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Introducaion.

In [6], C. Smorynski investigated the properties of models of arithmetic
using the notions of recursive saturation and short recursive saturation. In this
paper, we shall generalize these notions and obtain new isomorphism criteria
(Theorems A and B) and embeddability criteria (Theorems $D$ and E) for count-
able models of arithmetic.

Throughout, $\mathcal{P}_{\llcorner}A$ denotes Peano arithmetic with the induction schema for
all formulas in some finite language $L\supseteqq\{0, ’, +, \}$ . $\Delta_{0}$ denotes the set of all
quantifier bounded formulas in $L$ . Let $M$ and $N$ be countable models of $\mathcal{P}A$

with $M\subseteqq N$. We say $N$ is M-recursively saturated ( $M^{s}$-recursively saturated) if
$N$ realizes every (short) type $\tau$ which is $\Delta_{1}$ on $HF_{M}$ , where $\tau$ may contain
countably many parameters from $M$. It can be easily shown that M-recursive
saturation ( $M^{s}$-recursive saturation) corresponds with (short) recursive saturation,
if $ M=\langle\omega;o, ’, +, \rangle$ . For $A\subseteqq|N|,$ $Df(N, A)$ denotes the set of all elements in
$N$ which are definable in $N$ using parameters from $A$ . We put:

$Th_{M}(N)=$ {$\psi(c_{a_{1}},$ $\cdots,$ $c_{a_{n}}):a_{1},$ $\cdots,$ $a_{n}\in|M|$ and $NF\phi(c_{a_{1}},$ $\cdots$ , $c_{a_{n}})$ },

$Th_{M^{0}}^{\Delta}(N)=$ { $\phi(c_{a_{1}},$ $\cdots,$ $c_{a_{n}}):\psi\in\Delta_{0},$ $a_{1},$ $\cdots,$ $a_{n}\in|M|$ and $NF\psi(c_{a_{1}},$ $\cdots,$ $c_{a_{n}})$ },

$SS_{M^{0}}^{\Delta}(N)=\{X\cap|M|$ : $X$ is a subset of $|N|$ which is definable in $N$ using a
$\Delta_{0}$-formula with parameters from $|N|$ }.

Our main results of this paper are as follows:

THEOREM A. Suppose that $N_{1}$ and $N_{2}$ are M-recursively saturated countable
models of $\mathcal{P}\mathcal{A}$ such that $Th_{M}(N_{1})=Th_{M}(N_{2})$ and $SS_{M}^{\Delta_{0}}(N_{1})=SS_{M}^{\Delta_{0}}(N_{2})$ . Then there
is an isomorphism $f:N_{1}\rightarrow N_{2}$ which is identical on $M$.

THEOREM B. Suppose that $N_{1}$ and $N_{2}$ are $M^{s}$-recursively saturated models of
$\mathcal{P}\mathcal{A}$ such that $Th_{M}^{\Delta_{0}}(N_{1})=Th_{M}^{\Delta_{0}}(N_{2})$ and $SS_{M}^{\Delta_{0}}(N_{1})=SS_{M}^{\Delta_{0}}(N_{2})$ . Suppose that both $N_{1}$

and $N_{2}$ are cofinal extensions of M. Then there is an isomorphism $f:N_{1}\rightarrow N_{2}$
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which is identical on $M$.

THEOREM C. Suppose that $N_{1}$ and $N_{2}$ are countable cofinal extensions of $M$

with $Th_{M}^{\Delta_{0}}(N_{1})=Th_{M}^{\Delta_{0}}(N_{2})$ . Then there are $M^{s}$-recursively saturated elementary

cofinal extensions $N_{1}^{*}$ of $N_{1}$ and $N_{2}^{*}$ of $N_{2}$ such that $SS_{M}^{\Delta_{0}}(N_{1}^{*})=SS_{M}^{\Delta_{0}}(N_{2})$ .

THEOREM D. Suppose that $N_{1}$ and $N_{2}$ are M-recursively saturated countable
models of $\mathcal{P}_{\llcorner}4$ such that $Th_{M}(N_{1})=Th_{M}(N_{2})$ and $SS_{M^{0}}^{\Delta}(N_{1})\subseteqq SS_{M^{0}}^{\Delta}(N_{2})$ . Let $A$ be
an arbitrary definable subset of $|N_{2}|$ such that $ Df(N_{2}, |M|)\cap A=\emptyset$ . Then there
is an elementary embedding $f:N_{1}\rightarrow N_{2}$ which is identical on $M$ and with the
property ran $(f)\cap A=\emptyset$ .

THEOREM E. Suppose that $N$ is an M-recursively saturated countable model
of $\mathcal{P}_{\llcorner}fl$ . Then $N$ is an elementary extension of $M$ if and only if for each element
$b>M$, there is an elementary embedding $f:N_{1}\rightarrow N_{2}$ which is identical on $M$ and
with the property ran$(f)<b$ .

Theorem A is a generalization of C. Smorynski’s result included in [6].
(See Theorem 2.7 in [6], for reference.) Theorem $B$ is very useful and if we
combine this with Theorem $C$ , we have the following result which is closely
related to the General Splitting Theorem. (See Theorem 0.17.)

COROLLARY. Let $N_{1}$ and $N_{2}$ be countable cofinal extensions of M. Then
$Th_{M^{0}}^{\Delta}(N_{1})=Th_{M}^{\Delta_{0}}(N_{2})$ implies $Th_{M}(N_{1})=Th_{M}(N_{2})$ .

Theorems $A,$ $B$ and $C$ will appear in \S 1. In theorem $D$ if $A=[b, d]=$

$\{c:b\leqq c\leqq d\}$ , we can choose $f$ so that ran $(f)$ is cofinal with $N$. Theorem $E$ is
an analogy of the result of [4]. Theorems $D$ and $E$ will appear in \S 3.

