{j}^{\prime}]\overline{r}_{js}^{*}$

$=\sum_{j=1}^{l}\sum_{k=1}^{n}e_{k}\otimes\overline{r}_{js}^{*}a_{11}^{-1}(h_{kj})$

$=\sum_{j}\sum_{k}e_{k}\otimes a_{11}^{-1}(f_{js}^{\prime})^{*}h_{kj}$

$=\sum_{j}\sum_{k}e_{k}\otimes a_{11}^{-1}(h_{kj}f_{js}^{\prime})$

$=\sum_{h=1}^{n}e_{k}\otimes a_{11}^{-1}(hf^{\prime})_{ks}$

$=[b_{rn}(f^{\prime*})](h)e_{s}^{\prime}$

and (ii) follows.
Now we define a functor $T:\mathcal{E}(B, F)\rightarrow cc(FN_{c})$ . Given a module $M$ in $\mathcal{E}(B, F)$

we consider the exact sequence

$e_{M}$ : $0\rightarrow soc(M)\rightarrow M\rightarrow M/soc(M)\rightarrow 0$ .

Since soc $(M)\cong F^{n}$ and $M/soc(M)\cong B^{l}$ for some $n$ and $t$ then $e_{M}\in Ext_{R}^{1}(B^{t}, F^{n})$

and we put $T(M)=(G^{l}, F^{n}, u_{ln}^{M})$ where $u_{ln}^{M}=b_{ln}a_{ln}(e_{M})$ . If $t:L\rightarrow M$ is a homo-
morphism in $\mathcal{E}(B, F)$ and soc $(L)\cong F^{m},$ $L/soc(L)\cong B^{r}$ then we have a commut-
ative diagram

$e_{L}$ : $0\rightarrow F^{m}\rightarrow L\rightarrow B^{r}\rightarrow 0$

$\downarrow t^{\prime}$ $\downarrow t$ $\downarrow t^{\prime\prime}$

$e_{M}$ : $0\rightarrow F_{n}\rightarrow M\rightarrow B^{t}\rightarrow 0$
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and by 1 and 2 the diagram

$G^{r}F^{m}\otimes_{F}N_{G}\underline{u_{rm}^{L}}$

$\downarrow w(t^{\prime\prime})$ $\downarrow t^{\prime}\otimes id$

$G^{t}F^{n}\otimes_{F}N_{G}\underline{u_{tn}^{M}}$

is also commutative. If we put $T(t)=(w(t^{\prime\prime}), t^{\prime})$ then $T$ becomes an additive
functor.

In order to show that $T$ is full we take a map $(q, q^{\prime}):T(L)\rightarrow T(M)$ . If
$q=(q_{ij})$ with $q_{ij}=\overline{r}_{ij}^{*}$ where $\overline{r}_{ij}\in End(B)$ and if we define $\overline{f}\in Hom_{R}(B^{r}, B^{t})$ by
the matrix $\overline{f}=(\overline{r}_{ij})$ then obviously $w(\overline{f})=q$ . Next if we denote by $p$ the map
$(q^{\prime}\otimes id)u_{rm}^{L}=u_{tn}^{M}w(\overline{f})\in Hom_{G}(G^{r}, F^{n}\otimes_{F}N_{G})$ and if

$e:0\rightarrow F^{n}\rightarrow Z\rightarrow B^{r}\rightarrow 0$

is an exact sequence in $mod (R)$ such that $b_{rn}a_{rn}(e)=p$ then 1 and 2 yield
$Ext_{R}^{1}(\overline{f}, id)e_{M}=e=Ext_{R}^{1}(id, q^{\prime})e_{L}$ and hence there is a commutative diagram

