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\S 1. Introduction.

Let $V$ be a homogeneous convex cone in an n-dimensional vector space $X$

over the real number field $R$ . If the dual cone of $V$ with respect to a suit-

able inner product on $X$ coincides with $V$, then $V$ is said to be self-dual. By

using the characteristic function of $V$, we can define a canonical $G(V)$-invariant

Riemannian metric $g_{V}$ on $V$, where $G(V)$ is the Lie group of all linear auto-

morphisms of $X$ leaving $V$ invariant. Let us take a point $e\in V$ and a system

of linear coordinates $(x^{1}, \chi^{2}\cdots, x^{n})$ on $X$. Then, a commutative multiplication

$\square $ is defined in $X$ by

$x^{i}(a\square b)=-\sum_{j.k}\Gamma_{jk}^{i}(e)x^{j}(a)x^{k}(b)$
$(1\leqq i\leqq n)$

for every $a,$ $b\in X$, where $\Gamma_{jk}^{i}$ means the Christoffel symbols for the canonical

metric $g_{V}$ with respect to $(x^{1}, x^{2}, \cdots, x^{n})$ . The structure of the algebra (X, $\square $ )

is independent of choosing the point $e$ and the system of linear coordinates
$(x^{1}, x^{2}, \cdots, x^{n})$ . This algebra (X, $\coprod$ ) is called the connection algebra of $V$ (cf.

[13], [14]). A commutative (but not necessarily associative) algebra $A$ over $R$

is said to be power-associative if the subalgebra $R[a]$ of $A$ generated by any

element $a\in A$ is associative.
The aim of the present note is to prove the following assertion: If the

connection algebra of a homogeneous convex cone $V$ is power-associative, then $V$

is self-dual (Theorem 1).

It is known that any Jordan algebra over $R$ is power-associative (cf. $e.g$ .

[3] or [7]). So, from this, we have the known result by Dorfmeister [2]: A

homogeneous convex cone $V$ is self-dual if the connection algebra of $V$ is Jordan.

On the other hand, it is known that a commutative power-associative algebra

over $R$ having no nilpotent element is Jordan (cf. chap. 5 of [7]). From this,

we can see that a power-associative connection algebra is necessarily Jordan.

Therefore, the above assertion is contained in [2], but our method used here is
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elementary and quite different from that of [ $ 2\rceil$ . In fact, we will start out from
the theory of T-algebras developed by E.B. Vinberg and use an identity for a
power-associativity condition on a connection algebra. And also, we will make
use of the results on the invariant Riemannian connection for the canonical
metric obtained in the previous papers [9], [10], [11].

Throughout this note, the same terminologies and notation as those in the
author’s previous papers will be employed.

\S 2. Preliminaries.

In this section, we will recall the fundamental results on homogeneous con-
vex cones and T-algebras due to Vinberg. Detailed description for them may be
found in [12], [13], [14].

Let $\mathfrak{A}=\sum_{1\leq i.j\leq r}\mathfrak{A}_{if}$ be a T-algebra of rank $r$ provided with an involutive anti-

automorphism $*$ . A general element of $\mathfrak{A}_{ij}$ will be denoted as $a_{ij}$, and also an
element of $\mathfrak{A}$ will be denoted like as a matrix $a=(a_{ij})$ , where $a_{ij}$ is the $\mathfrak{A}_{ij^{-}}$

component of $a\in \mathfrak{A}$ . From now on, the following notation will be used:

$n_{ij}=\dim \mathfrak{A}_{ij}$ $(1\leqq i, j\leqq r)$ ,

$n_{i}=1+\frac{1}{2}\sum_{1\leq k<i}n_{ki}+\frac{1}{2}\sum_{i<k\leq r}n_{ik}$ $(1\leqq i\leqq r)$ ,

Sp $a=\sum_{1\leq i\leq r}n_{i}a_{ii}$
$(a=(a_{ij})\in \mathfrak{A})$ ,

\langle 2.1) $(a, b)=Spab^{*}$ $(a, b\in \mathfrak{A})$ .
From the axiom of T-algebra (cf. p. 380 in [13]), it follows that the scalar

product $(, )$ defined by (2.1) is positive definite and the numbers $\{n_{ij}\}_{1\leq i.j\leq r}$ satisfy

the following condition:

