ON ARONSZAJN TREES WITH A NON-SOUSLIN BASE

By

Masazumi HANAZAWA

§ 1. Introduction.

A tree is a partially ordered set $(T, <_T)$ with the property that for every element $x \in T$, $\hat{x} = \{y \in T : y <_T x\}$ is well-ordered by $<_T$. The order type of \hat{x} is then an ordinal, which is called the height of x, ht(x). When a subset of a tree is totally ordered by $<_T$, it is called a chain. When a subset of a tree has no comparable elements, it is called an antichain. We deal with only ω_1 -trees which have cardinality ω_1 , whose α -th level $T_{\alpha} = \{x \in T : ht(x) = \alpha\}$ is countable for every countable ordinal α , and which have additionally certain minor pro-An ω_1 -tree T is said to be non-Souslin if every uncountable subset of T contains an uncountable antichain. A non-Souslin tree has clearly no uncountable chain and nevertheless for every countable ordinal α , the α -th level T_{α} is non-empty. This notion was introduced in Baumgartner [1]. The first example of a non-Souslin tree is the special Aronszajn tree which was given by Aronszajn (see Kurepa [5]). A special Aronszajn tree is characterized by Q-embeddability that means the existence of an order preserving function $f: T \rightarrow Q$. An R-(a fortiori, Q-) embeddable tree is always non-Souslin. Other examples of non-Souslin trees are found in Baumgartner [1], Hanazawa [2], [3] and Shelah [6]. Except for only one, the properties characterizing them are given as modifications of R-embeddability. The exception is the one given in [3], which has a non-Souslin base of cardinality ω_1 . A non-Souslin base is a family F of uncountable antichains satisfying that whenever S is an uncountable subset of the tree T, there is an element A of F such that for every $x \in A$, there is $y \in S$ satisfying $x \leq_T y$. Notice that a non-Souslin tree has always a non-Souslin base of cardinality 2^{ω_1} . We call a tree with a non-Souslin base of cardinality less than 2^{ω_1} an NSB-tree.

In this paper we discuss about NSB-trees, mainly to show that the property NSB is independent of R-embeddability. We first observe (in theorem 1) that under the standard set theory ZFC alone, even the existence of NSB-trees can

Received February 3, 1982.

This research was partially supported by Grant-in Aid for Scientific Research (No. 56340009), Ministry of Education.

not be proved. We use the axiom of constructibility V=L. It is shown in [3] that if V=L, there is an NSB-tree which is even not R-embeddable. On the other hand, if V=L, there is a Q- (a fortiori, R-) embeddable tree which is nevertheless not NSB (Theorem 2). The existence of such a tree may be one of rare examples which can be proved from \diamondsuit + but can not be proved from \diamondsuit +, where \diamondsuit + and \diamondsuit + are Jensen's combinatorial principles, which are consequences of V=L. Finally we remark that if V=L, there is also a Q-embeddable NSB-tree. Hence property NSB is independent of and compatible with the property of being special Aronszajn under V=L.

§ 2. Definitions and results.

We write T instead of $(T, <_T)$ and < instead of $<_T$. We refer the reader to [3] for the concepts undefined here.

DEFINITION 1. Let F be a family of uncountable antichains of an ω_1 -tree T. F is an NS-base if and only if for every uncountable subset S of T, there exists an element A of F such that

$$\forall x \in A \exists y \in S(x \leq y)$$
.

DEFINITION 2. T is called a κ -NSB tree if it has an NS-base of cardinality κ .

REMARK 1. A non-Souslin tree is trivially a 2^{ω_1} -NSB tree and vice versa. Note that there always exists a non-Souslin tree because a special Aronszajn tree is non-Souslin.

DEFINITION 3. T is called an NSB tree if it has an NS-base of cardinality less than 2^{ω_1} .

REMARK 2. There is no ω -NSB tree. (Suppose $\{A_n : n \in \omega\}$ were an NS-base. Take $\alpha < \omega_1$ so that for every $n \in \omega$, $|A_n \cap T \upharpoonright \alpha| \ge 2$. Take $x \in T_\alpha$ arbitrarily. Then the set $S = \{y \in T : x \le y\}$ gives a contradiction.)

Let MA stand for Martin's axiom as usual (see Kunen [4, p. 54]).

THEOREM 1. (MA) If $\kappa < 2^{\omega}$, there is no κ -NSB tree.

