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1. Introduction.

Recently Suszycki [22] defined the notion of multi-retractions on compact

metric spaces and considered interesting properties. The author [15] extended

that notion to the case of metric spaces and announced some properties related

to shape theory. First the notion of multi-retractions resulted from inverses of
CE-maps. But in shape theory we studied various kinds of Vietoris-type maps.

Then in this paper we shall define notions of various multi-valued functions

and consider related topics.
Throughout this paper we assume that all spaces are metrizable and all

maps are continuous. $AR$ and $ANR$ mean those for metric spaces. Dimension

means covering dimension and by $\dim X$ we denote the covering dimension of

a space $X$.
Let $X$ and $Y$ be spaces. By a multi-valued function $\varphi:Y\rightarrow Y$ we mean a

function assigning to each point $x\in X$ a non-empty closed subset $\varphi(x)$ of $Y$ . A

multi-valued function $\varphi:X\rightarrow Y$ is compact if $\varphi(x)$ is compact for every $x\in X$.
A multi-valued function $\varphi:X\rightarrow Y$ is said to be upper semi-continuous (shortly

$u$ . $s$ . $c.$) provided for each point $x\in X$ and for each neighborhood $V$ of $\varphi(x)$ in
$Y$ there exists a neighborhood $U$ of $x$ in $X$ such that $\varphi(U)=\cup\{\varphi(z)|z\in U\}\subset V$ .
For a multi-valued function $\varphi:X\rightarrow Y$ , the graph of $\varphi$ is defined as follows

$\Phi=\{(x, y)\in X\times Y|y\in\varphi(x), x\in X\}$ .
And let $p:\Phi\rightarrow X$ and $q:\Phi\rightarrow Y$ be the natural projections. Then if a multi-

valued function $\varphi:X\rightarrow Y$ is $u.s.c.$ , the graph $\Phi$ of $\varphi$ is closed in $X\times Y$ . More-

over if $\varphi$ is compact, then the natural projection $p:\Phi\rightarrow X$ is a proper map.

For each $n=0,1,2,3,$ $\cdots$ , $\infty$ we say that an $u$ . $s.c$ . compact multi-valued

function $\varphi:X\rightarrow Y$ is a compact n-multi-map (shortly a c-n-multi-map) if $\varphi(x)$ is
$AC^{n}$ (see [3] or [7]) for every $x\in X$. Moreover if $\varphi(x)$ has the trivial shape

(see [3] or [7]) for every $x\in X$, then we simply call a compact multi-map

shortly a c-multi-map.
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It is clear that on compact metric spaces our definition of a $C-\gamma nulti$-map
agrees with Suszycki’s one of a multi-map [22].

A space $X$ is said to be countable dimensional if $X$ can be represented as
the union of a countable number of zero-dimensional subspaces. A space $X$ is
said to have the property $C$ (to be a C-space) if for every sequence $\{\mathfrak{U}_{i}\}_{i\geqq 1}$ of
open covers of $X$ there is a sequence $\{\mathfrak{B}_{i}\}_{i\geq 1}$ of collections of pairwise disjoint
open subsets of $X$ such that family $\bigcup_{i\geqq 1}\mathfrak{B}_{i}$ is a cover of $X$ and $\mathfrak{B}_{i}$ refines $\mathfrak{U}_{i}$ for
each $i\geqq 1$ . The notion of C-spaces was originally defined by Haver [11] and
studied further by Addis and Gresham [1]. It is well-known that a countable
dimensional space is a C-space (see [1] Corollary 2.10 or [2] Lemma 3.3). Hence
it seems to us that the class of all C-spaces is sufficiently wide. But we remark
that by the example of Pol [21] the converse of the assertion is not valid (see
[9] Example 8.18). The property $C$ plays an important part in $ANR$ theory
and shape theory.

We refer readers to [3] and [7] for shape theory.
The author would like to express his thanks to the referee for his valuable

suggestions.

2. Shape morphisms induced by c-multi-maps.

Let $\varphi:X\rightarrow Y$ be a c-multi-map from a C-space $X$ to a space $Y$ . Let $\Phi$ be
the graph of $\varphi$ and let $p:\Phi\rightarrow X$ and $q:\Phi\rightarrow Y$ be the natural projections. Now
$p$ is a CE-map, because $\varphi$ is a c-multi-map. Since $X$ has the property $C$, by
[2] Corollary 5.3, and remarks below the Main Theorem 3.2, $p$ is a hereditary
shape equivalence (see [7] or [17]). Hence we can define a shape morphism
$S(q)\circ S(p)^{-1}$ ; $X\rightarrow Y$ , where $S(f)$ is the shape morphism induced by a map $f$.
Then we shall call $S(q)\circ S(p)^{-1}$ the shape morphism induced by $\varphi$ and denote by
$S(\varphi):X\rightarrow Y$ (cf. [13]).

2.1. THEOREM. Let $\varphi:X\rightarrow Y$ be a c-multi-map from a C-space $X$ to a space
Y. If there exists a map $g:Y\rightarrow X$ such that $y\in\varphi(g(y))$ for every $y\in Y$ , then
$S(\varphi):X\rightarrow Y$ is a shape domination. Therefore $Sh(X)\geqq Sh(Y)$ .

PROOF. Let $\Phi$ be the graph of $\varphi$ and let $p:\Phi\rightarrow X$ and $q:\Phi\rightarrow Y$ be the
natural projections. Define the map $ h:Y\rightarrow\Phi$ by $h(y)=(g(y), y)$ for each $y\in Y$ .
Then $q\circ h=id_{Y}$ . Hence $S(\varphi)\circ(S(p)\circ S(h))=S(q)\circ S(p)^{-1}\circ S(p)\circ S(h)=S(q)\circ S(h)=$

$S(id_{Y})$ . Therefore $S(\varphi)$ is a shape domination.