\langle 2.2) $\max\{n_{ij}, n_{jk}\}\leqq n_{ik}$

for every triple $(i, j, k)$ of indices $i<j<k$ satisfying $n_{ij}n_{jk}\neq 0$ .
Let us define subsets $T=T(\mathfrak{A}),$ $V=V(\mathfrak{A})$ and $X=X(\mathfrak{A})$ of $\mathfrak{A}$ by

$T=\{t=(t_{ij})\in \mathfrak{A};t_{ii}>0 (1\leqq i\leqq r), t_{ij}=0 (1\leqq j<i\leqq r)\}$

and
$V=\{tt^{*} ; t\in T\}\subset X=\{x\in \mathfrak{A};x^{*}=x\}$ .

Then $V=V(\mathfrak{A})$ is a homogeneous convex cone in the real vector space $X$ and $T$

is a connected Lie group which acts linearly and simply transitively on $V$ . Con-
versely, every homogeneous convex cone is realized in this form up to linear
equivalence.
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Let $e=(e_{ij})$ be the unit element of the Lie group $T$ . Then $e_{ij}=\delta_{ij}$ (Kronecker

delta) and $e\in V$ . The tangent space $T_{e}(V)$ of $V$ at the point $e$ may be
naturally identified with the ambient space $X$ and also with the Lie algebra $t$ of
$T$ . On the other hand, the Lie algebra $t$ may be identified with the subspace

$\sum_{1\leq i\leq j\leq r}$

$\mathfrak{A}_{ij}$ of $\mathfrak{A}$ provided with the bracket product: $[a, b]=ab-ba$ . A canonical

linear isomorphism between $t$ and $X$ is given by

(2.3) $\xi:a\in t=\sum_{1\leq i\leq j\leq r}\mathfrak{A}_{ij}\rightarrow a+a^{*}\in X=T_{e}(V)$ .

The canonical Riemannian metric $g_{V}$ at the point $e$ determines an inner product
$\langle, \rangle$ on $t$ via the isomorphism $\xi$ by

$\langle a, b\rangle=g_{V}(e)(\xi(a), \xi(b))$

for every $a,$ $b\in t$ . Concerning two inner products $(, )$ and $\langle, \rangle$ , we have the
following relations (cf. p. 389, p. 391 and p. 392 in [13]):

$\langle a_{ij}, b_{ij}\rangle=2(a_{ij}, b_{ij})=2(a_{ij}^{*}, b_{ij}^{*})$ $(1\leqq i<j\leqq r)$ ,
(2.4)

$\langle a_{ii}, b_{ii}\rangle=4(a_{ii}, b_{ii})$ $(1\leqq i\leqq r)$ .
(2.5) $\langle a_{ij}b_{jk}, c_{ik}\rangle=\langle a_{ij}^{*}c_{ik}, b_{jk}\rangle=\langle a_{ij}, c_{ik}b_{jh}^{*}\rangle$ $(1\leqq i<j<k\leqq r)$ .
(2.6) $\langle \mathfrak{A}_{ij}, \mathfrak{A}_{kl}\rangle=0$ $((i, j)\neq(k, 1))$ .

We now put

(2.7) $e_{i}=\frac{1}{2\sqrt{n_{i}}}e_{ii}\in \mathfrak{A}_{ii}$ $(1\leqq i\leqq r)$ .

Then

(2.8) $\Vert e_{i}\Vert=1$ .
Here, $\Vert a\Vert$ denotes the norm of an arbitrary element $a\in t$ with respect to the
inner product $\langle, \rangle$ .

The connection function $\alpha$ and the curvature tensor $R$ for the canonical
Riemannian metric $g_{V}$ are described in terms of the Lie algebra $t$ and the inner
product $\langle, \rangle$ as follows (cf. Nomizu [4]):

