
TSUKUBA J. MATH.
Vol. 6, No. 1 (1982). 41–50

ON A RELATION BETWEEN THE TOTAL CURVATURE AND
THE MEASURE OF RAYS

Dedicated to Professor I. Mogi on his 60 th birthday

By

Koichi SHIGA

\S $0$ . Introduction.

Let $X$ be a 2-dimensional manifold, then we say that $X$ is finitely connected
if the fundamental group $\pi_{1}(X)$ is finitely generated. If $X$ is noncompact and
finitely connected, then it is homeomorphic to a compact surface with a finite
number of points removed. Let $M$ be a 2-dimensional finitely connected complete
noncompact Riemannian manifold without boundary. The Euler characteristic of
$M,$ $\chi(M)$ , equals the Euler characteristic of the associated compact surface minus
the number of points removed. A geodesic $\gamma:[0, \infty$ ) $\rightarrow M$ is called a ray when any
subarc of $\gamma$ is the shortest connection between its end points. And all geodesics
are assumed to be parametrized by arc length. Let $T_{p}M$ be the tangent space of
$M$ at $p$ and $S_{p}M$ be the unit circle of $T_{p}M$ centered at the origin. $S_{p}M$ may be
regarded as a standard unit circle $S^{1}$ from the Euclidean metric on $T_{p}M$. Hence
we can consider the Riemannian measure on $S_{p}M$ Let $A(p)$ be the subset of $S_{p}M$

consisting of vectors $v$ in $S_{p}M$ such that the geodesic $\gamma_{v}$ \ddagger $[0, \infty$ ) $\rightarrow M,$ $\gamma_{v}(t)=\exp_{p}tv$ ,

is a ray, where $\exp_{p}$ is the exponential map of $M$.
Recently, Maeda has proved in [4] the following theorem with interest in a

problem whether less curvedness of a Riemannian manifold in some sense implies
the existence of rays on it in large quantities or not when the manifold is non-
negatively curved;

THEOREM ([4]). Let $M$ be a 2-dimensional complete Riemannian manifold with
nonnegative Gaussian curvature $G\geqq 0$ diffeomorphic to a Euclidean plane. If
$\int_{K}Gdv<2\pi$ , then for any point $p$ in $M$ such that $\# A(p)\geqq 2$ , we have

measure $A(p)\geqq 2\pi-\int_{M}Gdv$ .

Here the total curvature $\int_{M}Gdv$ of a noncompact Riemannian manifold $M$ is by
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definition the limit of a sequence $\{\int_{V_{i}}Gdv\}_{J\epsilon N}$ which does not depend on the choice
of a sequence of compact domains $\{V_{j}\}_{j\in N}$ such that $V_{j}\subset V_{j+1}$ and $\bigcup_{j=1}^{\infty}V_{j}=M$

And we admit $+\infty$ and $-\infty$ to be the value of a total curvature. Hence the total
curvature always exists if the Gaussian curvature is nonpositive or nonnegative.
Moreover, we know that if there exists the total curvature of a complete finitely
connected surface $M$, the following well know inequality of Cohn-Vossen holds ([3]);

$\int_{M}Gdv\leqq 2\pi\chi(M)$ .

The aim of this note is to give a relation between the total curvature and the
measure of rays, the abundance of rays, on a 2-dimensional complete finitely con-
nected Riemannian manifold $M$ We shall prove the following theorem;

THEOREM 1. Let $M$ be a 2-dimensional finitely connected complete noncompact
Riemannian manifold with nonpositive Gaussian curvature $G$ . If $\int_{M}Gdv>2\pi(\chi(M)-1)$ ,
then we have

measure $A(p)\leqq 2\pi\chi(M)-\int_{M}Gdv$ for any point $p\in M$

And from the proof we can get the following theorem which includes Maeda’s
result;

THEOREM 2. Let $M$ be a 2-dimensional complete Riemannian manifold homeo-
morphic to a Euclidean plane. If $\int_{H}G^{+}dv<2\pi$ , then we have

measure $A(p)\geqq 2\pi-\int_{M}G^{+}dv$ for any point $p\in M$,

where $G^{+}=(|G|+G)/2$ .

