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ON THE CURVES OF GENUS $g$ WITH AUTOMORPHISMS
OF PRIME ORDER $2g+1$

By

Atsushi SEYAMA

Introduction.

Let $k$ be an algebraically closed field, and let $C$ be a (,omplete non-singular
curve of genus $g\geqq 2$ defined over $k$ . In [2], M. Homma showst hat if a prime
number $q$ is the order of an automorphism of $C$, then $q\leqq g+1$ or $q=2g+1$ . He
determines all $C$ in the case of $q=2g+1$ as follows:

(i) If $q$ is equal to the characteristic $p$ of $k$ , then $C$ is birationally equivalent
to the plane curve

$y^{2}=x^{q}-x$ .
(ii) If $q$ is not equal to $p$ , then $C$ is birationally equivalent to one of the fol-

lowing plane curves
$y^{m-r}(y-1)^{r}=x^{q}$ , $1\leqq r<m\leqq g+1$ .

The case (ii) shows, in particular, there may be many isomorphy classes of curves
of genus $g$ which admit an automorphism of prime order $2g+1\neq p$ . The aim of
this paper is to classify these curves.

Fix a prime number $q\geqq 5$ different from $p$. For a pair of positive integer $(r, s)$

such that any one of $r,$ $s$ and $r+s$ is coprime to $q$, let $C(r, s)$ be a non-singular
model of the irreducible equation

$y^{r}(y-1)^{s}=x^{q}$

over $k$ . Then the genus of $C(r, s)$ is $(q-1)/2$ and $C(r, s)$ has an automorphism of
order $q$ . In \S 1, we shall give a basis of the space ol differentials of the first kind
on $C(r, s)$ , in forms suitable to our later use. In \S 2, we shall give a condition
under which $C(r, s)^{\prime}s$ are isomorphic in terms of $r$ and $s$ . This is our main result.
In particular, we see that the cardinality of the set of isomorphy classes is, $(q+5)/6$

if $q\equiv 1mod 3$ , and $(q+1)/6$ if $q\equiv 2mod 3$ . In \S 3, we determine the order of the
group of automorphisms of $C(r, s)$ in the case of characteristic zero.
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Notation.

Throughout this paper, we fix an algebraically closed field $k$ , and a prime
number $q\geqq 5$ different from the characteristic of $k$ . All curves are considered to
be defined over $k$ . We write $|S|$ for the cardinality of a finite set $S$. The sub-
group of a group $H$ generated by a family $\{h_{1}, \cdots, h_{m}\}$ of elements of $H$ is denoted
by $\langle h_{1}, \cdots, h_{m}\rangle$ . As usual, $Z,$ $Q$ and $C$ mean the ring of rational integers, the field
of rational numbers, and the field of complex numbers respectively.

\S 1. Bases of the space of differentials.

Let $r_{0}$ and $r_{1}$ be positive integers such that any one of $r_{0},$ $r_{1}$ and $r_{0}+r_{1}$ is
coprime to $q$ . We consider a complete nonsingular curve $C$ over $k$ which is bira-
tionally equivalent to the plane curve

$y^{r_{0}}(y-1)^{r_{1}}=x^{q}$ .

The curve $C$ has an automorphism $\theta$ of order $q$ defined by

$(1^{*}(r/)=y, (1^{*}(x)=\zeta x$ ,

where $\zeta$ is a primitive q-th root of unity in $k$ . Consider the ramified covering

$\eta:C\rightarrow P^{1}=C/\langle\theta\rangle$ ,

correceponding to the inclusion $k(x, y)^{\langle\theta\rangle}=k(y)\subset k(x, y)$ . The degree of $\eta$ is $q$, and
$\eta$ is ramified at excatly three points $P_{0},$ $P_{1}$ and $P_{\infty}$ lying above $0,1$ and $\infty\in P‘=$

$k\cup t\infty\}$ respectively with the ramification index $q$ . Consequently the divisors of
rational functions $y,$ $y-1$ and $x$ , and that of differential $dy$ are as follows:

$div(y)=qP_{0}-qP_{\infty}$ , $div(y-1)=qP_{1}-qP_{\infty}$ ,

$div(x)=r_{0}P_{0}+r_{1}P_{1}-(r_{0}+r_{1})P_{\infty}$ ,

$div(dy)=(q-1)P_{0}+(q-1)P_{1}-(q+1)P_{\infty}$ .
In particular, the genus $g$ of $C$ is given by $(q-1)/2$ .