COROLLARY 1.1. $(MA+\neg CH)$ There is no NSB tree. Because $MA+\neg CH$ implies $2^{\omega}=2^{\omega_1}$.

COROLLARY 1.2. The existence of an NSB-tree can not be proved in ZFC alone. (cf. Remark 1)

REMARK 3 ([3]). (\diamondsuit) There is an NSB tree which is not R-embeddable.

Theorem 2. (\diamondsuit^+) There is a special Aronszajn tree which is not NSB.

COROLLARY 2.1. Q-embeddability (a fortiori, R-embeddability) does not imply property NSB even under V=L.

QUESTION 2.2. Can Theorem 2 be proved under ZFC alone (or even under ZFC+ \diamondsuit *)?

THEOREM 3. (\diamondsuit) There is a special Aronzajn tree which is also NSB.

Similarly an R-embeddable, not Q-embeddable, NSB tree can be obtained under \diamondsuit . On the other hand, by combining the trees given by Theorem 2 and Baumgartner [1], we can obtain (1) an R-embeddable, not Q-embeddable, not NSB tree, and (2) a not R-embeddable, not NSB, non-Souslin tree, under \diamondsuit ⁺.

§ 3. Proofs.

3.1. Proof of Theorem 1. Assume MA and $\kappa < 2^{\omega}$. To the contrary, suppose T is a κ -NSB tree. As described in Remark 2, κ is not ω , and so \neg CH is the case. Since MA+ \neg CH implies that every Aronszajn tree is special (Baumgartner, see Kunen [4, p. 91]), T must be special. Take a function $f: T \rightarrow Q$ satisfying that for any $x, y \in T$ with x < y, f(x) < f(y). Let $\{A_{\alpha} : \alpha < \kappa\}$ be a κ -NS base of T. Define a poset P by the following:

 $P = \{\langle X, Y \rangle : (1) \ X \text{ and } Y \text{ are disjoint finite subsets of } T, (2) \text{ if } y \in Y \text{ then } ht(y) > \omega, \text{ and } (3) \text{ for every } w \in T, \text{ if there are } x \in X \text{ and } y \in Y \text{ satisfying } w < x \text{ and } f(y) = f(w), \text{ then } w \in X\},$

$$\langle X_1, Y_1 \rangle \leq \langle X_2, Y_2 \rangle$$
 iff $X_1 \supseteq X_2$ and $Y_1 \supseteq Y_2$.

Note that if $x \in X$ and $y \in Y$ where $\langle X, Y \rangle \in P$, then $y \not \leq x$. First we show that P satisfies c.c.c. Suppose S is an uncountable subset of P. By the Δ -system lemma (see Kunen [4, p. 49]), there is an uncountable subset $S' = \{\langle X_{\xi}, Y_{\xi} \rangle : \xi < \omega_1 \}$ of S such that there is a finite set X^* satisfying $X_{\xi} \cap X_{\eta} = X^*$ for all ξ , $\eta < \omega_1$ with $\xi \neq \eta$, and further such that there is Y^* satisfying $Y_{\xi} \cap Y_{\eta} = Y^*$ for all ξ , η with $\xi \neq \eta$. Then take an uncountable subset $\{\langle X_{\xi}, Y_{\xi} \rangle : \xi \in I \}$ of S' such that for all ξ , $\eta \in I$, $f[X_{\xi}] = f[X_{\eta}]$ and $f[Y_{\xi}] = f[Y_{\eta}]$. We can easily take two pairs $\langle X_{\xi}, Y_{\xi} \rangle$ and $\langle X_{\eta}, Y_{\eta} \rangle$, ξ , $\eta \in I$, such that $X_{\xi} \cap Y_{\eta} = \emptyset$ and $X_{\eta} \cap Y_{\xi} = \emptyset$. Then clearly $\langle X_{\xi} \cup X_{\eta}, Y_{\xi} \cup Y_{\eta} \rangle$ is in P. This shows that P satisfies c.c.c. Now put

$$D_{\alpha} = \{\langle X, Y \rangle \in P : \exists x \in X(ht(x) > \alpha)\}$$
.

