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AN APPLICATION OF WEIGHTED NORM INEQUALITIES

FOR MAXIMAL FUNCTIONS TO SEMIGROUPS OF
CONVOLUTION TRANSFORMS ON $L_{w}^{p}(R^{n})$

By

Katsuo TAKANO

Abstract. By applying weighted norm inequalities for maximal functiong

it is shown that the convolution transforms with kernels

$p(\alpha;t, x)=(2\pi)^{-n}\int_{R^{n}}\exp(ixy-\frac{t}{2}|y|^{\alpha})dy$ , $(t>0)$

on $L_{w}^{p}(R^{n})$ to itself form a semigroup of class $(C_{0})$ .

Introduction. E. Hille showed in [3] that the Poisson transforms

$(P(t)f)(x)=\int_{-\infty}^{\infty}\frac{t}{\pi[t^{2}+(x-y)^{2}]}f(y)dy$

for $f$ in $L^{p}(R)$ $(p>1)$ form a semigroup of class $(C_{0})$ with the infinitesimal
generator $-(d/dx)\cdot C=-C\cdot(d/dx)$ , where the operator $C$ denotes the Hilbert
transform. For multi-dimensional case we can show by the results in [12] that
the Poisson transforms

$(P(t)f)(x)=\int_{R^{n}}\frac{c_{n}t}{[t^{2}+|x-y|^{2}]^{(n+1)/2}}f(y)dy$

for $f$ in $L^{p}(R^{n})(p>1)$ form a semigroup of class $(C_{0})$ with the infinitesimal
generator of the closed extension of $-\sum_{j=1}^{n}(\partial/\partial x_{j})\cdot R_{j}=-\Sigma_{j=1}^{n}R_{j}\cdot(\partial/\partial x_{j})$ , where
the operators $R_{j}$ denote the Riesz transforms. In this note by using the weighted
norm inequalities for maximal functions and singular integrals obtained by B.
Muckenhoupt and R. Wheeden [9], [10], B. Muckenhoupt [8], R. Hunt, B.
Muckenhoupt and R. Wheeden [5], R. Coifman and C. Fefferman [1] we obtain
the one-parameter semigroups of the convolution transforms with the infinitesimal
generators of fractional powers of the Laplacean $-\Delta$ on $L_{w}^{p}(R^{n})(p>1)$ and in
particular we obtain the semigroups of the Poisson transforms with the infinite-

slmal generators of $-(1/2)(d/dx)\cdot C=-(1/2)C\cdot(d/dx)$ on $L_{w}^{p}(R)$ and the closed

extension $of-(1/2)\sum_{j=1}^{n}(\partial/\partial x_{j})\cdot R_{j}=-(1/2)\sum_{j=1}^{n}R_{j}\cdot(\partial/\partial x_{j})$ on $L_{w}^{p}(R^{n})$ , respectively.
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These results are the general extensions of the result obtained by E. Hille [3]

and the semi-groups with the infinitesimal generators of fractional powers of
the Laplacean $-\Delta$ on $L^{p}(R^{n})$ . In this note we suppose that the weight $w(x)$

is nonnegative and $w(x),$ $[w(x)]^{-1/(p-1)}$ are locally integrable and $w(x)$ satisfies
an $A_{p}$ condition in [1]; $i.e.,$ $w\in A_{p}$ if there is a constant $C$ such that

$(\frac{1}{|Q|}\int_{Q}w(x)dx)(\frac{1}{|Q|}\int_{Q}[w(x)]^{-1/(p- 1)}dx)^{p-1}\leqq C$ ,

for all cube $Q\subset R^{n}$ . It is known [7] that $w(x)=|x|^{\beta}\in A_{p}$ if $-n<\beta<n(p-1)$ .
We say $f\in L_{w}^{p}(R^{n}),$ $(p>1)$ , if

$\Vert f\Vert_{p.w}=[\int_{R^{n}}|f(x)|^{p}w(x)dx]^{1/p}<\infty$ .

