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ON THE ADJUNCTION SPACES OF FREE
$L$-SPACES AND $M_{1}$-SPACES

By

Takemi MIZOKAMI

A class of free L-spaces is defined by Nagami [7]. This class contains all
La\v{s}nev spaces and is contained in the class of $M_{1}$-spaces in the sense of Ceder [3].

In this paper, we consider the sum theorem of free L-spaces and the property of
being $M_{1}$-spaces and free L-spaces of the adjunction spaces. The main results are
as follows:
1. Let $Z=X\cup Y$ be stratifiable, where $X,$ $Y$ are free L-spaces and $X$ is a closed
set of $Z$ with a uniformly approaching anti-cover in $Z$. Then $Z$ is a free L-space.

2. The adjunction space $X\bigcup_{f}Y$ is a free L-space if $X$ is an L-space in the sense
of Nagami [6] and $Y$ is a free L-space.

3. Let $Z=X\cup Y$ be stratifiable, where $X,$ $Y$ are $M_{1}$-spaces and $X$ is a closed set
with a uniformly approaching anti-cover in $Z$. Then $Z$ is an $M_{1}$-space.
4. The adjunction space $Z=X\bigcup_{f}Y$ is an $M_{1}$-space if $X$ is a free L-space and $Y$

is an $M_{1}$-space.
5. Every closed set of a free L-space has a closure-preserving open neighborhood

base.

6. The closed irreducible image of an $M_{1}$ -space with $\dim=0$ is also an $M_{1}$ -space.
All spaces are assumed to be Hausdorff and mappings to be continuous and

onto unless the contrary is stated explicitly. $N$ always denotes the positive integers.

As for undefined term, see Nagami [6] and [7], or [4].

A space $X$ is called a monotonically normal space if the following (MN) is
satisfied:

(MN) To each pair $(H, K)$ of separated subsets of $X$, one can assign an open
set $U(H, K)$ in such a way that

(i) $H\subset U(H, K)\subset\overline{U(H,K)}\subset X-K$ and
(ii) if $(H^{\prime}, K^{\prime})$ is a pair of separated sets having $H\subset H^{\prime}$ and $K^{\prime}\subset K$, then

$U(H, K)\subset U(H^{\prime}, K^{\prime})$ .

LEMMA 1 ([4, Lemma 3.1]). Let $X$ be a monotonically normal space, $F$ a
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closed set of $X$ and {W. : $a\in A$ } an anti-closure-preserving family of open neighbor-
hoods of F. Then there exists an anti-cover $cU$ of $F$ that each $W_{\alpha}$ is a semi-canonical
neighborhood of $F$ with respect to $cU$ .

THEOREM 1. Let $X,$ $Y$ be a free L-spaces and $Z=X\cup Y$ be a stralifiable space,
where $X$ is a closed set which has a uniformly approaching anti-cover in Z. Then
$Z$ is a free L-space.

PROOF. Part 1: Let $(\mathcal{F}, t^{C}U_{F} : F\in \mathcal{F}$ }) be a free L-structure of $X$. Let $\mathcal{V}_{X}=$

$\{V_{\beta} : \beta\in B\}$ be a uniformly approaching anti-cover of $X$ in $Z$. For each $F\in \mathcal{F}$ , let
$CU_{F}=\{U_{a};\alpha\in A_{F}\}$ be assumed to be locally finite in $X-F$. Set

$\Delta(F)=$ { $\delta\subset A_{F}$ : $W(\delta)=F\cup(\cup\{U_{\alpha}$ ; $\alpha\in\delta\})$ is an open neighborhood of $F$ in $X$ }.

Then $\{W(\delta):\delta\in\Delta(F)\}$ is anti-closure-preserving in $X$. For each $x\in X-F$, set

$V(x)=U(\{x\}, F\cup(\cup\{X-W(\delta);x\in W(\delta), \delta\in\Delta(F)\}))$ ,
$\mathcal{V}_{F}=\mathcal{V}_{X}\cup 1V(x);x\in X-F\}$ ,

where $U$ is the monotonically normal operator assured by (MN). Then $\mathcal{V}_{F}$ is an
anti-cover of $F$ in $Z$. We shall show that $\mathcal{V}_{F}$ has the following property:

$(^{*})$ If $W_{1}$ is a canonical neighborhood of $F$ with respect to $CU_{F}$ in $X$, then there
exists a semi-canonical neighborhood $U_{2}$ of $F$ in $Z$ with respect to $\mathcal{V}_{F}$ such that

$F\subset U_{2}\cap X\subset W_{1}$ , $\overline{U}_{2}\cap(X-W_{1})=\phi$ .
To see $(^{*})$ , choose $\delta\in\Delta(F)$ such that

$W_{2}=W(\delta)$ , $\overline{W}_{2}\subset W_{1}$ .
Set

$U_{1}=U(X-W_{2}F)$ , $U_{2}=U(\overline{W}_{2}, X-W_{1})$ .
Then $U_{2}$ is an open neighborhood of $F$ in $Z$ such that

$U_{2}\cap X\subset W_{1}$ , $\overline{U}_{2}\cap(X-W_{1})=\phi$ .
Since $\mathcal{V}_{X}$ is uniformly approaching in $Z$,

$\overline{S(Z-U_{2},\mathcal{V}_{X})}\cap F=\phi$ .