2.2. COROLLARY. Under the hypothesis of Theorem 2.1 if $X$ satisfies a here-



Various Compact Multi-Retracts and Shape Theory 321

ditary shape preperty $(P)$ , for example, MAR, MANR, movability, $Sd(X)\leqq n,$ $\cdots$ ,

etc, then $Y$ also satisfies $(P)$ .

We shall show that the property $C$ of $X$ is essential in Theorem 2.1 and
Corollary 2.2.

2.3. EXAMPLE. Let $f:Y\rightarrow Q$ be the Taylor’s cell-like map from a non-
movable continuum $Y$ onto the Hilbert cube $Q[23]$ . Then let $X$ be the map-
ping cylinder $(Y\times[0,1]\cup Q)/\sim$ of $f$, where $\sim$ identifies $(y, 1)$ with $f(y)$ for
each point $y\in Y$ . It is clear that $X$ is an FAR. Since $X$ contains $Q$ , by [1]

Corollary 3.3, $X$ is not a C-space. Moreover we define a c-multi-map $\varphi:X\rightarrow Y$

as follows
$\varphi([y, t])=\{y\}$ for every $(y, t)\in Y\times[0,1)$ , and

$\varphi([z])=f^{-1}(z)$ for every $z\in Q$ .
Defining the map $g:Y\rightarrow X$ by $g(y)=[y, 0]$ for every $y\in Y$ , we have that $ y\in$

$\varphi(g(y))$ for every $y\in Y$ . But $Sh(X)\not\leqq Sh(Y)$ , because $Y$ is non-movable.

Let (X, $x_{0}$ ) and $(Y, y_{0})$ be pointed spaces with given base points $x_{0}$ and $y_{0}$ ,

respectively. Then we write $\varphi:(X, x_{0})\rightarrow(Y, y_{0})$ if $\varphi$ is a c-multi-map and $ y_{0}\in$

$\varphi(x_{0})$ . For two c-multi-maps $\varphi_{0},$ $\varphi_{1}$ : $(X, x_{0})\rightarrow(Y, y_{0})$ if there exists a c-multi-map
$x;X\times[0,1]\rightarrow Y$ such that $\chi|X\times\{0\}=\varphi_{0},$ $x|X\times\{1\}=\varphi_{1}$ and $y_{0}\in\chi(x_{0}, t)$ for every
$t\in[0,1]$ , we say that $\varphi_{0}$ and $\varphi_{1}$ are compact multi-homotopic (shortly c-multi-

$m_{c}$

homotopic) and we denote $\varphi_{0}\simeq\varphi_{1}$ . Then we call $\chi$ the compact multi-homotopy
(shortly c-multi-homotopy) connecting $\varphi_{0}$ and $\varphi_{1}$ .

It is clear that the relation of the c-multi-homotopy is an equivalence rela-

tion on the set of all c-muIti-maps from (X, $x_{0}$ ) to $(Y, y_{0})$ . We write $[\varphi]$ the
equivalence class of a c-multi-map $\varphi$ . By $M((X, x_{0}),$ $(Y, y_{0}))$ we denote the set

of all those equivalence classes.
On unpointed spaces we do not require the condition of base point preserv-

ing, thus we can define the notation of unpointed c-multi-homotopy and the set
$M(X, Y)$ of unpointed classes. On compact metric spaces our definition of c-
multi-homotopy agrees with Suszycki’s definition of multi-homotopy [22].

We remark that every two homotopic maps from (X, $x_{0}$) to $(Y, y_{0})$ are c-
multi-homotopic but the converse is not valid (see [22] Example 3.2).

For each $n=0,1,2,$ $\cdots,$
$\infty$ we can similarly define the relation of compact

n-multi-homotopy (shortly c-n-multi-homotopy) of pointed and unpointed c-n-multi-
maps.

2.4. THEOREM. Let $\varphi_{0}$ and $\varphi_{1}$ be c-multi-maps from a C-space $X$ to a space
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$m_{c}$

Y. If $\varphi_{0}\simeq\varphi_{1}$ , then $S(\varphi_{0})=S(\varphi_{1})$ .

PROOF. Let $x;X\times[0,1]\rightarrow Y$ be a c-multi-homotopy connecting $\varphi_{0}$ and $\varphi_{1}$ .
Let $\Phi$ be the graph of $\chi$ and let $p:\Phi\rightarrow X\times[0,1]$ and $q:\Phi\rightarrow Y$ be the natural
projections. Then by [1] Corollary 2.24 $x\times[0,1]$ is a C-space. Hence we can
define the shape morphism $S(\chi)=S(q)\circ S(p)^{-1}$ : $x\times[0,1]\rightarrow Y$ . For $k=0,1$ let
$e_{k}$ : $X\rightarrow X\times[0,1]$ be the embedding defined by $e_{k}(x)=(x, k)$ for each $x\in X$.
Defining $\Phi_{k}=\Phi\cap(X\times\{k\}\times Y)=p^{-1}(X\times\{k\})$ , we can identify the graph of $\varphi_{k}=$

$x\circ e_{k}$ with $\Phi_{k}$ . Since $p$ is a hereditary shape equivalence, $p_{k}=p|\Phi_{k}$ : $\Phi_{k}|X\times$

