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ON ARONSZAJN TREES WITH A NON-SOUSLIN BASE

By

Masazumi HANAZAWA

§1. Introduction.

A tree is a partially ordered set (T, <r) with the property that for every
element xT, £={yeT: y<ryx} is well-ordered by <r. The order type of £
is then an ordinal, which is called the height of x, h#(x). When a subset of a
tree is totally ordered by <, it is called a chain. When a subset of a tree has
no comparable elements, it is called an antichain. We deal with only w,-trees
which have cardinality w,;, whose a-th level T,={x<T : ht(x)=a} is countable
for every countable ordinal «, and which have additionally certain minor pro-
perties. An w;-tree T is said to be non-Souslin if every uncountable subset of
T contains an uncountable antichain. A non-Souslin tree has clearly no uncoun-
table chain and nevertheless for every countable ordinal «, the a-th level T, is
non-empty. This notion was introduced in Baumgartner [1]. The first example
of a non-Souslin tree is the special Aronszajn tree which was given by Aronszajn
(see Kurepa [5]). A special Aronszajn tree is characterized by Q-embeddability
that means the existence of an order preserving function f:7—Q. An R-
(a fortiori, Q-) embeddable tree is always non-Souslin. Other examples of non-
Souslin trees are found in Baumgartner [1], Hanazawa and Shelah [6].
Except for only one, the properties characterizing them are given as modifica-
tions of R-embeddability. The exception is the one given in [3], which has a
non-Souslin base of cardinality w;,. A non-Souslin base is a family F of uncoun-
table antichains satisfying that whenever S is an uncountable subset of the tree
T, there is an element A of F such that for every x& A, there is y=S satisfy-
ing x=<ry. Notice that a non-Souslin tree has always a non-Souslin base of
cardinality 2#1.. We call a tree with a non-Souslin base of cardinality less than
2¢1 an NSB-tree.

In this paper we discuss about NSB-trees, mainly to show that the property
NSB is independent of R-embeddability. We first observe (in theorem 1) that
under the standard set theory ZFC alone, even the existence of NSB-trees can
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not be proved. We use the axiom of constructibility V=L. It is shown in
that if V=L, there is an NSB-tree which is even not R-embeddable. On the
other hand, if V=L, there is a Q- (a fortiori, R-) embeddable tree which is never-
theless not NSB (Theorem 2). The existence of such a tree may be one of rare
examples which can be proved from &* but can not be proved from *, where
Ot and O* are Jensen’s combinatorial principles, which are consequences of
V=L. Finally we remark that if V=L, there is also a Q-embeddable NSB-tree.
Hence property NSB is independent of and compatible with the property of
being special Aronszajn under V=L.

§ 2. Definitions and results.

We write T instead of (T, <r) and < instead of <;. We refer the reader
to for the concepts undefined here.

DEFINITION 1. Let F be a family of uncountable antichains of an w,-tree T.
Fis an NS-base if and only if for every uncountable subset S of T, there exists
an element A of F such that

VxeAdyeS(x=y).

DEFINITION 2. T is called a x-NSB tree if it has an NS-base of cardinality «.

REMARK 1. A non-Souslin tree is trivially a 2¢1-NSB tree and vice versa.
Note that there always exists a non-Souslin tree because a special Aronszajn tree
is non-Souslin.

DEFINITION 3. T is called an NSB tree if it has an NS-base of cardinality
less than 2¢1,

REMARK 2. There is no w-NSB tree. (Suppose {A,: n=w} were an NS-base.
Take a<w, so that for every ncw, |A.NT | «|=2. Take x&T, arbitrarily.

Then the set S={yeT: x=<y} gives a contradiction.)
Let MA stand for Martin’s axiom as usual (see Kunen [4, p.54]).

THEOREM 1. (MA) If k<2® there is no k-NSB tree.

COROLLARY 1.1. (MA-+"1CH) There is no NSB tree. Because MA+"1CH
implies 29=21,

COROLLARY 1.2. The existence of an NSB-tree can not be proved in ZFC
alone. (cf. Remark 1)
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REMARK 3 ([3]). (&) There is an NSB tree which is not R-embeddable.

THEOREM 2. (OF) There is a special Aronszajn tree which is not NSB.

COROLLARY 2.1. Q-embeddability (a fortiori, R-embeddability) does not imply
property NSB even under V=L.