Then D_{α} is dense in P for each $\alpha < \omega_1$. For, suppose that $\langle X, Y \rangle \in P$ and $\alpha < \omega_1$. As Y is finite and T_{ω} is infinite, there is $z \in T_{\omega}$ such that $(\forall w \in T)(w > z \Rightarrow w \in Y)$. Take x so that x > z and $ht(x) > \alpha$ and put $X' = X \cup \{x\} \cup \{w \in T : w < x \& f(w) \in f[Y]\}$. Then $\langle X', Y \rangle \in P$ and $\langle X', Y \rangle \leq \langle X, Y \rangle$. Thus D_{α} is dense. Next put

$$E_{\beta} = \{\langle X, Y \rangle \in P : Y \cap A_{\beta} \neq \emptyset\}$$
.

 E_{β} is also dense in P for each $\beta < \kappa$. For, suppose $\langle X, Y \rangle \in P$ and $\beta < \kappa$. Take $a \in A_{\beta} \setminus (X \cup \hat{X} \cup T \upharpoonright (\omega + 1))$, where $\hat{X} = \{z \in T : z < x \text{ for some } x \in X\}$. Put $X' = X \cup \{z \in \hat{X} : f(z) = f(a)\}$. Then $\langle X', Y \cup \{a\} \rangle$ is in P. (It suffices to show $X' \cap (Y \cup \{a\}) = \emptyset$. Suppose $z \in X' \setminus X$. Then $z \in \hat{X}$. Hence $z \neq a$ and $z \notin Y$.) E_{β} is thus dense. Therefore, by A + CH, there exists a $\{D_{\alpha} : \alpha < \omega_1\} \cup \{E_{\beta} : \beta < \kappa\}$ -generic subset G of P. Now put $S = \bigcup \{X : \exists Y \langle X, Y \rangle \in G\}$. Clearly S is an uncountable subset of T and for each $\beta < \kappa$ there is an element $y \in A_{\beta}$ such that for any $x \in S$, $y \not \leq x$. This contradicts that $\{A_{\alpha} : \alpha < \kappa\}$ is an NS-base, Q. e. d.

- **3.2.** Proof of Theorem 2. The principle \diamondsuit^+ asserts the existence of a \diamondsuit^+ -sequence $\langle S_\alpha : \alpha < \omega_1 \rangle$ which satisfies:
 - (1) S_{α} is a countable family of subsets of α ,
- (2) for each $A \subset \omega_1$, there is a cub (closed unbounded) $C \subset \omega_1$, such that for every $\alpha \in C$, $A \cap \alpha \in S_\alpha$ and $C \cap \alpha \in S_\alpha$.

LEMMA 2.1. Let $\langle S_{\alpha} : \alpha < \omega_1 \rangle$ be a \Diamond +-sequence. Put

$$S_{\sigma}^{+}=S_{\sigma}\cup\{U\cap V:U,V\in S_{\sigma}\}$$
.

Then for each subset $A \subset \omega_1$ and for each cub $C \subset \omega_1$, there is a cub $C' \subseteq C$ such that $\forall \alpha \in C'$ $(A \cap \alpha \in S^+_{\alpha} \text{ and } C' \cap \alpha \in S^+_{\alpha})$.

PROOF. By the property of \diamondsuit ⁺-sequence, there is cub $C_0 \subset \omega_1$ such that $\forall \alpha \in C_0$ $(A \cap \alpha \in S_\alpha \text{ and } C_0 \cap \alpha \in S_\alpha)$. By the same reason, for some cub $C_1 \subset \omega_1$, $\forall \alpha \in C_1$ $(C \cap C_0 \cap \alpha \in S_\alpha \& C_1 \cap \alpha \in S_\alpha)$. Then $\forall \alpha \in C \cap C_0 \cap C_1 (A \cap \alpha \in S_\alpha^+ \& C \cap C_0 \cap C_1 \cap \alpha \in S_\alpha^+)$,

LEMMA 2.2 Let $\langle S_{\alpha} : \alpha < \omega_1 \rangle$ be a \diamondsuit ⁺-sequence and $\{P_{\xi} : \xi < \omega_1\}$ be a partition of ω_1 . Then the following holds:

(*) for each subset $A \subset \omega_1$ satisfying $\forall \xi \in \omega_1 \ (|A \cap P_{\xi}| \leq \omega)$ and for each cub $C \subset \omega_1$, there is a cub $C' \subseteq C$ such that

$$\forall \alpha \in C' \ (A \cap \bigcup_{\xi < \alpha} P_{\xi} \in S^{+}_{\alpha} \ \text{and} \ C' \cap \alpha \in S^{+}_{\alpha}).$$

PROOF. By the assumption, $A \cap \bigcup_{\xi < \alpha} P_{\xi}$ is (at most) countable for every $\alpha < \omega_1$.