We use $p^{\prime}$ to denote the index conjugate to $p;1/p+1/p^{\prime}=1$ . It is known [5,
10] that

$\int_{R^{n^{-}1}}\frac{w(x)}{+|x|^{np}}dx<\infty$ , $\int_{R^{n}}\frac{[w(x)]^{-1/(p-1)}}{1+|x|^{np\prime}}dx<\infty$ . (0.1)

From these facts it is seen that the totality of continuous functions with com-
pact support, say $C_{0}(R^{n})$ , is contained in $L_{w}^{p}(R^{n})$ and $L_{w^{-1}/(p- 1)}^{p^{\prime}}(R^{n})$ . Since the
space $C_{0}(R^{n})$ is dense in $L_{w}^{p}(R^{n})$ and $L_{w^{-1/(p- 1)}}^{P}(R^{n})$ , the totality of infinitely
differentiable functions with compact support, say $D(R^{n})$ , is also dense. We
will make use of the Hardy-Littlewood maximal function $m_{f}$ for $f$ in $L_{w}^{p}(R^{n})$

(cf. [12]).

The author is grateful to Prof S. Okamoto and Prof. M. Hasumi for their
helpful suggestions.

\S 1. The semigroups of the convolution transforms on $L_{w}^{p}(R^{n})$ .
Let

$p(\alpha;t, x)=(2\pi)^{-n}\int_{R^{n}}\exp(ixy-\frac{t}{2}|y|^{a})dy$ (1.1)

for $ 0<\alpha<\infty$ and $ 0<t<\infty$ . When $0<\alpha\leqq 2,$ $p(\alpha;t, x)$ is known as the symmetric
stable density with exponent $\alpha$ (cf. [6]). In particular

$p(2;2t, x)=(4\pi t)^{-n/2}\exp(-\frac{|x|^{2}}{4t})$

and

$p(1;2t, x)=\frac{c_{n}t}{[t^{2}+|x|^{2}]^{(n+1)/2}}$ ,

where $c_{n}=\Gamma[(n+1)/2]\pi^{-(n+1)/2}$ . Let us consider the fractional powers of the
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Laplacean $-\Delta$, say $(-\Delta)^{\alpha/2}(0<\alpha<\infty)$ , to be

$((-\Delta)^{\alpha/2}f)(x))=\int_{R^{n}}(2\pi)^{-n/2}e^{ixy}|y|^{\alpha}\hat{f}(y)dy$ (1.2)

for $f\in D[(-\Delta)^{\alpha}]=\{f\in L_{w}^{P}(R^{n}):f\in L^{2}(R^{n}),$ $|y|^{\alpha}f\in L^{1}(R^{n})\cap L^{2}(R^{n})$ and

$(2\pi)^{-n/2}\int_{R^{n}}e^{ixy}|y|^{\alpha}\hat{f}(y)dy\in L_{w}^{p}(R^{n})\}$ .

where $f$ denotes the Fourier transform of $f$. Let us denote the operator
$-(1/2)(-\Delta)^{\alpha/2}$ by $A_{\alpha}$ .

LEMMA. The operator $A_{\alpha}$ is closable in $L_{w}^{p}(R^{n})$ .

PROOF. When $f$ belongs to $D(R^{n})$ let

$g(x)=\int_{R^{n}}(2\pi)^{-n/2}e^{ixy}|y|^{\alpha}\hat{f}(y)dy$ .

By the fact that $|x|^{n}g(x)$ is bounded and by (0.1) we obtain

$\int_{R^{n}}|g(x)|^{p}w(x)dx\leqq\sup_{x\in R^{n}}[(1+|x|^{np})|g(x)|^{p}]\int_{R^{n}}\frac{w(x)}{1+|x|^{np}}dx<\infty$ .

Also we can show $g\in L_{w^{-1/(p-1)}}^{p^{\prime}}(R^{n})$ . Consequently, if $f_{n}$ belongs to $D(A_{\alpha})$ and
$f_{n}\rightarrow 0,$ $A_{\alpha}f_{n}\rightarrow h$ as $ n\rightarrow\infty$ in the $L_{w}^{p}$ norm we obtain

$(A_{\alpha}f_{n}, \phi)=\int_{R^{n}}f_{n}(x)\overline{(A_{\alpha}\phi)(x)}dx-\int_{R^{n}}h(x)\overline{\phi(x)}dx=0$

as $ n\rightarrow\infty$ for all $\phi$ in $D(R^{n})$ . Therefore $h(x)=0$ for almost all $x$ and $A_{\alpha}$ is
closable in $L_{w}^{p}(R^{n})$ . Q.E.D.

Let us denote the smallest closed extension of $A_{\alpha}$ by $A_{\alpha}$ and its domain by
$D(\overline{A}_{\alpha})$ .