$e_{L}$ : $0\rightarrow F^{m}\rightarrow L\rightarrow B^{r}\rightarrow 0$

$\downarrow q^{\prime}$ $\downarrow h^{\prime}$ $\downarrow id$

$e:0\rightarrow F^{n}\rightarrow Z\rightarrow B^{r}\rightarrow 0$

$\downarrow id$ $\downarrow h^{\prime\prime}$ $\downarrow\overline{f}$

$e_{M}$ : $0\rightarrow F^{n}\rightarrow M\rightarrow B^{t}\rightarrow 0$ .
It follows that $T(h^{\prime\prime}h^{\prime})=(q, q^{\prime})$ . Moreover, if $(q, q^{\prime})$ is an isomorphism in $ct(N)$

then $q$ and $q^{\prime}$ are isomorphisms. We claim that $\overline{f}$ is an isomorphism, too. In
order to prove it we can suppose (without loss of generality) that $q=id$ . It
follows from the definition of $w(\overline{f})$ that $\overline{r}_{ij}=id$ and $\overline{r}_{ij}\in BJ(R)$ for $i\neq j,$ $i,$ $j$

$=1,$ $\cdots,$
$t$ . Then there is a commutative diagram

$\overline{\epsilon}^{l}$

$B^{t}-F^{t}$

$\downarrow\overline{f}$ $\downarrow id$

$\overline{\epsilon}^{t}$

$B^{t}-F^{n}$

where $\overline{\epsilon}^{t}$ is a minimal epimorphism. Hence $f$ is an isomorphism as we claimed.
Consequenly, $h^{\prime\prime}h^{\prime}$ is an isomorphism and therefore $T$ reflects isomorphisms.

Since $b_{ln}a_{ln}$ is an isomorphism then in order to finish the proof of (ii) it is
sufficient to show that given an exact sequence in $mod (R)$

$e:0\rightarrow F^{n}\rightarrow^{j}X\rightarrow B^{t}\rightarrow 0$
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the corepresentation ( $G^{l},$ $F^{n},$ $b_{tn}$ a $tn(e)$ ) is $GKH$-independent if and only if ${\rm Im} j$

$=soc(X)$ . For this purpose given $i=(i^{1}, \cdots , i^{t})\in Hom_{R}(F, B^{t})$ we consider its
projective resolution in $mod (R)$

$p_{1}^{J}$

$...\rightarrow P_{1}^{\prime}-R$

$\downarrow i_{1}$ $\downarrow i_{0}$

$...\rightarrow P_{1}^{t}R^{t}\underline{p_{1}^{t}}$

and the induced commutative diagram

$Ext_{R}^{1}(B_{i^{t_{*}}}, F^{n})Hom_{R}(P_{i_{1}^{1}\prime}^{t}\downarrow\downarrow*\underline{a_{tn}}F^{n})$

$Ext_{R}^{1}(F, F^{n})Hom_{R}(P_{1}^{\prime}\underline{a_{t}^{\prime n}}F^{n})F^{n}\otimes_{F}N_{H}^{\prime}\underline{\lambda}$

where $\lambda(h_{1}^{\prime}, \cdots, h_{n}^{\prime})=e_{1}\otimes a_{11}^{J-1}(h_{1}^{\prime})+\cdots+e_{n}\otimes a_{11}^{\prime-1}(h_{n}^{\prime})$ . If $a_{tn}(e)=(h_{ij})$ and $i_{1}=$

$(i_{1}^{1}, \cdots, i_{1}^{l})$ where $h_{ij}\in Hom_{R}(P_{1}, F),$ $i_{1}^{s}\in Hom_{R}(P_{1}^{\prime}, P_{1})$ then $a_{11}^{\prime}(i^{s})^{*}=(i_{1}^{s})^{*}a_{11}$ for
every $s$ and therefore

$\lambda a_{tn}^{\prime}i^{*}(e)=\lambda(hi_{1})=\sum_{j=1}^{n}e_{j}\otimes a_{11}^{J-1}(\sum_{s=1}^{t}h_{j\$}i_{1}^{s})$

$=\sum_{j}\sum_{s}e_{j}\otimes a_{11}^{\prime-1}(i_{1}^{\epsilon})^{*}(h_{js})$

$=\sum_{j}\sum_{l}e_{j}\otimes(i^{s})^{*}a_{11^{1}}^{-}(h_{js})$

$=\sum_{s}c[\sum_{j}e_{j}\otimes a_{11}^{-1}(h_{js})\otimes(i^{s})^{*}]$

$=\sum_{s}c[b_{ln}a_{tn}(e)e_{\epsilon}^{\prime}\otimes(i^{s})^{*}]$ .