Suppose

$ V(x)\cap(Z-U_{2})\neq\phi$ , $x\in X-F$.

Note that if $x\in W_{2}$ , then $V(x)\subset U_{2}$ . Therefore $x\not\in W_{2}$ . This implies $V(x)\subset U_{1}$ .
Since $\overline{U}_{1}\cap F=\phi$ , we have
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$ S(Z-U_{2}, \mathcal{V}_{F})\cap F=\phi$ .
Part 2: Let $(\mathcal{H}, \{^{C}U_{H} : H\in \mathcal{H}\})$ be a free L-structure of $Y$. Write

$X=\bigcap_{n=1}^{\infty}G_{n},$ $G_{n+1}\subset G_{n},$ $n\in N$.
where each $G_{n}$ is open in $Z$. Let $\mathcal{H}=\bigcup_{i\approx 1}^{\infty}\mathcal{H}_{i}$ , where each $\mathcal{H}_{i}$ is discrete in $Y$.
For each $i\in N$ and $H\in \mathcal{H}_{i}$ , set

$H_{n}=H\cap(Z-G_{n})$ ,
$\mathcal{H}_{in}=\{H_{n} : H\in \mathcal{H}_{i}\},$ $n\in N$.

Then each $\mathcal{H}_{in}$ is a discrete closed collection of $Z$. Since $Z$ is paracompact, there
exists a discrete open collection $\mathcal{V}_{tn}=\{V(H_{n}):H_{n}\in \mathcal{H}_{in}\}$ of $Z$ such that

$H_{n}\subset V(H_{n}),$ $H_{n}\in \mathcal{H}_{in},$ $n\in N$

Since $Z$ is perfectly normal, there exists an anti-cover $\mathcal{V}_{H_{n}}$ of $H_{n}$ in $Z$ with respect
to which $V(H_{n})$ is a canonical neighborhood of $H_{n}$ in $Z$. Choose canonical neigh-
borhoods $V(H_{n})_{1}$ and $V(H_{n})_{2}$ of $H_{n}$ with respect to $\mathcal{V}_{H_{n}}$ such that

$H_{n}\subset V(H_{n})_{1}\subset\overline{V(H_{n})_{1}}\subset V(H_{n})_{2}\subset\overline{V(H_{n})_{2}}\subset V(H_{n})$ .
Let $CU_{H}=\{U_{\alpha};\alpha\in A_{H}\}$ be assumed to be locally finite in $Y-H$ Set

$\Delta(H)=$ { $\delta\subset A_{H}$ : $W(\delta)=H\cup(\cup\{U_{\alpha}$ ; $\alpha\in\delta\})$ is an open neighborhood of $H$ in $Y$ }.

For each $\delta\in\Delta(H)$ , set

$W(\delta, n)=(W(\delta)\cap V(H_{n})_{2})\cup(V(H_{n})_{2}-\overline{V(1f_{n})_{1})}$.
Then $W(\delta, n)$ is an open neighborhood of $H_{n}^{\prime}=\overline{V(n)_{1}}\cap H$ Morever, it is easily seen
that $\{W(\delta, n);\delta\in\Delta(H)\}$ is anti-closure-preserving in $Z$. Therefore by Lemma 1,
there exists an anti-cover $\mathcal{V}_{H_{n^{\prime}}}$ of $H_{n}^{\prime}$ in $Z$ such that each $W$( $\delta$ , n) is a semi-
cannonical neighborhood of $H_{n^{\prime}}$ with respect to $\mathcal{V}_{H_{n^{\prime}}}$ Obseve that for each $\delta\in\Delta(H)$

$V(H_{n})_{1}\cap W(\delta, n)=W(\delta)\cap V(H_{n})_{1}$

is an open neighborhood of $H_{n}$ in $Z$, and that

$\mathcal{H}_{in}^{\prime}=\{H_{n}^{\prime} : H_{n}\in \mathcal{H}_{in}\}$

is a closed discrete collection of $Z$. Set

$\mathcal{F}^{\prime}=\mathcal{F}\cup\{X\}\cup(\cup\{\mathcal{H}_{in} : i, n\in N\}$

$\cup(\cup\{\mathcal{H}_{in}^{\prime} : i, n\in N\})$ .