We remark that the right quantity of the inequality in Theorem 1 is not
guaranteed to be bounded above by $ 2\pi$ . The assumption, $\int_{M}Gdv>2\pi(\chi(M)-1)$ , is

put for the inequality to have geometric meaning. The assumption, $\int_{M}G^{+}dv<2\pi$ ,

in Theorem 2 is put by the same reason.
The author would like to express his thanks to Professor K. Shiohama and

Professor H. Nakagawa for their valuable suggestions and Mr. Innami for his useful
conversation during the preparation of this paper.

\S 1. Preliminaries.

In this section, we shall introduce the various terminologies which follow [2],
[3] and modifications of Shiohama [5]. Hereafter $M$ always denotes a 2-dimensional



On a relation the total curvature 43

finitely connected complete noncompact Riemannian manifold without boundary
unless otherwise mentioned. Now let $M$ be homeomorphic to $M_{0}/\{p_{1}, p_{1}, \cdots, p_{n}\}$

under a homeomorphism $f$, where $M_{0}$ is a compact surface and $p_{1},$ $p_{2},$
$\cdots,$ $p_{n}$ are

points of $M$

Definition 1. An open set $U$ in $M$ is called an open tube if $U$ is homeomorphic
to $S^{1}\times(0, \infty)$ and the boundary of $U(:=\partial U)$ is homeomorphic to $S^{1}$ . And a closed
set of $M$ is called a tube or an $R_{0}$ -tube if it is homeomorphic to $ S^{1}\times[0, \infty$ ) and its
boundary is a noncontractible simply closed geodesic polygon $R_{0}$ . It is written as
$U(R_{0})$ .

Now, for each point $p_{j},j=1,2,$ $\cdots,$ $n$ , we can choose mutually disjoint open neigh-
bourhood $\tilde{U}_{f}$ of $p_{j}$ in $M_{0}$ such that $U_{j}$ $:=f^{-1}(0_{j}\backslash \{p_{j}\})$ is a tube.

Let $U(R_{0})$ be a given tube of $M$ and let $\rho_{U(R_{0})}$ be the distance function on
$U(R_{0})$ , that is, for any points $p,$ $q\in U(R_{0}),$ $\rho_{U(R_{0})}(p, q)$ is defined to be the infimum of
the lengths of all piecewise smooth curves joining $p$ and $q$ in $U(R_{0})$ . Then the
function $X_{U(R_{0})}$ : $[0, \infty$ ) $\rightarrow R$ is defined as follows; $X_{U(R_{0})}(t)$ is the infimum of the
lengths of all piecewise smooth noncontractible closed curves $R$ in $U(R_{0})$ which
satisfies $\rho_{U(R_{0})}(R, R_{0})\leqq t$ . It is easily seen that the function $X_{U(R_{0})}$ is Lipschitz
continuous. We shall classify tubes by making use of $X_{U(R_{0})}$ in accordance with
[2]. The following three cases may occur for $R_{0}$-tubes;

Case 1. $X_{U(R_{0})}$ does not attain $\inf\{X_{U(R_{0})}(s):s\geqq 0\}$ ,

Case 2. $X_{U(R)}$ attains $\inf\{X_{U(R)}(s):s\geqq 0\}$ for any subtube $U(R)$ in $U(R_{0})$ ,

Case 3. $X_{U(R_{0})}$ attains $\inf\{X_{U(R_{0})}(s):s\geqq 0\}$ but $X_{U(R)}$ does not attain $\inf\{X_{U(R)}(s)$ :
$s\geqq 0\}$ for some subtube $U(R)$ in $U(R_{0})$ .

Definition 2. An $R_{0}$ -tube $U(R_{0})$ is said to be contracting, expanding or bulging
if the function $X_{(R_{0})}$ satisfies Case 1, Case 2 or Case 3, respectively.

According to this definition, a bulging tube is essentially a contracting tube.
Hence we have only to consider the contracting or expanding tubes. And note
that subtubes of a contracting (expanding) tubes are also contracting (expanding).

Definition 3. Let $U(R_{0})$ be a given tube and $R$ be a noncontractible simply
closed geodesic polygon in $U(R_{0})$ . If all vertical angles of $R$ which are measured
in $U(R)$ are less (more) than $\pi$ , then the geodesic polygon $R$ is said to be convex
(concave).