\S $0$ . Preliminaries.

Throughout this paper, we use the same symbol for a structure and its
universe. $M,$ $N$, and $N_{i}(i=1,2, \cdots)$ are used to denote structures and we
usually assume that $M$ is a substructure of $N$ or $N_{i}(i=1,2, \cdots)$ . Elements of
$M$ are denoted by $a,$ $a_{i}(i=1,2, \cdots)$ and elements of $N$ or $N_{i}(i=1,2, \cdots)$ are
denoted by $b,$ $d,$ $e,$ $b_{i},$ $d_{i},$ $e_{i}(i=1,2, \cdots)$ .

First of all, we introduce two notions M-recursiveness and M-recursive satu-
ration. The former is a generalization of recursivehess and first introduced by

J. Barwise. The latter is a generalization of recursive saturation. To explain
these notions, we need the notion of hereditarily finite set over M. (See [1],
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for reference.)

0.1. DEFINITION. Let $A$ be a set. Then $HF_{A}$ is the set of hereditarily

finite sets over $A$ . The explicit definition is as follows:

$HF_{A}(0)=\emptyset$,
$HF_{A}(n+1)=the$ set of all finite subset of $HF_{A}(n)\cup A$,
$HF_{A}=the$ union of all $HF_{A}(n)s$ .

If $A$ is the empty set, we omit $A$ in the above definitions. If $M$ is a structure,
$HF_{M}$ denotes the structure $(M;HF_{M}, \in)$ .

0.2. DEFINITION. Let $L\subseteqq HF$ be a finite language and $M$ an L-structure.
Then $L(M)$ is the language obtained from $L$ by the addition of new constant
$ c_{a}=\langle a, \emptyset\rangle$ for each $a\in M$. $i$ . $e.$ ,

$L(M)=L\cup\{\langle a, \emptyset\rangle:a\in M\}$ .

0.3. DEFINITION. Let $A$ be a subset $ofHF_{M}$ . Then

i) $A$ is M-recursive iff $A$ is $\Delta_{1}$ on $HF_{M}$ ,
ii) $A$ is M-recursively enumerable iff $A$ is $\Sigma_{1}$ on $HF_{M}$ .

We denote the set of all formulas formulated in $L(M)$ by $L(M)^{*}$ . $L(M)^{*}$

is clearly an M-recursive subset of $HF_{M}$ .

0.4. DEFINITION. Let $M$ and $N$ be structures for a finite language $L$ such
that $M\subseteqq N$. Let $\tau(x, y_{1}, \cdots, y_{n})$ be a subset of $L(M)^{*}$ and $b_{1},$

$\cdots,$
$b_{n}$ elements

of $N$. Then we say $\tau(x, c_{b_{1}}, \cdots , c_{b_{n}})$ is an $L(M)$-type over $N$ if it is finitely

satisfiable in $(N, b)_{b\in N},$ $i.e.$ ,

$(N, b)_{b\in N}\}=\exists xW\tau_{0}(x, c_{b_{1}}, \cdots, c_{b_{n}})$ ,

for every finite subset $\tau_{0}$ of $\tau$ . An $L(M)$-type $\tau(x, c_{b_{1}}, \cdots, c_{b_{n}})$ over $N$ is said
to be an M-recursive type (M-recursively enumerable type) if $\tau(x, y_{1}, \cdots, y_{n})$ is
M-recursive (M-recursively enumerable).

0.5. DEFINITION. Let $M$ and $N$ be as above. Then we say $N$ is M-recur-
sively saturated if every M-recursive type over $N$ is realized in $N$.

The following theorem can be easily obtained by the elementary chain con-
struction. (See, $e.g.,$ $[6]$ for reference.)

0.6. THEOREM. Let $M$ and $N$ be structures for a finite language $L$ with
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$M\subseteqq N$. Then there is an M-recursively saturated elementary extension $N^{*}$ of $N$

having the same cardinality as $N$.

The following theorem will give us some information concerning the rela-

tion between recursive saturation and M-recursive saturation.

0.7. THEOREM. If $N$ is M-recursively saturated, then $N$ is recursively satu-

rated.

PROOF. It is clear that $\omega\subseteqq HF$ , and a subset $A$ of $\omega$ is recursive iff it is
$\Delta_{1}$ on HF. Since HF is $\Delta_{1}$ on $HF_{M}$ , every recursive set is $\Delta_{1}$ on $HF_{M}$ . Thus
every recursive type $\tau$ over $N$ is realized in $N$, if $N$ is M-recursively saturated. $\square $

It is well-known that if $N$ is recursively saturated, then $N$ realizes every

recursively enumerable type over $N$. The following theorem is a generalization

of this fact and the idea of the proof is analogous to that of Theorem 4.13
of [2].

0.8. THEOREM. If $N$ is M-recursively saturated, then $N$ realizes every
M-recursively enumerable type over $N$.

PROOF. Let $ c_{x}=\langle x, \emptyset\rangle$ be an M-recursive function which gives a new con-
stant of $L(M)^{*}$ corresponding to $x\in M$. Let sub $(x)$ be an M-recursive function
defined on $L(M)^{*}$ which gives the set of subformulas of $x$ . Using these func-
tions, we define three formulas $Eq(x),$ $And(x)$ and H-And $(x)$ by:

$Eq(x)=x$ is a sentence of the form $c_{y}=c_{y}$ for some $y$ “,

And$(x)=Eq(x)\vee$ $x$ is the sentence $\forall v_{0}(v_{0}=v_{0})$
“

$v\exists y,$ $z\in sub(x)$ ( $\urcorner Eq(y)\wedge$ $x$ is the sentence $y\wedge z$ ),

H-And$(x)=And(x)\wedge\forall y\in sub(x)H- And(y)$ .