$\{k\}$ is a shape equivalence and by the definition $S(\varphi_{k})=S(q_{k})\circ S(p_{k})^{-1}\circ S(e_{k})$ :
$X\rightarrow Y$ , where $q_{k}=q|\Phi_{k}$ : $\Phi_{k}\rightarrow Y$ . Let $i_{k}$ : $x\times\{k\}\rightarrow X\times[0,1]$ and $j_{k}$ : $\Phi_{k}\rightarrow\Phi$ be
the inclusion maps. Since $i_{k^{\epsilon}}p_{k}=p\circ j_{k}$ and $i_{k}$ is a shape equivalence, $j_{k}$ is a
shape equivalence. Hence $ S(\varphi_{k})=S(q_{k})\circ S(p_{k})^{-1}\circ S(e_{k})=S(q)\circ S(j_{k})\circ S(j_{k})^{-1}\circ S(p)^{-1}\circ$

$S(i_{k})\circ S(e_{k})=S(q)\circ S(p)^{-1}\circ S(i_{k}\circ e_{k})=S(\chi)\circ S(i_{k}\circ e_{k})$ for each $k=0,1$ . Since $ i_{0^{o}}e_{0}\simeq$

$i_{1}\circ e_{1},$ $S(i_{0}\circ e_{0})=S(i_{1}\circ e_{1})$ . Therefore $S(\varphi_{0})=S(\varphi_{1})$ . We complete the proof of
Theorem 2.4.

$X\times[0,1]\Phi Y\underline{p.}\underline{q}$

$X\rightarrow X\times^{l}\{k\}\Phi_{l}\rightarrow Ye_{\iota\underline{p_{l}}q_{k}}i||j_{l\Vert}$

.

For spaces $X$ and $Y$ we denote the set of all shape morphisms from $X$ to
$Y$ by $Sh(X, Y)$ . If $Y$ is an $ANR$, every shape morphism from $X$ to $Y$ is gen-
erated by a map from $X$ to $Y$ . Hence we have the following.

2.5. COROLLARY. If $X$ is a C-space, for an arbitrary space $Y$ the corre-
spondence $S$ induces a function from $M(X, Y)$ to $Sh(X, Y)$ . Moreover if $Y$ is an
$ANR,$ $S$ is surjective.

Let $\mathcal{O}_{x_{0}}$ ; $(X, x_{0})\rightarrow(X, x_{0})$ be the constant map to $x_{0}$ . We say that (X, $x_{0}$) is

compact multi-contractible (shortly c-multi-contractible) if $\mathcal{O}_{x_{0}}\simeq id_{(X,x_{0})}m_{c}$ . If (X, $x_{0}$)

is c-multi-contractible for every $x_{0}\in X,$ $X$ is simply said to be compact multi-
contractible (shortly c-multi-contractible). For each $n=1,2,$ $\cdots,$

$\infty$ we can simi-
larly define the notation of compact n-multi-contractibility (shortly c-n-multi-
contractibility). In the case of compact metric spaces our definition of c-multi-
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contractibility agrees with Suszycki’s definition of multi-contractibility (see [22]).

2.6. COROLLARY. If C-space $X$ is c-multi-contractible, then $X$ has the trivial

shape. Therefore $X$ is an MAR.

Since there is a c-multi contractible compact space which is not an FAR

(see Remark 4.16 and 4.18), the property $C$ of $X$ is essential in Corollary 2.6.

But it is unknown whether the converse of Corollary 2.6 is valid. We remark

that every FAR c-multi-contractible (see [22] 3.9).

PROBLEM 1. Is every MAR c-multi-contractible?

Next we shall consider the pointed version. Let $\varphi:(X, x_{0})\rightarrow(Y, y_{0})$ be a
pointed c-multi-map from a compact C-space $X$ to a compact space $Y$ . Then

the graph $\Phi$ of $\varphi$ is compact and $(x_{0}, y_{0})\in\Phi$ . Let $p:\Phi\rightarrow X$ and $q:\Phi\rightarrow Y$ be

the natural projections. Then $p(x_{0}, y_{0})=x_{0}$ and $q(x_{0}, y_{0})=y_{0}$ . Since $p$ is a
hereditary shape equivalence, by [8] Theorem 7.10 and Corollary 4.6, $p:(\Phi, (x, y_{0}))$

$\rightarrow(X, x_{0})$ is a fine shape equivalence.*) Hence we can define the fine shape

morphism $S_{f}(q)\circ S_{f}(p)^{-1}$ : $(X, x_{0})\rightarrow(Y, y_{0})$ , where $S_{f}(g)$ is the fine shape morphism

induced by a map $g$ . Then we shall call $S_{f}(q)\circ S_{f}(p)^{-1}$ the fine shape morphism

induced by and denoted by $S_{f}(\varphi):(X, x_{0})\rightarrow(Y, y_{0})$ . By the same way as Theo-

rem 2.1 we can prove the following.

2.7. THEOREM. Let $\varphi:(X, x_{0})\rightarrow(Y, y_{0})$ by a c-multi-map from a compact C-
space $X$ to a compact space Y. If there exists a map $g:(Y, y_{0})\rightarrow(X, x_{0})$ such

that $y\in\varphi(g(y))$ for every $y\in Y$ , then $S_{f}(\varphi):(X, x_{0})\rightarrow(Y, y_{0})$ is a fine shape

domination. Therefore $Sh_{f}(X, x_{0})\geqq Sh_{f}(Y, y_{0})$ , especially $Sh(X, x)\geqq Sh(Y, y)$ .

2.8. COROLLARY. Under the hypothesis of Theorem 2.7 if $X$ satisfies a pointed
hereditary (fine) shape property $(P)$ , for example, pointed FANR, pointed (n-)

movability, fine (n-) movability, $\cdots\cdots$ etc, then $Y$ also satisfies $(P)$ .