Then $\mathcal{F}^{\prime}$ is a $\sigma$-discrte closed collection of $Z$. Set
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$\mathcal{P}=(\mathcal{F}^{\prime},$ $\{\mathcal{V}_{F} : F\in \mathcal{F}\}\cup\{\mathcal{V}_{X}\}\cup\{\mathcal{V}_{H_{n}}$ : $H_{n}\in \mathcal{H}_{in}$ ,

$i,$ $n\epsilon N$ } $\cup\{\mathcal{V}_{H_{n}^{\prime}} : H_{n}\in \mathcal{H}_{in}, i, n\in N\}$ ).

We shall show that $\underline{c}\beta$

) forms a free L-structure of $Z$. Suppose $p\in W$ for an
arbitrary open set $W$ of $Z$ and an arbitrary point $p$ of $Z$. Consider two cases.
The first is the case $p\in X$ Since $(\mathcal{F}, t^{C}U_{F} : F\in \mathcal{F}$ }) is a free L-structure of $X$, there

exist $F_{1}$ , $\cdot$ . ., $F_{k}\in \mathcal{F}$ and their canonical neighborhoods $V_{1},$
$\cdots,$

$V_{k}$ such that

$p\epsilon\bigcap_{j=1}^{k}F_{j}\subset\bigcap_{j=1}^{k}V_{j}\subset W\cap X$.

By $(^{*})$ there exists for each $j$ a semi-canonical neighborhood $W_{j}$ of $F_{j}$ with respect

to $\mathcal{V}_{Fj}$ such that

$ F_{j}\subset W_{j}\cap X\subset V_{j},\overline{W}_{j}\cap(X-V_{f})=\psi$ .
Note that $Z-(\bigcap_{j=1}^{k}\overline{W}_{j}-W)$ is an open neighborhood of $X$ in $Z$. Since $\mathcal{V}_{X}$ is

approaching to $X$ in $Z$, there exists a canonical neighborhood $W_{0}$ of $X$ with respect

to $\mathcal{V}_{X}$ such that

$ W_{0}\cap(\bigcap_{j=1}^{k}\overline{W}_{j}-W)=\phi$ .

Thus we have

$p\epsilon\bigcap_{i=\iota}^{k}F_{j}\cap X\subset\bigcap_{j=0}^{k}W_{j}\subset W$.

The second case is $p\in Z-X$. Since $(\mathcal{H}, t^{C}U_{H} : II\in \mathcal{H}$ }) is a free L-structure of $Y$,

there exist $H_{1},$
$\cdots,$

$H_{k}\in \mathcal{H}$ and their canonical neighborhoods $W(\delta_{1}),$ $\cdots,$
$W(\delta_{k})$ with

$\delta_{1}\in\Delta(H_{1}),$ $\cdots,$
$\delta_{k}\in\Delta(H_{k})$ such that

$p\epsilon\bigcap_{j=\iota}^{k}H_{j}\subset\bigcap_{j=\iota}^{k}W(\delta_{j})\subset W\cap Y$.

Choose $n\in N$ such that $p\in Z-G_{n}$ . Then we have

$p\epsilon\bigcap_{j=1}^{k}(H_{j})_{n}\cap\bigcap_{j\Leftarrow 1}^{k}(H_{j})_{n^{\prime}}$

$\subset\bigcap_{j\sim 1}^{k}W(\delta_{j}, n)\cap\bigcap_{j\Rightarrow 1}^{k}V((H_{j})_{n})_{1}\subset W$.

As is shown in the above, each $W(\delta_{j}, n)$ and each $V((H_{j})_{n})_{1}$ are semi-canonical and
canonical with respect to $\mathcal{V}_{(H_{j})_{n}}^{\prime}$ and $\mathcal{V}_{(H_{j})_{n}}$ , respectively. Therefore by the result
of [4], $Z$ is a free L-space.

Let $f$ be a mapping of a closed set of a space $X$ into a space $Y$. The adjunc-

tion space $Z$ of $X,$ $Y$ is denoted as $Z=X\bigcup_{f}Y$. In the sequel, the mapping $f$ in
$Z=X\bigcup_{j}Y$ is assumed to be one of a closed set $H$ into $Y$, and $p:X\vee Y\rightarrow Z$ denotes
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the quotient mapping. As the Ito’s example in [4] shows, the adjunction space of
free L-spaces need not be a free L-space. Miwa in [5] showed that the adjunction
space of $X$ and $Y$ is a free L-space if $X$ is a metric space and $Y$ is a free L-space.
The following corollary and the next theorem refine the result.

COROLLOARY 1. Let $X,$ $Y$ be free L-spaces and $H$ a closed set of $X$ having a
uniformly approaching anti-cover in X Then $Z=X\bigcup_{f}Y$ is a free L-space.