Clearly, they are $\Delta_{1}$-formulas of set theory. Next we define a function $f$ by:

$f(c_{a}=c_{a})=a$ ,
$ f(\forall v_{0}(v_{0}=v_{0}))=\emptyset$ ,
$f(x\wedge y)=f(x)\cup\{f(y)\}$ .

Then ran$(f)=HF_{M}$ , and $f$ can be expressed by a $\Delta_{1}$-formula. Let $\tau(x, c_{b_{1}}, \cdots, c_{b_{n}})$

be an M-recursively enumerable type over $N$ and let $\exists zD(y, z)$ be a $\Sigma_{1}$-formula
which defines $\tau(x, y_{1}, \cdots, y_{n})$ on $HF_{M}$ . Let $D^{*}(x)$ denote the following $\Delta_{1}$-formula:

$\exists y,$ $ z\in sub(x)(D(y, f(z))\wedge$ $x$ is the sentence $y\wedge z\wedge H- And(z))$ .
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Then $D^{*}$ defines a certain set $\tau^{*}(x, y_{1}, \cdots, y_{n})\subseteqq L(M)^{*}$ on $HF_{M}$ . Evidently,
$\tau^{*}(x, c_{b_{1}}, \cdots, c_{b_{n}})$ is an M-recursive type over $N$ and it is realized by some $b\in N$.
Now it is clear this $b$ also realizes $\tau(x, c_{b_{1}}, \cdots, c_{b_{n}})$ in N. $\square $

In the remainder of this paper, we shall concentrate on the study of count-

able models of $\mathcal{P}\mathcal{A}$ . We fix some finite language $L\subseteqq HF$ which contains $0,1$ ,

$+,$ $\cdot$ We assume that $\mathcal{P}A$ is formulated in $L,$ $i$ . $e.,$
$\mathcal{P}\mathcal{A}$ is a l-st order Peano

arithmetic with the induction schema for every formula of L. $M,$ $N$ and $N_{i}$

$(i=1,2, \cdots)$ are used to denote countable models of $\mathcal{P}_{\llcorner}A$ . We usually identify

$(N, b)_{b\in N}$ with $N$ itself.

0.9. DEFINITION. Let $M\subseteqq N$. Then we say:

i) $N$ is an end extension of $M(M\subseteqq eN)$ iff every element of $N$ which is
less than some element of $M$ actually belongs to $M$,

ii) $N$ is a confinal extension of $M(M\subseteqq cN)$ iff for each element $b\in N$, there
is an element $a\in M$ such that $b<a$ .

$M\prec eN$ and $M\prec cN$ mean the elementary end extension and the elementary

cofinal extension, respectively.

0.10. DEFINITION. Let $M\subseteqq N$. Then:

i) $N$ is M-short iff there is an element $b\in N$ such that every element $d\in N$

is less than some $e\in N$ which is definable with parameters from $M\cup\{b\}$ . $N$ is
M-tall iff $N$ is not M-short.

ii) An $L(M)$-type $\tau(x, c_{b_{1}}, \cdots, c_{b_{n}})$ over $N$ is short iff $\tau$ contains a formula
of the form $x<c_{b}$ for some $b\in M\cup\{b_{1}, \cdots , b_{n}\}$ .

iii) $N$ is $M^{s}$-recursively saturated iff $N$ realizes every short M-recursive type.

0.11. DEFINITION. A function $\ulcorner\urcorner M*:L(M)\rightarrow M$ is called a coding function
of $L(M)^{*}$ if it suffices the following conditions:

i) $\ulcorner_{*}\neg M$ is one-one and M-recursive,
ii) $\ulcorner\psi^{\neg M}>^{\ulcorner}\psi_{0^{\neg M}}$ for every $\phi\in L(M)^{*}$ and every subformula $\phi_{0}$ of $\phi$ .

Coding functions do exist. Moreover, if $M\subseteqq N,$ $\ulcorner\neg M*$ can be taken as a
restriction of $\ulcorner*\neg N$ to $L(M)^{*}$ . In this context, we usually write $\ulcorner_{*}\neg$ instead of
$\ulcorner_{*}\neg M$

0.12. DEFINITION. Let $M\subseteqq N$, $A\subseteqq N$ and $\Gamma\subseteqq L(M)^{*}$ . Then $SS_{M}^{\Gamma}(N, A)$ is
the set which is defined by:
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$SS_{H}^{\Gamma}(N, A)=\{X\cap M:X$ is a subset of $N$ which is definable in $N$ using a
$\Gamma$-formula with parameters from $A$}. If $\Gamma=L(M)^{*}$ we omit it, if $A=N$ we
omit it, if $A=N$ we omit it. If $Y\subseteqq L(M)^{*}$, we use the expression $Y\in*SS_{H}(N)$

to denote the relation: There is a set $Y^{*}\in SS_{H}(N)$ such that $Y=\{\phi:\ulcorner\phi^{\urcorner}\in Y^{*}\}$ .
It is clear that if there is an element $b>M,$ $SS_{M}(N)$ and $SS_{u^{\Delta_{0}}}(N)$ determine

the same set.

0.13. DEFINITIONN. Let $M\subseteqq N$ and $\Gamma\subseteqq L(M)^{*}$ . Then we put:

i) $Th_{H}(N)=\{\phi\in L(M)^{*} : NF\phi\}$ ,
ii) $Th_{H}^{\Gamma}(N)=$ { $\phi(c_{a_{1}},$ $\cdots,$ $c_{a_{n}}):a_{1},$ $\cdots$ , $a_{n}\in M,$ $\phi\in\Gamma$ and $NF\phi(c_{a_{1}},$ $\cdots,$ $c_{a_{n}})$ }.