$\alpha;t\times 1\rightarrow t$ ,

$ 2\langle\alpha(a, b), c\rangle=\langle[c, a], b\rangle+\langle a, [c, b]\rangle+\langle[a, b], c\rangle$

and
$R:t\times t\times t\rightarrow t$ ,

(2.9) $R(a, b, c)=R(a, b)c=\alpha(a, \alpha(b, c))-\alpha(b, \alpha(a, c))-\alpha([a, b], c)$
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for every $a,$ $b,$ $c\in 1$ . The multiplication $\square $ in $X$ defined in \S 1 determines a
multiplication $\circ$ in $t$ via the isomorphism $\xi$ (cf. (2.3)) as follows:

a $ob=\xi^{-1}(\xi(a)\square \xi(b))$

for every $a,$ $b\in t$ . Then it is known that the identity

(2.10) a $ob=\frac{1}{2}(\xi^{-1}(\xi(a)\xi(b)+\xi(b)\xi(a)))$

holds for every $a,$ $b\in t$ (cf. Theorem 3 in p. 389 of [13]). In the present note,

the algebra $(t, 0)$ thus obtained is called the connection algebra of $V=V(\mathfrak{A})$ . It
is known in Proposition 1 of Shima [8] that the curvature tensor $R$ has the
following expression:

(2.11) $R(a, b, c)=bo$ (a $oc$ ) $-ao(boc)$

for every $a,$ $b,$ $c\in t$ .

\S 3. Power-associativity.

In this section, $(t, 0)$ always denotes the connection algebra of a homogeneous

convex cone $V=V(\mathfrak{A})$ in $X(\mathfrak{A})$ given in \S 2. By making use of the results ob-

tained in [9], [10] and [11], we will calculate a condition for the connection
algebra (\dagger , o) to be power-associative in terms of the curvature tensor $R$ .

It is known in Albert [1] that a commutative algebra $(A, 0)$ over $R$ is
power-associative if and only if the identity

(3.1) (a $oa$ ) $o$ (a $oa$ ) $=ao$ (a $o$ (a $oa)$ )

holds for every $a\in A$ . Therefore, by (2.11) and (3.1), the connection algebra
$(t, 0)$ is power-associative if and only if the identity

(3.2) $R(aoa, a, a)=0$

holds for every $a\in l$ .
From now on, we will prove two lemmas on the necessary conditions for

the connection algebra to be power-associative. We first prove the following

LEMMA 1. If the connection algebra $(t, 0)$ is power-associative, then the

equality $n_{i}=n_{j}$ holds for every pair $(i, j)$ of indices $i<j$ satisfying $n_{ij}\neq 0$ .

PROOF. By (2.3) and (2.10), we have

(3.3) a $oa=\xi^{-1}(\xi(a)\xi(a))=\xi^{-1}((a+a^{*})(a+a^{*}))$

for every $a\in t$ . Putting $a=a_{ij}(\neq 0)$ in (3.3), we have
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a $oa=\frac{1}{2}(a_{ij}a_{ij}^{*}+a_{ij}^{*}a_{ij})\in \mathfrak{A}_{ii}+\mathfrak{A}_{jj}$ .

By (2.4) and (2.7), we have

$\langle a_{ij}a_{ij}^{*}, e_{i}\rangle=4$ Sp $((a_{ij}a_{ij}^{*})e_{i})=\frac{2}{\sqrt{n_{i}}}$ Sp $(a_{ij}a_{ij}^{*})=\frac{1}{\sqrt{n_{i}}}\Vert a_{ij}\Vert^{2}$

and

$\langle a_{ij}^{*}a_{ij}, e_{j}\rangle=\frac{1}{\sqrt{n_{j}}}\Vert a_{ij}\Vert^{2}$ .

By using the formulas (1) in Lemmas 3.1 or 3.2 of [10] and the formula (2.9),

we get

(3.4) $R(e_{i}, a_{ij}, a_{ij})=\frac{1}{4}\Vert a_{ij}\Vert^{2}(\frac{1}{\sqrt{n_{i}n_{j}}}e_{j}-\frac{1}{n_{i}}e_{i})$

and

$R(e_{j}, a_{ij}, a_{ij})=\frac{1}{4}\Vert a_{ij}\Vert^{2}(\frac{1}{\sqrt{n_{i}n_{j}}}e_{i}-\frac{1}{n_{j}}e_{j})$ .

Therefore, by the condition (2.8), we have

$R(aoa, a, a)=\frac{1}{2}(\langle a_{ij}a_{ij}^{*}, e_{\iota}\rangle R(e_{i}, a, a)+\langle a_{ij}^{*}a_{ij}, e_{j}\rangle R(e_{j}, a, a))$

$=\frac{1}{2}\Vert a\Vert^{2}(\frac{1}{\sqrt{n_{i}}}R(e_{i}, a_{ij}, a_{ij})+\frac{1}{\sqrt{n_{j}}}R(e_{j}, a_{ij}, a_{ij}))$ .