Definition 4. Let an $R_{0}$ -tube $U(R_{0})$ and a nonnegative number $t$ be arbitrarily
given. If a noncontractible closed curve $R(t)$ in $U(R_{0})$ satisfies following two con-
ditions, then $R(t)$ is called the solution of Minimal Problem (or simply M.P.) for
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$U(R_{0})$ and 1;

$L(R(t))=X_{U(R_{0})}(l)$ and $\rho_{U(R_{0})}(R_{0}, R(t))\leqq l$ .

Definition 5. Let the following objects be arbitrarily given; a nonnegative

number $t$ , a tube $U(R_{0})$ and a ray $\gamma:[0, \infty$ ) $\rightarrow M$ such that $\gamma([a, \infty))\subset U(R_{0})$ and
$\gamma(a)\in R_{0}(a>0)$ . If a noncontractible closed curve $R(t)$ in $U(R_{0})$ which passes through
$\gamma(a+t)$ satisfies $L(R(t))=Y_{U(R_{0})}(t)$ , then $R(t)$ is called the solution of Minimal Problem
along $\gamma$ (or simply $\gamma- M.P.$ ) for $U(R_{0})$ and $t$ . Here the function $Y_{U(R_{0})}$ : $[0, \infty$ ) $\rightarrow R$ is
defined as follows; $Y_{U(R_{0})}(t)$ is the infimum of the lengths of piecewise smooth
noncontractible closed curves $R$ in $U(R_{0})$ which pass through $\gamma(a+t)$ .

As is seen in [2] and [3], two kinds of solutions surely exist and they satisfy

the following facts;

Fact 1. Let $U(R_{0})$ be a contracting tube. Then the solution of M.P. $R(t)$ for
$U(R_{0})$ and $t\geqq 0$ is either a closed geodesic or a convex geodesic loop. Hence the
distance between $R(t)$ and $R_{0}$ is equal to the distance between the vertex of $R(t)$

and $R_{0}$ if $R(t)$ is a convex geodesic loop. The solution of $\gamma- M.P$ . for $U(R_{0})$ and
$t\geqq 0$ is either a closed geodesic or a geodesic loop.

Fact 2. Let $U(R_{0})$ be an expanding tube. Then the solution of M.P. $R(t)$ for
$r](R_{0})$ and $t\geqq 0$ is either a closed geodesic or a concave geodesic polygon. And for
some $t_{0-}>--0,$ $R(t_{0})$ is the shortest noncontractible closed curve in $U(R(t_{0}))$ . The solu-
tion of $\gamma- M.P$ . for $U(R_{0})$ and $t$ is either a closed geodesic or a geodesic polygon

whose vertical angles except for the vertical angle at $\gamma\cap R_{0}$ measured in $U(R_{0})$ are
more than $\pi$ .

For the solution of $\gamma- M.P$ . we can not get the general information about the
vertical angle which is on $\gamma$ . See Cohn-Vossen ([3]), Busemann ([2]) and Bleecker
([1)) for more details of the properties on the solution of M.P.

\S 2. Construction of an expanding filtration.

Throughout this section, let $p$ be an arbitrarily fixed point of $M$ And let $N$

denote the set of natural numbers. It is our purpose in this section to construct
a family of compact domains $\{V_{j}\}_{j\in N}$ with properties (1), (2) and (3);

(1) $V_{1}\ni p$ ,

(2) $V_{j}\subset V_{j+1}$ and $\bigcup_{j=1}^{\infty}V_{j}=M$,

(3) $\partial V_{j}$ is a closed geodesic or a geodesic polygon which intersects any ray
emanating from $p$ at most once.

LEMMA 1. If $U(R_{0})$ is a contracting tube which does not contain the point $p$ ,
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then there exist noncontractible closed curves $R_{j},j\in N$, in $U(R_{0})$ such that
(1) $R_{j}$ is either a closed geodesic or a convex geodesic loop whose vertex lies on
a fixed ray,
(2) $\lim_{j\rightarrow\infty}\rho_{U(R_{0})(R_{0},R_{j})=\infty}$

(3) $R_{j}$ intersects any ray with at most one point.