PROOF. As is well known, $Z$ is a stratifiable space. Set
$Z=X^{\prime}\cup Y^{\prime}$ , $X^{\prime}=p(Y)$ , $Y^{\prime}=Z-p(Y)$ .

Then it is easily seen that {X’, $Y^{\prime}$ } satisfies the condition of the above theorem.

COROLLARY 2. $X=\bigcup_{n=1}^{\infty}X_{n}$ be a stratifiable space, where each $X_{n}$ is a closed
free L-sjace, and has a uniformly approaching anti-cover in X Then $X$ is a free
L-space.

COROLLARY 3. Let $X=\cup\{X_{\alpha};\alpha\in A\}$ be a stratifiable space, where {X. $;\alpha\in A$ } is
locally finite in $X$ and each X. is a closed free L-space and has a uniformly ap-
proaching anti-cover in X Then $X$ is a free L-space.

THEOREM 2. Let $X$ be an L-space and $Y$ a free L-space. $T/lenZ=X\bigcup_{f}Y$ is
a free L-space.

PROOF. Set

$X^{\prime}=p(Y)$ , $Y^{\prime}=Z-p(Y)$ .

Then $Z=X^{\prime}\cup Y^{\prime}$ and $X^{\prime},$ $Y^{\prime}$ are free L-spaces. Obviously $Z$ is stratifiable and $X^{\prime}$

is a closed set of $Z$. We shall modify the part 1 of the proof of Theorem 1. Let
$(\mathcal{F}, \{^{C}U_{F} : F\in \mathcal{F}\})$ be a free L-structure of $X^{\prime}$ and let $CU_{F},$ $\Delta(F)$ and $W(\delta)$ be the same
as in the part 1 with $X$ replaced by $X^{\prime}$ . By the same way we define $V(x)$ for
each $x\in X^{\prime}-F,$ $F\in \mathcal{F}$ . Since $Z$ is hereditarily normal, there exists an open set $U_{F}$

of $Z(F)=Z-F$ (and hence of $Z$ ) such that

$X^{\prime}-F\subset U_{F}\subset C1_{Z(F)}(U_{F})\subset\cup\{V(x);x\in X^{\prime}-F\}$ ,

where Cl $z(F)(U_{F})$ denotes the closure in the subspace $Z(F)$ . Since $X$ is an L-space,
$p_{X}^{-1}(F)$ has an approaching anti-cover $\mathcal{V}(p_{\overline{r}}^{1}(F))$ in $X$, where $p_{X}=p|X$ is the restric-
tion of the quotient mapping. Set

$\mathcal{V}_{F}=\{V(x);x\in X^{\prime}-F\}\cup p(\mathcal{V}(p_{X}^{-1}(F)))|((Z-C1_{Z(F)}(U_{F}))$ .
Then obviously $\mathcal{V}_{F}$ is an anti-cover of $F$ in $Z$. We shall show that $\mathcal{V}_{F}$ has the
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property $(^{*})$ stated there. Let $W_{1}$ be a cannonical neighborhood of $F$ with respect

to $CU_{F}$ in $X^{\prime}$ . Take $\delta\in\Delta(F)$ and open sets $U_{1},$ $U_{2}$ of $Z$ such that

$W_{2}=W(\delta),\overline{W}_{2}\subset W_{1}$ ,
$U_{1}=U(X^{\prime}-W_{2}, F)$ , $U_{2}=U(\overline{W}_{2}, X^{\prime}-W_{1})$ .

Then we have

$ S(Z-U_{2}, \{V(x);x\in X^{\prime}-F\})\subset U_{1},\overline{U}_{1}\cap P’=\psi$ .

Since $\mathcal{V}(p_{X}^{-1}(F))$ is approaching to $p_{X}^{-1}(F)$ in $X$, there exists an open neighborhood
$V$ of $p_{X}^{-1}(F)$ in $X$ such that

$ S(X-p_{X}^{-1}(U_{2}), \mathcal{V}(p_{X}^{-1}(F)))\cap V=\psi$ .
Set

$N=p(V)\cup U_{F}$ .

Then $N$ is an open neighborhood of $F$ in $Z$ such that

$ N\cap S(Z-U_{2},p(\mathcal{V}(p_{X}^{-1}(F))|(Z-C1_{Z(F)}(U_{F})))=\phi$ ,

which implies that $U_{2}$ is semi-canonical with respect to $\mathcal{V}_{F}$ . Since $H$ has an ap-

proaching anti-cover in $X,$ $X^{\prime}$ has an approaching anti-cover $\mathcal{V}_{X}$ , in $Z$. If we
observe that in the part 2 of the proof of Theorem 1 we use merely the fact that
$\mathcal{V}_{X}$ is approaching, then the proof is obviously completed.

