ON CONNECTION ALGEBRAS OF HOMOGENEOUS CONVEX CONES

By

Tadashi Tsuji

§ 1. Introduction.

Let V be a homogeneous convex cone in an n-dimensional vector space X over the real number field \boldsymbol{R}. If the dual cone of V with respect to a suitable inner product on X coincides with V, then V is said to be self-dual. By using the characteristic function of V, we can define a canonical $G(V)$-invariant Riemannian metric g_{V} on V, where $G(V)$ is the Lie group of all linear automorphisms of X leaving V invariant. Let us take a point $e \in V$ and a system of linear coordinates ($x^{1}, x^{2}, \cdots, x^{n}$) on X. Then, a commutative multiplication \square is defined in X by

$$
x^{i}(a \square b)=-\sum_{j, k} \Gamma_{j k}^{i}(e) x^{j}(a) x^{k}(b) \quad(1 \leqq i \leqq n)
$$

for every $a, b \in X$, where $\Gamma_{j k}^{i}$ means the Christoffel symbols for the canonical metric g_{V} with respect to $\left(x^{1}, x^{2}, \cdots, x^{n}\right)$. The structure of the algebra (X, \square) is independent of choosing the point e and the system of linear coordinates $\left(x^{1}, x^{2}, \cdots, x^{n}\right)$. This algebra (X, \square) is called the connection algebra of V (cf. [13], [14]). A commutative (but not necessarily associative) algebra A over \boldsymbol{R} is said to be power-associative if the subalgebra $\boldsymbol{R}[a]$ of A generated by any element $a \in A$ is associative.

The aim of the present note is to prove the following assertion: If the connection algebra of a homogeneous convex cone V is power-associative, then V is self-dual Theorem 1).

It is known that any Jordan algebra over \boldsymbol{R} is power-associative (cf. e.g. [3] or [7]). So, from this, we have the known result by Dorfmeister [2]: A homogeneous convex cone V is self-dual if the connection algebra of V is Jordan. On the other hand, it is known that a commutative power-associative algebra over \boldsymbol{R} having no nilpotent element is Jordan (cf. chap. 5 of [7]). From this, we can see that a power-associative connection algebra is necessarily Jordan. Therefore, the above assertion is contained in [2], but our method used here is Received June 15, 1982.
elementary and quite different from that of [27. In fact, we will start out from the theory of T-algebras developed by E.B. Vinberg and use an identity for a power-associativity condition on a connection algebra. And also, we will make use of the results on the invariant Riemannian connection for the canonical metric obtained in the previous papers [9], [10], [11].

Throughout this note, the same terminologies and notation as those in the author's previous papers will be employed.

§ 2. Preliminaries.

In this section, we will recall the fundamental results on homogeneous convex cones and T-algebras due to Vinberg. Detailed description for them may be found in [12], [13], [14].

Let $\mathfrak{U}=\sum_{1 \leq i, j \leq r} \mathfrak{A}_{i j}$ be a T-algebra of rank r provided with an involutive antiautomorphism *. A general element of $\mathfrak{A}_{i j}$ will be denoted as $a_{i j}$, and also an element of \mathfrak{A} will be denoted like as a matrix $a=\left(a_{i j}\right)$, where $a_{i j}$ is the $\mathfrak{A}_{i j}$ component of $a \in \mathfrak{A}$. From now on, the following notation will be used:

$$
\begin{gather*}
n_{i j}=\operatorname{dim} \mathfrak{A}_{i j} \quad(1 \leqq i, j \leqq r), \\
n_{i}=1+\frac{1}{2} \sum_{1 \leq k<i} n_{k i}+\frac{1}{2} \sum_{i<k \leq r} n_{i k} \quad(1 \leqq i \leqq r), \\
\operatorname{Sp} a=\sum_{1 \leq i \leq r} n_{i} a_{i i} \quad\left(a=\left(a_{i j}\right) \in \mathfrak{U}\right), \\
(a, b)=\mathrm{Sp} a b^{*} \quad(a, b \in \mathfrak{A}) . \tag{2.1}
\end{gather*}
$$