PROOF. Let $C_{0}$ be the length of $R_{0}$ and let $\gamma$ be a ray emanating from $p$ and
diverging in $U(R_{0})$ . Set $X(t):=X_{U(R_{0})}(t)$ and $Y(t):=Y_{U(R_{0})}(t)$ . Then we know the
existence of a number $t_{j}\in(C_{0}+j, \infty)$ with $Y(t_{j})<Y(0)\leqq C_{0}$ . In fact, the contracting
condition implies the existence of a number $s_{j}\in(C_{0}+j, \infty)$ with $X(s_{j})<X(0)\leqq C_{0}$ ,
$X(s_{j})=L(\overline{R}(s_{j}))$ and $\rho_{U(R_{0})}(R_{0},\overline{R}(s_{j}))=s_{j}$ , where $\overline{R}(s_{j})$ is the solution of M.P. for
$U(R_{0})$ and $s_{j}$ . Let $t_{j}$ be the number with $\gamma(a+t_{j}):=\overline{R}(s_{j})\cap\gamma$ . Then we can get
the following relations; $t_{j}>C_{0}+J$ and $Y(t_{j})\leqq X(s_{j})<X(0)\leqq Y(0)\leqq C_{0}$ Hence $t_{j}$ is a
required number.

Now let $R_{j}:=R(t_{j})$ be the solution of $\gamma- M.P$ . for $U(R_{0})$ and $t_{j}$ , then $R_{j}$ satisfies
$\rho_{U(R_{0})}(R_{0}, R_{j})>j$ . This implies $ R_{j}\cap R_{0}=\phi$ . Hence $R_{j}$ is either a closed geodesic or
a geodesic loop. Let $s_{j}^{\prime}\in(t_{j}, \infty)$ be the number such that $X(s_{j}^{\prime})<X(t_{j})$ . Such a number
surely exists from the contracting condition. And putting $\gamma(a+t_{j}^{\prime}):=\overline{R}(s_{j}^{\prime})\cap\gamma$ , we
have $Y(t_{j}^{\prime})\leqq X(s_{j}^{\prime})<X(t_{j})\leqq Y(t_{j})$ . Therefore there exists a number $u_{f}\in(t_{j}, t_{j}^{\prime})$ such that
$Y$ is decreasing at $u_{j}$ . $R(u_{j})$ must not be a concave geodesic loop. Set newly

$R_{j}$ $:=R(u_{j})$ , then $R_{j}$ satisfies (1) and (2). Moreover it can be easily proved that
any ray which is divergent in $U(R_{0})$ never intersects $R_{j}$ twice because of their
minimality.

LEMMA 2. If $U(R_{0})$ is an expanding tube which does not contain the point $p$ ,

then there exist noncontractible closed curves $R_{j},j\in N$, in $U(R_{0})$ such that
(1) $R_{j}$ is either a closed geodesic or a concave geodesic polygon,
(2) $\lim_{j\rightarrow\infty}\rho_{U(R_{0})}(R_{0}, R_{j})=\infty$ ,

(3) $R_{j}$ intersects any ray with at most one point.

PROOF. From Fact 2, we know the existence of the shortest noncontractible
closed curve $R_{1}$ in $U(R_{1})$ which is either a closed geodesic or a convave geodesic
polygon in $U(R_{0})$ . Let $\sigma$ be any ray emanating from $p$ and diverging in $U(R_{0})$ .
Then $\sigma$ does not meet $R_{1}$ at more than one point. In fact if $R_{1}$ is a closed geodesic,
then our assertion is trivial because of the minimality of $R_{1}$ and $\sigma$ . Hence we may
assume that $R_{1}$ is a concave geodesic polygon. Let $q_{1}$ $:=\sigma(t_{1})$ and $q_{2}$ $:=\sigma(t_{2}),$ $t_{1}<t_{2}$ ,

be the first point of intersection and the second point of intersection of $\sigma$ and $R_{1}$ ,

respectively. Then $\sigma([t_{1}, t_{2}])$ is contained in $U(R_{1})$ because of the concavity of $R_{1}$ .
Let $R_{1}^{\prime}$ be a new noncontractible geodesic polygon which is gotten by exchanging
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the subarc of $R_{1}$ between $q_{1}$ and $q_{1}$ for $\sigma|[t_{1}, t_{2}]$ . The $R_{1}^{\prime}$ is contained in $U(R_{1})$

and has the same length as that of $R_{1}$ because of the minimality of $\sigma$ and $R_{1}$ .
Since $R_{1}^{\prime}$ has a vertex at $q_{1}$ , we can get a shorter noncontractible curve in $U(R_{1})$

by exchanging a subarc of $R_{1}^{\prime}$ for a minimal geodesic in a neighbourhood of $q_{1}$ .
This contradicts the shortestness of $R_{1}$ in $U(R_{1})$ . Consequently, $\sigma$ does not meet
$R_{1}$ at more than one point. For $j\geqq 2$ , let $R_{j}^{\prime}$ be a noncontractible geodesic polygon

such that $\rho_{U(R_{0})}(R_{1}, R_{j}^{\prime})>j$ and let $R_{j}$ be the shortest noncontractible closed curve
in $U(R_{j}^{\prime})$ . Then we can see that $R_{j}$ satisfies (1), (2) and (3).