QUESTION 2.2. Can be proved under ZFC alone (or even under
ZFCHO*)?

THEOREM 3. () There is a special Aronzajn tree which is also- NSB.

Similarly an R-embeddable, not Q-embeddable, NSB tree can be obtained
under . On the other hand, by combining the trees given by and
Baumgartner [1], we can obtain (1) an R-embeddable, not Q-embeddable, not
NSB tree, and (2) a not R-embeddable, not NSB, non-Souslin tree, under $*.

§3. Proofs.

3.1. Proof of Theorem 1. Assume MA and £<2¢. To the contrary, sup-
pose T is a x-NSB tree. As described in Remark 2, £ is not w, and so ~1CH
is the case. Since MA-+]CH implies that every Aronszajn tree is special
(Baumgartner, see Kunen [4, p. 917]), T must be special. Take a function f: T—Q
satisfying that for any x, yeT with x<y, f(x)<f(y). Let {A.: a<k} be a
k-NS base of T. Define a poset P by the following:

P={X,Y>: (1) X and Y are disjoint finite subsets of T, (2) if yeY then
ht(y)>w, and (3) for every weT, if there are x= X and yeY satisfying w<x
and f(y)=f(w), then we X},

(X, YOSLX,, YV iff X,2X, and Y,2Y7,.

Note that if xeX and yeY where <X, Y)>P, then yx£x. First we show that
P satisfies c.c.c. Suppose S is an uncountable subset of P. By the 4-system
lemma (see Kunen [4, p. 49]), there is an uncountable subset S’'={{(X, Y &> : E<w,}
of S such that there is a finite set X* satisfying XNX,=X* for all &, p<w,
with £+, and further such that there is Y* satisfying Y .N\Y ,=Y* for all §, »
with £#%. Then take an uncountable subset {(X,, Y :£&&l} of S’ such that
for all &, pel, f[XJ=/f[X,] and f[Y.=/[Y,]. We can easily take two pairs
{Xe, Yoo and <X,, Y >, & yp<l, such that X,N\Y,=0 and X,NY.=0. Then
clearly <X,UX,, YUY ,> is in P. This shows that P satisfies c.c.c. Now put

D,={KX,Y>eP: Ix X(ht(x)>a)} .
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Then D, is dense in P for each a<w,. For, suppose that (X, Y)>P and a<w;.
As Y is finite and T, is infinite, there is z€ T, such that YweT)(w>zowe&Y).
Take x so that x>z and At(x)>a and put X'=XU{x}u{weT: w<x & f(w)e
fLYJ}. Then <X’,Y>eP and <X, Y>=<(X,Y). Thus D, is dense. Next put

Ep={X, Y>eP: YNA;#0} .

Eg is also dense in P for each 8<«. For, suppose <X, Y>€P and 8<k. Take
aeAﬁ\(XuX\JT [ (w+1)), where X= {zeT :z<x for some x=X}. Put X'=
Xu{zeX: f(z2)=f(a)}. Then <X’,YU{a}> is in P. (It suffices to show X'N
YU {a})=9. Suppose ze X’\X. Then zeX. Hence z#a and z&Y.) E; is thus
dense. Therefore, by MA+T1CH, there exists a {D,: a<w,}\U{Es: 8<«x}-generic
subset G of P. Now put S=U{X: 3Y<X, Y>eG}. Clearly S is an uncountable
subset of 7 and for each B<« there is an element y <= Ag such that for any
xS, yxx. This contradicts that {A,: a<x} is an NS-base, q.e.d.

3.2. Proof of The principle &* asserts the existence of a
O*-sequence {S,: a<w;> which satisfies:

(1) S, is a countable family of subsets of a,

(2) for each ACuw,, there is a cub (closed unbounded) CCw,,
such that for every a=C, ANasS, and CNa&ES,.

LEMMA 2.1. Let {(S.: a<w,y be a {*-sequence.  Put
Si=S.,u{UNV:U,VeS,}.

Then for each subset ACw, and for each cub CCw,, there is a cub C'SC such
that YasC’ (ANasSE and C'NaeSE).