0.14. DEFINITION. Let $\Gamma$ be a subset of $L(M)^{*}$ . A formula $Tr_{\Gamma}(x, y)$ is
said to be a truth definition for $\Gamma$ in $M$ if for each $\phi(x_{1}, \cdots , x_{n})\in\Gamma$ and each
$a\in M$,

$MFTr_{\Gamma}(\ulcorner\phi^{\urcorner}, c_{a})\leftrightarrow\phi((c_{a})_{1}, \cdots, (c_{a})_{n})$ ,

where $(x)_{y}$ is the y-th index of the binary expansion of $x$ .
$\Delta_{0}(M)$ is the set of formulas in $L(M)^{*}$ which have only bounded quantifiers.

$\Sigma_{n}(M)$ is the set of formulas in $L(M)^{*}$ which have form $\exists x_{1}\forall x_{2}\exists x_{3}\forall x_{4}\cdots Q_{n}x_{n}\phi$,

where $\phi$ is a formula in $\Delta_{0}(M)$ . It can be easily shown that there is a truth
definition for $\Sigma_{n}(M)$ in $M$ for each $ n\in\omega$ . The reader who is not familiar with
the properties of truth definitions can refer to \S 3 of Chapter 1 in [8].

0.15. DEFINITION. Let $M$ be a common submodel of $N_{1}$ and $N_{2}$ . Then:

i) A partial function $f:N_{1}\rightarrow N_{2}$ is said to be IM-identical iff $f$ is identical
on $M$,

ii) A partial function $f:N_{1}\rightarrow N_{2}$ is said to be a partial elementary embedding
iff $f$ is a restriction of some elementary embedding $g:N_{1}\rightarrow N_{2}$ ,

iii) $Emb(N_{1}, N_{2} ; M)=the$ set of M-identical elementary embeddings of $N_{1}$

into $N_{2}$ . P-Emb$(N_{1}, N_{2} ; M)=the$ set of partial M-identical elementary embed-
dings of $N_{1}$ into $N_{2}$ such that $dom(f)-M$ is finite. Isom$(N_{1}, N_{2} ; M)=the$ set of
M-identical isomorphisms of $N_{1}$ onto $N_{2}$ .

Before beginning the study of models of arithmetic, we must state the
Elementary Splitting Theorem and the General Splitting Theorem. The latter
is, of course, an extension of the former.

0.16. THEOREM. (ELEMENTARY SPLITTING THEOREM) Let $M\prec N$. Then
there is another model $M^{*}$ such that $M\prec cM^{*}\prec eN$.
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0.17. THEOREM. (GENERAL SPLITTING THEOREM BY GAIFMAN) Let $N$ be a
$\Delta_{0}$-elementary extension of $M$. Then there is another model $M^{*}$ such that
$M\prec cM^{*}\subseteqq eN$.

\S 1. Isomorphism conditions.

In \S 0 we showed that if $N$ is M-recursively saturated, it realizes every
M-recursively enumerable type. In case $N$ is a model of arithmetic, the follow-
ing more useful result holds. The proof is almost the same as that of Theorem
1.12 of [6].

1.1. PROPOSITION. Suppose that $N$ is M-recursively saturated ( $M^{s}$-recursively
saturated). Then every (short) $L(M)$-type $\tau(x, c_{b_{1}}, \cdots , c_{b_{n}})\in^{*}SS_{M}(N)$ is realized
in $N$.

This proposition will be used freely without any mention. The following
theorem is also a generalization of C. Smorynski’s result included in [6].

1.2. THEOREM. Suppose that $N_{1}$ and $N_{2}$ are M-recursively saturated. Then
the following three conditions are equivalent:

i) Isom $(N_{1}, N_{2} ; M)\neq\emptyset$ ,
ii) $Th_{M}(N_{1})=Th_{M}(N_{2})$ and $SS_{M}(N_{1})=SS_{M}(N_{2})$ ,

iii) $Th_{M}(N_{1})=Th_{M}(N_{2})$ and $SS_{M^{0}}^{\Delta}(N_{1})=SS_{M^{0}}^{\Delta}(N_{2})$ .

The following example shows that Theorem 1.2 fails if we assume only the
$M^{s}$-recursive saturation of $N_{1}$ and $N_{2}$ .

1.3. REMARK. Let $M$ be an arbitrary model of $\mathcal{P}A$ . Then there are non-
isomorphic elementary extensions $N_{1}$ and $N_{2}$ of $M$ such that

i) $N_{1}$ and $N_{2}$ are $M^{s}$-recursively saturated, and
ii) $SS_{M}(N_{1})=SS_{M}(N_{2})$ .
The existence of such $N_{1}$ and $N_{2}$ can be shown by the method similar to

the one used in the proof of Theorem 3.9 in [5]. In spite of Remark 1.3, the
following form of isomorphism conditions hold.

1.4. THEOREM. Suppose that $N_{1}$ and $N_{2}$ are cofinal extensions of M. If $N_{1}$

and $N_{2}$ are $M^{s}$-recursively saturated, the following three conditions are equivalent:

i) Isom $(N_{1}, N_{2} ; M)\neq\emptyset$,
ii) $Th_{M}(N_{1})=Th_{M}(N)$ and $SS_{M}(N_{1})=SS_{M}(N_{2})$ ,
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iii) $Th_{M^{0}}^{\Delta}(N_{1})=Th_{M^{0}}^{\Delta}(N_{2})$ and $SS_{M}^{\Delta_{0}}(N_{1})=SS_{M}^{\Delta_{0}}(N_{2})$ .

