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ON SYMMETRY OF KNOTS

By

Kunio MURASUGI*

\S 1. Introduction

A knot $K$ in a 3-sphere $S^{3}$ is said to have period $n$ [9] [13] (or to be a

periodic knot of order n) if there is a rotation of $S^{3}$ with period $n$ and axis $A$ ,

where $ A\cap K=\phi$ , which leaves $K$ invariant. (This definition is now equivalent to

the original definition due to the positive solution to Smith Conjecture.)

One of the main problems is to determine periods of a given knot and so

far, several necessary conditions for $K$ to have period $n$ have been found. See

[1], [5], [7], [9], [13].

In this paper, we prove a few additional conditions using the covering link-

age invariants which will be explained below.

Let $J_{n}$ be a set of $n$ letters, 1, 2, $\cdots,$ $n$ , and $S(J_{n})$ the groups of all permuta-

tions on $J_{n}$ . Thus $S(J_{n})$ is isomorphic to the symmetric group of order $n$ !

Let $\Gamma$ be a finite transitive permutation group, $i$ . $e.,$
$\Gamma$ is a transitive subgroup

of $S(J_{n})$ .
An epimorphism $\theta:G\rightarrow\Gamma\leqq S(J_{n})$ is called, in this paper, a representation of

$G$ of degree $n$ .
Two representations $\theta_{1},$ $\theta_{2}$ : $ G\rightarrow\Gamma$ will be called equivalent [4], is symbols

$\theta_{1}\equiv\theta_{2}$ , if there is an inner automorphism $\rho$ : $S(J_{n})\rightarrow S(J_{n})$ such that $\rho\theta_{1}=\theta_{2}$ .
Let $M$ be a 3-manifold and $G=\pi_{1}(M)$ . To each representation of $G$ of

degress $n$ , there is defined uniquely (up to homeomorphism) an n-sheeted cover-
ing space $\tilde{M}$ of $M$. Equivalent representations define homeomorphic covering

spaces.
Let $K$ be a knot in $S^{\theta}$ and let $M=S^{3}-K$. In this paper, $\pi_{1}(S^{3}-K)$ is denoted

by $G(K)$ . A representation $\theta:G(K)\rightarrow\Gamma\leqq S(J_{n})$ defines the covering $space\sim\tilde{M}$ of

$M$, called the unbranched covering space of $K$ in $S^{3}$ . It is known that $M$ is of

the form $M^{*}-\tilde{K}$ for some orientable closed 3-manifold $M^{*}$ and a knot (or link)

$\tilde{K}$ in $M^{*}$ . The “completion” $M^{*}$ of $\tilde{M}$ is called the branched covering space of
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$S^{3}$ branched along $K$, and $\tilde{K}$ is called the knot (or link) in $M^{*}$ that covers $K$. If
$\tilde{K}$ has more than one components, $\tilde{K}_{1},\tilde{K}_{2},$

$\cdots$ , $\tilde{K}_{r}$, say, it may be possible to con-
sider the linking number $\alpha_{ij}=lk(\tilde{K}_{i},\tilde{K}_{j})$ between $\tilde{K}_{i}$ and $\tilde{K}_{j}$ in $M^{*}$ . The set
$\{\alpha_{i,j}, 1\leqq i<j\leqq r\}$ is called the convering linkage invariant of $K$ associated with
$\theta[6]$ . If $lk(\tilde{K}_{i},\tilde{K}_{j})$ does not exist, we simply write $\alpha_{ij}=-$ .

For representations over the dihedral groups $D_{n},$ $n$ being odd, this invariant
has been used in [7], [10].

We will use this invariant to find some conditions for $K$ to have period $n$ .
As applications of our theorems, it will be proven that knots $8_{10},8_{20},9_{24},9_{35},9_{46}$

[12] cannot have certain periods, for which all previously known conditions fail
to rule out these periods.

At the end of the paper, we list all prime periods of knots with less than 10
crossing points.