For any integer $e$ coprime to $q$, we denote by $e^{*}$ the element of $\{1, \cdots, q-1\}$

such that
$e\equiv e^{*}mod q$.

Then we define a subset $E$ of $\{1, \cdots, q-1\}$ by

$E=\{e\in\{1, \cdots, q-1\}|0_{0}\leqq(a+_{0}b)q+q-(r_{0}+r_{1})_{1}e-1,wherere=(re)^{*}+aq,$$r_{1}e=(re)^{*}+bq\}$

For each $e\in E$ with $r_{0}e=(r_{0}e)^{*}+aq$ and $r_{1}e=(r_{1}e)^{*}+bq$, we put

$\omega_{e}=\frac{y^{r_{0}-1-a}(y-1)^{r_{1}-1-b}}{x^{q-e}}dy$ .
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This differential is of the first kind. In fact, we easily see

$div(\omega_{e})=(r_{0}e-aq-1)P_{0}+(r_{1}e-bq-1)P_{1}+((a+b)q+q-(r_{0}+r_{1})e-1)P_{\infty}\geqq 0$ .

LEMMA 1.1. We have

(0) $E=\{e\in\{1, \cdots, q-1\}|_{wher^{*}er_{\infty}=-(r_{0}+^{\infty}r)}^{(r_{0}e)+(r_{1}e)^{*}+(re)_{1}^{*}.=q}’\}$

(1) $|E|=g$ .

PROOF. Since $(r_{0}e)^{*}+(r_{1}e)^{*}=(r_{0}+r_{1})e-(a+b)q\geqq 1$ , we have $e\in E$ if and only if
$1\leqq(r_{0}e)^{*}+(r_{1}e)^{*}\leqq q-1$ . That is,

$(r_{0}e)^{*}+(r_{1}e)^{*}=((r_{0}+r_{1})e)^{*}$ .

Look at the equality $(-c)^{*}=q-c^{*}$ for any integer $c$ coprime to $q$ , and we see that
$e\in E$ if and only if

$(r_{0}e)^{*}+(r_{1}e)^{*}+(r_{\infty}e)^{*}=q$ .

On the other hand, the function

$e-(r_{0}e)^{*}+(r_{1}e)^{*}+(r_{\infty}e)^{*}$

takes exactly two values $q$ and $2q$ on $\{1, \cdots, q-1\},$ $e\not\in E$ is equivalent to

$(r_{0}e)^{*}+(r_{1}e)^{*}+(r_{\infty}e)^{*}=2q$ .
That is,

$q-(r_{0}(-e))^{*}+q-(r_{1}(-e))^{*}+q-(r_{\infty}(-e))^{*}=2q$ .

The last equality is equivalent to $q-e\in E$, and we have $|E|=g$ .

PROPOSITION 1.2. We have the following.
(1) $\{\omega_{e}\}_{e\in E}$ is a basis of the space of differentials of the first kind on $C$.
(2) For $i=0,1,$ $\infty$ , let $G_{i}$ be the set of gap values at $P_{i}$ . Then the map $E\rightarrow G_{i}$

defined by $e-(r_{i}e)^{*}$ is bijective for any $i=0,1,$ $\infty$ .

PROOF. Since $|E|=g$ , and

$div(\omega_{e})=\sum_{i=0.1\infty}.((r_{i}e)^{*}-1)P_{t}$ ,

it suffices to show that the map $E\rightarrow G_{i}$ is injective for each $i$ . But this is obvious
because $r_{i}$ is coprime to $q$ .