RROOF. The implications $i$ ) $\Rightarrow ii$ ) and $i$ ) $\Rightarrow iii$ ) are immediate. The proofs of
the implications $ii$ ) $\Rightarrow i$ ) and iii) $\Rightarrow i$ ) are similar and so we prove only the implica-

tion $iii$ ) $\Rightarrow i$). Let $N_{1}-M=\{b_{i}\}_{i\in\omega},$ $N_{2}-M=\{d_{i}\}_{i\in\omega}$ . We construct partial iso-
morphisms $f_{n}$ by induction so that for all $ n\in\omega$,

a) $f_{n}\subseteqq f_{n+1},$ $dom(f_{n})\supseteqq M\cup\{b_{i}\}_{i<n}$ and ran $(f_{n})\supseteqq M\cup\{d_{i}\}_{i<n}$ ,

b) for every $\phi(x_{1}, \cdots, x_{m})\in\Delta_{0}(M)$ and every $e_{1},$ $\cdots,$ $e_{m}\in dom(f_{n})$ , if $N_{1}|=$

$\phi(c_{e_{1}}, \cdots, c_{e_{m}})$ then $N_{2}F\phi(c_{f_{n}(e_{1})}, \cdots , c_{f_{n}(e_{m})})$ .

We put $f_{0}=id_{M}$ . Then $f_{0}$ satisfies the condition b) by the assumption $Th_{M^{0}}^{\Delta}(N_{1})$

$=Th_{M^{0}}^{\Delta}(N_{2})$ . We assume that $f_{n}$ is already defined. We shall specify the image

of $b_{n}$ and the inverse image of $d_{n}$ . Let $\tau(x, y_{1}, \cdots, y_{m})=\{\phi\in\Delta_{0}(M):N_{1}\}=$

$\phi(c_{b_{n}}, c_{b_{1}^{\prime}}, \cdots, c_{b_{m}^{\prime}})\}$ , where $\{b_{1}^{\prime}, \cdots, b_{m}^{\prime}\}=dom(f_{n})-M$. Choose $a$ from $M$ with
$a>b_{n}$ and $\phi_{0},$ $\cdots$ , $\phi_{p}\in\tau$ . Then $\exists x<c_{a_{i4p}}\backslash X/\phi_{i}(x, c_{b_{1}^{\prime}}, \cdots, c_{b_{m}^{\prime}})$ holds in $N_{1}$ , so by

the induction hypothesis, $\exists x<c_{a}W_{p}\phi_{i}(xl\xi c_{f_{n}(b_{1}^{\prime})}, \cdots, c_{f_{n}(b_{m}^{\prime})})$ holds in $N_{2}$ . This

shows that $\tau(x, c_{f_{n}(b_{1}^{\prime})}, \cdots, c_{f_{n}(b_{m}^{\prime})})$ is a short $L(M)$-type over $N_{2}$ . Since there
is truth definition for $\Delta_{0}(M)$ -formulas, $\tau(x, c_{f_{n}(b_{1}^{\prime})}, \cdots, c_{f_{n}(b_{m}^{\prime})})\in*SS_{M}^{\Delta_{0}}(N_{2})$ . So
that this type is realized by some $d^{*}\in N_{2}$ . In the same way we choose $b^{*}\in N_{1}$

corresponding to $d_{n}$ . Finally, we put $f_{n+1}=f_{n}\cup\{\langle b_{n}, d^{*}\rangle, \langle b^{*}, d_{n}\rangle\}$ . Then $f=$

$\bigcup_{n\in\omega}f_{n}$ is the desired isomorphism. $\square $

1.5. COROLLARY. Suppose that $N_{1}$ and $N_{2}$ are $M^{s}$-recursively saturated ex-
tensions of $\lrcorner lf$ uith $T/\iota_{M^{0}}^{\Delta}(N_{1})=Th_{M}^{\Delta_{0}}(N_{2})$ and $M\subseteqq_{c}N_{1}$ . If $N_{1}$ and $N_{2}$ satisfy the
condition:

$SS_{M^{0}}^{\Delta}(N_{1})=SS_{M^{0}}^{\Delta}(N_{2}, N_{2}^{*})$ ,

then there is an M-identical isomorphism $f$ of $N_{1}$ onto $N_{2}^{*}$ , where $N_{2}^{*}=\{b\in N_{2}$ : $b$

is less than some $a\in M$}.

As mentioned earlier, if $M\subseteqq N$, then $N$ can be elementarily extendable to an
M-recursively saturated model. Now we state some theorems concerning about
extendability.

1.6. THEOREM. Suppose that $N$ is M-tall (M-short). Then there is an
eleynentary cofinal extension $N^{*}$ of $N$ such that $N^{*}$ is M-recursively satrated
(respectively, $M^{s}$-recursively saturated).

PROOF. Let $N^{\prime}$ be an M-recursively saturated elementary extension of $N$.
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Then, using the Elementary Splitting Theorem, we have $N^{*}$ such that $N\prec cN^{*}$

$\prec_{e}N^{\prime}$ . This $N^{*}$ is the desired one. $\square $

1.7. THEOREM. Let $N_{1},$ $N_{2}\supseteqq M$. Theu there are M-recursively saturated
elementary extensions $N_{1}^{*}$ of $N_{1}$ and $N_{2}^{*}$ of $N_{2}$ such that $SS_{M}(N_{1}^{*})=SS_{M}(N_{2}^{*})$ .

1.8. THEOREM. Suppose that $N_{1}$ and $N_{2}$ are cofinal extensions of $M$ with
$Th_{M^{0}}^{\Delta}(N_{1})=Th_{M^{0}}^{\Delta}(N_{2})$ . Then there are $M^{s}$-recursively saturated elementary cofinal
extensions $N_{1}^{*}$ of $N_{1}$ and $N_{2}^{*}$ of $N_{2}$ such that $SS_{M}^{\Delta_{0}}(N_{1}^{*})=SS_{M}^{\Delta_{0}}(N_{2}^{*})$ .