\S 2. Preliminaries

Let $G$ be an arbitrary group. Let $\theta_{i}$ : $G\rightarrow\Gamma\leqq S(J_{n})(i=1,2)$ be representations
of degree $n$ , and $\phi:G\rightarrow G$ an automorphism.

PROPOSITION 2.1. If $\theta_{1}\equiv\theta_{2}$ , then $\theta_{1}\phi\equiv\theta_{2}\phi$ .

PROOF. Since $\theta_{1}\equiv\theta_{2}$ , there exists an inner automorphism $\rho$ of $S(J_{n})$ such
that $\rho\theta_{1}=\theta_{2}$ , and hence $\rho\theta_{1}\phi=\theta_{2}\phi$ . Thus $\theta_{1}\phi\equiv\theta_{2}\phi$ .

PROPOSITION 2.2. Let $\phi:G\rightarrow G$ be an automorphism of order $p$ , a prime.
Let $\theta:G\rightarrow\Gamma\leqq S(J_{n})$ be a representation. Then either

(1) $\theta\phi\equiv\theta$, or
(2) no two of $p$ representations $\theta,$ $\theta\phi,$

$\cdots,$
$\theta\phi^{p- 1}$ are equivalent.

PROOF. Assume $\theta\phi\not\equiv\theta$ and $\theta\phi^{k}\equiv\theta\phi^{l},$ $0\leqq k<l<p$ . Then $\theta\equiv\theta\phi^{l-k}$ by Pro-
position 2.1. Since $g$ . $c$ . $d$ . $(p, l-k)=1$ , there exist integers $\alpha,$ $\beta$ such that
$\alpha p+\beta(l-k)=1$ . Then $\phi=\phi^{\alpha p}\phi^{\beta(l-k)}=\phi^{\beta(l- k)}$ yields $\theta\phi=\theta\phi^{\beta(l-k)}\equiv\theta$, since $\theta\equiv\theta\phi^{l-k}$ .
This contradicts $\theta\phi\not\equiv\theta$ .

COROLLARY 2.3. Under the same assumption as in Proposition 2.2, if $\Gamma\triangleleft S(J_{n})$

and $\Gamma$ has no automorphism of order $p$ , then $\theta\phi\equiv\theta$ yields $\theta\phi=\theta$.

PROOF. Since $\theta\phi\equiv\theta$, there is an inner automorphism of $S(J_{n})$ such that
$\theta\phi=\rho\theta$ . Then $\theta\phi^{p}=\rho^{p}\theta$ and hence $\theta=\rho^{p}\theta$, since $\phi^{p}=id$ . Therefore $\rho^{p}|\Gamma=id$ .
Since $\Gamma$ does not have an automorphism of order $p$ , and $\Gamma\triangleleft S(J_{n})$ , it follows
that $\rho|\Gamma=id,$ $i$ . $e.,$ $\theta\phi=\theta$.
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\S 3. Covering linkage invariants.

We consider $S^{3}$ as $R^{3}\cup\{\infty\}$ , and use cylindrical coordinates $(r, \theta, t)$ for $R^{3}$ .
Let $\tau_{m}$ be the rotation of $S^{3}$ about the t-axis $T$ through $2\pi/m,$ $i$ . $e.$ ,

$\left\{\begin{array}{l}\tau_{m}(r,\theta,t)=(r,\theta+\frac{2\pi}{m},t)\\\tau_{m}(\infty)=\infty.\end{array}\right.$

Let $K$ be a periodic knot of order $m$ . Applying an isotopy deformation if

necessary, we may assume without loss of generality that $\tau_{m}(K)=K$ and $ K\cap T=\phi$ .
Such a rotation $\tau_{m}$ will be called the rotation associated with $K$.

In the following, a pair $(K, \tau_{m})$ will also be called a periodic knot.