REMARK 1.3. Let $\zeta$ be a primitive q-th root of unity in the complex number
field $C$, and let $\varphi_{e}$ be an element of Gal $(Q(\zeta)/Q)$ defined by $\varphi_{e}(\zeta)=\zeta^{e}$ , for $e\in E$. Then
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the proof of Lemma 1.1. shows that $(Q(\zeta), \{\varphi_{e}\}_{e\in E})$ is a C.M. type. This C.M. type
arises as follows. Assume $k=C$, and let $J$ be the Jacobian variety of $C$. The
automorphism $\theta$ of $C$ induces an automorphism $\tilde{\theta}$ of order $q$ of $J$ , and we have an
isomorphism $i$ of $Q(\zeta)$ into End $(J)\otimes Q$ defined by $i(\zeta)=\tilde{\theta}$ . Then $(J, i)$ is of type
$(Q(\zeta), \{\varphi_{e}\}_{e\epsilon E})$ .

\S 2. Main results.

First of all, we restrict the equations of curves which we have to classify.

PROPOSITION 2.1. Let $r_{0}$ and $r_{1}$ be positive integers such that any one of $r_{0},$ $r_{1}$

and $r_{0}+r_{1}$ is coprime to $q$.
Then the irreducible equation $y^{r_{0}}(y-1)^{r_{1}}=x^{q}$ is birationally equivalent to $y^{r}(y-1)=$

$x^{q}$ , for some $r=1,$ $\cdots,$ $q-2$ .

PROOF. Let $s$ be a positive integer such that $r_{1}s=1+qb$ , and put

$r_{0}s=r+qa$ , $r=1,$ $\cdots,$ $q-1$ .

Since $r_{0}+r_{1}$ and $s$ are coprime to $q$ , we have $r\neq q-1$ .

We shall show that the function field $k(x, y)$ defined by the equation

$y^{r_{0}}(y-1)^{r_{1}}=x^{q}$

is isomorphic to the function field $k(u, v)$ defined by the equation

$v^{r}(v-1)=u^{q}$ .

But it is easy to see that
$\varphi(u)=x^{s}/y^{a}(y-1)^{b},$ $\varphi(v)=y$ ,

gives an isomorphism, $\varphi:k(u, v)\rightarrow k(x, y)$ .

For each $r=1,$ $\cdots,$ $q-2$ , we fix a non-singular model of $y^{r}(y-1)=x^{q}$ , which is
denoted by $C_{r}$ . The curve $C_{r}$ is a special one of $C$ in \S 1, so we use the following
notation; the automorphism of order $q$ of $C_{r}$ is denoted by $\theta_{r}$ , three fixed points of
$\theta$ are denoted by $P_{r}.{}_{0}P_{r.1}$ and $P_{r.\infty}$ , the set of gap values at $P_{r.i}$ is denoted by
$G_{r.i}$ ($i=0,1$ , oo), and the set

{ $e\in\{1,$ $\cdots,$ $q-1\}|0\leqq aq+q-(r+1)e-1$ , where $re=(re)^{*}+aq$}

is denoted by $E_{r}$ .

PROPOSITION 2.2. Let $C$ and $C^{\prime}$ be curves of genus $g=(q-1)/2$ which admit
automorphisms of order $q,$

$\theta$ and $\theta^{\prime}$ respectively. Then the following conditions are
equivalent.
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(1) $C$ and $C^{\prime}$ are isomorphic.
(2) $(C, \langle 0\rangle)$ and $(C^{\prime}, \langle\theta^{\prime}\rangle)$ are isomorphic, that is, there is an isomorphism

$\varphi:C\rightarrow C^{\prime}$

such that $\langle\theta^{\prime}\rangle=\varphi\langle\theta\rangle\varphi^{-1}$ .

PROOF. Since $\langle 0^{\prime}\rangle$ is a q-Sylow subgroup of the automorphism group of C’ by
Corollary A.4. in [4], the statement is trivial.

The following lemma gives two sorts of isomorphisms among $(C_{r}, \langle\theta_{r}\rangle)^{\prime}s$ .

LEMMA 2.3. For $r$ and $s\in\{1, \cdots, q-2\}$ , we have the following.