From this and (3.2), we get

$R(aoa, a, a)=\frac{1}{8}\Vert a\Vert^{4}(\frac{1}{n_{j}}-\frac{1}{n_{i}})(\overline{\sqrt{}}^{1_{n}}=_{i}e_{i}-\frac{1}{\sqrt{n_{j}}}e_{j})=0$ ,

which means $n_{i}=n_{j}$ . $q.e.d$ .
We next show the following

LEMMA 2. If the connection algebra $(t, \circ)$ is power-associative, then the fol-
lowing two identities hold:

(1) $\Vert a_{ij}^{*}a_{ik}\Vert^{2}=\frac{1}{2n_{i}}\Vert a_{ij}\Vert^{2}\Vert a_{ik}\Vert^{2}$

and

(2) $\Vert a_{ik}a_{jk}^{*}\Vert^{2}=\frac{1}{2n_{k}}\Vert a_{jk}\Vert^{2}\Vert a_{ik}\Vert^{2}$

for every $a_{ij}\in \mathfrak{A}_{ij},$ $a_{jk}\in \mathfrak{A}_{jk}$ and $a_{ik}\in \mathfrak{A}_{ik}(i<j<k)$ .

PROOF. We first show the identity (1). Since the equality in (1) holds tri-
vially for the case of $n_{ij}n_{ik}=0$, we may assume that $n_{ij}n_{ik}\neq 0$ . By Lemma 1,
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we can put $n_{i}=n_{j}=n_{k}=m$ . Let us put $a=a_{ij}+a_{ik}$ in (3.3). Then, by (2.3) and
(2.10), we have

a $oa=x_{ii}+x_{jj}+x_{kk}+x_{jk}$ ,

where

$x_{ii}=\frac{1}{2}(a_{ij}a_{ij}^{*}+a_{ik}a_{ik}^{*})$ , $x_{jj}=\frac{1}{2}a_{ij}^{*}a_{ij}$ ,

$x_{kk}=\frac{1}{2}a_{ik}^{*}a_{ik}$ and $x_{jk}=a_{ij}^{*}a_{ik}$ .

Similarly as in the proof of Lemma 1, we have

(3.5) $x_{ii}=-\frac{1}{2\sqrt m}\Vert a\Vert^{2}e_{i}$ and $x_{pp}=\frac{1}{2\mathcal{F}m}\Vert a_{ip}\Vert^{2}e_{p}$ $(p=], k)$ .

We now consider the $\mathfrak{A}_{ii}$-component of $R(aoa, a, a)$ . Using a well-known
identity on the curvature tensor (cf. the formula (1.14) of [11]), we get

$\langle R(aoa, a, a), e_{i}\rangle=-\langle R(aoa, a, e_{i}), a\rangle$ .
From the condition (1.12) of [11] and the formula (2.9), it follows that the
identity

$R(aoa, a, e_{i})=R(x_{ii}, a_{ij}, e_{i})+R(x_{ii}, a_{ik}, e_{i})+R(x_{jj}, a_{ij}, e_{i})$

$+R(x_{kk}, a_{ik}, e_{i})+R(x_{jk}, a_{ij}, e_{i})+R(x_{jk}, a_{ik}, e_{i})$

holds. On the other hand, by using Lemmas 1.1 and 2.2 of [9], the formulas
(2.9) and (3.5), we obtain the following formulas:

$R(x_{ii}, a_{ip}, e_{i})=\frac{1}{8m\sqrt{m}}\Vert a\Vert^{2}a_{ip}$

and

$R(x_{pp}, a_{ip}, e_{i})=\frac{-1}{8m\sqrt{m}}\Vert a_{ip}\Vert^{2}a_{ip}$ $(p=], k)$ .