Since $M$ is finitely connected, $M\backslash K$ can be represented to a union of $n$ tubes
U., $\alpha=1,2,$

$\cdots,$ $n$ , for a large compact set $K$ whose boundary consists of $n$ geodesic
polygons each of which may be considered such as an $R_{0}$ in the preceeding Lemmas.
Thus Lemma 1 and Lemma 2 imply the existence of noncontractible closed curves
$R_{j\alpha},j\in N$, in each $U_{\alpha}$ . Let $V_{j}$ be the compact domains in $M$ bounded by $\bigcup_{a}R_{j\alpha}$ .
Then we have
(1) $V_{1}\ni p,$ $V_{j}\subset V_{j\dashv 1}$ and $\bigcup_{j\Rightarrow 1}^{\infty}V_{j}=M$,

(2) $\partial V_{j}\cap U_{a}(=R_{ja})$ is a noncontractible geodesic polygon in $U_{\alpha}$ which does not

intersect any ray at more than one point.
The proof of our theorem is achieved by constructing such a special family of

compact domains that are chosen by taking into account of the position of rays
emanating from $p$ . $F(p)$ is by definition the set of all points on rays emanating

from $p$ . And set $D(p):=M\backslash F(p)$ . $F(p)$ is a closed set which is homeomorphic

to a closed set of $T_{p}M$ under $\exp_{p}$ . Hence $F(p)$ contains no handles on it. To
compute the total curvature of $M$, we must compute that of $V_{j}$ . And it is a
sum of those of $F(p)\cap V_{j}$ and cl $D(p)\cap V_{j}$ , where cl $D(p)$ denotes the closure of
$D(p)$ . It is difficult to compute the total curvature of cl $D(p)\cap V_{j}$ because of the

existence of handles. However, we can get an information about the total curvature

of cl $D(p)$ . Hence we must take into account of the position of rays emanating
from $p$ to relate the total curvature of $F(p)\cap V_{j}$ and that of $D(p)\backslash intV_{j}$ . Namely

we need the following lemma.

LEMMA 3. There exists a family of compact domains $\{V_{j}\}_{j\in N}$ in $M$ which
satisfies the above properties (1), (2) and the following properties; For each $\alpha$

(a) if $U_{\alpha}$ is expanding, then there is no vertices of $\partial V_{j}\cap U_{\alpha}$ on the rays which are
boundaries of $D(p)$ ,

(b) if $U_{\alpha}$ is contracting and if int $(F(p)\cap U.)$ is not empty, then there is no vertices
of $\partial V_{j}\cap U$. on the rays which are boundaries of $D(p)$ ,

(c) if $U_{\alpha}$ is contracting and if int $(F(p)\cap U_{\alpha})$ is empty, then the vertex of $\partial V_{j}\cap U_{\alpha}$

lies on a ray which is a boundary of $D(p)$ if the vertex exists.
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PROOF. (a) In the case of $U_{\alpha}$ being expanding, the construction follows from
Lemma 2. Take $R_{0}$ and $R_{j}^{\prime}$ in the proof of Lemma 2 so that their vertices do not
lie on the rays which are boundaries of $D(p)$ . This is possible because the rays
which are boundaries of $D(p)$ are measure zero. Since $R_{j}$ is a solution of M.P.
for $U(R_{j}^{\prime}),$ $R_{j}$ is either a closed geodesic or a concave geodesic polygon whose
vertices are on those of $R_{j^{\prime}}$ . In this way, we can get a family $\{R_{j}\}_{j\in N}$ of closed
geodesics or concave geodesic polygons without their vertices on the rays which
are boundaries of $D(p)$ .