THEOREM 3. Let $Z=X\cup Y$ be a stralifiable space, where $X,$ $Y$ are $M_{1}$ -spaces
and $X$ is a closed $sel$ which has a uniformly approaching anti-cover in Z. Then $Z$

is an $M_{1}$ -space.

PROOF. Let $cU=\bigcup_{j=1}^{\infty}qJ_{J}$ be a base for $X$, where each $cU_{j}=\{U_{\alpha} ; \alpha\in A_{j}\}$ is closure-

preserving in $X$. Write

$U_{\alpha}=\bigcup_{j=1}^{\infty}F_{aj}$ ,

where each $F_{\alpha j}$ is closed in $X$. Set

$U_{\alpha}^{\prime}=\bigcup_{j\approx 1}^{\infty}U(F_{\alpha j}, X-U_{\alpha})$ .

Then $U_{a}^{\prime}$ satisfies the following conditions:
(i) $U_{a}^{\prime}$ is an open set of $Z$ such that

$U_{a}^{\prime}\cap X=U_{a},$ $\alpha\in A_{j},$ $j\in N$.

(ii) For an arbitrary subset $B$ of $A_{j},j\in N$, if $p\in x$ and $p\not\in\overline{\cup\{U_{\alpha}:\alpha\in B\}}$, then
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$p\overline{\not\in\cup\{U_{\alpha}^{\prime}:\alpha\in B\}.}$

(i) is obvious. To see (ii), suppose $p\not\in\overline{\cup\{U_{\alpha}:\alpha\in B\}}$. Set

$N(p)=Z-\overline{U(\overline{\cup\{U_{a}:\alpha\in B\}},\{p\})}$.

Then $N(p)$ is an open neighborhood of $p$ in $Z$ such that

$ N(p)\cap U_{a}^{\prime}=\phi$ for every $\alpha\in B$.

We shall construct collections $cU_{\alpha}=\{U_{\alpha\beta} : \beta\in B_{a}\},$ $\alpha\in A_{j},$ $j\in N$, satisfying the following:
(1) Each $U_{\alpha\beta}$ is an open set of $Z$ such that

$U_{\alpha\beta}\cap X=U_{\alpha}$ and $U_{\alpha\beta}\subset U_{\alpha}^{\prime}$ for every $\beta\in B_{a}$ .

(2) $\cup\{\subset U_{\alpha} : \alpha\in A_{j}\}$ is closure-preserving in $Z$ for every $j\in N$.
(3) If $U$ is an open set of $Z$ such that $U\cap X=U_{\alpha}$ for $\alpha\in A_{j},$ $i\in N$, then $U_{\alpha\beta}\subset U$

for some $\beta\in B_{a}$ .
Since $Z$ is hereditarily paracompact, the uniformly approaching anti-cover $\mathcal{V}=$

$\{V_{\lambda} ; \lambda\in\Lambda\}$ of $X$ can be assumed to be locally finite in $Z-X$ For each $\alpha\in A,$ $j\in N$,

set

$B_{\alpha}=\{\beta\subset\Lambda:U_{\alpha\beta}=U_{\alpha}\cup(\cup\{V_{\lambda} ; \lambda\in\beta\})$ is an open neighborhood of $U_{\alpha}$ in $Z$

such that $U_{\alpha\beta}\subset U_{a}^{\prime}$ }, $cU_{a}=\{U_{\alpha\beta}:\beta\in B_{\alpha}\}$ .

Then (1) and (3) follow easily. (2) follows from (ii) and from the fact that $cU_{J}$

is closure-preserving in $X$ It is obvious from (3) that $\cup t^{c}U_{\alpha}:\alpha\in A_{j},$ $j\in N$ } forms
a local base of each point of $X$ in $Z$. Since $X$ is a closed set of a stratifiable space
$Z$ and $Y$ is an $M_{1}$ -space, there exists a $\sigma$-closure-preserving open collection $\mathscr{D}$ of
$Z$ such that $\mathscr{D}$ forms a local base of each point of $Z-X$ in $Z$. Set

$cW=\cup\{cU_{\alpha} ; \alpha\in A_{j},j\in N\}\cup \mathscr{D}$ .

Then $cW$ is a $\sigma$-closure-preserving base of $Z$.