(1) If $rs\equiv 1mod q$ , then there is an isomorphism

$\sigma_{r}$ ; $(C_{\gamma}, \langle\theta_{r}\rangle)\rightarrow(C_{s}, \langle\theta_{s}\rangle)$

such that

$\sigma_{r}(P_{r,0})=P_{s.l},$ $\sigma_{r}(P_{r,I})=P_{S,0},$ $\sigma_{r}(P_{r,\infty})=P_{s,\infty}$ .
(2) If $-(r+1)s\equiv rmod q$ , then there is an isomorphism

$\tau_{r}$ ; $(C_{r}, \langle\theta_{r}\rangle)\rightarrow(C_{s}, \langle\theta_{s}\rangle)$

such that

$\tau_{r}(P_{r.0})=P_{S.0},$ $\tau_{r}(P_{r,1})=P_{s,\infty},$ $\tau_{r}(P_{r,\infty})=P_{s,1}$ .
PROOF. Let $k(x, y)$ (resp. $k(u,$ $v)$) be the function field of $C_{r}$ (resp. $C_{s}$) with the

equation $y^{r}(y-1)=x^{q}$ (resp. $v^{s}(v-1)=u^{q}$).

For (1), we put

$rs=1+qb,$ $d=\{01ififrrisisoddeven$

Then

$\sigma_{r}^{*}(u)=(-1)^{b+ds_{X^{S}}}/y^{b},$ $\sigma_{\gamma}^{*}(v)=-y+1$

gives a desired isomorphism $\sigma_{r}$ .
For (2), let $t\in\{1, \cdots, q-2\}$ be such that

$(q-(r+1))t=1+qb$ .
Then $q-(t+1)=s$ , and

$\tau_{r}^{*}(u)=x^{t}/y^{t-b-1}(y-1),$ $\tau_{r}^{*}(v)=y/(y-1)$

gives a desired isomorphism $\tau_{r}$ .
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DEFINITION 2.4. We define a subgroup $S$ of the group of permutations of the
set $(Z/qZ)^{*}-\{-1\}$ by

$S=\langle\sigma, \tau\rangle,$ $\sigma(r)=1/r,$ $\tau(r)=-r/(r+1)$ ,

where $(Z/qZ)^{*}$ is the group of invertible elements of the field $Z/qZ$.

The group $S$ is isomorphic to the group of permutations of three letters. In
fact, $S$ is consisting of the following six elements:

1: $r-\succ r$, $\sigma;r 1/r$

$\tau;r--\gamma/(r+1)$ , $\sigma\tau\sigma;\tau--(r+1)$

$\sigma\tau;r--(r+1)/r$, $(\sigma\tau)^{2}$ ; $\tau--1/(r+1)$ .

Then the map $\pi$ defined below gives an isomorphism of $S$ onto the group of per-
mutations of $\{0,1, \infty\}$ .

$1-\left(\begin{array}{ll}01 & \infty\\ 01 & \infty\end{array}\right)$

,
$\sigma-\left(\begin{array}{ll}01 & \infty\\ 10 & \infty\end{array}\right)$

,

$\tau\left(\begin{array}{lll}0 & 1 & \infty\\ 0 & \infty & 1\end{array}\right)$

,
$\sigma\tau\sigma\mapsto\left(\begin{array}{ll}01 & \infty\\\infty & 10\end{array}\right)$

,

$\sigma\tau-\left(\begin{array}{lll}0_{\nu} & 1 & \infty\\ 1 & \infty & 0\end{array}\right)$

,
$(\sigma\tau)^{2}-\left(\begin{array}{ll}01 & \infty\\\infty & 01\end{array}\right)$

.
In what follows, regarding $\{1, \cdots, q-2\}$ as a complete set of representatives,

we use the notation $C_{r}$ etc. for $r\in(Z/qZ)^{*}-\{-1\}$ . By Lemma 2.3., we have,

COROLLARY 2.5. For any $r\in(Z/qZ)^{*}-\{-1\}$ and for any $\varphi\in S$, there is an iso-
morphism

$\varphi_{r}$ : $(C_{r}, \langle\theta_{r}\rangle)\rightarrow(C_{\varphi^{(r)}}, \langle\theta_{\varphi(r)}\rangle)$

such that

$\varphi_{r}(P_{r.i})=P_{\varphi(r).\pi(\varphi)(i)},$ $i=0,1,$ $\infty$ .
The following proposition conceming the action of $S$ on $(Z/qZ)^{*}-\{-1\}$ is easy,

so we omit the proof.