(b) and (c). In the case of $U_{\alpha}$ being contracting, the construction follows from
Lemma 1. Take a ray $\gamma$ which passes through the interior of $F(p)\cap U_{\alpha}$ if it is
not empty and take a ray which is a boundary of $D(p)\cap U_{\alpha}$ if int $(F(p)\cap U_{\alpha})$ is
empty. And applying Lemma 1, we get a family $\{R_{j}\}_{j\in N}$ of closed geodesics or
convex geodesic loops which has the desired properties.

\S 3. Proof of Theorems.

Let $\{V_{j}\}_{j\in N}$ be the family of compact domains obtained in Lemma 3. Let $\overline{D}$

be one of the connected components of $D(p)\backslash V_{1}$ . And let $\sigma$ and $\tau$ be the rays
which are boundaries of $\overline{D}$ . Let $\underline{D}$ be one of the connected components of $D(p)\cap V_{1}$

and set $F:=F^{\prime}\cup\{p\}$ and $\underline{F}:=F\cap V_{1}$ , where $F^{\prime}$ is one of the connected components
$F(p)\backslash \{p\}$ . Let $\Psi^{+}$ and $\Psi^{-}$ be the vertical angles of cl $\overline{D}$ at $\partial V_{1}\cap\sigma$ and $\partial V_{1}\cap\tau$ ,

respectively. And let $\theta^{\beta}$ be a vertical angle of $\partial V_{1}\cap c1\overline{D}$ measured in cl $\overline{D}$ .
Under these notations, we can prove the following Lemma by following Maeda

[4].

LEMMA 4. The following inequality holds good;

$\int_{D}Gdv\geqq\Psi^{+}+\Psi^{-}-\pi-\sum_{\partial V_{1}\cap c1\overline{D}}(\pi-\theta^{\beta})$ ,

where the summation is taken over all vertices of $\partial V_{1}\cap c1\overline{D}$ . And the equality
holds if the Gaussian curvature $G$ is nonpositive.

PROOF. Let $E_{j}$ $:=\partial V_{j}\cap c1$ D. $A_{j}^{+_{\theta}}$ and $A_{J^{\theta}}^{-}$ are by definition the set of all initial
tangent vectors $\dot{\gamma}(0)$ of the shortest geodesic $\gamma$ connecting between $p$ and $q$ of $E_{j}$

which satisfy $ 4(\dot{\gamma}(0),\dot{\sigma}(0))\leqq\theta$ and er $(\dot{\gamma}(0), f(O))\leqq\theta$ , respectively. And let $A_{\theta}^{+}$ and $A_{\theta}^{-}$

be the set of all unit vectors $v$ which satisfy $\delta(v,\dot{\sigma}(0))\leqq\theta$ and $a(v, p(O))\leqq\theta$ , re-
spectively. Moreover define the number $\theta(j)$ for each natural number $j$ by

$\theta(j):=\inf\{\theta\in R$ ; there exists a geodesic $\gamma$ in $G(p, q)$

such that $\dot{\gamma}(0)\in A_{j}^{+_{\theta}}\cup A_{j\theta}^{-}$ for any $q\in E_{j}$ }.
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Here $G(p, q)$ denotes the set of all the shortest geodesic connections from $p$ to $q$ .
We assert that $\theta(j)$ tends to zero as $i$ goes to infinity. In fact, if $\theta(j)$ does not tend
to zero, then there is a constant $C_{0}>0$ and a subsequence $\{j_{i}\}\subset\{j\}$ such that $\theta(j_{i})\geqq$

$C_{0}$ for any $j_{i}\in\{j_{i}\}$ . Hence for any $j_{i}$ , there is a point $q_{j_{i}}$ in $E_{j_{i}}$ and $\gamma J_{t}\in G(p, q_{j_{i}})$

such that $\dot{\gamma}j_{i}(0)$ does not belong to $A_{j_{i\prime}(1/2)C_{0}}^{+}\cup A_{j^{-}i^{(1^{\prime}2)C0}},,$ . From the sequence $\{\dot{\gamma}j_{i}(0)\}$ ,

we can choose a convergent subsequence $\{\dot{\gamma}j_{2}k(0)\}$ . Let $v_{0}\in S_{p}M$ be the limit vector of
{ $\dot{\gamma}j_{ik(0)\}}$ , then from the construction $v_{0}$ is not contained in $A_{(1/3)C_{0}}^{+}\cup A_{(1/3)C_{0}}^{-}$ and the
geodesic $\gamma_{0}$ : $[0, \infty$ ) $\rightarrow M$ defined by $\gamma_{0}(t):=\exp_{p}tv_{0}$ is a ray. This contradicts the
fact that $\gamma_{0}$ belongs to the domain which no ray passes through. Let the set $E_{j}^{+}$

and $E^{\underline{j}}$ be defined as follows;