Since $\lambda a_{tn}^{\prime}$ is an isomorphism then from the above equality follows that the

corepresentation $(G^{t}, F^{n}, b_{ln}a_{tn}(e))$ is $GKH$-independent if and only if there is no
nonzero maps $i:F\rightarrow B^{t}$ such that $i^{*}(e)=0$ . On the other hand it is easy to see
that ${\rm Im} j\neq soc(X)$ if and only if there is a nonzero map $i:F\rightarrow B^{t}$ such that
$i^{*}(e)=0$ (cf. [7, Sec. 12]). Consequently, ${\rm Im} j=soc(X)if$ and only if $(G^{t},$ $F^{n}$ ,

$b_{tn}a_{ln}(e))$ is $GKH$-independent. Hence $T$ is a representation equivalence and (ii)

follows.
To finish the proof of (i) it remains to show that the element $e^{*}$ is $GH$

independent. For this purpose we consider the exact sequence

$e:0\rightarrow J(R)^{2}\rightarrow R\rightarrow B\rightarrow 0$ .
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Since $J(R)^{2}=soc(R_{R})\cong F^{d}$ then according to the statement proved above the G-
linear map $b_{1d}a_{1d}(e):G\rightarrow F^{d}\otimes_{F}N_{G}$ defines an $oK_{H}$-independent corepresentation.
Since obviously $a_{1d}(e):R^{d}\rightarrow F^{d}$ is the natural epimorphism $\epsilon^{d}$ then

$b_{1d}a_{1d}(e)1=e_{1}\otimes a_{11}^{-1}(\pi_{1}\epsilon^{d})+\cdots+e_{d}\otimes a_{11}^{-1}(\pi_{d}\epsilon^{d})$ .
It follows that the element $a_{11}^{-1}(\pi_{1}\epsilon^{d})$ is $GK_{H}$-independent. Since $e^{*}\in F^{d}$ corre-
sponds to $a_{11}^{-1}(\pi_{1}\epsilon^{d})$ under the isomorphism $(^{*})$ then $e^{*}$ is $G^{s}K^{*}H^{*}$-independent as
we required. Now the proof of the theorem is complete.

REMARK. Another useful (but not functorial) method for the study of inde-
composable modules over one sided serial local rings $R$ with $J(R)^{2}\neq 0$ can be
found in [2, Section 6].

2. Right pure semisimple local rings.

We recall from [9] that a ring $R$ is right pure semisimple if every right
R-module is a direct sum of finitely presented modules. We keep the terminology
and notation introduced in [11] where the reader is also referred for a back-
ground of right pure semisimple rings.

We start with the following technical lemma.

LEMMA 2.1. Let $F,$ $G,$ $H$ be division rings and $FG,$ $FH,$ $GH$ be bimodules
defined in the proof of Theorem 1.2. Then there exists a sequence

$ L_{1}\rightarrow L_{2}u_{1}^{*}\rightarrow\ldots\rightarrow L_{s}\rightarrow^{u_{s}^{*}}L_{s+1}\rightarrow\cdots$

in the category $cr(N)_{N}^{K}$ , such that $L_{t}$ is indecomposable, $u_{t}^{*}$ is a proper mono-
morphism for all $t$ and $L=co\lim L_{t}$ is indecomposable.

PROOF. Let $e^{*},$ $x^{*},$ $y^{*}$ be the elements defined in the proof of Theorem 1.2
and let $L_{s}=(U_{s}, F^{s}, i_{s})$ where $F^{s}$ is the standard s-dimensional vector space over
$F,$ $e_{1},$ $\cdots,$ $e_{s}$ is the standard basis of $F^{s},$ $U_{s}$ is the G-subspace of $V_{s}=F^{s}\otimes_{F}N_{G}$

generated by elements $e_{i}^{*}=e_{i}\otimes e^{*},$ $i=1,$ $\cdots,$
$s$ , and $v_{j}=e_{j}\otimes xe^{*}+e_{j+1}\otimes ye^{*},$ $j=$

$1,$
$\cdots,$ $s-1$ , and $i_{s}$ : $U_{s}\rightarrow V_{s}$ is the inclusion map (comp. [1, Sec. 5]).