Now the identification space $ S^{3}/\tau$ is again a 3-sphere $\Sigma^{3}$ and $K/\tau=\hat{K}$ be-

comes a knot in $\Sigma^{3}$ . Let $N_{m}$ be a 3-ball $\{(r, \theta, t)|0\leqq\theta\leqq 2\pi/m\}\cup\{\infty\}$ . Then the

presentations of $G(K)=\pi_{1}(S^{3}-K)$ and $G(K)=\pi_{1}(\Sigma^{3}-\hat{K})$ can be obtained from

that of $\pi_{1}(N_{m}-K)$ as follows. (Also see Example 1.)

First, give an orientation to $K$. Let $A_{1},$ $A_{2},$ $\cdots$ , $A_{d}$ be the points of inter-

section $K\cap\{(r, 0, t)|-\infty<r, t<\infty\}\subset\partial N_{m}$ . Denote $B_{i}=\tau_{m}(A_{i})\subset\partial N_{m},$ $i=1,2,$ $\cdots,$
$d$ .

Let $\mathcal{P}_{0}=\langle x_{1}, X_{2}, , x_{g}|R_{1}, R_{2}, \cdots, R_{g-d}\rangle$ be a Writinger presentation of
$\pi_{1}(N_{m}-K)$ . Each generator $x_{i}$ is represented by a small oriented loop once
around an arc in a positive direction, and each relation $R_{i}$ is of the form:
$x^{\epsilon}j^{ii}x_{\iota}x_{J}^{-\epsilon}x_{r}^{-1}=1,$ $\epsilon_{i}=+1$ or $-1$ . For simplicity, we assume that the first $d$ genera-
tors $x_{1},$

$\cdots$ , $x_{d}$ and the last $d$ generators $x_{q+1},$
$\cdots$ , $x_{q+d}(q+d=g)$ correspond to

arcs intersecting $\partial N_{m}$ at $A_{i}$ and arcs intersecting $\partial N_{m}$ at $B_{i}$ , respectively. With

these conventions, $c(K)$ has a presentation

$\Phi=\langle x_{1}, x_{2\prime}x_{g}|R_{1}, R_{2}, \cdots, R_{q}, x_{1}=x_{q+1}, \cdots, x_{d}=x_{q+d}, (q+d=g)\rangle$ .

Denote by $\mathcal{F}(u_{1}, u_{2}, \cdots, u_{k})$ the free group generated freely by $u_{1},$ $u_{2},$ $\cdots,$ $u_{k}$ .
Now $R_{i}(i=1,2, \cdots, q)$ is an element of $\mathcal{F}(x_{1}, x_{2}, \cdots, x_{g})$ . We define $R_{j,i}$

($j=1,2,$ $\cdots$ , m) as an element of $\mathcal{F}(x_{j,1}, x_{j,2}, \cdots, x_{j,g})$ obtained from $R_{i}$ by replac-

ing every $x_{k}^{\epsilon}$ appearing in $R_{i}$ by $x_{j,k}^{\epsilon}$ . Then $G(K)$ has a presentation:

$\mathcal{P}=\langle x_{j,i}|R_{j,l}, x_{j.q+k}=x_{j+1,k}\rangle$

where $1\leqq j\leqq m,$ $1\leqq i\leqq g,$ $1\leqq l\leqq q,$ $1\leqq k\leqq d$ and $j$ is taken modulo $m$ .
The following example illustrates these presentations. For simplicity, we use

$x_{i},$ $y_{i},$ $z_{i}$ for $x_{1.i},$ $x_{2,i},$ $x_{3,i}$ . Also we note that $\tau_{m^{*}}(x_{j,i})=x_{j+1,i}$ .
EXAMPLE 1.
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$N_{m}-K$

Fig. 1.

Fig. 2.