THEOREM. Let
$(T_{\alpha}(0)f)(x)=f(x)$ ,

$(T_{\alpha}(t)f)(x)=\int_{R^{n}}p(\alpha;t, x-y)f(y)dy$ ,

for $f$ in $L_{w}^{p}(R^{n})$ . Then the family $[T(t):0\leqq t<\infty]$ forms $a$ one-parameter semi-
group of class $(C_{0})$ with the infinitesimal generator $A_{\alpha}$ and the domain $D(\overline{A}_{\alpha})$ .

PROOF. $T_{\alpha}(t)$ is bounded uniformly in $t$ ; Suppose $0<\alpha\leqq 2$ . It is known
[12] that $p(\alpha;t, x)$ is a radial function for $n\geqq 2$ and it is seen from Theorem
XX in [13] that $p(\alpha;t, x)$ is a decreasing function of $|x|$ . By making use of
the maximal function and by [1] we obtain
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$\int_{R^{n}}|(T_{a}(t)f)(x)|^{p}w(x)dx\leqq\int_{R^{n}}[m_{f}(x)]^{p}w(x)dx\leqq C\Vert f\Vert_{p.w}^{p}$ , (1.3)

where $C$ is a constant number not depending on $f$ (cf. [12. p. 59]).

If $\alpha>2$ we can obtain

$|(T_{\alpha}(t)f)(x)|\leqq[ys\in ug_{n}\frac{|p(\alpha,\cdot 1,y)|}{p(1,\cdot 1,y)}]m_{f}(x)$

and since

$\sup_{y\in R^{n}}\frac{|p(\alpha,\cdot 1,y)|}{p(1;1,y)}$

is bounded the inequality (1.3) holds.
Semigroup property and strong continuity: These properties follow from

the facts that $D(R^{n})$ is dense in $L_{w}^{p}(R^{n})$ and $T_{\alpha}(t)$ is uniformly bounded in $t$ .
Infinitesimal generator and its domain: Let us denote the infinitesimal

generator of the semigroup of the family $[T_{\alpha}(t):0\leqq t<\infty]$ by $C_{\alpha}$ and its domain
by $D(C_{a})$ . It is seen from (1.3) that

$\lim_{t\rightarrow\infty}\frac{1}{t}\log\Vert T(t)\Vert=\omega\leqq 0$ .

The resolvent $R(\lambda, C_{\alpha})$ of $C_{\alpha}$ is given by

$R(\lambda, C_{a})f(x)=(B)\int_{0}^{\infty}e^{-\lambda t}T_{\alpha}(t)f(x)dt$ (1.4)

for $f$ in $L_{w}^{p}(R^{n})$ and for $\lambda>0$ , where $(B)$ denotes the Bochner integral, and $D(C_{\alpha})$

$=$ {$g:g=R(1,$ $C_{a})f$ for $f$ in $L_{w}^{p}(R^{n})$ } holds. Let us show that $(\lambda-\overline{A}_{\alpha})R(\lambda, C_{\alpha})f$

$=f$ holds for all $f$ in $L_{w}^{p}(R^{n})$ . Suppose that $f$ belongs to $D(R^{n})$ . By [4. Remark
following Theorem 3.7.12] and by the Fubini theorem we can show that

$((B)\int_{0}^{\infty}e^{-\lambda}{}^{t}T_{\alpha}(t)fdt,$ $\phi)=(\int_{0}^{\infty}e^{-\lambda t}T_{a}(t)fdt,$ $\phi)$

for all $\phi$ in $D(R^{n})$ . Consequently the Bochner integral of the right hand side
of (1.4) is equal to the ordinary Lebesgue integral. We obtain

$g(x)=R(\lambda, C_{\alpha})f(x)=(2\pi)^{-n/2}\int_{R^{n}}e^{ixy}\frac{2}{2\lambda+|y|^{\alpha}}\hat{f}(y)dy$ (1.5)

and

$|g(x)|\leqq\frac{C}{\lambda}m_{f}(x)$ for a constant $C$ .