By the property (i) in Theorem 1.2 the elements $e_{1}^{*},$
$\cdots,$

$e_{s}^{*}v_{1},$
$\cdots,$ $v_{S-1}$ are

$GKH$-independent and therefore $L_{s}$ is an object of $cr(N)_{N}^{K},$ . The F-linear injec-
tion $u_{s}$ : $F^{s}\rightarrow F^{s+1}$ given by $u_{s}(e_{i})=e_{i+1}$ for $i=1,$ $\cdots$ , $s$ defines a map $u_{s}^{*}:$ $L_{s}\rightarrow L_{s+1}$

because $(u_{s}\otimes 1)(e_{i}^{*})=e_{i+1}^{*}$ and $(u_{s}\otimes 1)(v_{j})=v_{j+1}$ for $1\leqq i\leqq s$ and $1\leqq j\leqq s-1$ .
We recall from the proof of Theorem 1.2 that $FN=F\oplus\cdots\oplus F$. Then for

every $n\in N$ and $f\in F$ we have defined $nf\in N$ and hence we have also defined
$vf\in V_{s}$ for all $v\in V_{s}$ and $f\in F$.
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Now we prove by induction on $s$ that $L_{s}$ is indecomposable by showing that
any nonzero idempotent in the ring End $(L_{s})$ is the identity map. For this pur-
pose we note first that $L_{1}=(e^{*}G, F, i_{1})$ and $L_{S+1}/L_{S}\cong(e^{*}G+x^{*}G, F, i)$ are inde-
composable. Next suppose that $L_{s}$ is indecomposable and let $f^{*}\in End(L_{s+1})$ be a
nonzero idempotent. Since $1-f^{*}$ is also an idempotent and $f^{*}u_{s}\neq 0$ or $(1-f^{*})u_{s}$

$\neq 0$ then we may suppose that $f^{*}u_{s}\neq 0$ . Since $f^{*}$ is given by an F-linear map
$f:F^{s+1}\rightarrow F^{s+1}$ such that $(f\otimes 1)U_{S+1}\subset U_{S+1}$ then

$(f\otimes 1)e_{j}^{*}=e_{i}^{*}g_{1j}+\cdots+e_{s+1}^{*}g_{s+1j}+v_{1}q_{1j}+\cdots+v_{s}q_{sj}$

for $j=1,$ $\cdots,$ $s+1$ , where $g_{ij}=(g_{ij}^{tu}),$ $q_{ij}=(q_{ij}^{tu})$ are matrices in $G^{*}$ with $g_{ij}^{tu},$ $g_{ij}^{tu}\in G^{o}$ .
Since $(f\otimes 1)v_{i}\in U_{s+1}$ for $i=1,$ $\cdots,$

$s$ then

$(^{*})$ $(f\otimes 1)v_{i}=e_{1}^{*}h_{1i}+\cdots+e_{S+1}^{*}h_{s+1i}+v_{1}k_{1i}+\cdots+v_{s}k_{si}$

for some elements $h_{ji}=(h_{ji}^{tu}),$ $k_{ji}=(k_{ji}^{tu})$ in $c*$ with $h_{ji}^{lu},$ $k_{ji}^{lu}\in G^{o}$ . On the other
hand we have

$(^{**})$ $(f\otimes 1)v_{i}=[(f\otimes 1)e_{i}^{*}]x+[(f\otimes 1)e_{i+1}^{*}]y$ .
Now from the comparison of the right side terms in $(^{*})$ and $(^{**})$ we easily con-
clude that