By Example 2.3 the property $C$ of $X$ is essential in Theorem 2.7 and Corol-
lary 2.8. By slight modifications using the result of [4], we can prove the

pointed version of Theorem 2.4 and Corollary 2.5. Here we leave readers the

detail of proofs.

2.9. THEOREM. Let (X, $x_{0}$ ) be a pointed compact C-space and $(Y, y_{0})a$

$*)$ Fine shape theory defined in [14] is equivalent to strong shape theory defined in [8].

In this paper we shall use the terminology “ fine shape.”
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pointed compact space. Then the correspondence $S_{f}$ induces a function from
$M((X, x_{0}),$ $(Y, y_{0}))$ to $Sh_{f}((X, x_{0}),$ $(Y, y_{0}))$ , where $Sh_{f}((X, x_{0}),$ $(Y, y_{0}))$ is the set

of all fine shape morphisms from (X, $x_{0}$) to $(Y, y_{0})$ .
Moreover if $Y$ is an $ANR,$ $S_{f}$ is surjective.

For a c-multi-map $\varphi:(S^{n}, s_{0})\rightarrow(X, x_{0})$ , where $X$ is compact, Suszycki also
defined the induced shape morphism $[\underline{a}^{\varphi}]:(S^{n}, s_{0})\rightarrow(X, x_{0})$ (see [22] Theorem
4.4). His method was essentially depend on the infinite-dimensional manifold
theory. But we can easily see that $[\underline{a}^{\varphi}]=S(\varphi)$ . Our method is simpler than
his one and can be applied to the non-compact case.

The author thanks to Dr. K. Sakai for his valuable suggestions to this
section.

3. Algebraic properties of c-n-multi-maps.

In the section 1 under the hypothesis that $X$ is a C-space we considered
(fine) shape morphisms induced by a c-multi-map $\varphi:X\rightarrow Y$ . In this section with-
out dimension-theoritic assumptions we shall consider some algebraic properties
of c-n-multi-maps. Let $\mathfrak{G}$ be the category of groups and homomorphisms.

Let $\varphi:X\rightarrow Y$ be a c-n-multi-map, where $n=0,1,2,$ $\cdots$ , $\infty$ . Let $\Phi$ be the
graph of $\varphi$ and let $p:\Phi\rightarrow X$ and $q:\Phi\rightarrow Y$ be the natural projections. Then $p$

is a proper map and $p^{-1}(x)\in AC^{n}$ for every $x\in X$. For every integer $k,$ $0\leqq k\leqq n$ ,

by Vietoris theorem in shape theory (see [6] or [20]) $p$ induces isomorphisms

$pro-\pi_{k}(p):pro-\pi_{k}(\Phi, (x, y))\cong pro-\pi_{k}(X, x)$ ,

$pro- H_{k}(p):pro- H_{k}(\Phi;G)\cong pro- H_{k}(X;G)$ and

$\check{H}^{k}(p):\check{H}^{k}(X:G)\cong\check{H}^{k}(\Phi;G)$ ,

where $(x, y)\in\Phi$ and $G$ is an abelian groups.

Here for each integer $k,$ $0\leqq k\leqq n$ , we can define homomorphisms

$pro-\pi_{k}(q)\circ pro-\pi_{k}(p)^{-1}$ : $pro-\pi_{k}(X, x)-pro-\pi_{k}(Y, y)$ ,

$pro- H_{k}(q)\circ pro- H_{k}(p)^{-1}$ : $pro- H_{k}(X;G)-pro- H_{k}(Y;G)$ and

$\check{H}^{k}(p)^{-1}\circ\check{H}^{k}(q):\check{H}^{k}(Y;G)-\check{H}^{k}(X, G)$ ,

where $(x, y)\in\Phi$ and $G$ is an abelian groups.

We shall call those compositions homomorphisms induced by $\varphi$ and denote by
$pro-\pi_{k}(\varphi),$ $pro- H_{k}(\varphi)$ and $\check{H}^{k}(\varphi)$ , respectively.
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3.1. THEOREM. Let $\varphi:X\rightarrow Y$ be a c-n-multi-map, where $n=0,1,2,$ $\cdots$ , $\infty$ .
If there exists a map $g:Y\rightarrow X$ such that $y\in\varphi(g(y))$ for all $y\in Y$ , then homo-
morphisms $pro-\pi_{k}(\varphi),$ $pro- H_{k}(\varphi)$ and $\check{H}^{k}(\varphi)$ induced by $\varphi$ are dominations in suit-
able categories.

PROOF. Let $\Phi$ be the graph of $\varphi$ and let $p:\Phi\rightarrow X$ and $q:\Phi\rightarrow Y$ be natural
projections. Difine the map $ h:Y\rightarrow\Phi$ by $h(y)=(g(y), y)$ for each $y\in Y$ . Then
$q\circ h=id_{Y}$ . Hence for every non-negative integer $kpro-\pi_{k}(q),$ $pro- H_{k}(q)$ and $\check{H}^{k}(q)$

are dominations in suitable categories. Therefore for every integer $k,$ $0\leqq k\leqq n$ ,

$pro-\pi_{k}(\varphi),$ $pro- H_{k}(\varphi)$ and $\check{H}^{k}(\varphi)$ are dominations in suitable categories.

At the latter part of this section, unless the contrary is specifically indicated,

we assume that for spaces $X$ and $Y$ there exist a c-n-multi-map $\varphi:X\rightarrow Y$ , where
$n=0,1,2,$ $\cdots$ , $\infty$ , and a map $g:Y\rightarrow X$ such that $y\in\varphi(g(y))$ for every $y\in Y$ .