$\mathcal{P}_{O}=\langle x_{1}, X_{2}, X_{3}, , x_{8}|R_{1}=1, \cdots, R_{5}=1\rangle$ ,

where
$R_{1}=x_{5}^{-1}x_{1}x_{5}x_{3}^{-1}$ , $R_{2}=x_{3}^{-1}x_{2}x_{3}x_{4}^{-1}$ , $R_{3}=x_{4}^{-1}x_{8}x_{4}x^{-1}$ .
$R_{4}=x_{7}^{-1}x_{4}x_{7}x_{5}^{-1}$ , $R_{5}=x_{1}^{-1}x_{5}x_{1}x_{6}^{-1}$ .
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$\Phi=\langle x_{1}, x_{2}, \cdots, x_{8}|R_{1}=1, \cdots, R_{5}=1, x_{1}=x_{6}, x_{2}=x_{7}, x_{3}=x_{s}\rangle$ ,

ana
$\mathcal{P}=\langle x_{1},$

$\cdots,$ $x_{8},$ $y_{1},$ $\cdots,$ $y_{8},$ $z_{1},$
$\cdots$ $z_{8}|R_{1,1}=1,$ $\cdots$ $R_{3,5}=1$

$x_{5+j}=y_{j},$ $y_{5+j}=z_{j},$ $z_{5+j}=x_{j},$ $ j=1,2,3\rangle$ ,

where $R_{1,i}=R_{i},$ $R_{2,1}=y_{5}^{-1}y_{1}y_{5}y_{3}^{-1},$
$\cdots,$

$R_{3,5}=z_{1}^{-1}z_{5}z_{1}z_{6}^{-1}$ .

PROPOSITION 3.1. Let $(K, \tau)$ be a periodic knot of order $m$ , and $\tau_{*}:$ $G(K)$

$\rightarrow G(K)$ an automorphism induced from $\tau$ .

Let $\theta:G(K)\rightarrow\Gamma\leqq S(J_{n})$ be a representation of $G(K)$ . Then
(1) $\tau_{*}$ is not identity, and
(2) $\theta$ induces the representation of $G(K)=G(K/\tau)$ onto $\Gamma$ if $\theta\tau_{*}=\theta$ . Con-

oersely, if there is a representation $\hat{\theta}:G(K)\rightarrow\Gamma\leqq S(J_{n})$ , then there is a representa-

tion $\theta:G(K)\rightarrow\Gamma\leqq S(J_{n})$ such that $\theta\tau_{*}=\theta$ .

PROOF. Since (1) is well-known [13], we only need to show (2).

Suppose $\theta\tau_{*}=\theta$ . Using presentations $\mathcal{P},$
$\Phi$ , define $\hat{\theta}:G(\hat{K})\rightarrow\Gamma\leqq S(J_{n})$ by

$\hat{\theta}(x_{i})=\theta(x_{1.i})$ . $\hat{\theta}$ is well-defined. To see $\hat{\theta}$ is onto, it suffices to check that
$\{\theta(x_{1,i}), 1\leqq i\leqq g\}$ generates $\Gamma$, since $\theta(x_{1,i})=\theta(x_{j,i})$ for any $j$ . The converse is
obvious.

To each knot $K$ in $S^{3}$ , we can assign a meridian-longitude pairs, $(\mu_{K}, l_{K}),$ $\mu_{K}$ ,

$l_{K}\in G(K)$ . For a periodic knot $(K, \tau)$ , we always choose, $x_{1.1}$ as $\mu_{K}$ .
THEOREM 3.2. Let $(K, \tau)$ be a periodic knot of period $m$ . Let $\theta:G(K)\rightarrow$

$\Gamma\leqq S(J_{n})$ be a representation of $G(K)$ . Suppose $\theta\tau_{*}=\theta$ . Let $\hat{\theta}:G(K)\rightarrow\Gamma$ be the
homomorphism induced by $\theta$ . Assume that $\theta(l_{K})=id$ and $\hat{\theta}(l_{\hat{K}})=id^{*)}$ Let $M^{*}$ be
the branched covering space of $S^{3}$ branched along $K$ associated with $\theta$ .