PROPOSITION 2.6.
(0) For any $r\in(Z/qZ)^{*}-\{-1\}$ , the order of the stabilizer $S_{r}$ is 1, 2 or 3.
(1) We have

$\{r\in(Z/qZ)^{*}-\{-1\}||S_{r}|=2\}=\{1, q, 2g-1\}$ ,
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(2) For any $r\in(Z/qZ)^{*}-\{-1\},$ $|$ S.,. $|=3$ if and only if $r^{2}+r+1=0$ . If there is such
an $r$ , then

$\{r\in(Z/qZ)^{*}-\{-1\}||S_{r}|=3\}=\{r, r^{2}\}$ ,

and this set is the S-orbit of $r$.
(3) We have,

$|S\backslash (Z/qZ)^{*}-t-1\}|=\{(qI^{5)/6},ifq\equiv 2ifq\equiv 1modmod 33.\cdot$

We see, in Corollary 2.5., that $C_{r}$ and $C_{s}$ are isomorphic if $r$ and $s$ are S-
equivalent. The converse is also true, this is our main result. To prove it, we
need a lemma.

For any $r=1,$ $\cdots,$ $q-2$ , we call $E_{r}$ primitive if $E_{r}$ as a subset of $(Z/qZ)^{*}$ satisfies,

$\forall u\in(Z/qZ)^{*},$ $uE_{r}=E_{r}\Rightarrow u=1$ .

For example, if $E_{r}$ satisfies $\Sigma_{e\epsilon\prime}\Gamma_{r}\lrcorner e\not\equiv 0mod q$ , then $E_{r}$ is primitive.

LEMMA 2.7. For any $r=1,$ $\cdots,$ $q-2$ , we have

$-12r(r+1)\sum_{e\epsilon E_{r}}e\equiv r^{2}+r+1mod q$ .

PROOF. By the definition of $E_{r}$ , we see easily,

$E_{r}=\bigcup_{a=0}^{r-1}\{e\in Z|(qa+1)/r\leqq e\leqq(q(a+1)-1)/(r+1)\}$ ,

where the right hand side is disjoint. Furthermore, for $a=0,$ $\cdots,$ $r-1$ ,

$\{e\in Z|(qa+1)/r\leqq e\leqq(q(a+1)-1)/(r+1)\}$

$=\{e\in Z|[qa/r]+1\leqq e\leqq[q(a+1)/(r+1)]\}$ ,

since $q(a+1)\not\equiv 0mod r+1$ , where $[]$ is the Gauss symbol.
Note that the inequality $[qa/r]\leqq[q(a+1)/(r+1)]$ , and we have,

(i) $\sum_{e\in E_{r}}e=1/2\sum_{a\approx 0}^{r-1}\{[q(a+1)/(r+1)]-[qa/r]\}\cdot\{q(a+1)/(r+1)]+[qa/r]+1\}$

$=1/2\sum_{a=1}^{r}\{[qa/(r+1)]^{2}+[qa/(r+1)]\}-1/2\sum_{a=1}^{r-1}\{[qa/r]^{2}+[qa/r]\}$ .

On the other hand, for any $s=1,$ $\cdots,$ $q-1$ , we see

$\{qb-[qb/s]s|b=1, \cdots, s-1\}=\{1, \cdots, s-1\}$

and then,
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(ii) $s\sum_{b=1}^{s-1}[qb/s]\equiv-s(s-1)/2,$ $mod q$.

$s^{2}\sum_{b=1}^{s-1}[qb/s]^{2}\equiv(s-1)s(2s-1)/6,$ $mod q$ .

Our lemma is easily deduced from (i) and (ii).

THEOREM 2.8. For any $r$ and $s\in(Z/qZ)^{*}-\{-1\},$ $C_{r}$ and $C_{s}$ are isomorphic if
and only if $r$ and $s$ are S-equivalent.

PROOF. Assume $C_{r}$ and $C_{\iota}$ isomorphic. By Proposition 2.2., there is an iso-
morphism

$\varphi:(C_{r}, \langle\theta_{r}\rangle)\rightarrow(C_{s}, \langle O_{s}\rangle)$ .

In particular, there is a permutation $\pi$ of $\{0,1, \infty\}$ such that $\varphi(P_{r,i})=P_{s.\pi(i)}(i=0,1, \infty)$ ,

and then

$G_{r.i}=G_{*,n(i)},$ $i=0,1,$ $\infty$ .