Furthermore, we have

$R(x_{jk}, a_{ij}, e_{i})=\frac{-1}{4\sqrt m}a_{ij}x_{jk}=\frac{-1}{4\sqrt{}\overline{m}}a_{ij}(a_{ij}^{*}a_{ik})$

and

$R(x_{jk}, a_{ik}, e_{i})=\frac{-1}{4\sqrt{m}}a_{ik}x_{jk}^{*}=-\frac{-1}{4\sqrt{m}}a_{ik}(a_{ik}^{*}a_{ij})$

(cf. the condition (1.14) of [11] and the formula used in the proof of Proposition
5.1 of [11]). Hence, from the conditions (2.5) and (2.6), it follows that

$\langle R(aoa, a, a), e_{i}\rangle=\frac{1}{2\sqrt{m}}(\Vert a_{ij}^{*}a_{ik}\Vert^{2}-\frac{1}{2m}\Vert a_{ij}\Vert^{2}\Vert a_{ik}\Vert^{2})$



On Connection Algebras of Homogeneous Convex Cones 75

holds. From this, we have the equality (1).

We proceed to showing the equality (2). Similarly as in the above case, we
may assume that $n_{jk}n_{ik}\neq 0$ and also we may put $n_{i}=n_{j}=n_{k}=m$ . By putting
$a=a_{jk}+a_{ik}$ , we have

a $oa=x_{ii}+x_{jj}+x_{kk}+x_{ij}$ ,
where

$x_{ii}=\frac{1}{2\sqrt{m}}\Vert a_{ik}\Vert^{2}e_{i}$ , $x_{jj}=\frac{1}{2\sqrt{m}}\Vert a_{jk}\Vert^{2}e_{j}$ ,

$x_{kk}=\frac{1}{2\sqrt{m}}\Vert a\Vert^{2}e_{k}$ and $x_{ij}=a_{ik}a_{jk}^{*}$ .
Similarly as in the above case, we have

$R(aoa, a, e_{k})=\frac{1}{2\sqrt{m}}\Vert a_{ik}\Vert^{2}R(e_{i}, a_{ik}, e_{k})+\frac{1}{2\sqrt{}\overline{m}}\Vert a_{jk}\Vert^{2}R(e_{:}, a_{jk}, e_{k})$

$+\frac{1}{2\sqrt{m}}\Vert a\Vert^{2}(R(e_{k}, a_{jk}, e_{k})+R(e_{k}, a_{ik}, e_{k}))$

$+R(x_{ij}, a_{jk}, e_{k})+R(x_{ij}, a_{ik}, e_{k})$ .
By using the following formulas (cf. Lemmas 1.1 and 2.2 of [9] and the condi-
tion (2.9)):

$R(e_{i}, a_{ik}, e_{k})=-R(e_{k}, a_{ik}, e_{k})=\frac{-1}{4m}a_{ik}$ ,

$R(x_{ij}, a_{jk}, e_{k})=\frac{-1}{4\sqrt{m}}x_{ij}a_{jk}=\frac{-1}{4\sqrt{m}}(a_{ik}a_{jk}^{*})a_{jk}$

and

$R(x_{ij}, a_{ik}, e_{k})=\frac{-1}{4\sqrt{m}}x_{ij}^{*}a_{ik}=\frac{-1}{4\sqrt{m}}(a_{jk}a_{ik}^{*})a_{ik}$ ,

we have

$\langle R(aoa, a, a), e_{k}\rangle=\frac{1}{2\sqrt{m}}(\Vert a_{ik}a_{jk}^{*}\Vert^{2}-\frac{1}{2m}\Vert a_{ik}\Vert^{2}\Vert a_{jk}\Vert^{2})$ .

Therefore, by (3.2), $\Vert$ a $ ika_{jk}^{*}\Vert^{2}=(1/2m)\Vert$ a $ ik\Vert^{2}\Vert$ $ajk\Vert^{2}$ holds. $q.e.d$ .

\S 4. Main result.

In this section, we prove the theorem stated in \S 1 by making use of the
lemmas obtained in \S 3.

We now have the following

THEOREM 1. If the connection algebra of a homogeneous convex cone $V$ is
power-associative, then $V$ is self-dual.
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PROOF. By the result of Vinberg [13] recalled in \S 2, we can assume that
$V$ is realized as the cone $V(\mathfrak{A})$ in terms of a T-algebra $\mathfrak{A}=\sum_{1\leq i,j\leq r}\mathfrak{A}_{ij}$ . We first

show that the equality $n_{ik}=n_{jk}$ holds for every triple $(i, j, k)$ of indices $ i<j\neq$