Suppose that $K$ is covered by $r$ knots $\tilde{K}_{1},\tilde{K}_{2},$ $\cdots,\tilde{K}_{r},$ $r>1$ , and let $\{\alpha_{i.j}\}$ be
the covering linkage invariants of K. Let $b$ be the order of the torsion group
of $H_{1}(M^{*} ; Z)$ . Then if $\alpha_{ij}=lk(\tilde{K}_{i},\tilde{K}_{j})$ exists, $\alpha_{ij}$ is of the form $am/b$ for some
integer $a$ . In particular, if $g$ . $c$ . $d$ . $(b, m)=1$ , then $\alpha_{ij}\equiv 0(mod m)$ .

PROOF. First we need precise expressions for longitudes $l_{K}$ and $l_{\hat{K}}$ of $K$

and $K$.
Consider $(N_{m}, N_{m}\cap K)$ . $N_{m\cap}K$ consists of $d$ arcs $\alpha_{1},$ $\alpha_{2},$ $\cdots,$ $\alpha_{d}$ and $\partial N_{m}\cap K$

consists of $2d$ points $\cup q=\{A_{1}, A_{2}, \cdots, A_{d}\}$ and $\mathscr{Q}=\{B_{1}, B_{2}, \cdots, B_{d}\}$ (See Fig. 1).

$\alpha_{i}$ connects two points in $cfl\cup g$ . We may assume that $A_{i}=(r_{i}, 0,0)$ and $B_{i}=$

$(r_{i}, 2\pi/m, 0)$ . Define an involution $\nu:d\cup B\rightarrow A\cup 9$ by $\nu(A_{i})=B_{i}$ and $\nu(B_{i})=A_{i}$ .
$*)$ These conditions are always satisfied if $\Gamma$ is metabelian, $i.e$ . $\Gamma‘‘=1$ .
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Since $\alpha_{i}$ is oriented, $\alpha_{i}$ has two end points, called the initial point $X_{i}$ and the
terminal point $Y_{i}$ . If $A_{1}$ is the terminal point of some arc $\alpha_{i}$ , then reverse the
orientation of $K$ so that $A_{1}$ is the initial points of $\alpha_{i}$ . Now we rearrange $\alpha_{1},$ $\alpha_{2}$ ,

, $\alpha_{d}$ as follows. $\alpha_{1}$ is the arc whose initial point is $A_{1}$ , and inductively, $\alpha_{j}$ is
the arc whose initial point is $\nu(Y_{j-1}),$ $j=2,3,$ $\cdots,$

$d$ , where $Y_{j- 1}$ is the terminal
point of $\alpha_{j-1}$ (new).

To get $l_{\hat{K}}$ , choose $2d$ line segments $\gamma(C),$ $C\in\leftrightarrow q\cup \mathscr{D}$ on $\partial N_{m}$ that connect
$(0,0,1)$ to $C$ .

Let $W_{j}$ be the element in $\pi_{1}(N_{m}-K)$ that represents the loop $\gamma(X_{j})\alpha_{j}\gamma(Y_{j})^{-1}$ .
Then $l_{\hat{K}}$ is given by

(3.1) $l_{\hat{K}}=W_{1}W_{2}\cdots W_{d}x_{1}^{\sigma}$ ,

where $\sigma$ is an integer.
For example, for the knot $K$ in Fig. 1,

$l_{\hat{K}}=W_{1}W_{2}W_{3}x_{1}^{-5}=(x_{5})(x_{4})(x_{3}x_{7}x_{1})x_{1}^{6}$ .
Let $\phi:J_{m}\times J_{d}\rightarrow J_{m}$ be a function defined by

(3.2) $\left\{\begin{array}{l}\phi(j,i)=j-1(modm)\\\phi(j,i)=j+1(modm)\end{array}\right.$ $ifif$ $Y_{i}^{i}\in \mathscr{Q}Y\in A$

where $Y_{i}$ is the terminal point of $\alpha_{i}$ .

EXAMPLE 1 (Continued).