The proofs of the above two theorems are similar. So we give a proof

only for the one that seems more difficult.

PROOF OF THEOREM 1.8. Let $SS_{M}^{\Delta_{0}}(N_{1})=\{X_{i}\}_{i\in\omega}$ and $C=\{c_{j}\}_{i\in\omega}$ (a set of
new constants). For each $X_{i}$ , choose $\phi_{i}\in\Delta_{0}(M),$ $b_{i}\in N_{1}$ and $a_{i}\in M$ such that
$X_{i}=\{a\in M:N_{1}FTr_{0}(\ulcorner\phi^{\neg}, \langle b_{i}, c_{a}\rangle)\}$ and $\langle^{\ulcorner}\phi_{i^{\neg}}, b_{i}\rangle<a_{i}$ , where $Tr_{0}$ is a truth defini-
tion for $\Delta_{0}(M)$-formulas. We put $T=Th_{N_{2}}(N_{2})\cup\bigcup_{i\in\omega}\{Tr_{0}((c_{i})_{1}, \langle(c_{i})_{2}, c_{a}\rangle):a\in X_{i}\}$

$\cup\bigcup_{i\in\omega}\{\urcorner Tr_{0}((c_{i})_{1}, \langle(c_{i})_{2}, c_{a}\rangle):a\not\in X_{i}\}\cup\bigcup_{i\in\omega}\{c_{i}<c_{a_{i}}\}$ . Clearly $T$ is a consistent

theory. Let $N_{2}^{\prime}$ be a model of $T$ . Then $N_{2}^{\prime}$ is an elementary extension of $N_{2}$

with $SS_{M^{0}}^{\Delta}(N_{1})\subseteqq SS_{M^{0}}^{\Delta}(N_{2}^{\prime})$ . By the Elementary Splitting Theorem, there is another
model $N_{2}^{\prime\prime}$ such that $N_{2}\prec N^{\prime\prime}$ and $SS_{M^{0}}^{\Delta}(N_{1})\subseteqq SS_{M^{0}}^{\Delta}(N_{2}^{\prime\prime})$ . Now we extend $N_{2}^{\prime\prime}$ to

an $M^{s}$-recursively saturated model $N_{2}^{0}$ so that $N_{2}\prec N^{0}$ and $SS_{M^{0}}^{\Delta}(N_{1})\subseteqq SS_{M^{0}}^{\Delta}(N_{2}^{0})$ .
Next we construct an $M^{s}$-recursively saturated extension $N_{1}^{0}$ of $N_{1}$ so that
$N_{1}\prec N^{0}$ and $SS_{M}^{\Delta_{0}}(N_{2}^{0})\subseteqq SS_{M}^{\Delta_{0}}(N_{1}^{0})$ . Iterating these constructions, we obtain ele-
mentary chains $\{N_{1}^{t}\}_{i\in\omega}$ and $\{N_{2}^{i}\}_{i\in\omega}$ such that for each $ n\in\omega$,

a) $N_{1}^{n}$ and $N_{2}^{n}$ are $M^{s}$-recursively saturated,
b) $N_{1}^{n}\prec N^{n+1}$ and $N_{2}^{n}\prec N^{n+1}$ ,

c) $SS_{M^{0}}^{\Delta}(N_{1}^{n})\subseteqq SS_{M}^{\Delta_{0}}(N_{2}^{n+1})$ and $SS_{M^{0}}^{\Delta}(N_{2}^{n})\subseteqq SS_{M^{0}}^{\Delta}(N_{1}^{n+1})$ .

Finally we put $N_{1}^{*}=\bigcup_{i\in\omega}N_{1}^{i}$ and $N_{2}^{*}=\bigcup_{i\in\omega}N_{2}^{i}$ . It is a routine to check that $N_{1}^{*}$

and $N_{2}^{*}$ have the desired properties. $\square $

Now we apply our results.

1.9. THEOREM. Let $N_{1}$ and $N_{2}$ be cofinal extensions of M. Then $Th_{M}^{\Delta_{0}}(N_{1})$

$=Th_{M^{0}}^{\Delta}(N_{2})$ implies $Th_{M}(N_{1})=Th_{M}(N_{2})$ .

PROOF. Applying Theorem 1.8, we can construct two models $N_{1}^{*}$ and $N_{2}^{*}$

such that
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a) $N_{1}^{*}$ and $N_{2}^{*}$ are $M^{s}$-recursively saturated,

b) $N_{1}\prec N^{*}$ and $N_{2}\prec cN_{2}^{*}$,

c) $SS_{M^{0}}^{\Delta}(N_{1}^{*})=SS_{M^{0}}^{\Delta}(N_{2}^{*})$ .
Then, by Theorem 1.4, we have

d) Isom $(N_{1}^{*}, N_{2}^{*} ; M)\neq\emptyset$ .
From this and b), it follows that $Th_{M}(N_{1})=Th_{M}(N_{2})$ . $\square $

1.10. COROmARY. Let $N_{1}$ and $N_{2}$ be extensions of $M$ such that $Th_{M}^{\Delta_{0}}(N_{1})=$

$Th_{M}^{\Delta_{0}}(N_{2})$ . Let $N_{i}^{*}=$ { $b\in N_{i}$ : $b$ is less than some $a\in M$ } $(i=1,2)$ . Suppose that
$N_{1}^{*}$ and $N_{2}^{*}$ are models of $PA$ . Then $Th_{M}(N_{1}^{*})=Th_{M}(N_{2}^{*})$ .