From the axiom of T-algebra (cf. p. 380 in [13]), it follows that the scalar product (,) defined by (2.1) is positive definite and the numbers $\left\{n_{i j}\right\}_{1 \leq i, j \leq r}$ satisfy the following condition:

$$
\begin{equation*}
\max \left\{n_{i j}, n_{j k}\right\} \leqq n_{i k} \tag{2.2}
\end{equation*}
$$

for every triple (i, j, k) of indices $i<j<k$ satisfying $n_{i j} n_{j k} \neq 0$.
Let us define subsets $T=T(\mathfrak{A}), V=V(\mathfrak{H})$ and $X=X(\mathfrak{H})$ of \mathfrak{A} by

$$
T=\left\{t=\left(t_{i j}\right) \in \mathfrak{A} ; t_{i i}>0 \quad(1 \leqq i \leqq r), \quad t_{i j}=0 \quad(1 \leqq j<i \leqq r)\right\}
$$

and

$$
V=\left\{t t^{*} ; t \in T\right\} \subset X=\left\{x \in \mathfrak{A} ; x^{*}=x\right\} .
$$

Then $V=V(\mathfrak{H})$ is a homogeneous convex cone in the real vector space X and T is a connected Lie group which acts linearly and simply transitively on V. Conversely, every homogeneous convex cone is realized in this form up to linear equivalence.

Let $e=\left(e_{i j}\right)$ be the unit element of the Lie group T. Then $e_{i j}=\delta_{i j}$ (Kronecker delta) and $e \in V$. The tangent space $T_{e}(V)$ of V at the point e may be naturally identified with the ambient space X and also with the Lie algebra t of T. On the other hand, the Lie algebra t may be identified with the subspace $\sum_{1 \leq i \leq j \leq r} \mathfrak{A}_{i j}$ of \mathfrak{M} provided with the bracket product: $[a, b]=a b-b a$. A canonical linear isomorphism between t and X is given by

$$
\begin{equation*}
\xi: a \in \mathrm{t}=\sum_{1 \leq i \leq j \leq r} \mathfrak{A}_{i j} \longrightarrow a+a^{*} \in X=T_{e}(V) . \tag{2.3}
\end{equation*}
$$

The canonical Riemannian metric g_{V} at the point e determines an inner product \langle,$\rangle on \mathfrak{t}$ via the isomorphism ξ by

$$
\langle a, b\rangle=g_{V}(e)(\xi(a), \xi(b))
$$

for every $a, b \in \ddagger$. Concerning two inner products (,) and \langle,$\rangle , we have the$ following relations (cf. p. 389, p. 391 and p. 392 in [13]) :

$$
\begin{gather*}
\left\langle a_{i j} b_{j k}, c_{i k}\right\rangle=\left\langle a_{i j}^{*} c_{i k}, b_{j k}\right\rangle=\left\langle a_{i j}, c_{i k} b_{j k}^{*}\right\rangle \quad(1 \leqq i<j<k \leqq r) . \tag{2.5}\\
\left\langle\mathfrak{A}_{i j}, \mathfrak{N}_{k l}\right\rangle=0 \quad((i, j) \neq(k, l)) . \tag{2.6}
\end{gather*}
$$

We now put

$$
\begin{equation*}
e_{i}=\frac{1}{2 \sqrt{n_{i}}} e_{i i} \in \mathfrak{A}_{i i} \quad(1 \leqq i \leqq r) . \tag{2.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|e_{i}\right\|=1 \tag{2.8}
\end{equation*}
$$

Here, $\|a\|$ denotes the norm of an arbitrary element $a \in t$ with respect to the inner product \langle,$\rangle .$