Assume $E_{r}$ is not primitive. Then neither is $E_{s}$ . By Lemma 2.7., these imply
$r^{2}+r+1=s^{2}+s+1=0$ , and $r$ and $s$ are S-equivalent by Proposition 2.6. (2).

Assume $E_{r}$ is primitive. There are six possibilities of $\pi$ . For example, if

$\pi=\left(\begin{array}{ll}01 & \infty\\ 1\infty & 0\end{array}\right)$

,

then, as subsets of $(Z/qZ)^{*},$ $E_{r}$ and $E_{\epsilon}$ satisfy the equalities $rE_{r}=E_{s},$ $E_{r}=-(s+1)E_{s}$

and $-(r+1)E_{r}=sE_{s}$ by Proposition 1.2. (2), and

$srE_{r}=sE_{*}=-(r+1)E_{r}$ .
Since $E_{r}$ is primitive, we have

$s=-(r+1)/r=(\sigma\tau)(r)$ .
The other five cases are similarly treated, and the proof is completed.

As a corollary, we characterize hyperelliptic and trigonal curves in $\{C_{r}\}$ .

COROLLARY 2.9.
(1) The curve $C_{r}$ is hyperelliptic if and only if $r=1,$ $g$ or $2g+1$ .
(2) The curve $C_{r}$ is trigonal if and only if $r$ is S-equivalent to 2.

PROOF. Both (1) and (2) are clear from Proposition 3.3. in [2] and the above
theorem.
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REMARK 2.10. Assume $k=C$ and let $J_{r}$ be the Jacobian variety of $C_{r}$ . Taking
account of the theory of complex multiplication of abelian varieties [5], Lemma
2.7. shows that $J_{r}$ is simple if $|S_{r}|\neq 3$ , and that $J_{r}$ is isogenous to the three fold
product of an abelian variety $X$ of dimension $(q-1)/6$ if $S_{r}|=3$ . Furthermore, by
the results of [3], we see that $J_{r}$ and $J_{s}$ are isogenous if and only if $r$ and $s$ are
S-equivalent, and that $X$ as above is simple.

\S 3. Orders of automorphisms groups.

As before, let $C$ be a curve of genus $g=(q-1)/2$ with an automorphism $\theta$ of
order $q$ . Each element of Aut $(C, \langle\theta\rangle)$ induces a permutation of the set of fixed
points of $\theta$ , Fix $(\theta)$ , and we have a group homomorphism of Aut $(C, \langle\theta\rangle)$ into the
group of permutations of Fix $(\theta)$ .

LEMMA 3.1. The kernel of above homomorphism is $\langle\theta\rangle$ .

PROOF. If $\varphi\in Aut(C, \langle\theta\rangle)$ is identity on Fix $(\theta)$ , then the induced automorphism
$\overline{\varphi}$ of $ C/\langle\theta\rangle$ is identity on $\pi(Fix(\theta))$ , where $\pi$ is the projection $ C\rightarrow C/\langle\theta\rangle$ . Since
the genus of $ C/\langle\theta\rangle$ is $0$ and $|$ Fix (0) $|=3,\overline{\varphi}$ is identity on $ C/\langle 0\rangle$ . But the natural
homomorphism

Aut $(C, \langle 0\rangle)\rightarrow Aut(C/\langle 0\rangle)$

has the kernel $\langle\theta\rangle$ , we have $\varphi\in\langle 0\rangle$ .

PROPOSITION 3.2. For any $r=1,$ $\cdots,$ $q-2$ , we have

Aut $(C_{r}, \langle\theta_{r}\rangle)|=q|S_{r}|$ .