PROOF. Since $N_{i}^{*}\subseteqq N$ $(i=1,2)$ , we have $Th_{u^{\Delta_{0}}}(N_{i})=Th_{u^{\Delta_{0}}}(N_{i}^{*})$ $(i=1,2)$ .

Hence $Th_{M^{0}}^{\Delta}(N_{1}^{*})=Th_{M^{0}}^{\Delta}(N_{2}^{*})$ . By the above theorem, we have the desired prop-
erty. $\square $

The reader should note that we used only the Elementary Splitting Theorem

to prove Theorem 1.9 and Corollary 1.10. Corollary 1.10 is closely related to

the General Splitting Theorem. But Corollary 1.10 is neither stronger nor weaker

than the General Splitting Theorem.

\S 2. Embeddability Conditions.

In this section, we shall give some theorems concerning embeddability. The

main tool of this section is again the back and forth method and so we usually

omit the details of the proofs

2.1. DEFINITION. Let $A$ be a structure and $B$ a subset of $A$ . Then

$Df(A, B)$ is the set defined by:

$Df(A, B)=$ { $a\in A:$ $a$ is definable in $A$ with parameters from $B$}.

2.2. PROPOSITION. Let $A$ and $B$ as above. Then:

i) $B\subseteqq Df(A, B)$ ,

ii) $Df(A, B)=Df(A, Df(A, B))$ .

First we state a useful lemma, which is interesting of itself.

2.3. LEMMA. Let $N_{1}$ and $N_{2}$ be M-recursively saturated elementary exten-

sions of $M$ with $SS_{M}(N_{1})\subseteqq SS_{M}(N_{2})$ . Suppose that $A$ is a definable subset of $N_{2}$

such that $A\subseteqq N_{2}-M$. Then for each $f\in P- Emb(N_{1}, N_{2} ; M)$ with $Df(N_{2}, ran(f))$
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$\cap A=\emptyset$, and each $b\in N_{1}$ , there is an extension $f^{*}\in P- Emb(N_{1}, N_{2},\cdot M)$ of $f$ such
that $dom(f^{*})=dom(f)U\{b\}$ and $Df(N_{2}, ran(f^{*}))\cap A=\emptyset$ .

PROOF. Suppose that $dom(f)=M\cup\{b_{1}, \cdots, b_{n}\}$ and $\tau(x, x_{1}, \cdots, x_{n})=t\phi(x$ ,
$x_{1},$ $\cdots,$ $x_{n}$ ) $\in L(M)^{*}:$ $N_{1}F\phi(c_{b}, c_{b_{1}}, \cdots , c_{b_{n}})$ }. Then for each finite subset $\tau_{0}$ of
$\tau$, the sentence $\exists x/X\backslash \tau_{0}(x, c_{J^{(b_{1})}}, \cdots, c_{f(b_{n})})$ holds in $N_{2}$ . Moreover, if $F_{1},$ $\cdots$ , $F_{m}$

are $L(M)$-Skolem functions, the following sentence also holds in $N_{2}$ :

$\exists x(\mathfrak{R}^{\urcorner}\alpha(F_{i}(xic_{f(b_{1})}, \cdots, c_{f(b_{n})}))\wedge/X\backslash \tau_{0}(x, c_{f(b_{1})}, \cdots, c_{f(b_{n})}))$ ,

where $\alpha$ is the defining formula of $A$ in $N_{2}$ . Hence the set $\tau(x, c_{f(b_{1})}, \cdots, c_{f(b_{n})})$

$\cup$ { $\urcorner\alpha(F(x,$
$c_{f(b_{1})},$ $\cdots,$ $c_{f(b_{n})}):F$ an $L(M)$-Skolem function} is an $L(M)$-type over

$N_{2}$ and is realized by some $d\in N_{2}$ . If we put $f^{*}=f\cup\{\langle b, d\rangle\}$ , then $f^{*}$ is the
desired partial elementary embedding. $\square $

2.4. THEOREM. Let $N_{1},$ $N_{2},$ $M$ and $A$ be as in the above lemma. Then there
is an elementary embedding $f\in Emb(N_{1}, N_{2} ; M)$ such that $Df(N_{2}, ran(f))\cap A=\emptyset$ .

PROOF. Let $N_{2}-M=\{b_{i}\}_{i\in\omega}$ . We construct partial elementary embeddings
$f_{n}\in P- Emb(N_{1}, N_{2} ; M)$ by induction so that for all $ n\in\omega$,

a) $dom(f_{n})=M\cup\{b_{i}\}_{i<n}$ ,

b) $Df(N_{2}, ran(f_{n}))\cap A=\emptyset$ .
We put $f_{0}=id_{M}$ and assume that $f_{n}$ is already defined. Using the above lemma,
we take $f_{n+1}\in P- Emb(N_{1}, N_{2} ; M)$ so that $dom(f_{n+1})=dom(f_{n})\cup\{b_{n}\}$ . Then $f=$

$\bigcup_{n\in\omega}f_{n}$ is the desired elementary embedding. $\square $

2.5. COROLLARY. Let $N$ be a $\Delta_{0}$-elementary extension of $M$ and suppose that
$N$ is M-recursively saturated. Then the following i) and ii) are equivalent:

i) $N$ is an elementary extension of $M$,
ii) For each $b>M$, there is an elementary embedding $f\in Emb(N, N;M)$

such that ran$(f)<b$ .