$h_{1i}^{1t}+xk_{1i}^{1t}-g_{1i}^{1l}x-xq_{1i}^{1l}x=g_{Ii+1}^{1l}y+xq_{1i+1}^{1l}y$

for $i=1,$ $\cdots,$ $s$ and $t\geqq 1$ . Since $x\in H^{o}$ then the left side of the above equality
belongs to $H^{o}$ . It follows that $g_{1i+1}^{1l}+xq_{1i+1}^{1t}=0$ because otherwise $y\in H^{o}$ which is
a contradiction. Hence $g_{1i+1}^{1t}=q_{1i+1}^{1t}=0$ for $i=1,$ $\cdots,$ $s,$ $t\geqq 1$ , and $h_{1i}^{It}=k_{1i}^{1t}=0$ for
$i=2,$ $\cdots,$ $s,$ $t\geqq 1$ . It follows that the matrices $g_{1i+1},$ $q_{1i+1},$ $h_{1i},$ $k_{1i}$ for $i\geqq 1$ have
their first rows equal zero and therefore they are zero matrices because they
belongs to $c*$ . Consequently $(f\otimes 1)e_{2}^{*}$ , –, $(f\otimes 1)e_{s+1}^{\star},$ $(f\otimes 1)v_{2},$

$\cdots,$
$(f\otimes 1)v_{s}$ belongs

to $(u_{s}\otimes 1)U_{s}$ and therefore there is a commutative diagram

$0-L_{s}L_{s+1_{*}}\downarrow\overline{f}^{*}\downarrow f\underline{u_{s-}^{*}}L_{s+1}/L_{s}\downarrow\tilde{f}^{*}-0$

$u_{s}^{*}$

$0-L_{s}-L_{S+1}-L_{S+1}/L_{S}-0$ .
Since $L_{s}$ is indecomposable and $\overline{f}^{*}$ is a nonzero idempotent in End $(L_{s})$ then $\overline{f}^{*}$

is the identity map. It follows that $g_{ii}=1$ for $i=2,$ $\cdots,$ $s,$ $g_{ij}=0$ for $i\neq j,$ $ 2\leqq j\leqq$

$s+1,1\leqq i\leqq s+1$ and $q_{ij}=0$ for $i=1,$ $\cdots,$ $s,$ $j=2,$ $\cdots$ $s+1$ . Note also that from
the equality $(f\otimes 1)e_{1}^{*}=e_{1}p_{1}e^{*}+\cdots+e_{S+1}p_{S+1}\otimes e^{*}$ with some $p_{j}\in F$ we easily con-
clude that $g_{j1}^{1l}=q_{j1}^{1l}=0$ for $j\geqq 1$ and $t\geqq 2$ . Then the equality $f^{*2}=f^{*}$ yields $(g_{11}^{11}+$

$xq_{11}^{11})^{2}=g_{11}^{11}+xq_{11}^{11}$ and therefore $q_{11}^{11}=0$ . Hence $q_{11}=0$ because its first row is equal
zero. Now from the comparison of the right side terms in $(^{*})$ and $(^{**})$ for $i=1$
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we easily conclude that

$g_{j1}^{1t}x+yq_{j-11}^{1t}x+xq_{j1}^{1t}x=h_{j1}^{1t}+yk_{j-11}^{1t}+xk_{j1}^{1l}$

for $t\geqq 1,$ $j=3,$ $\cdots$ , $s+1$ (we put $k_{s+11}^{1t}=q_{s+11}^{1l}=0$) and

$g_{21}^{1t}x+xq_{21}^{1l}x=h_{21}^{1l}+yk_{11}^{1l}+xk_{21}^{1t}$ for $t\geqq 2$ ,

$g_{21}^{11}x+xq_{21}^{11}x+y=h_{21}^{11}+yk_{11}^{11}+xk_{21}^{11}$

$g_{11}^{1l}x=h_{11}^{1l}+xk_{11}^{1t}$ for $t\geqq 1$ .