Let us show that $g\in D(A_{a})$ . It suffices to show that

$h(x)=(2\pi)^{-n/2}\int_{R^{n}}e^{ixy}\frac{|y|^{\alpha}}{2\lambda+|y|^{\alpha}}\hat{f}(y)dy$
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belongs to $L_{w}^{p}(R^{n})$ . We see that $h(x)=f(x)-\lambda g(x)$ , and hence $h(x)$ belongs to

$L_{w}^{p}(R^{n})$ . It is seen from (1.5) that

$(\lambda-\overline{A}_{\alpha})R(\lambda, C_{\alpha})f=(\lambda-A_{\alpha})g=f$ (1.6)

for $f$ in $D(R^{n})$ . Since $D(R^{n})$ is dense in $L_{w}^{p}(R^{n})$ and $R(\lambda, C_{\alpha})$ is bounded and
$A_{\alpha}$ is closed (1.6) holds for all $f$ in $L_{w}^{p}(R^{n})$ . Consequently it is seen that $D(\overline{A}_{\alpha})$

$\supset D(C_{\alpha})$ and $\overline{A}_{\alpha}g=C_{\alpha}g$ for all $g$ in $D(C_{\alpha})$ . Let us show that $D(A_{\alpha})\subset D(C_{\alpha})$ .
When $g$ belongs to $D(A_{\alpha})$ let

$f(x)=(2\pi)^{-n/2}\int_{R^{n}}e^{ixy}(1+\frac{|y|^{\alpha}}{2})\hat{g}(y)dy$ .

Since $g$ belongs to $D(A_{\alpha})$ , by the Fourier inversion formula we see that $f$ belongs

to $L_{w}^{P}(R^{n})$ . Recalling (1.5) we can show that $R(1, C_{\alpha})f=g$ . Thus we obtain
$D(A_{\alpha})\subset D(C_{\alpha})$ . Consequently, by the definition of the smallest closed extension

of $A_{\alpha}$ we obtain $D(\overline{A}_{\alpha})\subset D(C_{\alpha})$ . Consequently we obtain that $D(\overline{A}_{\alpha})=D(C_{\alpha})$ and
$\overline{A}_{a}f=C_{\alpha}f$ for $f$ in $D(\overline{A}_{\alpha})=D(C_{\alpha})$ . Q.E.D.

\S 2. The infinitesimal generators of the semigroups of the

Poisson transforms.

It is known [1] that the Hilbert transform $C$ on $L_{w}^{p}(R^{n})$ and the Riesz trans-

forms $R_{j}$ on $L_{w}^{p}(R^{n})$ to themselves can be defined and they are bounded operators.

It is easily seen that the set of linear combinations of functions in $D(R)$ and in

$\{(1/x-\xi-i\eta):-\infty<\xi, \eta<\infty, \eta\neq 0\}$ is dense in the domain of the operator

$(d/dx)\cdot C,$ $D((d/dx)\cdot C)=\{f\in L_{w}^{p}(R):(Cf)(x)$ is absolutely continuous and

$d/dx(Cf)(x)\in L_{w}^{p}(R)\}$ , with the norm $\max\{\Vert f\Vert_{p.w}, \Vert(d/dx)Cf\Vert_{p.w}\}$ . From this

fact and from the same arguments as in [3] we obtain

COROLLARY 1. When $n=1,$ $D(\overline{A}_{1})=D((d/dx)\cdot C)$ and

$(\overline{A}_{1}f)(x)=-\frac{1}{2}\frac{d}{dx}(Cf)(x)=-\frac{1}{2}(C\frac{d}{dx}f)(x)$

holds for $f\in D(\overline{A}_{1})=D((d/dx)\cdot C)$ .

It is seen from [12] that if $f\in L_{w}^{p}(R^{n})\cap L^{2}(R^{n})$ and $f\in L^{1}(R^{n})\cap L^{2}(R^{n})$ ,

$(R_{j}f)(x)=\int_{R^{n}}(-i)\frac{y_{j}}{|y|}\hat{f}(y)e^{ixy}dy$

holds for almost all $x$ with respect to $w(x)dx$ . By this equality we see that

if $n\geqq 2$

$(A_{1}f)(x)=-\frac{1}{2}\sum_{j=1}^{n}\frac{\partial}{\partial x_{j}}(R_{j}f)(x)=-\frac{1}{2}\sum_{f=1}^{n}(R_{j}\frac{\partial}{\partial x_{j}}f)(x)$
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holds for $f$ in $D(A_{1})$ . Consequently, by the above theorem we obtain

COROLLARY 2. The smallest closed extension of the operator

$-\frac{1}{2}\sum_{j=1}^{n}\frac{\partial}{\partial x_{j}}\cdot R_{j}=-\frac{1}{2}\sum_{j=1}^{n}R_{j}\cdot\frac{\partial}{\partial x_{j}}$

with the domain $D(A_{1})$ is the infinitesimal generator of the semigroup of the
Poisson transforms on $L_{w}^{p}(R^{n})$ .
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