Hence $C_0 = \{\alpha < \omega_1 : A \cap \bigcup_{\xi < \alpha} P_{\xi} = A \cap \alpha\}$ is cub (the proof is routine, cf. Kunen [4, p, 78 or p. 79]). By the previous lemma, for some cub $C_1 \subset C \cap C_0$, $\forall \alpha \in C_1$ $(A \cap \alpha \in S^+_{\alpha} \& C_1 \cap \alpha \in S^+_{\alpha})$. The desired conclusion follows immediately from this.

COROLLARY 2.2.1. Let $|Z| = \omega_1$ and $\langle Z_{\xi} : \xi < \omega_1 \rangle$ a partion of Z. Then there is a sequence $\langle U_{\alpha} : \alpha < \omega_1 \rangle$ such that

- (1) U_{α} is a countable set of pairs $\langle s, c \rangle$ of a countable subset $s \subseteq \bigcup_{\xi < \alpha} Z_{\xi}$ and a set c closed in α , and
- (2) whenever a set $A \subset Z$ satisfies $\forall \xi < \omega_1 | A \cap Z_{\xi} | \leq \omega$, then for each cub $C \subset \omega_1$, there is a cub $C' \subseteq C$ such that

$$\forall \alpha \in C' \ (\langle A \cap \bigcup_{\xi < \alpha} Z_{\xi}, C' \cap \alpha \rangle \in U_{\alpha}).$$

PROOF. Fix a one-to-one onto function $\pi: Z \to \omega_1$. Let $\langle S_{\alpha}: \alpha < \omega_1 \rangle$ be a \diamondsuit^+ sequence. Put $U_{\alpha} = \{\langle \pi^{-1}[s] \cap \bigcup_{\xi < \alpha} Z_{\xi}, c \rangle : s, c \in S_{\alpha}^+, c \text{ is closed in } \alpha \}$. By the lemma, this satisfies the required conditions,

REMARK. We may assume without loss of generality the sequence $\langle U_{\alpha} : \alpha < \omega_1 \rangle$ satisfies the following:

(3) every $\langle s, c \rangle \in U_{\alpha}$ satisfies that for every $\beta \in c$, $\langle s \cap \bigcup_{\xi < \beta} Z_{\xi}, c \cap \beta \rangle \in U_{\beta}$. Because, if the element $\langle s, c \rangle \in U_{\alpha}$ does not have this property, we may remove it from U_{α} .

CONVENTION. Put $T = \bigcup_{\alpha < \omega_1}{}^{\alpha}\omega$, where ${}^{\alpha}\omega = \{f : f : \alpha \to \omega\}$. T is a tree (not an ω_1 -tree) by defining x < y by $x \subset y$ for $x, y \in T$. In the rest of this paper, an ω_1 -tree means always a subtree T of T such that T is ω_1 -tree in the usual sense and an initial segment of T. When f is a function: $\alpha \to \mathfrak{P}(T \upharpoonright \alpha)$, where $\alpha \leq \omega_1$, then for each $\beta \leq \alpha$, $f \upharpoonright \beta$ stands for $\{\langle \xi, f(\xi) \cap T \upharpoonright \beta \rangle : \xi < \beta\}$, a function from β to $\mathfrak{P}(T \upharpoonright \beta)$. Hence if T is an ω_1 -tree and $f : \alpha \to \mathfrak{P}(T \upharpoonright \alpha)$ then for each $\beta < \alpha$, $f \upharpoonright \beta = \{\langle \xi, f(\xi) \cap T \upharpoonright \beta \rangle : \xi < \beta\}$.

LEMMA 2.3. There is a sequence $\langle \diamondsuit_{\alpha}^+ : \alpha < \omega_1 \rangle$ such that

- (1) $\diamondsuit_{\alpha}^{+}$ is a countable set of pairs $\langle f, c \rangle$ of a function $f : \alpha \rightarrow \mathfrak{P}(T \upharpoonright \alpha)$ and a set c closed in α ,
- (2) if $\langle f, c \rangle \in \diamondsuit_{\alpha}^+$, then for every $\beta \in c$, $\langle f \upharpoonright \upharpoonright \beta, c \cap \beta \rangle \in \diamondsuit_{\beta}^+$,
- (3) if a function $F: \omega_1 \to \mathfrak{P}(T)$ satisfies the condition that $\forall \xi < \omega_1 \ \forall \alpha < \omega_1 \ | f(\xi) \cap T \upharpoonright \alpha | \leq \omega$, then for each cub set C,

there is a cub set $C' \subseteq C$ such that

$$\forall \alpha \in C' \ (\langle F \upharpoonright \upharpoonright \alpha, C' \cap \alpha \rangle \in \diamondsuit_{\alpha}^+).$$