$E_{j}^{+}:$ $=$ { $q\in E_{j}$ ; there exists a geodesic $\gamma\in G(p,$ $q)$ such that $\dot{\gamma}(0)\in A_{J^{\theta(j)}}^{+},$ },
$E_{f}^{-}:$ $=$ { $q\in E_{j}$ ; there exists a geodesic $\gamma\in G(p,$ $q)$ such that $\dot{\gamma}(0)\in A_{J^{\theta(j)}}^{-}.$ }.

Then it is easily seen that $E_{j}=E_{j}^{+}\cup E_{j}^{-}$ and $E_{j}^{+}$ and $E_{j}^{-}$ are nonempty closed sets
in $E_{j}$ from the connectivity of the cut point. The connectivity of $E_{j}$ implies the
existence of a point $q_{j}\in E_{j}^{+}\cap E_{J}^{-}$ such that the initial vectors $\dot{\gamma}_{j}^{+}(0)$ and $\dot{\gamma}_{j}^{-}(0)$ of
minimal geodesics between $p$ and $q_{j}$ which belong to $A_{a(j)}^{\dashv}$ and $A_{\theta(j)}^{-}$ , respectively.
Therefore $\gamma_{j}^{+}$ tends to $\sigma$ and $\gamma_{\overline{j}}$ tends to $\tau$ as $j$ goes to infinity. Let $\overline{D}_{j}$ be the
subset of $\overline{D}$ bounded by $\gamma_{J\prime/^{r}\overline{J}}^{+}$ and $\partial V_{1}$ . Then we can get the following inequality
from Theorem of Gauss-Bonnet,

$\int_{c1\overline{D}}Gdv=\lim_{j\rightarrow\infty}\int_{c1\overline{D}}Gdv$

$=\lim_{j\rightarrow\infty}[2\pi\chi(\overline{D}_{J})-(\pi-\Psi_{j}^{+})-(\pi-\Psi_{j}^{-})-(\pi-\varphi j)-\sum(\pi-\theta^{\beta(j)})\partial V_{1}\cap c1\overline{D}_{j}$

$\geqq\Psi^{+}+\Psi^{-}-\pi-\sum_{\partial V_{1}\cap c1\overline{D}}(\pi-\theta^{\beta})$
,

where $\Psi_{j^{+}}$ and $\Psi_{j}^{-}$ are the vertical angles of cl $\overline{D}_{j}$ at $\partial V_{1}\cap\gamma_{j}^{+}$ and $\partial V_{1}\cap\gamma_{\overline{j}}$ , respectively.

And $0_{\beta}^{(i)}$ is a vertical angle of $\partial V_{1}\cap$ cl $\overline{D}_{j}$ measured in cl $\overline{D}_{j}$ and $\varphi j=\yen(\dot{\gamma}_{j}^{+}(t_{j}),\dot{\gamma}_{j}^{+}(t_{j}))$ ,

where $t_{j}$ is the distance from $p$ to $q_{j}$ . Thus the inequality is verified.
Next, consider the case that the Gaussian curvature of $M$ is nonpositive. Let

$p_{j}$ $:=\partial V_{1}\cap\gamma_{j}^{+}$ and $r_{j}$ $:=\partial V_{1}\cap\gamma_{\overline{j}}$ . And let $(p_{j}, q_{j}, r_{j})$ be the geodesic triangle determined
by the three shortest geodesic segments. Let $c:[0,1]\rightarrow M$ be the shortest geodesic
segment with $c(O)=p_{j}$ and $c(1)=r_{j}$ . Since $(p_{j}, q_{j}, r_{j})$ is contractible, we can consider
the homotopy $H:[0,1]\times[0,1]\rightarrow M$ such that for any $s\in[0,1],$ $H(O, s)=c(s),$ $H(1, s)=q_{j}$

and $H([0,1], s)=the$ shortest geodesic segment between $c(s)$ and $q_{j}$ . Let $(\tilde{p}_{j},\tilde{q}_{j},\tilde{r}_{j})$