PROOF. Assume $|S_{r}|=1$ . Then the cardinality of the set $G_{r}=\{G_{r,0}, G_{r,1}, G_{r,\infty}\}$

is 3. Hence any element of Aut $(C_{r}, \langle\theta_{r}\rangle)$ is identity on Fix $(\theta_{r})=\{P_{r},{}_{0}P_{r},{}_{1}P_{r.\infty}\}$ .
Suppose $|S_{r}|=2$ . Then $|G_{r}|=2$ , so that there is no element of Aut $(C_{r}, \langle\theta_{r}\rangle)$

of order 3.
If $|S_{r}|=3$ , then it suffices to show that there is no element of Aut $(C_{r}, \langle 0_{r}\rangle)$ of

order 2. Let $i$ be an automorphism of Aut $(C_{\gamma}, \langle\theta_{r}\rangle)$ of order 2. Then the genus
$g^{\prime}$ of $ C_{r}/\langle i\rangle$ satisfies

$(^{*})$ $1\leqq g^{\prime}<g$ ,

because $C_{r}$ is not hyperelliptic. Since $i$ induces a permutation of order 2 on the
set Fix $(\theta_{r})$ of cardinality 3, $i$ and $\theta_{r}$ have a common fixed point. Let $H$ be the
stabilizer of this point in Aut $(C_{r})$ , and let $p$ be the characteristic exponent of the
ground field $k$ . Since $p$-Sylow subgroups of $H$ are normal and the quotient group
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of II by the $p$-Sylow subgroup is cyclic, we see that the order of $i0_{r}i^{-1}()_{r}^{-1}$ is a power
of $p$ .

On the other hand, $i$ normalizes $\langle 0_{r}\rangle$ , so that $ i0_{r}i^{-1}0_{r}^{-1}\in\langle(1_{r}\rangle$ . Hence we have

$i\theta_{r}=\theta_{r}i$

because of $(p, q)=1$ . Consequently, ($f_{r}$ induces an automorphism of order $q$ on
$ C_{r}/\langle i\rangle$ with a fixed point. This contradicts $(^{*})$ .

Now, we consider the full automorphism group Aut $(C)$ in the case of charac-
teristic zero, When the genus is 2 or 3, Aut $(C)$ is well known. If the genus is
2, then all curves in question are isomorphic and the order of Aut $(C)$ is 10. If the
genus is 3, there are two isomorphy classes, hyperelliptic one and non-hyperelliptic
one. In the first case, the order is 14. In the second case, the order is 168, and
the curves are isomorphic to well known Klein curve. In general, we have the
following.

THEOREM 3.3. Assume the characteristic of the ground field is zero. Then for
any $r=1,$ $\cdots,$ $q-2$ , we have

Aut $(C_{r})|=q|6_{r}|$

except that $C_{r}$ is isomorphic to Klein curve.

REMARK. By the result of \S 2, $C_{r}$ is isomorphic to Klein curve if and only if
($J=3$ and $r=2$ or 4.

$PROOI^{\tau^{\backslash }}$ . Let $C$ be a curve of genus $g=(q-1)/2$ with an automorphism $0$ of
order $q$ . It suffices to show that $\langle\theta\rangle$ is normal in Aut $(C)$ provided $g\geqq 5$ .

Put $G=Aut(C)$ . Assume $\langle(1\rangle$ is not normal in $G$ . Then the cardinality of the
set of q-Sylow subgroups is at least $q+1$ , and we have

$(^{*})$ $(2g+1)(2g+2)=q(q+1)\leqq|G$ .

On the other hand, let $\{Q_{1}, \cdots, Q_{n}\}$ be a maximal set of inequivalent fixed
points of $G-\{1_{C}\}$ and let $m_{i}$ be the order of the stabilizer of $Q_{i}$ in $G$ . We may
assume $m_{1}\leqq\cdots\leqq m_{n}$ . Since the genus of $C/G$ is zero, Hurwitz formula gives

$2g-2=|G|(n-2-\sum_{i=1}^{n}1/m_{i})$ .

Using above formula, we see easily

(1) $|G|\leqq 24(g-1)$

except the following two cases;
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(2) $n=3$ and $m_{1}=2,$ $m_{g}=5$ .
(3) $n=3$ and $m_{3}\geqq 7$ .

(For example, see [1].)

The inequality (1) contradicts $(^{*})$ because of $g\geqq 5$ . The case (2) does not occur,
since one of $m_{1},$ $m_{2}$ and $m_{3}$ is divisible by $q\geqq 11$ . For the same reason, we have
following inequality in the case (3),

$|G|\leqq(2g-2)/(1-1/2-1/3-1/11)<27(g-1)$ .

This contradicts $(^{*})$ again.
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