ProoF. By the property of &*-sequence, there is cub C,Cw, such that VaeC,
(ANaeS, and C,NasS,). By the same reason, for some cub C,Cw,, YacsC,
(CNCyNaeS, & CiNasS,). Then YaeCNC,NC; (ANaeSt & CNC,NCiNae
SH, q.e.d.

LEMMA 2.2 Let {S.: a<w;> be a O*-sequence and {P:: §<w,} be a partition
of w,. Then the following holds:

(*) for each subset ACw, satisfying Vécw, (| ANP:| Sw)
and for each cub CCw,, there is a cub C'SC such that

YasC’ (A/\GEJ P:eS{ and C’'NasSy).

PrROOF. By the assumption, AN Uz, Ps is (at most) countable for every a<w,.
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Hence Co={a<w;: AN \UscaPs=ANa} is cub (the proof is routine, cf. Kunen
[4, p,78 or p.79]). By the previous lemma, for some cub C,CCNC,, YaeC,
(ANasSt & C;Na<sSE). The desired conclusion follows immediately from this.

COROLLARY 2.2.1. Let |Z|=w, and {Z;: E<w,> a partion of Z. Then there
1s a sequence {U,: a<w,) such that
(1) U, is a countable set of pairs <{s, ¢y of a countable subset sS\Us<aZ; and
a set ¢ closed in a, and
(2) whenever a set ACZ satisfies Ve<w,| ANZ¢| S, then for each cub CCwy,
there is a cub C'SC such that

VasC’ (<Aﬂe\<J Ze, CNayelU,).

PrROOF. Fix a one-to-one onto function z: Z—w;. Let (S.:a<w; bea O*-
sequence. Put U,= Kz [s1NUecaZe, ¢>: s, cESE, ¢ is closed in a}. By the
lemma, this satisfies the required conditions, g.e.d.

REMARK. We may assume without loss of generality the sequence (U, : a<
w,) satisfies the following:

(3) every <s, cyeU, satisfies that for every fec, SN UecpZe, cNBIEUsp.
Because, if the element <s, ¢>U, does not have this property, we may remove
it from U,.

CONVENTION. Put T=Us<0,“w, where “w={f: f:a—w}. T is a tree (not
an w,-tree) by defining x<y by xCy for x, yT. In the rest of this paper,
an ,-tree means always a subtree T of T such that T is w,-tree in the usual
sense and an initial segment of 7. When f is a function: a—P(7T [ ), where
a=Zw,, then for each f=a, f[IB stands for {<&, fFENT | B>: £<B}, a function
from B to P(T' I B). Hence if T is an w;-tree and f: a—P(T ! a) then for each

B<a, FIIB={E, FONT [ >:E<B}.

LEMMA 2.3. There is a sequence < F%: a<w:> such that
Q1) Y is a countable set of pairs {f, ¢ of a function f: a—P(T | a) and a
set ¢ closed in «,
(2) if L{f, >, then for every Bec, {fIIB, cNB>eE,
(3) if a function F:w,—P(T) satisfies the condition that V&< w, Ya<w, | f(E)N
T'!al=w, then for each cub set C,
there is a cub set C'SC such that

VaeC ((Flla, CNa>ell).
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PROOF. A function F: w,—PB(T) can be identified by one-to-one manner with
F*={a, x>:acw,;, x€F(a)} So:XT. {(a+DXT | (a+1)\(aX T!a):a<lw} is
a partition of w, X T. |w;X T|=w, since Ot implies CH. - So the assertion follows
directly from [Corollary 2.2.1 and the remark after it, q.e.d.

We fix this sequence (f: a<w,> in this section. For a technical reason,
we assume without loss of generality that <@, @> <t and Oi=C if is a
successor ordinal.

To show the theorem, we construct 7 and e: T—Q such that

(1) T is an w,-tree, and

(2) if x<y in T then e(x)<e(y) in Q.

Besides, for each <{f, ¢>eF%, we give X(f, ¢)ET, (not T I @) such that

(3) BEc & xX(f, 0)>3y<x (yeX(fI1B, cNp)

(in other words, every element of X(f, ¢) is an extension of some elements of
X(f118, cNP) if Beo),
4) Vé<a ysf() Yx>y (x&X(f, c)
(i.e., every &-th subset f(§)CT I a has an element which has no extensions in
X(f, o)),
5B) X(f, o)+, if f[SaxP(T | @) and Va'ec\U {a} Vé<a' VB<a’ Ay f(E)N
T a (ht(y)>B).