We define the property $(P)$ as follows:
$(P)$ Suppose that we are given a closure-preserving open collection $cU=\{U_{a} : \alpha\in A\}$

of a closed set $F$ of a space $X$ Then for each $\alpha\in A$ , there exists an open collection
$cU_{\alpha}=\{U_{\alpha\beta} : \beta\in B_{\alpha}\}$ of $X$ satisfying the following:

(1) $U_{a\beta}\cap F=U_{\alpha}$ for each $\beta\in B_{a},$ $\alpha\in A$ .
(2) $CU^{\prime}=\cup t^{c}U_{\alpha}$ ; $\alpha\in A$ } $=\{U_{\alpha\beta} : \beta\in B_{\alpha}, \alpha\in A\}$

is closure-preserving in $X$

(3) If $V$ is an open set of $X$ such that $V\cap F=U_{\alpha}$ for $\alpha\in A$ , then there exists
$\beta\in B_{a}$ such that $U_{\alpha\beta}\subset V$.

LEMMA 2. Every closed set $F$ of a free L-space $X$ has the property $(P)$ .



16 Takelni MIZOKAMI

PROOF. First we consider the case of $\dim X=0$ . Suppose that we are given
a closure-preserving open collection $cU=\{U_{a} : \alpha\in A\}$ of a closed set $F$ of a free L-
space $X$ with $\dim X=0$ . Write

$F=\bigcap_{n=1}^{\infty}H_{n},$ $H_{n+1}\subset H_{n},$ $n\in N,$ $H_{1}=X$,

where each $H_{n}$ is closed and open in $X$ Since $X$ is an $M_{1}$ -space, there exists a
base $9=\bigcap_{i=1}^{\infty}9_{i}$ for $X$, where each $g_{i}$ is closure-preserving in $X$ For each $i\in N$

and $B\in \mathscr{Q}_{i}$ , set $B_{i}=B\cap H_{i}$ . Let $\{S_{\lambda}:\lambda\in\Gamma\}$ be the totality of subcollections of $\mathscr{D}$ .
For each $\lambda\in\Gamma$ set

$V_{\lambda i}=\cup\{B_{i} : B\in S_{\lambda}\cap \mathscr{Q}_{i}\}$ ,

$V_{\lambda}=\bigcup_{i=1}^{\infty}V_{\lambda i}$ .

For each $\alpha\in A$ , set

$B_{\alpha}^{\prime}=$ { $\lambda\in\Gamma:V_{\lambda}$ is an open set of $X$ such that $V_{\lambda}\cap F=U_{\alpha}$ }.

For each $\alpha\in A$ , we expand $U_{\alpha}$ to an open set $U_{\alpha}^{\prime}$ of $X$ by the same method as in
the proof of Theorem 3. Thus each $U_{\alpha}^{\prime}$ satisfies (i) and (ii) stated there. Set

$B_{a}=\{\beta\in B_{\alpha}^{\prime} : V_{\beta}\subset U_{a}^{\prime}\}$ ,

$cU_{\alpha}=tU_{a\beta}=V_{\beta}$ : $\beta\in B_{a}$ }.

Obviously each $cU_{\alpha}$ satisfies (1). To see (2), let $B_{0}$ be an arbitrary subset of
$\cup\{\{\alpha\}\chi B_{\alpha};\alpha\in A\}$ and suppose

$p\not\in\cup\{\overline{U_{\alpha\beta}}:(\alpha, \beta)\in B_{0}\}$ .

Write

$B_{0}=\cup\{\{\alpha\}\times B_{\alpha}^{0} ; \alpha\in A_{0}\}$ .

If $p\in F$, then $p\not\in\overline{\cup\{U_{\alpha}:\alpha\in A_{0}\}}$, because $cU$ is closure-preserving in $F$. Therefore by

the property (ii) of $U_{a}^{\prime},p\not\in\overline{\cup\{U_{\alpha}^{\prime}}$: $\alpha\in A_{0}$ }. This implies

$p\not\in\overline{\cup\{U_{\alpha\beta}:(\alpha,\beta)\in B_{0}\}}$ .

If $p\in X-F$, then there exists $k\in N$ with $p\in H_{k}-H_{k+1}$ . Write

$U_{\alpha\beta}=\cup\{V_{\beta i} ; i\in N\},$ $\beta\in B_{\alpha^{0}},$ $\alpha\in A_{0}$ ,

$V_{\beta i}=\cup\{B_{i} : B\in S_{\beta}\cap 9_{i}\},$ $\beta\in B_{a}^{0},$ $\alpha\in A_{0}$ .

Since $X-H_{k+1}$ is an open neighborhood of $p$ such that

$(X-H_{k+1})\cap V_{\lambda n}=\phi,$ $n\geqq k+1,$ $\lambda\in\Lambda$ ,

$p\not\in\overline{\cup\{V_{\beta n}:n\geqq k+1,\beta\in\cup\{B_{a}^{0}:\alpha\in A_{0}\}\}.}$
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Therefore if we assume

$p\epsilon\overline{\cup\{U_{\alpha\beta}:(\alpha,\beta)\in B_{0}\}}$,

then

$p\overline{\in\cup\{V_{\beta m}:m\leqq k,\beta\in\cup\{B_{a}^{0}:\alpha\in A_{0}\}}\}$ .
This implies for some $m\leqq k$

$p\in\overline{\cup\{V_{\beta m}:\beta\in\cup\{B_{\alpha}^{0}:\alpha\in A_{0}\}\}}$ .