$\phi(1,1)=3$ , $\phi(1,2)=2$ , $\phi(1,3)=2$

$\phi(2,1)=1$ , $\phi(2,2)=3$ , $\phi(2,3)=3$

$\phi(3,1)=2$ , $\phi(3,2)=1$ , $\phi(3,3)=1$ .
Let $X_{i}$ be the set $\{x_{i,1}, x_{i,2}, \cdots , x_{i,g}\}$ and $\mathcal{F}(Zi_{i})$ the free group freely generated
by $x_{i}$ .

Using $l_{\hat{K}}$ , we can show that a longitude $l_{K}$ of $K$ is given by

(3.3) $l_{K}=W_{1}(X_{\nu(1.1)})W_{2}(X_{\nu(1,2)})\cdots W_{d}(X_{\nu(1.d)})$

$W_{1}(X_{\nu(2,1)})\cdots W_{d}(X_{\nu(2.d)})$

$W_{1}(X_{\nu(m.1)})\cdots W_{d}(X_{\nu(m.d)})$

$=\prod_{j=1}^{m}[W_{1}(X_{\nu(j.1)})W_{2}(X_{\nu(j.2)})\cdots W_{d}(X_{\nu(j.d)})]x_{1.1}^{m\sigma}$

where indices $\nu(j, i)$ is defined, inductively, by
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$\left\{\begin{array}{l}\nu(1,1)=1\\\nu(j,1)=\nu(j-1,d)+1 forj>1\\\nu(j,i)=\phi(\nu(j,i-1),i-1) fori>1,\end{array}\right.$

and $W_{i}(x_{k})$ is the element of $\mathcal{F}(X_{k})$ that is obtained from $W_{i}$ by replacing every
$x_{j}^{\epsilon}$ appearing in $W_{i}$ by $x_{k,j}^{\epsilon}$ .

EXAMPLE 1 (Continued). $l_{K}=W_{1}(X_{1})W_{2}(X_{3})W_{3}(X_{1})W_{1}(X_{2})W_{2}(X_{1})W_{3}(X_{2})W_{1}(X_{3})$

$W_{2}(x_{2})W_{3}(x_{3})x_{1}^{-15}=(x_{5}z_{4}x_{3}x_{7}x_{1})\cdot(y_{5}x_{4}y_{3}y_{7}y_{1})\cdot(z_{5}y_{4}z_{3}z_{7}z_{1})x_{1}^{-15}$ .
Now, $\theta\tau_{*}=\theta$, by assumption, and since $\tau_{*}(x_{1,i})=x_{2.i}$ , it follows that $\theta(x_{j,i})=$

$\theta\tau_{*}^{j-1}(x_{1.i})=\theta(x_{1,i})$ . Therefore, $\theta W_{k}(X_{\nu(r,s)})=\theta W_{k}(X_{1})$ and hence

$\theta(l_{K})=\prod_{j=1}^{m}\theta[W_{1}(X_{\nu(j,1)})W_{2}(X_{\nu(j.2)})\cdots W_{d}(x_{\nu(j.d)})]\theta(x_{1,1})^{m\sigma}$

$=\prod_{j=1}^{m}\theta(W_{1}(X_{1})W_{2}(X_{1})\cdots W_{d}(X_{1}))\cdot\theta(x_{1,1})^{m\sigma}$

$=[\theta(W_{1}(X_{1})W_{2}(X_{1})\cdots W_{d}(X_{1})x_{1.1}^{\sigma})]^{m}$

$[\hat{\theta}(W_{1}W_{2}\cdots W_{d}x_{1}^{\sigma})]^{m}$

$=\hat{\theta}(l_{\hat{K}})^{m}$ .

Thus, we obtain

(3.4) $\theta(l_{K})=\hat{\theta}(l_{\hat{K}})^{m}$ .

Let $\{O_{1}, O_{2}, \cdots, O_{r}\}$ be the set of orbits of $J_{n}$ under the action of $\theta(x_{1,1})$

(and $\theta(l_{K})=id$ ). Assume that $0_{i}$ corresponds to a covering knot $\tilde{K}_{i}$ .
Since $lk(K_{i},\tilde{K}_{j})$ exists, there is a linking homomorphism

$\xi:\mathcal{F}(\{x_{j.i,k} ; 1\leqq j\leqq m, 1\leqq i\leqq g=q+d, 1\leqq k\leqq n\})-Q$ .
[6, Proposition 7.1].