PROOF. A function $F: \omega_1 \to \mathfrak{P}(T)$ can be identified by one-to-one manner with $F^* = \{\langle \alpha, x \rangle : \alpha \in \omega_1, x \in F(\alpha)\} \subseteq \omega_1 \times T$. $\{((\alpha+1) \times T \upharpoonright (\alpha+1)) \setminus (\alpha \times T \upharpoonright \alpha) : \alpha < \omega_1\}$ is a partition of $\omega_1 \times T$. $|\omega_1 \times T| = \omega_1$ since \diamondsuit^+ implies CH. So the assertion follows directly from Corollary 2.2.1 and the remark after it, q. e. d.

We fix this sequence $\langle \diamondsuit_{\alpha}^+ \colon \alpha < \omega_1 \rangle$ in this section. For a technical reason, we assume without loss of generality that $\langle \varnothing, \varnothing \rangle \in \diamondsuit_0^+$ and $\diamondsuit_{\alpha}^+ = \varnothing$ if α is a successor ordinal.

To show the theorem, we construct T and $e: T \rightarrow Q$ such that

- (1) T is an ω_1 -tree, and
- (2) if x < y in T then e(x) < e(y) in Q.

Besides, for each $\langle f, c \rangle \in \Diamond_{\alpha}^+$, we give $X(f, c) \subseteq T_{\alpha}$ (not $T \upharpoonright \alpha$) such that

- (3) $\beta \in c \& x \in X(f, c) \Rightarrow \exists y < x \ (y \in X(f \upharpoonright \beta, c \cap \beta))$ (in other words, every element of X(f, c) is an extension of some elements of $X(f \upharpoonright \beta, c \cap \beta)$ if $\beta \in c$),
- (4) $\forall \xi < \alpha \ \exists y \in f(\xi) \ \forall x > y \ (x \in X(f, c))$ (i. e., every ξ -th subset $f(\xi) \subset T \upharpoonright \alpha$ has an element which has no extensions in X(f, c)),
 - (5) $X(f, c) \neq \emptyset$, if $f \subseteq \alpha \times \mathfrak{P}(T \upharpoonright \alpha)$ and $\forall \alpha' \in c \cup \{\alpha\} \ \forall \xi < \alpha' \ \forall \beta < \alpha' \ \exists y \in f(\xi) \cap T \upharpoonright \alpha' \ (ht(y) > \beta)$.

CLAIM. Such a tree T is Q-embeddable and not NSB.

PROOF. T is clearly Q-embeddable by e. To show $T \notin NSB$, let $\{A_{\xi} : \xi < \omega_1\}$ be any family of uncountable antichains of T. Put

$$A = \{\langle \xi, A_{\xi} \rangle : \xi < \omega_1 \}$$
,

and

$$C = \{ \alpha : \forall \xi < \alpha \, \forall \beta < \alpha \, \exists y \in T \mid \alpha (y \in A_{\xi} \text{ and } ht(y) > \beta) \}.$$

Then C is cub in ω_1 . By Lemma 2.3, there is a cub $C' \subseteq C$ such that

$$\forall \alpha \in C' \langle A \upharpoonright \upharpoonright \alpha, C' \cap \alpha \rangle \in \Diamond_{\alpha}^+.$$

Put

$$X = \bigcup \{X(A \upharpoonright \alpha, C' \cap \alpha) : \alpha \in C'\}$$
.

Then by (5) X is uncountable and $\forall \xi < \omega_1 \exists y \in A_{\xi} \ \forall x \in X(y \leq x)$. (For, let $\xi < \omega_1$. Let α be the least ordinal satisfying $\xi < \alpha \in C'$. Then by (4) there is $y \in A_{\xi} \cap T \upharpoonright \alpha$ such that for no x, $y < x \in X(A \upharpoonright \upharpoonright \alpha, C' \cap \alpha)$. Such y satisfies $\forall x \in X(y \leq x)$ by (3).) This means $\{A_{\xi} : \xi < \omega_1\}$ is not an NS-base, q. e. d.