The connection function α and the curvature tensor R for the canonical Riemannian metric g_{v} are described in terms of the Lie algebra t and the inner product \langle,$\rangle as follows (cf. Nomizu [4]) :$

$$
\begin{gathered}
\alpha: \mathfrak{t} \times \mathfrak{t} \longrightarrow \mathfrak{t} \\
2\langle\alpha(a, b), c\rangle=\langle[c, a], b\rangle+\langle a,[c, b]\rangle+\langle[a, b], c\rangle
\end{gathered}
$$

and

$$
R: \mathrm{t} \times \mathrm{t} \times \mathrm{t} \longrightarrow \mathrm{t},
$$

$$
\begin{equation*}
R(a, b, c)=R(a, b) c=\alpha(a, \alpha(b, c))-\alpha(b, \alpha(a, c))-\alpha([a, b], c) \tag{2.9}
\end{equation*}
$$

for every $a, b, c \in \mathrm{t}$. The multiplication \square in X defined in $\S 1$ determines a multiplication O in t via the isomorphism ξ (cf. (2.3)) as follows:

$$
a \circ b=\xi^{-1}(\xi(a) \square \xi(b))
$$

for every $a, b \in \mathrm{t}$. Then it is known that the identity

$$
\begin{equation*}
a \circ b=\frac{1}{2}\left(\xi^{-1}(\xi(a) \xi(b)+\xi(b) \xi(a))\right) \tag{2.10}
\end{equation*}
$$

holds for every $a, b \in t$ (cf. Theorem 3 in p. 389 of [13]). In the present note, the algebra (t, O) thus obtained is called the connection algebra of $V=V(\mathfrak{H})$. It is known in Proposition 1 of Shima [8] that the curvature tensor R has the following expression:

$$
\begin{equation*}
R(a, b, c)=b \circ(a \circ c)-a \circ(b \circ c) \tag{2.11}
\end{equation*}
$$

for every $a, b, c \in t$.

§ 3. Power-associativity.

In this section, (t, O) always denotes the connection algebra of a homogeneous convex cone $V=V(\mathfrak{H})$ in $X(\mathfrak{H})$ given in $\S 2$. By making use of the results obtained in [9], [10] and [11], we will calculate a condition for the connection algebra (t, O) to be power-associative in terms of the curvature tensor R.

It is known in Albert [1] that a commutative algebra ($A, 0$) over \boldsymbol{R} is power-associative if and only if the identity

$$
\begin{equation*}
(a \circ a) \circ(a \circ a)=a \circ(a \circ(a \circ a)) \tag{3.1}
\end{equation*}
$$

holds for every $a \in A$. Therefore, by (2.11) and (3.1), the connection algebra (t, O) is power-associative if and only if the identity

$$
\begin{equation*}
R(a \circ a, a, a)=0 \tag{3.2}
\end{equation*}
$$

holds for every $a \in t$.
From now on, we will prove two lemmas on the necessary conditions for the connection algebra to be power-associative. We first prove the following

Lemma 1. If the connection algebra (\mathfrak{t}, \bigcirc) is power-associative, then the equality $n_{i}=n_{j}$ holds for every pair (i, j) of indices $i<j$ satisfying $n_{i j} \neq 0$.

Proof. By (2.3) and (2.10), we have

$$
\begin{equation*}
a \circ a=\xi^{-1}(\xi(a) \xi(a))=\xi^{-1}\left(\left(a+a^{*}\right)\left(a+a^{*}\right)\right) \tag{3.3}
\end{equation*}
$$

for every $a \in \mathrm{t}$. Putting $a=a_{i j}(\neq 0)$ in (3.3), we have

$$
a \circ a=\frac{1}{2}\left(a_{i j} a_{i j}^{*}+a_{i j}^{*} a_{i j}\right) \in \mathfrak{H}_{i i}+\mathfrak{U}_{j j} .
$$

By (2.4) and (2.7), we have

$$
\left\langle a_{i j} a_{i j}^{*}, e_{i}\right\rangle=4 \operatorname{Sp}\left(\left(a_{i j} a_{i j}^{*}\right) e_{i}\right)=\frac{2}{\sqrt{n_{i}}} \operatorname{Sp}\left(a_{i j} a_{i j}^{*}\right)=\frac{1}{\sqrt{n_{i}}}\left\|a_{i j}\right\|^{2}
$$

and

$$
\left\langle a_{i j}^{*} a_{i j}, e_{j}\right\rangle=\frac{1}{\sqrt{n_{j}}}\left\|a_{i j}\right\|^{2} .
$$