3.2. COROLLARY. For an integer $k,$ $0\leqq k\leqq n$ , if $X\in AC^{k}$ , then $Y\in AC^{k}$ . And

if $\varphi$ is a $ c-\infty$-multi-map and $X$ is acyclic, then so is $Y$.

3.3. COROLLARY. For an integer $k,$ $1\leqq k\leqq n$ , if $X$ is a pointes $S^{k}$-movable
continuum, then so is $Y$.

PROOF. Since $p$ is a proper map and $q$ is a surjective map, $Y$ is compact.

Moreover by Corollary 3.1 $Y$ is connected. That is, $Y$ is a continuum. Now
we fix any point $y\in Y$ . Then by Theorem 3.1 $pro-\pi_{m}(Y, y)\cong pro-\pi_{m}(X, g(y))$ in
$pro- \mathfrak{G}$ for every $m=1,2,$ $\cdots,$ $n$ and $ m<\infty$ . Since $X$ is pointed $S^{k}$-movable,
$pro-\pi_{k}(X, g(y))$ satisfies the Mittag-Leffler condition. Since $k\leqq n,$ $pro-\pi_{k}(Y, y)$

also satisfies the Mittag-Leffler condition. Then by [16] $(Y, y)$ is pointed $S^{k_{-}}$

movable. Therefore $Y$ is a pointed $S^{k}$-movable continuum.

3.4. COROLLARY. For an integer $k,$ $1\leqq k\leqq n$ , if $pro-\pi_{k}(X, x)$ is stable in
$pro- \mathfrak{G}$ , then so is $pro-\pi_{k}(Y, y)$ for every $y\in\varphi(x)$ .

3.5. COROLLARY. Let $X$ be an FAR. If $\varphi$ is a $ c-\infty$-multi-map and $Y$ is
movable, then $Y$ is also an FAR.

PROOF. Since $X$ is FAR, $X$ is an $AC^{\infty}$ continuum. Hence by Corollary 3.2
and the proof of Corollary 3.3 $Y$ is also an $AC^{\infty}$ continuum. Then if $Y$ is
movable, by [18] $Y$ is an FAR.

3.6. COROLLARY. Let $X$ be an FANR. If $ Fd(Y)<\infty$ and $\varphi$ is a $ c-\infty$-multi-
map, then $Y$ is also an FANR.
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PROOF. By the proof of Corollary 3.3 and Theorem 3.1 $Y$ is compact and
the number of all components of $Y$ is finite. Hence we may assume that $X$ and
$Y$ are continua. Let us fix a point $y\in Y$ . Since (X, $g(y)$ ) is a pointed FANR
by [10], for every $k=1,2,$ $\cdots pro-\pi_{k}(X, g(y))$ is stable in $pro- \mathfrak{G}$ and it $k(X, g(y))$

is a countable group. They by Corollary 3.4 and Theorem 3.1 $pro-\pi_{k}(Y, y)$ is

stable in $pro- \mathfrak{G}$ and $\check{\pi}_{k}(Y, y)$ is a countable group for every $k=1,2,$ $\cdots$ . Hence

since $Fd(Y)<\infty,$ $(Y, y)$ is a pointed FANR (see [5] or [24]). Therefore $Y$ is
an FANR.

3.7. REMARK. By Example 2.3 the movability of $Y$ and the being $ Fd(Y)<\infty$

are essential in Corollary 3.5 and Corollary 3.6, respectively.

4. $m_{c}^{n}- ANR,$ $m_{c}- ANR,$ $m_{c}^{n}- AR$ and $m_{c}- AR$ .
Let $Y$ be a subset of a space $X$. Then a c-n-multi-map $\varphi:X\rightarrow Y$ , where

$n=0,1,2,$ $\cdots,$
$\infty$ , is said to be a compact n-multi-retraction (shortly a c-n-multi-

retraction) of $X$ onto $Y$ provided $y\in\varphi(y)$ for every $y\in Y$ . Similarly we call a
c-multi-map $\varphi:X\rightarrow Y$ a compact multi-retraction (shortly a c-multi-retraction) of $X$

onto $Y$ provided $y\in\varphi(y)$ for every $y\in Y$ . If there exists a c-n-multi-retraction
(resp. c-multi-retraction) of $X$ onto $Y$ , then we say that $Y$ is a compact n-muli-
retract (resp. compact multi-retract) (shortly c-n-multi-retract (resp. c-multi-
retract)) of $X$.

Obviously for every $ 0\leqq n\leqq m\leqq\infty$ every m-multi-retraction of $X$ onto $Y$ is a
c-n-multi-retraction. Every retraction of $X$ onto $Y$ is a c-multi-retraction. If

there exists au $u.s.c$ . compact multi-function $\varphi:X\rightarrow Y$ such that $y\in\varphi(y)$ for
every $y\in Y,$ $Y$ is a closed subset of $X$. Therefore if $Y$ is a c-O-multi-retract
of $X,$ $Y$ is a closed subset of $X$.