Now we define T_{α} , $e \upharpoonright T_{\alpha}$ and $X(f, c) \subseteq T_{\alpha}$ by induction on α . At each stage α , we make the following hold together with the above conditions (1)-(5):

(6) if $x \in T \upharpoonright \alpha$ and $e(x) < q \in Q$, then there is $y \in T_{\alpha}$ such that x < y and

- e(y)=q,
- (7) if $X(f, c) \neq \emptyset$, $\beta \in c \cup \{0\}$, $y \in X(f \upharpoonright \beta, c \cup \beta)$, and $e(y) < q \in Q$, then there is $x \in X(f, c)$ such that x > y and e(x) = q.
- (I) If $\alpha=0$, put $T_0=\{\emptyset\}$, $e(\emptyset)=0$, and $X(\emptyset,\emptyset)=\{\emptyset\}$.
- (II) If $\alpha = \beta + 1$, put $T_{\beta+1} = \{x \cap \langle n \rangle : x \in T_{\beta} \& n \in \omega\}$ and $e(x \cap \langle n \rangle) = e(x) + q_n$, where $x \cap \langle n \rangle$ stands for $x \cup \{\langle \beta, n \rangle\}$ and $\{q_n : n \in \omega\}$ is a list of Q^+ .
- (III) Suppose $Lim(\alpha)$,
- (III.1) For each $x \in T \upharpoonright \alpha$ and for each $q \in Q$ with e(x) < q, we define $t_{\alpha}(x, q) \in {}^{\alpha}\omega(=T_{\alpha})$ as follows:

Take a sequence $q_0=e(x)< q_1< q_2< \cdots \rightarrow q$ with $q_n\in Q$, $n\in \omega$, and a sequence $\alpha_0=ht(x)<\alpha_1<\alpha_2< \cdots \rightarrow \alpha$. Construct a sequence $x_0=x< x_1< x_2< \cdots$ with $x_n\in T\upharpoonright \alpha$, by induction on $n\in \omega$ so that $e(x_n)=q_n$ and $ht(x_n)=\alpha_n$. This is possible by induction hypothesis (6). Put $t_{\alpha}(x,q)=\bigcup_{n\in\omega}x_n$.

- (III.2) For each pair $\langle f, c \rangle \in \diamondsuit_{\alpha}^+$, we define $X(f, c) \subseteq T_{\alpha}$, as follows: There are three cases to consider.
- CASE 1. $f \subset \alpha \times \mathfrak{P}(T \upharpoonright \alpha)$, $\forall \alpha' \in c \cup \{\alpha\} \ \forall \xi < \alpha' \ \forall \beta < \alpha' \ \exists y \in f(\xi) \cap T \upharpoonright \alpha' \ (ht(y) > \beta)$, and c is bounded in α . In this case, put γ =the maximum element of $c \cup \{0\}$. Let $\langle \xi_i : i \in \omega \rangle$ be an ω -type enumeration of the elements of $\alpha \setminus \gamma$. Fix arbitrarily a sequence $\alpha_0 = \gamma < \alpha_1 < \alpha_2 < \cdots \to \alpha$. Take $y_0 \in T \upharpoonright \alpha$ so that $ht(y_0) > \gamma$ and $y_0 \in f(\xi_0)$, and take $y_{n+1} \in f(\xi_n)$ so that $ht(y_{n+1}) > ht(y_n) \cup \alpha_n$. This is possible by the assumption. Now, by the assumption and the induction hypothesis (5), $X(f \upharpoonright \gamma, c \cap \gamma)$ is not empty. For each $x \in X(f \upharpoonright \gamma, c \cap \gamma)$ and for each $q \in Q$ with q > e(x), define $u_{\alpha}(x, q, f, c) \in T_{\alpha}$ as follows:

Take a sequence $q_0=e(x)< q_1< q_2< \cdots \rightarrow q$ from Q. Put $x_0=x$. For n>0, take x_n so that $x_n>x_{n-1}$, $ht(x_n)=ht(y_n)$, $x_n\neq y_n$, and $e(x_n)=q_{2n}$ or q_{2n+1} . This is possible by induction hypothesis (6). Put $u_\alpha(x,q,f,c)=\bigcup_{n\in\omega}x_n$, and $X(f,c)=\{u_\alpha(x,q,f,c):x\in X(f\upharpoonright \gamma,c\cap\gamma),e(x)< q\in Q\}$.