By using the formulas (1) in Lemmas 3.1 or 3.2 of [10] and the formula (2.9), we get

$$
\begin{equation*}
R\left(e_{i}, a_{i j}, a_{i j}\right)=\frac{1}{4}\left\|a_{i j}\right\|^{2}\left(\frac{1}{\sqrt{n_{i} n_{j}}} e_{j}-\frac{1}{n_{i}} e_{i}\right) \tag{3.4}
\end{equation*}
$$

and

$$
R\left(e_{j}, \quad a_{i j}, \quad a_{i j}\right)=\frac{1}{4}\left\|a_{i j}\right\|^{2}\left(\frac{1}{\sqrt{n_{i} n_{j}}} e_{i}-\frac{1}{n_{j}} e_{j}\right) .
$$

Therefore, by the condition (2.8), we have

$$
\begin{aligned}
R(a \circ a, a, a) & =\frac{1}{2}\left(\left\langle a_{i j} a_{i j}^{*}, e_{i}\right\rangle R\left(e_{i}, a, a\right)+\left\langle a_{i j}^{*} a_{i j}, e_{j}\right\rangle R\left(e_{j}, a, a\right)\right) \\
& =\frac{1}{2}\|a\|^{2}\left(\frac{1}{\sqrt{n_{i}}} R\left(e_{i}, a_{i j}, a_{i j}\right)+\frac{1}{\sqrt{n_{j}}} R\left(e_{j}, a_{i j}, a_{i j}\right)\right)
\end{aligned}
$$

From this and (3.2), we get

$$
R(a \circ a, a, a)=\frac{1}{8}\|a\|^{4}\left(\frac{1}{n_{j}}-\frac{1}{n_{i}}\right)\left(\frac{1}{\sqrt{n_{i}}} e_{i}-\frac{1}{\sqrt{n_{j}}} e_{j}\right)=0,
$$

which means $n_{i}=n_{j}$.
q.e.d.

We next show the following

Lemma 2. If the connection algebra (t, \bigcirc) is power-associative, then the following two identities hold:
(1) $\left\|a_{i j}^{*} a_{i k}\right\|^{2}=\frac{1}{2 n_{i}}\left\|a_{i j}\right\|^{2}\left\|a_{i k}\right\|^{2}$
and
(2) $\left\|a_{i k} a_{j k}^{*}\right\|^{2}=\frac{1}{2 n_{k}}\left\|a_{j k}\right\|^{2}\left\|a_{i k}\right\|^{2}$
for every $a_{i j} \in \mathfrak{H}_{i j}, a_{j k} \in \mathfrak{A}_{j k}$ and $a_{i k} \in \mathfrak{A}_{i k}(i<j<k)$.
Proof. We first show the identity (1). Since the equality in (1) holds trivially for the case of $n_{i j} n_{i k}=0$, we may assume that $n_{i j} n_{i k} \neq 0$. By Lemma 1,
we can put $n_{i}=n_{j}=n_{k}=m$. Let us put $a=a_{i j}+a_{i k}$ in (3.3). Then, by (2.3) and (2.10), we have

$$
a \bigcirc a=x_{i i}+x_{j j}+x_{k k}+x_{j k}
$$

where

$$
\begin{gathered}
x_{i i}=\frac{1}{2}\left(a_{i j} a_{i j}^{*}+a_{i k} a_{i k}^{*}\right), \quad x_{j j}=\frac{1}{2} a_{i j}^{*} a_{i j}, \\
x_{k k}=\frac{1}{2} a_{i k}^{*} a_{i k} \quad \text { and } \quad x_{j k}=a_{i j}^{*} a_{i k} .
\end{gathered}
$$

Similarly as in the proof of Lemma 1, we have

$$
\begin{equation*}
x_{i i}=\frac{1}{2 \sqrt{m}}\|a\|^{2} e_{i} \quad \text { and } \quad x_{p p}=\frac{1}{2 \sqrt{m}}\left\|a_{i p}\right\|^{2} e_{p} \quad(p=j, k) . \tag{3.5}
\end{equation*}
$$

We now consider the $\mathfrak{A}_{i i}$-component of $R(a \circ a, a, a)$. Using a well-known identity on the curvature tensor (cf. the formula (1.14) of [11]), we get

$$
\left\langle R(a \circ a, a, a), e_{i}\right\rangle=-\left\langle R\left(a \circ a, a, e_{i}\right), a\right\rangle
$$