Let $Y$ be a subset of $X$. If there exist a neighborhood $U$ of $Y$ in $X$ and

c-n-multi-retraction (resp. c-multi-retraction) $\varphi:U\rightarrow Y$ , then we way that $Y$ is a
neighborhood compact n-multi-retract (resp. neighborhood compact multi-retract)

of $X$.
For $n=0,1,2,$ $\cdots,$

$\infty$ a space $Y$ is said to be an absolute neighborhood com-
pact n-multi-retract (shortly $m_{c}^{n}- ANR$) provided for every space $M$ containing $Y$

as a closed subset $Y$ is a neighborhood compact n-multi-retract of $M$. If for
every space $M$ containing $Y$ as a closed subset $Y$ is a c-n-multi-retract of $M$,

we say that $Y$ is an absolute compact multi-retract (shortly $m_{c}^{n}- ANR$). Similarly

by using notions of a neighborhood compact multi-retract and a compact multi-
retract we can define notions of an absolute neighborhood compact multi-retract
(shortly $m_{c}- ANR$) and an absolute compact multi-retract (shortly $m_{c}- AR$).
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It is easily seen that our definitions are topological invariants. By defini-

tions it is clear that for every $ 0\leqq k\leqq n\leqq\infty$ every $m_{c}^{n}- AR$ (resp. $m_{c}^{n}- ANR$) is an
$m_{c}^{k}- AR$ (resp. $m_{c}^{k}- ANR$) and every $m_{c}- AR$ (resp. $m_{c}- ANR$) is an $m_{c}^{\infty}- AR$ (resp.

$m_{c}^{\infty}- ANR)$ . In the case of compact metric spaces our definitions of $m_{c}- AR$ and
$m_{c}- ANR$ agree with Suszycki’s definitions of m-AR and m-ANR (see [22]).

We easily have following properties, where $n=0,1,2,$ $\cdots$ , $\infty$ (see [22] 2.5-2.8).

4.1. A space $Y$ is an $m_{c}^{n}- AR$ (resp. $m_{c}- AR$) if and only if $Y$ is a c-n-multi-B
retract (resp. c-multi-retract) of every (equivalently some) AR-space $N$ containing
$Y$ as a closed subset.

4.2. A space $Y$ is an $m_{c}^{n}- ANR$ (resp. $m_{c}- ANR$ ) if and only if $Y$ is a neigh-

borhood compact n-multi-retract (resp. neighborhood compact multi-retract) of
every (equivalently some) ANR-space $N$ containing $Y$ as a closed subset.

4.3. A space $Y$ is an $m_{c}^{n}- AR$ (resp. $m_{c}- AR$) if and only if for every closed

subset $X$ of a space $M$ and for every map $f:X\rightarrow Y$ there exists a c-n-multi-map

(resp. c-multi-map) $\varphi:M\rightarrow Y$ such that $f(x)\in\varphi(x)$ for every $x\in X$.

4.4. A space $Y$ is an $m_{c}^{n}- ANR$ (resp. $m_{c}- ANR$ ) if and only if for every

closed subset $X$ of a space $M$ and for every map $f:X\rightarrow Y$ there exist a neigh-

borhood $U$ of $X$ in $M$ and a c-n-multi-map (resp. c-multi-map) $\varphi:U\rightarrow Y$ such that
$f(x)\in\varphi(x)$ for every $x\in X$.

4.5. REMARK. Every $AR$ (resp. $ANR$) is clearly an $m_{c}- AR$ (resp. $m_{c}- ANR$).

In [22] 2.9 Suszycki essentially proved that every c-l-mulri-retract of a locally

connected space is also locally connected. Hence for every $n\geqq 1$ every $m_{c}^{n}- ANR$

is locally connected. On the other hand every continuum is an $m_{n}^{0}- AR$ . Indeed,

for every continuum $Y$ and for every space $M$ containing $Y$ we can define a

c-O-multi-retraction $\varphi:M\rightarrow Y$ by $\varphi(z)=Y$ for every $z\in M$. Similarly every FAR

is an $m_{c}- AR$ . But Suszycki [22] 2.27 showed that there is a l-dimensional

planar FANR which is not an $m_{c}- ANR$ . Indeed, his example is not an $m_{c}^{1}- ANR$

and has the shape of the l-sphere. Therefore notions of $m_{c}^{n}- ANR$ and $m_{c}- ANR$

is not shape invariants.
In the case of non-compact spaces the next problem is still open.

PROBLEM 2. Is it valid that every MAR is an $m_{c}- AR$ ?

Using results of sections 1 and 2 we can easily point out properties of
$m_{c}^{n}- AR,$ $m_{c}^{n}- ANR,$ $m_{c}- AR$ and $m_{c}- ANR$ .
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4.6. If $Y$ is an $m_{c}^{n}- AR$, then $Y\in AC^{n},$ $pro- H_{k}(Y)=0$ in $pro- \mathfrak{G}$ and $\check{H}^{k}(Y)=0$

in $\mathfrak{G}$ for every integer $k,$ $0\leqq k\leqq n$ .
4.7. If $Y$ is an $m_{c}^{n}- ANR$, then $pro-\pi_{k}(Y, y)$ and $pro- H_{k}(Y)$ are stable in

$pro- \mathfrak{G}$ for every $y\in Y$ and every integer $k,$ $1\leqq k\leqq n$ .

4.8. If $Y$ is a compact $m^{n}- ANR,\check{\pi}_{k}(Y, y)$ is countable, and $H_{i}(Y)$ and $\check{H}^{k}(Y)$

are finitely generated for every $y\in Y$ and every integer $k,$ $0\leqq k\leqq n$ . Moreover
if $Y$ is an $m_{c}^{\infty}- ANR,$ $H_{k}(Y)=0=\check{H}^{k}(Y)$ for almost all $k\geqq 1$ .

4.9. Every compact connected $m_{c}^{n}- ANR$ is pointed $S^{k}$-movable for every integer
$k,$ $1\leqq k\leqq n$ . In particular, every compact connected $m_{c}^{n}- ANR(n\geqq 1)$ is pointed

l-movale.

4.10. If $Y$ is a compact $m_{c}^{n}- AR$ and $ Fd(Y)\leqq n<\infty$ , then $Y$ is an FAR.

Therefore for a compactum $Y$ with $Fd(Y)<\infty Y$ is an $m_{c}- AR$ if and only if $Y$

is an FAR.