Hence we inductively conclude that $g_{j1}=q_{j-11}=h_{j1}=k_{j-11}=0$ for $j=s+1,$ $s,$ $\cdots$ , 3,
$g_{21}=h_{21}=0,$ $k_{11}^{1l}=0$ for $t\geq 2$ and $k_{11}^{11}=1$ . Now from the last equality above fol-
lows $h_{11}=0,$ $g_{11}^{1t}=0$ for $t\geq 2$ and gll $=1$ . It follows that the idempotent $f*$ is
nonzero. Since $L_{s+1}/L_{S}$ is indecompossable then $f*$ is the identity map and
therefore $f^{*}$ is also the identity map, as we required. Consequently $L_{s+1}$ is
indecomposable. The indecomposability of $L$ can be proved in a similar way

and we leave it to the reader. Then the lemma is proved.

Now we are able to prove a result which shows that the open question $(pss_{R})$

for a one-sided serial local ring $R$ can be reduced to $(pss_{s})$ for a hereditary ring
$S$ discussed in [11, Section 3].

THEOREM 2.2. If $R$ is $a$ one-sided serial local right pure semisimple ring
then either $R$ is both left and right serial or $J(R)^{2}=0$ .

PROOF. Suppose that $R$ is not both left and right serial and that $J(R)^{2}\neq 0$ .
Then by Theorem 1.2 there is a representation equivalence $T:\mathcal{E}(B, F)\rightarrow cr(N)_{N}^{K},$ .
It follows from Lemma 2.1 that there exists a sequence

$ D_{1}\rightarrow^{d_{1}}D_{2}\rightarrow\cdots\rightarrow D_{s}\rightarrow^{d_{s}}D_{s+1}\rightarrow\cdots$

where $D_{i}$ are indecomposable modules in $\mathcal{E}(B, F),$ $d_{i}$ is not bijective for $i\geq 1$ and
$d_{j}d_{j-1}\cdots d_{1}\neq 0$ for any $j$ . On the other hand $R$ is right pure semisimple. Then
by [8, Theorem 6.3] there is an integer $m$ such that $d_{m}d_{m-1}\cdots d_{1}=0$ and we
get a contradiction. Then the theorem is proved.

Now we are able to prove the following result announced in [11, Note Added in
Proof] which answers the question $(pss_{R})$ in affirmative for any local PI-ring $R$ .

COROLLARY 2.3. Let $R$ be a local ring such that the division ring $F=R/J(R)$

is finite dimensional over its center and let $d=\dim_{F}(J(R)/J(R)^{2})$ , $d^{\prime}=$

$\dim(J(R)/J(R)^{2})_{F}$. Then the following conditions are equivalent:
(a) $R$ is of finite representation type,
(b) $R$ is right pure semisimple,
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(c) $R$ is artinian and either $dd^{\prime}=1$ or $J(R)^{2}=0$ and $2\leq dd^{\prime}\leq 3$ .

PROOF. $(a)\rightarrow(b)$ follows from [8, Theorem 6.3] and $(a)\leftrightarrow(c)$ was proved in
[3]. In order to prove that (b) implies (c) we note that by the right pure semi-
simplicity of $R$ and [11, Corollary 3.4] $R$ is right artinian and $R/J(R)^{2}$ is of
finite representation type. It follows that $R$ is one-sided serial because we know
from [3] that $dd^{\prime}\leq 3$ . Now (c) is a consequence of Theorem 2.2 and the proof
is complete.

REMARK 1. An explicite description of indecomposable modules over a local
ring $R$ satisfying the conditions in Corollary 2.3 can be found in [3, Section 2]
(see also [2]).

REMARK 2. The problem $(pss_{R})$ remains open for arbitrary local rings $R$ as
well as for arbitrary hereditary rings $R$ (see [11]).

3. Right pure semisimple factors of hereditary PI-rings.

In this section we give a positive solution of the problem $(pss_{R})$ for schurian
factors of hereditary PI-rings by applying the results on vector space categories
and right peak rings obtained in [5, 13, 14]. We use the terminology and nota-
tion introduced in [14] where the reader is referred for details.

THEOREM 3.1. If $R$ is a right pure semisimple schurian factor of a hereditary
PI-ring then $R$ is of finite representation type.