From the condition (1.12) of [11] and the formula (2.9), it follows that the identity

$$
\begin{aligned}
R\left(a \circ a, a, e_{i}\right)= & R\left(x_{i i}, a_{i j}, e_{i}\right)+R\left(x_{i i}, a_{i k}, e_{i}\right)+R\left(x_{j j}, a_{i j}, e_{i}\right) \\
& +R\left(x_{k k}, a_{i k}, e_{i}\right)+R\left(x_{j k}, a_{i j}, e_{i}\right)+R\left(x_{j k}, a_{i k}, e_{i}\right)
\end{aligned}
$$

holds. On the other hand, by using Lemmas 1.1 and 2.2 of [9], the formulas (2.9) and (3.5), we obtain the following formulas:

$$
R\left(x_{i i}, a_{i p}, e_{i}\right)=\frac{1}{8 m \sqrt{m}}\|a\|^{2} a_{i p}
$$

and

$$
R\left(x_{p p}, a_{i p}, e_{i}\right)=\frac{-1}{8 m \sqrt{ } m}\left\|a_{i p}\right\|^{2} a_{i p} \quad(p=j, k)
$$

Furthermore, we have

$$
R\left(x_{j k}, a_{i j}, e_{i}\right)=\frac{-1}{4 \sqrt{ } m} a_{i j} x_{j k}=\frac{-1}{4 \sqrt{ } m} a_{i j}\left(a_{i j}^{*} a_{i k}\right)
$$

and

$$
R\left(x_{j k}, a_{i k}, e_{i}\right)=\frac{-1}{4 \sqrt{m}} a_{i k} x_{j k}^{*}=\frac{-1}{4 \sqrt{m}} a_{i k}\left(a_{i k}^{*} a_{i j}\right)
$$

(cf. the condition (1.14) of [11] and the formula used in the proof of Proposition 5.1 of [11]). Hence, from the conditions (2.5) and (2.6), it follows that

$$
\left\langle R(a \circ a, a, a), e_{i}\right\rangle=\frac{1}{2 \sqrt{m}}\left(\left\|a_{i j}^{*} a_{i k}\right\|^{2}-\frac{1}{2 m}\left\|a_{i j}\right\|^{2}\left\|a_{i k}\right\|^{2}\right)
$$

holds. From this, we have the equality (1).
We proceed to showing the equality (2). Similarly as in the above case, we may assume that $n_{j k} n_{i k} \neq 0$ and also we may put $n_{i}=n_{j}=n_{k}=m$. By putting $a=a_{j k}+a_{i k}$, we have

$$
a \circ a=x_{i i}+x_{j j}+x_{k k}+x_{i j},
$$

where

$$
\begin{gathered}
x_{i i}=\frac{1}{2 \sqrt{m}}\left\|a_{i k}\right\|^{2} e_{i}, \quad x_{j j}=\frac{1}{2 \sqrt{m}}\left\|a_{j k}\right\|^{2} e_{j}, \\
x_{k k}=\frac{1}{2 \sqrt{m}}\|a\|^{2} e_{k} \quad \text { and } \quad x_{i j}=a_{i k} a_{j_{k}}^{*} .
\end{gathered}
$$

Similarly as in the above case, we have

$$
\begin{aligned}
R\left(a \circ a, a, e_{k}\right)= & \frac{1}{2 \sqrt{m}}\left\|a_{i k}\right\|^{2} R\left(e_{i}, a_{i k}, e_{k}\right)+\frac{1}{2 \sqrt{m}}\left\|a_{j k}\right\|^{2} R\left(e_{j}, a_{j k}, e_{k}\right) \\
& +\frac{1}{2 \sqrt{ } m}\|a\|^{2}\left(R\left(e_{k}, a_{j k}, e_{k}\right)+R\left(e_{k}, a_{i k}, e_{k}\right)\right) \\
& +R\left(x_{i j}, a_{j k}, e_{k}\right)+R\left(x_{i j}, a_{i k}, e_{k}\right) .
\end{aligned}
$$