CLAIM. Such a tree T is @-embeddable and not NSB.

ProoOF. T is clearly Q-embeddable by e. To show T &NSB, let {A4:: §<w,}
be any family of uncountable antichains of T. Put

A={§, A é<wi},
and
C={a:V¥é<aV¥B<adyeT | a(ys A, and ht(y)>p)}.

Then C is cub in @,. By there is a cub C’SC such that

VacsC’ {Alla, C'Na>elt.
Put
X=U{XAlla, C'Na): ac=C’}.
Then by (5) X is uncountable and VE{wl dye A VxeX(y£x). (For, let é<w;.
Let a be the least ordinal satisfying E<a=C’. Then by (4) there is ye ANT |«
such that for no x, y<xeX(Alla, C’'Na). Such y satisfies Vxe X(y£x) by
(3).) This means {A;: §<w,} is not an NS-base, g.e.d.
Now we define T., ¢ | T. and X(f, ¢)& T, by induction on a. At each stage
a, we make the following hold together with the above conditions (1)-(5):
6) if xT t a and e(x)<geQ, then there is yeT, such that x<y and
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e(y)=g,

(7 if X(f, O)+@, Becu{0}, yeX(fI1B, cUP), and e(y)<geQ, then there
is x€ X(f, ¢) such that x>y and e(x)=g.

(I) If a=0, put T,={0}, ¢(@)=0, and X(@, 0)={}.

() If a=p+1, put Tga={x"<(nd>: x€Ts & ncw} and e(x " <{nd)=e(x)-+¢qn,
where x<{n)> stands for x\U{{B, n>} and {g,: n<w} is a list of Q*.

(m) Suppose Lim(a),

(I.1) For each x=T | « and for each g=Q with e(x)<q, we define ¢,(x, ¢)

‘w(=T,) as follows:

Take a sequence go=e(x)<q,<¢:< - —¢ with ¢,=Q, n€w, and a sequence
ay=ht(x)<a;<a,< --- — a. Construct a sequence x,=x<x;<x,< -+ With x,&
T ! a, by induction on n€w so that e(x,)=¢, and ht(x,)=a,. This is possible
by induction hypothesis (6). Put f.(x, ¢)=UnrecwXn.

(I.2) For each pair <f, c>=O%, we define X(f, ¢)=T,, as follows:

There are three cases to consider.

CASE 1. fCaXB(T la), Va'ecu{a}Vé<a’ VB<a’ 3y fE)NT I a’ (ht(y)
>pf), and ¢ is bounded in a. In this case, put y =the maximum element of ¢\ {0}.
Let <£;:7€w) be an w-type enumeration of the elements of a\y. Fix arbitrarily
a sequence a,=7<a;<a,< ---—a. Take y,=T | a so that ht(y,)>7 and y,< f (&),
and take y..1€ f(€,) so that ht(y,+1)>ht(y.)Ja, This is possible by the as-
sumption. Now, by the assumption and the induction hypothesis (5), X(f 7, ¢N7)
is not empty. For each x=X(f 7, ¢N7) and for each ¢g=Q with ¢>e(x), define
uq«lx, q, f, c)= Ty as follows:

Take a sequence go=e(x)<q;<q:< - —¢ from Q. Put x,=x. For n>0, take
Xn SO that x,>x, 1, ht(xa)=ht(yn), XnF Yn, and e(X,)=gsn O Gan+1. This is pos-
sible by induction hypthesis (6). Put u.(x, q, f, ¢)=Unrewxs, and X(f, ¢)=
{uax, g, f, ©): x€ X117, ¢cNY), e(x)<gsQ}.

CASE 2. The same as Case 1 but ¢ is unbounded in a. In this case we first
fix a sequence a,<a;< --- —a such that a,=c, nEw. Note that X(f[lan, cNa,)
#0 for each n=w. For each x and ¢ such that xeX(f[a,, cNa,) and e(x)<
g<Q, take a sequence go,=e(x)<g,<g:< --- —¢. Put x,=x, and for £>0, take
2 EX(f M Apsn, cN\Apsn) S0 that e(x,)=qr+n and x,>x,-;. This is possible by
induction hypothesis (7). Put u.(x, q, f, ¢)=Unrecwx. and X(f, c)={uq.(x, g, f, ¢):
X EUncaX (fI1tn, cNay), e(x)<gEQ}.