PROOF. The implication $i$ ) $\Rightarrow ii$ ) is immediate by the above theorem. We
shall prove only the implication $ii$) $\Rightarrow i$). Suppose that $N$ is not an elementary

extension of $M$. We only have to show that there is an element $b\in Df(N, M)$

with $b>M$. By way of contradiction, we assume that there is no such element.
Then, by the General Splitting Theorem, $Df(N, M)$ must be an elementary

cofinal extension of $M$. Since $Df(N, M)\prec N$ is clear, we have $M\prec N$. This is a
contradiction. $\square $
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In Corollary 2.5 we assumed that $N$ is a $\Delta_{0}$-elementary extension of $M$. The
author doesn’t know whether this assumption can be eliminated or not.

2.6. THEOREM. Let $N$ be M-recursively saturated and suppose that $M<b<d$ .
If $Df(N, M)\cap[b, d]=\emptyset$, then there is an elementary embedding $f\in Emb(N, N;M)$

such that:

i) ran $(f)\cap[b, d]=\emptyset$,

ii) ran $(f)$ is cofinal with $N$.

To prove Theorem 2.6, we need the following lemma.

2.7. LEMMA. Let $N$ be an M-recursively saturated extension of M. Suppose

that $M<b<d$ and $Df(N, M\cup\{e_{1}, \cdots, e_{n}\})\cap[b, d]=\emptyset$ . Then there is an arbitrarily
large element $e$ such that $Df(N, M\cup\{e, e_{1}, \cdots , e_{n}\})\cap[b, d]=\emptyset$ .

PROOF. Let $e^{*}\in N$ be an arbitrary element. Define the set $\tau(x)$ by:

$\tau(x)=$ { $\urcorner(b\langle F(x,$ $e_{1},$ $\cdots,$ $e_{n})<d):F$ an $L(M)$-Skolem $function$} $U\{x>e^{*}\}$ .
It is sufficient to prove that $\tau(x)$ is an M-recursive type over $N$. The M-recur-
siveness of $\tau(x)$ is clear and so we prove that $\tau(x)$ is finitely satisfiable in $N$.
By way contradiction, assume that there are $L(M)$-Skolem functions $F_{1},$ $\cdots$ , $F_{n}$

such that
$NF\forall x>e^{*}(W_{k}(b<F_{k}(x, e_{1}, \cdots, e_{n})<d))$ .

Now define $\tau^{*}(u, v)$ by:

$\tau^{*}(u, v)=\{a<u<v<b:a\in M\}$

$\cup$ { $\urcorner(u<F(e_{1},$ $\cdots,$ $e_{n})<v):F$ an $L(M)$-Skolem function}

$\cup\{\exists y\forall x>y(/_{k}\Lambda(u<F_{k}(x, e_{1}, \cdots, e_{n})<v)\}$

It is a routine to check that this $\tau^{*}(u, v)$ is an M-recursive type over $N$. Sup-
pose that a pair $\langle b_{1}, d_{1}\rangle$ realizes $\tau^{*}(u, v)$ . Then the following hold:

a) $M<b_{1}<d_{1}<b$ and $Df(N, M\cup\{e_{1}, \cdots, e_{n}\})\cap[b_{1}, d_{1}]=\emptyset$,
b) $NF\exists y\forall x>y(/_{k}X\backslash (b_{1}<F_{k}(x, e_{1}, \cdots, e_{n})<d_{1}))$ .

Continueing all these, finally we have a sequence $\{\langle b_{i}, d_{i}\rangle\}_{i\in\omega}$ such that for
each $ i\in\omega$,

c) $M<b_{i+1}<d_{i+1}<b_{i}$ ,

d) $NF\exists y\forall x>y(/_{k}\Lambda(b_{i}<F_{k}(x, e_{1}, \cdots, e_{n})<d_{i}))$ .
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But this is impossible and so we conclude that $\tau(x)$ is finitely satisfiable in N. $\square $

PROOF OF THEOREM. Let $N-M=\{b_{i}\}_{i\in\omega}$ . We construct partial elementary

embeddings $f_{n}\in P- Emb(N, N;M)$ so that for each $ n\in\omega$,

a) $f_{n}\subseteqq f_{n+1}$ and $dom(f_{2n})\supseteqq M\cup\{b_{i}\}_{i<n}$ ,

b) $Df(N, ran(f_{n}))\cap[b, d]=\emptyset$

c) There is an element $e\in ran(f_{2n+1})$ such that $e>b_{n}$ .

The construction of $f_{2n}$ is the same one that is shown in Theorem 2.4. We
shall show only the construction of $f_{2n+1}$ . Suppose that $f_{2n}$ is already constructed.

By the above lemma, there is an element $e>b_{n}$ such that $Df(N, ran(f_{2n})\cup\{e\})$

$\cap[b, d]=\emptyset$ . Then choose an element $e^{*}$ so that $f_{2n}\cup\{\langle e^{*}, e\rangle\}$ will become a
partial elementary embedding. Let $f_{2n+1}$ be this partial elementary embedding.

It is clear that $f=\bigcup_{n\in\omega}f_{n}$ is the required one. $\square $

QUESTIONS. We state some open questions:

i) In [7], C. Smorynski and J. Stavi proved that recursive saturation is
preserved under elementary cofinal extensions. Is M-recursive saturation also
preserved under elementary cofinal extensions ?

ii) Let $N$ be an extension of M. $N$ is said to be M-short legged if there
is an element $b>M$ such that $Df(N, M\cup\{b\})-M$ is downward cofinal with
$N-M$. Is there any model $N$ which is M-recursively saturated and M-short
legged ?

iii) Let $N_{1}$ and $N_{2}$ be not M-short legged and suppose that $Th_{M}(N_{1})=$

$Th_{M}(N_{2})$ . Is it always possible to find another model $N$ and elementary embed-

dings $f:N_{i}\rightarrow M(i=1,2)$ so that ran$(f_{1})-M$ and ran$(f_{2})-M$ are downward

cofinal with each other 7
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