By using the following formulas (cf. Lemmas 1.1 and 2.2 of [9] and the condition (2.9)) :

$$
\begin{aligned}
& R\left(e_{i}, a_{i k}, e_{k}\right)=-R\left(e_{k}, a_{i k}, e_{k}\right)=\frac{-1}{4 m} a_{i k}, \\
& R\left(x_{i j}, a_{j k}, e_{k}\right)=\frac{-1}{4 \sqrt{m}} x_{i j} a_{j k}=\frac{-1}{4 \sqrt{m}}\left(a_{i k} a_{j k}^{*}\right) a_{j k}
\end{aligned}
$$

and

$$
R\left(x_{i j}, a_{i k}, e_{k}\right)=\frac{-1}{4 \sqrt{m}} x_{i j}^{*} a_{i k}=\frac{-1}{4 \sqrt{m}}\left(a_{j k} a_{i k}^{*}\right) a_{i k},
$$

we have

$$
\left\langle R(a \circ a, a, a), e_{k}\right\rangle=\frac{1}{2 \sqrt{m}}\left(\left\|a_{i k} a_{j k}^{*}\right\|^{2}-\frac{1}{2 m}\left\|a_{i k}\right\|^{2}\left\|a_{j k}\right\|^{2}\right) .
$$

Therefore, by (3.2), $\left\|a_{i k} a_{j k}^{*}\right\|^{2}=(1 / 2 m)\left\|a_{i k}\right\|^{2}\left\|a_{j k}\right\|^{2}$ holds.
q.e.d.

§ 4. Main result.

In this section, we prove the theorem stated in $\S 1$ by making use of the lemmas obtained in $\S 3$.

We now have the following
Theorem 1. If the connection algebra of a homogeneous convex cone V is power-associative, then V is self-dual.

Proof. By the result of Vinberg [13] recalled in §2, we can assume that V is realized as the cone $V(\mathfrak{A})$ in terms of a T-algebra $\mathfrak{U}={ }_{1 \leq i, j \leq r} \mathfrak{H}_{i j}$. We first show that the equality $n_{i k}=n_{j k}$ holds for every triple (i, j, k) of indices $i<j \neq$ $k \neq i$ satisfying the condition $n_{i j} \neq 0$. In fact, let us consider the case of $i<j<k$. Then, by (1) of Lemma 2, the linear mapping: $x \in \mathfrak{A}_{i k} \rightarrow a_{i j}^{*} x \in \mathfrak{A}_{j k}$ is injective for an arbitrary non-zero element $a_{i j} \in \mathfrak{A}_{i j}$. Hence, we have $n_{i k} \leqq n_{j k}$. Combining this with the condition (2.2), we get the equality $n_{i k}=n_{j k}$. We proceed to the case of $i<k<j$. By (1) and (2) of Lemma 2, we can see that both of the linear mappings:

$$
x \in \mathfrak{A}_{i k} \longrightarrow x^{*} a_{i j} \in \mathfrak{A}_{k j} \quad \text { and } \quad y \in \mathfrak{A}_{k j} \longrightarrow a_{i j} y^{*} \in \mathfrak{A}_{i k}
$$

are injective for every non-zero element $a_{i j} \in \mathfrak{A}_{i j}$. Therefore, we have the equality $n_{i k}=n_{j k}$. Finally, we consider the case of $k<i<j$. Similarly as in the above cases, by using (2) of Lemma 2 we can easily see that the equality $n_{i k}=n_{j k}$ holds in this case. Therefore, the kernel of the T-algebra \mathfrak{A} coincides with \mathfrak{A} (cf. p. 69 of Vinberg [14] or Lemma 2.2 of [11]). On the other hand, it is known in [14] that $V=V(\mathfrak{H})$ is self-dual if and only if the kernel of \mathfrak{A} coincides with \mathfrak{A}. Hence, V is self-dual.
q.e.d.