PROOF. Suppose that $R$ is an indecomposable right pure semisimple schurian
PI-ring. Then $R$ is right artinian. We will prove by induction on the length
$l(R_{R})$ that $R$ is of finite representation type and that the endomorphism ring of
any indecomposable right R-module in $mod (R)$ is a division PI-ring.

The case $l(R_{R})=0$ is obvious. Suppose $l(R_{R})>0$ . Since $R$ is a factor of a
hereditary ring then $R$ has a simple injective right module and therefore there
is a ring isomorphism

$R\cong\left(\begin{array}{ll}F & FM_{s}\\0 & S\end{array}\right)$

where $F$ is a division PI-ring and $FM_{s}$ is an $F-S$-bimodule. Since $l(S_{S})<l(R_{R})$

then by the inductive assumption $S$ is of finite representation type and End $(X_{S})$

is a division PI-ring for any indecomposable module $X_{S}$ in $mod (S)$ .
First we will show that the dimension of $U_{F}^{x}=Hom_{S}(M, X_{S})$ is finite for

any indecomposable module $X_{S}$ in $mod (S)$ . Assume the contrary (i.e. that
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$\dim U_{F}^{X}$ is infinite) and consider the right R-module $C_{R}^{x}$ defined by the triple

$(U_{F}^{x}, X_{S}, v)$ where $v:U_{F}^{X}\otimes_{F}M_{S}\rightarrow X_{S}$ is the S-homomorphism adjoint to the identity

map on $U_{F}^{X}$ . Since $X_{S}$ is indecomposable then $C_{R}^{x}$ is indecomposable. Moreover,

$C_{R}^{x}$ is not finitely generated because $\dim U_{F}^{X}$ is infinite. Hence $R$ is not right

pure semisimple and we get a contradiction.
It follows that the category $K_{FF}=Hom_{S}(M_{S}, mod (S))$ together with the em-

bedding functor $|-|$ : $K_{F}\rightarrow mod (F)$ is a vector space category. Then by the

inductive assumption on $S$ and by [14, Lemma 4.6] the ring RK associated to

$K_{F}$ (see [14, Sec. 3]) is a schurian artinian right peak PI-ring. Hence the as-

sumptions required in [14, Theorem 4.1] are satisfied and therefore there is an

equivalence of categories

$(^{*})$
$mod (R)/[mod(S)]\cong mod_{sp}(D)$

where $D=(R_{K})_{*}$ . Now it follows from the formula following the definition of

the functor $G$ in [14, Sec. 3] that $D$ is an artinian schurian right peak PI-ring.

Moreover, since $R$ is right pure semisimple then by [8, Theorem 6.3] the Jacobson

radical of the category $mod_{sp}(D)$ is indecomposably right T-nilpotent in the sense

that for any sequence of D-homomorphisms

$ X_{1}\rightarrow^{f_{1}}X_{2}-\rightarrow\cdots\rightarrow X_{n}\rightarrow^{f_{n}}X_{n+1}\rightarrow\cdots$

where $X_{i}$ are pairwise nonisomorphic indecomposable modules in $mod_{sp}(D)$ there

is an integer $m$ such that $f_{m}\cdots f_{2}f_{1}=0$ .
Now we are going to prove that the value scheme $(I_{D}, d)$ of $D$ does not

contain as an upper value subscheme one of the value schemes

(a)
$\circ\rightarrow o(d, d^{\prime})dd^{\prime}\geq 4$,

(b) $\circ\rightarrow^{\prime}(d, d)0-o_{l}dd^{\prime}=3$,

(c)
$\circ\rightarrow^{\prime}\ulcorner^{o}(d, d)dd^{\prime}=2$

,

(d)
$\circ\circ\underline{(d,d^{\prime})}\leftarrow^{(e,,e^{\prime})}\circ,$

$2\leq dd^{\prime},$ $ee^{\prime}\leq 3_{f}$

(e)
$Q\rightarrow 0(d, d^{\prime})_{O}\leftarrow 0\leftarrow 0dd^{\prime}=2$ and $\circ-\circ$ means either

$0\rightarrow 0$ or $\circ\leftarrow 0$

(f)
$\circ\rightarrow 0\circ\underline{(d,d^{\prime})}dd^{\prime}=3$,

(g) partially ordered sets of the form $K^{*}$ where $K$ is one of the Kleiner‘s
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[4] critical posets (1, 1, 1, 1), (2, 2, 2), (1, 3, 3), (1, 2, 5), $(N, 4)$ and $K^{*}$ denotes
the enlargement of $K$ by a unique maximal element.