CASE 3. Otherwise. Put X(f, ¢)=@.
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(I.3) Now, we set
To={talx, @): x€T 1 a, e(x)<qEQ} IV I{X(f, 0): {f, 0O},

e(talx, ¢))=q, and e(u.(x,q, f, 0))=q.

Thus T, el T., and X(f, ¢) for <f, c>f are defined. We must check
that they have the required properties. But it needs only calculation. We only
show (4) and leave the rest to the reader. Let <{f, c>{%. To show (4), sup-
pose £<a. Suppose that X(f, ¢) has been defined in Case 1 and recall the
terminologies used there. If £=7, then §=§, for some n. Then y,.,ef(&,)=
f(€). But every element u,(x, q, f, ¢)=Ureoxn of X(f, ¢) is not an extension
Of yn+1, because y,s17# Xns1<ualx, q, f, ¢) and ht(y ,+1)=ht(x,+:) by the definition.
If <7, note that {f[lr, cNr>e<f. By induction hypothesis, we can find ye
(fM7r) (&) which has no extension inX(f[ly, cNr). Since every element of
X(f, c¢) is an extension of some element of X(f !y, ¢N\y) by the definition, such
y has no extension in X(f, ¢). Next, suppose that X(f, ¢) has been defined in
Case 2. Then &£<a, for some n. Note that a,c and X(f|la,, cNay)+* Q.
The rest is similar to the one in the case £<7 of the above. If X(f, ¢) has been
defined in Case 3, it is trivial, q.e.d.

3.3. Proof of Theorem 3. We refer the reader to Convention in the pre-
vious section for the definition of 7" and for the meaning of the concept of w,-
tree. Assume <>. Then there is a sequence ((.: a<w,> such that

(1) <4 is a countable subset of T [ «a,

(2) if ACT satisfies | ANT | a| =, then the set {a: ANT [ a=,} is sta-

tionary in w;.

The purpose is to define an w,-tree T and a Q-embedding e¢: T—Q so that
{A(x, ¢): x€T, g=Q*} forms an NS-base, where A(x, ¢) stands for {yeT:x<y,
e(y)=q}. We define T, and e | T, by induction on @«. At each stage «, we
ensure the following:

™ x€TTa & e(x)<g=>AyeT.(x<y & e(y)=¢).

(I) T,=1{0} and (@) =0.

() Tpgu={x"<Xn>:x&€Ty ncw} and e(x"{nd)=e(x)+qy,
where <{¢,: nEw) is a list of Q" .

(Im) Suppose Lim(a). For every pair of x&T [ a and g Q with e(x)<q, we
define ¢,(x, ¢). First define x, as follows: If , is an initial segment
of T !« and there is yeT [ a such that x<y, e(y)<gq, and y & 4, then
put xo=such y. Otherwise put x,=x. Fix a sequence gy=e(x,)<¢:<q;
< -+ —g and a sequence a,=ht(x,)<a;<a,< -+ —a. Take inductively
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X SO that x> xz-1, ht(xz)=a,, and e(xp)=¢q:. Put t.(x, ¢)=UicwXs
and T,={ta(x, q): x€T [ a, e(x)<q} and e(t.(x, ¢))=g.

Finally we put T=\Ua<w, T+ which is clearly Q-embedded by e. To show
that T is NSB, we prove that {A(x, ¢): xeT, e(x)<gq} is an NS-base. Let S be
an uncountable subset of 7. Put I={yeT:3xeS(y=x)}. Put C={a: Lim(a),
YgeQVxeT a@y(x<y & e(y)=q¢ & y&I)>3 such y in T | a)}, which is cub
in w;,. Take aeC such that INT  a=,. Since S is uncountable, T ,NI=+#0.
Take x,q so that t,(x, g)€T.,NI. Recall x, used in the definition of t.(x, ¢).
Since x,<ta(x, q), x, is also in I, and so x,€INT [ a=<,. By the choice of x,,
it must hold that VyeT | ale(y)<q & x<y>y<INT [ a). Hence every yeT
satisfying x <y and e(y)<gq belongs to I, because a=C. Therefore A(x, (e(x)+
Q/2)<1, g.e.d.
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