4.11. Every compact movable $m_{c}- AR$ is an FAR.

4.12. If $Y$ is a compact $m_{c}- ANR$ and $ Fd(Y)<\infty$ , then $Y$ is an FANR.

Related to above proparties following problems remain open.

PROBLEM 3. Does every compact $m_{c}- ANRY$ with $ Fd(Y)<\infty$ have a shape

of a finite polyhedron?

PROBLEM 4. If $Y$ is an $m_{c}- AR$ (resp. $m_{c}- ANR$) and $ Sd(Y)<\infty$ , then is it
valid that $Y$ is an MAR (resp. MANR)?

We remark that by Theorem 2.1, Corollary 2.2 and [12]. Corollary 1 above
problems in the case $\dim Y<\infty$ are valid.

By the same way as [22] 2.10 we can prove the following.

4.13. LEMMA. Let $\varphi:X\rightarrow Y$ be a c-n-multi-map, where $n=0,1,2,$ $\cdots,$
$\infty$ . Let

$g:Y\rightarrow X$ be a map such that $y\in\varphi(g(y))$ for every $y\in Y$ . Then if $X$ is an $AR$

(resp. $ANR$), $Y$ is an $m_{c}^{n}- AR$ (resp. $m_{c}^{n}- ANR$). In particular, if $\varphi$ is a c-multi-
map, then $Y$ is an $m_{c}- AR$ (resp. $m_{c}- ANR$).

4.14. EXAMPLE. For $n=0,1,2,$ $\cdots$ let $S^{n+1}$ be the $(n+1)$-sphere and let
$f:S^{n+1}\rightarrow S^{n+1}$ be a map with $\deg f=2$ . Then let us define $X_{i}=S^{n+1}$ and $f_{i}=f$ :
$X_{i+1}\rightarrow X_{i}$ for every $i=1,2,$ $\cdots$ . Then the inverse limit $X(n)=1\llcorner m\{X_{i}, f_{i}\}$ is the
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$(n+1)$-dimensional dyadic solenoid. Since $X(n)\in AC^{n}$ , then by Lemma 4.12 $X(n)$

is an $m_{c}^{n}- AR$ . But $X(n)$ is not an $m_{c}^{n+1}- ANR$ because $X(n)$ is not $S^{n+1}$-movable.
Therefore an $m_{c}^{n}- AR$ does not always imply an $m_{c}^{n+1}- AR$ .

4.15. EXAMPLE. In the Hilbert cube $Q$ for each $k=1,2,$ $\cdots$ let us define the

k-dimensional sphere

$X_{k}=\{(x_{i})_{i\geq 1}\in Q|\{x_{1}-\frac{2k+1}{2k(k+1)}\}^{2}+x_{2}^{2}+\cdots+x_{k+1}^{2}=\{\frac{1}{2k(k+1)}\}^{2}$ ,

$x_{i}=0$ if $i>k+1\}$ .

Now let us define a continuum $X$ as follws

$X=\{(0,0, \cdots)\}\cup(\bigcup_{k\geq 1}X_{k})$ .

Then for each $n=1,2,$ $\cdots,$
$X_{n}$ is an $ANR$ and $\{(0,0, \cdots)\}\cup(\bigcup_{k\geq n+1}X_{k})$ is an $AC^{n}$

continuum. Hence by Lemma 4.13 $X$ is an $m_{c}^{n}- ANR$ for every $n=0,1,2,$ $\cdots$ .
But $\check{H}_{n}(X)\neq 0$ for every $n\geqq 1$ . Therefore by 4.8 $X$ is not an $m_{c}^{\infty}- ANR$ .

By Example 4.14 and Example 4.15 there are gaps between $m_{c}^{n}- ANR$ and
$m_{c}^{n+1}- ANR$ and between $m_{c}^{n}- ANR$ for every $n\geqq 0$ and $m_{c}^{\infty}- ANR$ . But the follow-

ing is open.

PROBLEM 5. Is there an $m_{c}^{\infty}- ANR$ which is not an $m_{c}- ANR$ ?

4.16. REMARK (Suszycki [22]). Let $f:Y\rightarrow Q$ be the Taylor’s CE-map [23]

(see Example 2.3). Then by Lemma 4.13 $Y$ is an $m_{c}- AR$ . Therefore on pro-

perties 3.10-3.12 our assumptions are essential.

4.17. REMARK. The continuum $X$ in Example 4.15 is an approximative poly-

hedron (see [19]). Therefore we have an approximative polyhedron which is
not an $m_{c}- ANR$ . Conversely the continuum in Remark 4.16 is an $m_{c}- AR$ but

not an approximative polyhedron.

In the proof of [22] 3.8 by using Kuratowski-Wajdyslawski theorem instead

of the embedding theorem of compacta into the Hilbert cube, we have the fol-

lowing.

4.18. Every $m_{c}^{n}- AR$ is c-n-multi-contractible. Every $m_{c}- AR$ is c-multi-con-

tractible.

4.19. Every FAR is c-multi-contractible. Therefore every compact connected
$m_{c}^{n}- ARY$ with $ Fd(Y)\leqq n<\infty$ is c-multi-contractible.
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The converse of 4.19 is partially held by Corollary 2.6 but in general, it is
not valid by Remark 4.16. We notice that the continuum $X(n)$ in Example 4.14
is a $(n+1)$-dimensional $m_{c}^{n}- AR$ which is not c-multi-contractible.

By the same way as [22] 3.12 we have the next result.