Several characterizations of homogeneous self-dual cones are known. Combining the result obtained above with them, we can state the following

Theorem 2. For a homogeneous convex cone V in $X=\boldsymbol{R}^{n}$, the following six conditions are equivalent:
(1) The connection algebra of V is power-associative.
(2) V is self-dual.
(3) The connection algebra of V is Jordan.
(4) V is Riemannian symmetric with respect to the canonical metric g_{V}.
(5) The tube domain $D(V)=\left\{z \in \boldsymbol{C}^{n} ; \operatorname{Im} z \in V\right\}$ is Hermitian symmetric with respect to the Bergman metric of $D(V)$.
(6) The level surface of the characteristic function of V is Riemannian symmetric with respect to the metric induced from (V, g_{V}).

In fact, the implications $(2) \rightarrow(3) \rightarrow(1)$ have been proved by [3] and (4) $\rightarrow(2)$ has been obtained in [8], [9] or [11]. It is known in [5], [6] that the conditions (2) and (5) are equivalent and the condition (2) implies the condition (4). The implications $(4) \leftrightarrow(6)$ are found in [10]. By Theorem 1, we have the implication $(1) \rightarrow(2)$ (For (3) $\rightarrow(2)$, see also [2].), and so the conditions stated above are mutually equivalent.

ThEOREM 3. For a homogeneous convex cone V in \boldsymbol{R}^{n} ($n \geqq 2$), the following three conditions are equivalent.
(1) The connection algebra of V is associative.
(2) The curvature tensor for the canonical metric g_{V} is identically zero.
(3) V is linearly isomorphic to the product cone of the half-lines of positive real numbers.

Proof. As was stated in $\S 2$, we can assume that V is realized as the cone $V(\mathfrak{H})$ by means of a T-algebra $\mathfrak{A}=\sum_{1 \leq i, j \leq r} \mathfrak{A}_{i j}$ of rank r. The implications (1) $\leftrightarrow(2)$ follow from the formula due to Shima [8] recalled by (2.11). The condition (3) implies that V is isometric to the product Riemannian manifold of the half-lines of positive real numbers. Hence, we get $(3) \rightarrow(2)$. By the formula (3.4) in the proof of Lemma 1, we can see that the condition (2) implies $n_{i j}=0$ for every pair (i, j) of indices $1 \leqq i<j \leqq r$. Hence, $\mathfrak{U}=\mathfrak{A}_{11}+\mathfrak{A}_{22}+\cdots+\mathfrak{U}_{r r}$. From this and the construction theorem of homogeneous convex cones due to Vinberg [13] recalled in $\S 2$, it follows that the implication $(2) \rightarrow(3)$ holds. q.e.d.

References

[1] Albert, A.A., On the power-associativity of rings, Summa Brasil. Math. 2 (1948), 21-32.
[2] Dorfmeister, J., Inductive construction of homogeneous cones, Trans. Amer. Math. Soc. 252 (1979), 321-349.
[3] Koecher, M., Jordan Algebras and their Applications, Lect. Notes, Univ. of Minnesota, 1962.
[4] Nomizu, K., Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.
[5] Rothaus, O. S., Domains of positivity, Abh. Math. Sem. Univ. Hamburg 24 (1960), 189-235.
[6] Rothaus, O.S., The construction of homogeneous convex cones, Ann. of Math. 83 (1966), 358-376.
[7] Schafer, R.D., An Introduction to Nonassociative Algebras, Acad. Press, New York, 1966.
[8] Shima, H., A differential geometric characterization of homogeneous self-dual cones, to appear.
[9] Tsuji, T., A characterization of homogeneous self-dual cones, to appear in Tokyo J. Math. 5 (1982).
[10] Tsuji, T., On homogeneous convex cones of non-positive curvature, to appear.
[11] Tsuji, T., On infinitesimal isometries of homogeneous convex cones, to appear.
[12] Vinberg, E. B., Homogeneous convex cones, Soviet Math. Dokl. 1 (1961), 787-790.
[13] Vinberg, E.B., The theory of convex homogeous cones, Trans. Moscow Math. Soc. 12 (1963), 340-403.
[14] Vinberg, E.B., The structure of the group of automorphisms of a homogeneous convex cone, Trans. Moscow Math. Soc. 13 (1965), 63-93.

Department of Mathematics
Mie University
Tsu, Mie 514, Japan