CASE 2. The same as Case 1 but c is unbounded in α . In this case we first fix a sequence $\alpha_0 < \alpha_1 < \cdots \rightarrow \alpha$ such that $\alpha_n \in c$, $n \in \omega$. Note that $X(f \upharpoonright \upharpoonright \alpha_n, c \cap \alpha_n) \neq \emptyset$ for each $n \in \omega$. For each x and q such that $x \in X(f \upharpoonright \upharpoonright \alpha_n, c \cap \alpha_n)$ and $e(x) < q \in Q$, take a sequence $q_0 = e(x) < q_1 < q_2 < \cdots \rightarrow q$. Put $x_0 = x$, and for k > 0, take $x_k \in X(f \upharpoonright \upharpoonright \alpha_{k+n}, c \cap \alpha_{k+n})$ so that $e(x_k) = q_{k+n}$ and $x_k > x_{k-1}$. This is possible by induction hypothesis (7). Put $u_\alpha(x, q, f, c) = \bigcup_{n \in \omega} x_n$ and $X(f, c) = \{u_\alpha(x, q, f, c) : x \in \bigcup_{n \in \omega} X(f \upharpoonright \upharpoonright \alpha_n, c \cap \alpha_n), e(x) < q \in Q\}$.

CASE 3. Otherwise. Put $X(f, c) = \emptyset$.

(III.3) Now, we set $T_{\alpha} = \{t_{\alpha}(x, q) : x \in T \mid \alpha, e(x) < q \in Q\} \cup \{X(f, c) : \langle f, c \rangle \in \diamondsuit_{\alpha}^{+}\},$ $e(t_{\alpha}(x, q)) = q, \text{ and } e(u_{\alpha}(x, q, f, c)) = q.$

Thus T_{α} , $e \upharpoonright T_{\alpha}$, and X(f,c) for $\langle f,c \rangle \in \diamondsuit_{\alpha}^+$ are defined. We must check that they have the required properties. But it needs only calculation. We only show (4) and leave the rest to the reader. Let $\langle f,c \rangle \in \diamondsuit_{\alpha}^+$. To show (4), suppose $\xi < \alpha$. Suppose that X(f,c) has been defined in Case 1 and recall the terminologies used there. If $\xi \geq \gamma$, then $\xi = \xi_n$ for some n. Then $y_{n+1} \in f(\xi_n) = f(\xi)$. But every element $u_{\alpha}(x,q,f,c) = \bigcup_{n \in \omega} x_n$ of X(f,c) is not an extension of y_{n+1} , because $y_{n+1} \neq x_{n+1} < u_{\alpha}(x,q,f,c)$ and $ht(y_{n+1}) = ht(x_{n+1})$ by the definition. If $\xi < \gamma$, note that $\langle f \upharpoonright \uparrow \gamma, c \cap \gamma \rangle \in \diamondsuit_{\tau}^+$. By induction hypothesis, we can find $y \in (f \upharpoonright \uparrow \gamma)$ (ξ) which has no extension in $X(f \upharpoonright \uparrow \gamma, c \cap \gamma)$. Since every element of X(f,c) is an extension of some element of $X(f \upharpoonright \uparrow \gamma, c \cap \gamma)$ by the definition, such y has no extension in X(f,c). Next, suppose that X(f,c) has been defined in Case 2. Then $\xi < \alpha_n$ for some n. Note that $\alpha_n \in c$ and $X(f \upharpoonright \uparrow \alpha_n, c \cap \alpha_n) \neq \emptyset$. The rest is similar to the one in the case $\xi < \gamma$ of the above. If X(f,c) has been defined in Case 3, it is trivial,

- 3.3. **Proof of Theorem 3.** We refer the reader to Convention in the previous section for the definition of T and for the meaning of the concept of ω_1 -tree. Assume \diamondsuit . Then there is a sequence $\langle \diamondsuit_\alpha : \alpha < \omega_1 \rangle$ such that
 - (1) \diamondsuit_{α} is a countable subset of $T \upharpoonright \alpha$,
 - (2) if $A \subset T$ satisfies $|A \cap T \upharpoonright \alpha| \leq \omega$, then the set $\{\alpha : A \cap T \upharpoonright \alpha = \diamondsuit_{\alpha}\}$ is stationary in ω_1 .