be a lift of $(p_{j}, q_{j}, r_{j})$ in the universal Riemannian covering space $\tilde{M}$ of $M$ which
is gotten by making use of the homotopy $H$ and let $\tilde{\varphi}j$ be the vertical angle of
$(\tilde{p}_{j},\tilde{q}_{j},\tilde{r}_{j})$ at $\tilde{q}_{j}$ . Then from the construction we have $\varphi j=\tilde{\varphi}j$ and it is seen that
$\rho_{\tilde{M}}(\tilde{p}_{j},\tilde{q}_{j})\rightarrow\infty,$ $\rho_{\tilde{M}}(\tilde{r}_{j},\tilde{q}_{j})\rightarrow\infty$ and $\rho_{\tilde{M}}(\tilde{p}_{j},\tilde{r}_{j})<C$ as $ j\rightarrow\infty$ , where $C$ is a constant.
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Hence making use of the law of cosines, we can see that $\tilde{\varphi}j\rightarrow 0$ as $ i\rightarrow\infty$ . There-
fore the equality holds when Gaussian curvature of $M$ is nonpositive.

Hereafter let $\overline{D}^{\lambda}$ and $\underline{D}^{\mu}$ be connected components of $D(p)\backslash V_{1}$ and $D(p)\cap V_{1}$ ,

respectively. And let $F^{\lambda*}$ be a connected component of $(F(p)\cap V_{1})\backslash \{p\}$ and set
$F^{\lambda}$ $:=F^{\lambda*}\cup\{p\}$ . Then we can get the following Proposition which implies our
theorem.

PROPOSITION 5. The following inequality holds good;

measure $A(p)\geqq 2\pi\chi(M)-\int_{c1D(p)}Gdv$

at any point $p$ of $M$ And the equality holds when Gaussian curvature of $M$ is
nonpositive.

PROOF. Let $\underline{F}^{\lambda}$ be the one such that int $\underline{F}^{\lambda}\neq\emptyset$ . Since $\underline{F}^{\lambda}$ is diffeomorphic to a
polygon in $T_{p}M$, we have

$\int_{\underline{F}^{\lambda}}Gdv=a^{\lambda}+(\Psi^{\lambda})^{+}+(\Psi^{\lambda})^{-}-\pi+\sum_{\partial V_{1}\cap\underline{F}\lambda}(\pi-\theta^{\beta})$ . . . $(*)$

where $a^{\lambda}$ is a vertical of $\underline{p}^{\urcorner}\lambda$ at $p,$ ( $(//\lambda)^{\vdash}$ and $(\Psi^{\lambda})^{-}$ are the vertical angles of $F^{\lambda}-$

formed with $\partial V_{1}$ and the rays which are the boundaries of $\underline{F}^{\lambda}$ and $\theta^{\beta}$ is a vertical
angle of $\partial V_{1}\cap\underline{F}^{\lambda}$ measured in $M\backslash V_{1}$ . From our construction, there is no vertex
of $\partial V_{1}$ on the rays which are the boundaries of $F^{\lambda}\cdot s$ . Hence we can get the fol-
lowing inequality by using $(^{*})$ , Lemma 4 and the fact that vertically opposite angles
are identical;

$\int_{V_{1}\lambda}Gdv=\sum_{a11I},\int_{-}Gdv+\sum_{a11\underline{D}}\int_{c1}d^{\mu}Gdv$

$=\sum_{a11\underline{F}^{\lambda}}[a^{\lambda}+(\Psi^{\lambda})^{+}+(\Psi^{\lambda})^{-}-\pi+\sum_{\partial V_{1}\cap\underline{F}^{\lambda}}(\pi-\theta^{\theta})]+\sum_{a11\underline{D}}\mu\int_{c\underline{1D}^{\mu}}Gdv$

$\leqq$ measure $A(p)+\sum_{\partial V_{1}}(\pi-\theta^{\beta})+\int_{c1D(p)}Gd\uparrow’$ .

On the other hand, we have

$\int_{V_{1}}Gdv=2\pi\chi(M)+\sum_{\partial V_{1}}(\pi-\theta^{\beta})$ .

Hence we get the desired inequality and the equality holds when Gaussian curvature
of $M$ is nonpositive.

Now Theorem 1 and 2 are the direct consequences of Proposition 5.
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