$k\neq i$ satisfying the condition $n_{ij}\neq 0$ . In fact, let us consider the case of $i<j<k$ .
Then, by (1) of Lemma 2, the linear mapping: $x\in \mathfrak{A}_{ik}\rightarrow a_{ij}^{*}x\in \mathfrak{A}_{jk}$ is injective

for an arbitrary non-zero element $a_{ij}\in \mathfrak{A}_{ij}$ . Hence, we have $n_{ik}\leqq n_{jk}$ . Combin-
ing this with the condition (2.2), we get the equality $n_{ik}=n_{jk}$ . We proceed to

the case of $i<k<j$ . By (1) and (2) of Lemma 2, we can see that both of the
linear mappings:

$x\in \mathfrak{A}_{ik}\rightarrow x^{*}a_{ij}\in \mathfrak{A}_{kj}$ and $y\in \mathfrak{A}_{kj}\rightarrow a_{ij}y^{*}\in \mathfrak{A}_{ik}$

are injective for every non-zero element $a_{ij}\in \mathfrak{A}_{ij}$ . Therefore, we have the equality
$n_{ik}=n_{jk}$ . Finally, we consider the case of $k<i<j$ . Similarly as in the above
cases, by using (2) of Lemma 2, we can easily see that the equality $n_{ik}=n_{jk}$

holds in this case. Therefore, the kernel of the T-algebra $\mathfrak{A}$ coincides with $\mathfrak{A}$

(cf. p. 69 of Vinberg [14] or Lemma 2.2 of [11]). On the other hand, it is
known in [14] that $V=V(\mathfrak{A})$ is self-dual if and only if the kernel of $\mathfrak{A}$ coincides
with $\mathfrak{A}$ . Hence, $V$ is self-dual. $q.e.d$ .

Several characterizations of homogeneous self-dual cones are known. Com-
bining the result obtained above with them, we can state the following

THEOREM 2. For a homogeneous convex cone $V$ in $X=R^{n}$ , the following six
conditions are equivalent:

(1) The connection algebra of $V$ is power-associative.
(2) $V$ is self-dual.
(3) The connection algebra of $V$ is Jordan.
(4) $V$ is Riemannian symmetric with respect to the canonical metric $g_{V}$ .
(5) The tube domain $D(V)=\{z\in C^{n} ; {\rm Im} z\in V\}$ is Hermitian symmetric with

respect to the Bergman metric of $D(V)$ .
(6) The level surface of the characteristic function of $V$ is Riemannian

symmetric with respect to the metric induced from (V, $g_{V}$).

In fact, the implications (2) $\rightarrow(3)\rightarrow(1)$ have been proved by [3] and (4) $\rightarrow(2)$

has been obtained in [8], [9] or [11]. It is known in [5], [6] that the conditions
(2) and (5) are equivalent and the condition (2) implies the condition (4). The
implications (4) $\leftrightarrow(6)$ are found in [10]. By Theorem 1, we have the implication
(1) $\rightarrow(2)$ (For (3) $\rightarrow(2)$ , see also [2].), and so the conditions stated above are mutually

equivalent.
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THEOREM 3. For a homogeneous convex cone $V$ in $R^{n}(n\geqq 2)$ , the following

three conditions are equivalent.
(1) The connection algebra of $V$ is associative.
(2) The curvature tensor for the canonical metric $g_{V}$ is identically zero.
(3) $V$ is linearly isomorphic to the product cone of the half-lines of positive

real numbers.

PROOF. As was stated in \S 2, we can assume that $V$ is realized as the cone
$V(\mathfrak{A})$ by means of a T-algebra $\mathfrak{A}=\sum_{1\leq i,j\leq r}\mathfrak{A}_{ij}$ of rank $r$ . The implications (1) $\leftrightarrow(2)$

follow from the formula due to Shima [8] recalled by (2.11). The condition (3)

implies that $V$ is isometric to the product Riemannian manifold of the half-lines
of positive real numbers. Hence, we get (3) $\rightarrow(2)$ . By the formula (3.4) in the
proof of Lemma 1, we can see that the condition (2) implies $n_{ij}=0$ for every

pair $(i, $]) of indices $1\leqq i<.i\leqq r$ . Hence, $\mathfrak{A}=\mathfrak{A}_{11}+\mathfrak{A}_{22}+\cdots+\mathfrak{A}_{rr}$ . From this and
the construction theorem of homogeneous convex cones due to Vinberg [13]

recalled in \S 2, it follows that the implication (2) $\rightarrow(3)$ holds. $q.e.d$ .
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