Since $\mathscr{D}_{m}$ is closure-presering in $x,p\in\overline{B}$ for $r_{Some}B\in S_{\beta}\cap \mathscr{D}_{m},$ $\beta\in\cup\{B_{\alpha}^{0};\alpha\in A_{0}\}$ .
Since $p\in H_{m}$ and $H_{m}$ is open, it follows that

$p\epsilon\overline{B\cap H_{m}}=\overline{B_{m}}\subset\overline{V_{\beta m}}$ .

Hence $p\in\overline{U_{\alpha\beta}}$ for $(\alpha, \beta)\in B_{0}$ , a contradiction. Thus (2) is satisfied. To see (3), let

$V$ be an arbitrary open set of $X$ such that $V\cap F=U_{\alpha}$ . For each $p\in U_{\alpha}$ , there exist
$n(p)\in N$ and $B_{p}\in \mathscr{D}_{n(p)}$ such that

$p\epsilon B_{p}\subset V\cap U_{a}^{\prime}$ .
Obviously $p\in(B_{p})_{n(p)}\subset V$. If we put

$S_{\beta}=\{B_{p} : p\epsilon U_{\alpha}\}$ ,

then $U.{}_{\beta}CV$.
Next, we consider the general case. Let $X$ be a free L-space. Then by [7,

Theorem 2.10] there exists a perfect mapping $f$ of a free L-space $Z$ with $\dim Z\leqq 0$

onto $X$ By [2, Lemma 3.2 $(a)$] we can assume that $f$ is irreducible. Suppose
that we are given a closure-preserving open collection $cU=\{U_{\alpha} ; \alpha\in A\}$ of a closed
set $F$ of $X$ In the preceding manner, we construct for each $\alpha\in A$ an open collec-
tion $\{(f^{-}(U_{\alpha}))_{\beta} : \beta\in B_{\alpha}^{\prime}\}$ of $Z$ satisfying the following:

(1) $(f^{-1}(U_{\alpha}))_{\beta}\cap f^{-1}(F)=f^{-1}(U_{\alpha}),$ $\beta\in B_{\alpha}^{\prime},$ $\alpha\in A$ .
(2) { $(f^{-1}(U_{\alpha}))_{\beta}$ : $\beta\in\cup\{B_{a}^{\prime};\alpha\in A\}$ is closure-preserving in $Z-f^{-1}(F)$ .
(3) If $V$ is an open set of $Z$ such that $V\cap f^{-1}(F)=f^{-1}(U_{\alpha})$ , then $(f^{-1}(U_{a}))_{\beta}\subset V$

for some $\beta\in B_{\alpha}^{\prime}$ .
For each $\alpha\in A,$ $\beta\in B_{\alpha}^{\prime}$ , put

$U_{a\beta}=X-f(Z-(f^{-1}(U_{\alpha}))_{\beta})$ .

We expand each $U_{\alpha}$ to an open set $U_{\alpha}^{\prime}$ of $X$ by the same method as in the proof
of Theorem 3. Construct

$q]_{\alpha}=\{U_{\alpha\beta} : \beta\in B_{\alpha}\},$ $\alpha\in A$ ,
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$B.=t\beta\in B_{\alpha}^{\prime}$ : $U_{a\beta}\subset U_{\alpha}^{\prime}$ }.

(1) follows easily from (1). To see (2), let $B_{0}$ be an arbitrary subset of $\cup\{\{\alpha\}\times$

$B_{\alpha};\alpha\in A\}$ and suppose

$p\not\in\cup\{\overline{U_{\alpha\beta}} : (\alpha, \beta)\in B_{0}\}$ .

Write

$B_{0}=\cup\{\{\alpha\}\times B_{\alpha}^{0} : \alpha\in A_{0}\}$ .

If $p\in F$, then $p\not\in\overline{\cup\{U_{\alpha}^{\prime}}$: $\alpha\in A_{0}$ } by the property (ii) of $U_{\alpha}^{\prime}$ . Consequently we have
$p\not\in\overline{\cup\{U_{a\beta}:(\alpha,\beta)\in B_{0}\}}$. Let $p\in X-F$ and assume $p\in\overline{\cup\{U_{\alpha\beta}:(\alpha,\beta)\in B_{0}\}}$ . Then we have

$f^{-1}(p)\subset Z-f^{-1}(F)$ ,
$ f^{-1}(p)\cap\overline{\cup\{(f^{-1}(U_{\alpha}))_{\beta}:(\alpha,\beta)\in B_{0}}\}\neq\phi$ .