For the definition of the upper value subscheme of a given one the reader
is referred to $[5, 13]$ .

Let $D=P_{1}\oplus\cdots\oplus P_{n}\oplus P_{n+1}$ where $P_{j}$ are indecomposable right ideals of $D$

and $P_{n+1}$ is the right peak of $D$ . We recall that given an upper value subscheme
$(L, d)$ of $(I_{D}, d)$ there is a pair of adjoint functors

$mod_{sp}(D_{L})\rightarrow\leftarrow mod_{sp}(D)T_{L}$

$r_{L}$

where $D_{L}=End(\oplus_{j\in L}P_{j}),$ $r_{L}(-)=Hom_{D}(\oplus_{j\in}{}_{L}P_{j},-)$ and

$T_{L}(-)=Hom_{D_{L}}(Hom_{D}(\oplus_{j\in L}P_{j}, D)$ , -).

The functor $T_{L}$ is full, faithful, reflects isomorphisms and carries over indecom-
posable modules into indecomposable ones. Then, in view of the observation
above, it follows that the Jacobson radical of $mod_{sp}(D_{L})$ is indecomposably right
T-nilpotent for any upper value subscheme $(L, d)$ of $(I_{D}, d)$ . On the other hand
if $(L, d)$ is of one of the forms $(a)-(g)$ except the poset $(N, 4)^{*}$ then by [3]
and [11, Corollary 3.3] the hereditary artinian PI-ring $D_{L}$ is not right pure
semisimple. Hence by [8, Theorem 6.3] theJacobson radical of $mod (D_{L})$ is not
indecomposably right T-nilpotent. This is a contradiction because one can easily
show that for any such value scheme $(L, d)$ the category $mod_{sp}(D_{L})$ is cofinite
in $mod (D_{L})$ in the sense that all but a finite number of indecomposable modules
in $mod (D_{L})$ belongs to $mod_{sp}(D_{L})$ . Now suppose that $(L, d)$ is the poset $(N, 4)^{*}$ .
Applying the Nazarova-Rojter differentiation procedure to $(N, 4)^{*}$ in a finite
number of steps we get a poset of width $\geq 4$ . This means that there exists a
representation equivalence $A\rightarrow mod_{sp}(\Lambda)$ where A is a full additive subcategory
of $mod_{sp}(D_{L})$ and $\Lambda$ is a hereditary PI-ring of the extended Dynkin type

$\circ\sim-0$
$\circ-^{\circ\sim}0$ It follows that the Jacobson radical of the category

$mod_{sp}(\Lambda)$ is indecomposably right T-nilpotent. On the other hand we know from
$[3, 11]$ that $\Lambda$ is not right pure semisimple and therefore by [8, Theorem 6.3]
the Jacobson radical of $mod (\Lambda)$ is not indecomposably right T-nilpotent. This
is a contradiction because $mod_{sp}(\Lambda)$ is obviously cofinite in $mod (\Lambda)$ .

Consequently, $(I_{D}, d)$ does not contain as an upper value subscheme one of
the value schemes $(a)-(g)$ and it follows from [5, Theorem 2] (see also [13,
Theorem 3.1]) that $mod_{sp}(D)$ is of finite representation type. Moreover, it follows
from the proof of [14, Theorem 4.4] that End $(Z)$ is a division PI-ring for any
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indecomposable module $Z$ in $mod_{sp}(D)$ . Hence, using the equivalence $(^{*})$ and the

inductive assumption we easily conclude that $R$ is of finite representation type

and that the endomorphism ring of any indecomposable module in $mod (R)$ is a
division PI-ring. Then the proof is complete.
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