4.20. Every c-n-multi-contractible $ANR$ is an $m_{c}^{n}- AR$ . Every c-multi-con-

tractible $ANR$ is an $m_{c}- AR$ .

4.21. Every n-dimensional c-n-multi-contractible $ANR$ , where $n$ is finite, $is$

an $AR$ . If a c-multi-contractible $ANR$ has the property $C$, then it is an $AR$ .

5. Topological operations of $m_{c}^{n}- AR,$ $m_{c}^{n}- ANR,$ $m_{c}- AR$ and $m_{c}- ANR$ .
In [22] Suszycki asked the following problem: Do $m_{c}- AR$ (resp. $m_{c}- ANR$) $-$

spaces are invariant under CE-maps ? We do not know whether his problem is
valid. But by the same way as [22] 2.12 we have its non-compact version.

5.1. THEOREM. Let $g:Y\rightarrow X$ be a CE-map. Let $M$ be an $AR$ containing $X$

as a closed subset. If there exist a neighborhood $U$ of $X$ in $M$ and a c-multi-

retraction $\varphi:U\rightarrow X$ such that $\dim\varphi(z)<\infty$ for every $z\in U$ , then $Y$ is an $m_{c}- ANR$ .
Moreover if $U=M$, then $Y$ is an $m_{c}- AR$ .

5.2. REMARK. On Theorem 5.1 the assumption $\dim\varphi(z)<\infty$ for every
$z\in U$ ’ is necessary to show that

$(^{*})$ $Sh(g^{-1}(\varphi(z)))=Sh(\varphi(z))$ for every $z\in U$ .
Then if we added some assumption for holding $(^{*})$ , by the same way we have

following results.

5.3. COROLLARY. Let $g:Y\rightarrow X$ be a hereditary shape equivalence. If $X$ is
an $m_{c}- AR$ (resp. $m_{c}- ANR$), then $Y$ is also an $m_{c}- AR$ (resp. $m_{c}- ANR$ ).

5.4. COROLLARY. Let $g:Y\rightarrow X$ be a CE-map. If $X$ is a C-space and an $m_{c^{-}}$

$AR$ (resp. $m_{c}- ANR$), then $Y$ is also an $m_{c}- AR$ (resp. $m_{c}- ANR$).

On the other hand for $m_{c}^{n}- AR$ and $m_{c}^{n}- ANR$ we have the following theorem.

5.5. THEOREM. Let $g:Y\rightarrow X$ be a proper map such that $g^{-1}(x)\in AC^{n}$ for
every $x\in X$, where $n=0,1,2,$ $\cdots,$

$\infty$ . If $X$ is an $m_{c}^{n}- AR$ (resp. $m_{c}^{n}- ANR$), then
$Y$ is also an $m_{c}^{n}- AR$ (resp. $m_{c}^{n}- ANR$).
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PROOF. Let $M$ and $N$ be $ARs$ ’ containing $X$ and $Y$ as closed subsets,

respectively. Then $g$ has a continuous extension $\tilde{g}:N\rightarrow M$. Then if $X$ is an
$m_{c}^{n}- ANR$ , there are a neighborhood $U$ of $X$ in $M$ and a c-n-multi-retraction $\varphi$ :
$U\rightarrow X$. Define a neighborhood $V=\tilde{g}^{-1}(U)$ of $Y$ in $N$ and a $u.s.c$ . compact multi-

valued function $\psi:V\rightarrow Y$ as follows

$\psi(z)=g^{-1}(\varphi\circ\tilde{g}(z))$ for every $z\in V$ .
Then $\varphi\circ\tilde{g}(z)\in AC^{n}$ for every $z\in V$ . Hence applying Vietoris theorem in shape

theory (see [6] or [20]) to the restriction $g|\psi(z):\varphi(z)\rightarrow\varphi\circ\tilde{g}(z)$ , we have that
$\psi(z)\in AC^{n}$ for every $z\in V$ . Moreover it is clear that $y\in\psi(y)$ for every $y\in Y$ .
That is, $\psi$ is a c-n-multi-retraction of $V$ onto $Y$ . Therefore, by 4.2, $Y$ is an
$m_{c}^{n}- ANR$ . Similarly we can prove the case $X$ is an $m_{c}^{n}- AR$ .

It is unknow whether the converse of Theorem 5.5 is valid. That is,

PROBLEM 6. Let $g:Y\rightarrow X$ be a proper surjective map such that $g^{-1}(x)\in AC^{n}$

for every $x\in X$. Then if $Y$ is an $m_{c}^{n}- AR$ (resp. $m_{c}^{n}- ANR$), is $X$ an $m_{c}^{n}- AR$ (resp.

$m_{c}^{n}- ANR)$ ?

Next by using the standard way we can easily prove following.

5.6. THEOREM If $X_{t}$ is an $m_{c}^{n}- AR$ (resp. $m_{c}- AR$) for every $i=1,2,$ $\cdots$ , then

the preduct space $\prod_{i\geq 1}X_{i}$ is also an $m_{c}^{n}- AR$ (resp. $m_{c}- AR$).

5.7. THEOREM If $X_{1}$ and $X_{2}$ are $m_{c}^{n}$-ANRs’ (resp. $m_{c}$-ANRs’), then the pro-
duct space $X_{1}\times X_{2}$ is also an $m_{c}^{n}- ANR$ (resp. $m_{c}- ANR$).

Since every single-valued $u.s.c$ . function is continuous, every totally discon-

nected $m_{c}^{0}- ANR$ is an $ANR$ . Hence the Cantor set is not an $m_{c}^{0}- ANR$ . There-

fore we can not generally extend Theorem 5.7 to infinite products.
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