By (2), there exist $\beta\in B_{\alpha}^{0},$ $\alpha\in A_{0}$ such that

$ f^{-1}(p)\cap\overline{(f^{-1}(U_{\alpha}))_{\beta}}=\psi$ .
Since $f$ is irreducible, $p\in\overline{U_{\alpha\beta}}$ follows from the argument of [2, Lemma 3.3]. There-
fore (2) is proved. (3) follows easily from (3). This completes the proof.

So far as I know, it is not known whether each closed set of an $M_{1}$ -space
admits a $\sigma$-closure-preserving open neighborhood base. It is also an open question
whether $X|A$ is an $M_{1}$ -space for each closed set $A$ of an $M_{1}$ -space. But as far as
we are concerned with the class of free L-spaces, these hold positively.

COROLLARY 1. Every closed set of a free L-space has a closure-preserving
open neighborhood base.

COROLLARY 2. $X|A$ is an $M_{1}$ -space for each closed set $A$ of a free L-space $X$

COROLLARY 3. Let $f$ be a closed irreducible mapping of a free L-space $X$ onto
Y. Then $Y$ is an $M_{1}$-space.

PROOF. The closed image of a paracompact $\sigma$-space is also paracompact $\sigma$. It
is similarly shown to [2, Lemma 3.2] that every closed set of $Y$ has a closure-
preserving open neighborhood base.

Note that we use only the fact that X is an $M_{1}$-space in the proof of the case
of $\dim X=0$ of Lemma 2. Thus we have the following:

COROLLARY 3’. Let $f$ be a closed irreducible mapping of an $M_{1}$-space $X$ with
$\dim X\leqq 0$ onto Y. Then $Y$ is an $M_{1}$ -space.
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It is unknown whether the adjunction space of $M_{1}$ -spaces is $M_{1}$ . From the
result of Borges [1], it is known that the adjunction space is at least stratifiable.

THEOREM 4. Let $X$ be a free L-space and $Y$ an $M_{1}$ -space. Then $Z=X\bigcup_{f}Y$

is an $M_{1}$ -space.

PROOF. Let $CU=\bigcup_{j\approx 1}^{\infty c}U_{J}$ be a base for $p(Y)$ , where each $cU_{J}=\{U_{\alpha} ; \alpha\in A_{j}\}$ is
closure-preserving in $p(Y)$ . By the same method of the proof of Theorem 3, we
expand each U. to an open set $U_{\alpha}^{\prime}$ of $Z$. By the same method as in the proof of
Lemma 2, we can show that there exists for each $\alpha\in A_{j}$ an open collection $q]_{\alpha}=$

$\{U_{\alpha\beta} : \beta\in B_{a}\}$ of $X$ satisfying the following:

(1) $U_{\alpha\beta}\cap H=p_{X}^{-1}(U_{\alpha}),$ $U_{\alpha\beta}\subset p_{X}^{-1}(U_{\alpha}^{\prime})$ for each $\beta\in B_{\alpha},$ $\alpha\in A_{j}$ .
(2) $\cup t^{c}U_{\alpha}:\alpha\in A_{j}$ } is closure-preserving in $X-H$
(3) If $U$ is an open set of $X$ such that $U\cap H=p_{X}^{-1}(U_{\alpha})$ for $\alpha\in A_{j}$ , then $U_{a\beta}\subset U$

for some $\beta\in B_{\alpha}$ .
Set

$\mathcal{V}_{\alpha}=1V_{\alpha\beta}=U_{a}\cup p(U_{\alpha\beta}):\beta\epsilon B_{\alpha}\},$ $\alpha\epsilon A_{j}$ ,
$\mathcal{V}_{j}=\cup\{\mathcal{V}_{\alpha} \ddagger \alpha\in A_{j}\}$ ,

$\mathcal{V}=\bigcup_{j=1}^{\infty}\mathcal{V}_{J}$ .
Then $\mathcal{V}$ is a $\sigma$-closure-preserving open collection of $Z$, which forms a local base
of each point of $p(Y)$ in $Z$. Since $Z$ is perfectly normal and $X$ is an $M_{1}$ -space,
there exists a $\sigma$-closure-preserving open collection $cW$ of $Z$, which forms a local
base of each point of $Z-p(Y)$ in $Z$. Then $\mathcal{V}\cup^{c}W$ is a $\sigma$-closure-preserving base
for $Z$. This completes the proof.

COROLLARY 1. Let $X$ be the perfecl irreducible image of an $M_{1}$ -space with
$\dim X\leqq 0$ and $Y$ an $M_{1}$ -space. Then $X\bigcup_{f}Y$ is an $M_{1}$ -space.
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