The purpose is to define an ω_1 -tree T and a Q-embedding $e: T \to Q$ so that $\{A(x,q): x \in T, q \in Q^+\}$ forms an NS-base, where A(x,q) stands for $\{y \in T: x < y, e(y) = q\}$. We define T_α and $e \upharpoonright T_\alpha$ by induction on α . At each stage α , we ensure the following:

- (*) $x \in T \upharpoonright \alpha \& e(x) < q \Rightarrow \exists y \in T_{\alpha}(x < y \& e(y) = q).$
- (I) $T_0 = \{\emptyset\}$ and $e(\emptyset) = 0$.
- (II) $T_{\beta+1} = \{x \cap \langle n \rangle : x \in T_{\beta}, n \in \omega\}$ and $e(x \cap \langle n \rangle) = e(x) + q_n$, where $\langle q_n : n \in \omega \rangle$ is a list of Q^+ .
- (III) Suppose $\operatorname{Lim}(\alpha)$. For every pair of $x \in T \upharpoonright \alpha$ and $q \in Q$ with e(x) < q, we define $t_{\alpha}(x, q)$. First define x_0 as follows: If \diamondsuit_{α} is an initial segment of $T \upharpoonright \alpha$ and there is $y \in T \upharpoonright \alpha$ such that x < y, e(y) < q, and $y \in \diamondsuit_{\alpha}$, then put $x_0 = \operatorname{such} y$. Otherwise put $x_0 = x$. Fix a sequence $q_0 = e(x_0) < q_1 < q_2 < \cdots \rightarrow q$ and a sequence $\alpha_0 = ht(x_0) < \alpha_1 < \alpha_2 < \cdots \rightarrow \alpha$. Take inductively

 x_k so that $x_k > x_{k-1}$, $ht(x_k) = \alpha_k$, and $e(x_k) = q_k$. Put $t_{\alpha}(x, q) = \bigcup_{k \in \omega} x_k$ and $T_{\alpha} = \{t_{\alpha}(x, q) : x \in T \mid \alpha, e(x) < q\}$ and $e(t_{\alpha}(x, q)) = q$.

Finally we put $T = \bigcup_{\alpha < \omega_1} T_\alpha$, which is clearly Q-embedded by e. To show that T is NSB, we prove that $\{A(x,q) \colon x \in T, e(x) < q\}$ is an NS-base. Let S be an uncountable subset of T. Put $I = \{y \in T \colon \exists x \in S(y \leq x)\}$. Put $C = \{\alpha \colon \text{Lim}(\alpha), \forall q \in Q \ \forall x \in T \ | \alpha(\exists y(x < y \& e(y) = q \& y \in I) \Rightarrow \exists \text{ such } y \text{ in } T \ | \alpha)\}$, which is cub in ω_1 . Take $\alpha \in C$ such that $I \cap T \ | \alpha = \diamondsuit_\alpha$. Since S is uncountable, $T_\alpha \cap I \neq \emptyset$. Take x, q so that $t_\alpha(x, q) \in T_\alpha \cap I$. Recall x_0 used in the definition of $t_\alpha(x, q)$. Since $x_0 < t_\alpha(x, q)$, x_0 is also in I, and so $x_0 \in I \cap T \ | \alpha = \diamondsuit_\alpha$. By the choice of x_0 , it must hold that $\forall y \in T \ | \alpha(e(y) < q \& x < y \Rightarrow y \in I \cap T \ | \alpha)$. Hence every $y \in T$ satisfying x < y and e(y) < q belongs to I, because $\alpha \in C$. Therefore $A(x, (e(x) + q)/2) \subseteq I$,

References

- [1] Baumgartner, J.E., Decompositions and embeddings of trees, Notices A.M.S. 17 (1970) 967.
- [2] Hanazawa, M., On a classification of Aronszajn trees II, Tsukuba J. Math. 5 (1981) 117-132.
- [3] Hanazawa, M., Various kinds of Aronszajn tree with no subtree of a different kind, Lecture Notes in Math. vol. 891, Springer-Verlag, (1981) 1-21.
- [4] Kunen, K., Set Theory—An introduction to independence proofs, (North-Holland, Amsterdam, 1980).
- [5] Kurepa, G., Ensembles linéaires et une classe de tableaux ramifiés (tableaux ramifiés de M. Aronszajn) Publ. Math. Univ. Belgrade, VI-VII (1937-1938) 129-160.
- [6] Shelah, S., Free limits of forcing and more on Aronszajn trees, Israel J. Math. 38 (1981) 315-334.

Department of Mathematics Faculty of Science Saitama University Urawa, 338 Japan