More precisely, let $b$ be the order of the torsion group of $H_{1}(M^{*} ; Z)$ and $Q_{P}$

the additive group of rationals of the form $a/b$ with an integer $a$ . Then $\xi$ is,
in fact, a homomorphism

$\xi:\mathcal{F}(\{x_{j,i.k}\})-Q_{P}$

satisfying

(3.5)
$\sum_{k\in O_{i}}\xi(x_{1,1.k})=1$ and $\sum_{l\in O_{t}}(x_{1.1,l})=0$ .

$l\neq i$

Since $x_{j,i}$ and $x_{1,1}$ are conjugate, we note that

(3.6) $\sum_{k\in 0_{i}}\xi(x_{j.s,k})=1$ and
$i\neq i^{l}l\in fi^{\xi(x_{j,s,l})=0}$

.
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We will show that there is a linking homomorphism

$\eta:\mathcal{F}(\{x_{j,i.k}\})\rightarrow Q_{p}$ such that

(3.7) (1) $\sum_{k\in 0_{i}}\eta(x_{1,1,k})=1$ and
$l\neq i\sum_{l\in 0_{t}}\eta(x_{1.1.l})=0$

and
(2) $\eta(x_{1.i,k})=\eta(x_{2,i,k})=\cdots=\eta(x_{m,i,k})$

for all $i$ and $k$ .
To obtain $\eta$ , we define inductively

$\left\{\begin{array}{l}\xi_{1}=\xi\\\xi_{l}(x_{j,i,k})=\xi_{l- 1}(x_{j- 1,i,k}),\end{array}\right.$

$2\leqq l\leqq m$ .
Then each $\xi_{l}$ is also a linking homomorphism. This follows from the specific
presentation $\mathcal{P}$ of $G(K)$ . Therefore, it follows from (3.6) by induction that

(3.8) $\sum_{k\in O_{i}}\xi_{l}(x_{i,s,k})=1$ and
$k\in O_{t}\sum_{t\neq i}\xi_{l}(x_{j,s,k})=0$

for all 1.
Define

1 $m$

$\eta(x_{j,s.k})=_{\overline{m}}\sum_{\iota=1}\xi_{l}(x_{j.s,k})$ .

Then
$\sum_{k\in 0_{i}}\eta(x_{j,s,k})=1$ and

$k\in 0_{t}\sum_{l\neq i}\eta(x_{j,s.k})=0$

Further, we have

$\eta(x_{j.s,k})=\frac{1}{m}\{\xi_{1}(x_{j,s.k})+\xi_{2}(x_{j.\$,k})+\cdots+\xi_{m}(x_{j,s,k})\}$

$=\frac{1}{m}\{\xi_{1}(x_{j,s.k})+\xi_{1}(x_{j- 1.s.k})+\xi_{1}(x_{j- 2,S,k})+\cdots+\xi_{1}(x_{j+1,s.k})\}$

$=\frac{1}{m}\sum_{q=1}^{m}\xi_{1}(x_{q.s,k})$ ,

and hence, $\eta(x_{f.s.k})=\eta(x_{l.s,k})$ for all $l,$ $j$, which proves (3.7).

Now, since $\eta$ is a linking homomorphism of $\mathcal{F}(\{x_{j.i,k}\}),$ $\eta(x_{j.i.k})$ are obtained
as solutions of a certain system of linear equations [6, p. 1328] and the coefficient
matrix of the system is exactly the relation matrix of $H_{1}(M^{*} ; Z)$ , and hence,

$\eta(x_{i.j.k})$ belongs to $Q_{P}$ .
Further, since $\eta$ ( $x_{j.s}$ .k)=\eta (Xl.$. k) for all $j,$ $l,$

$\eta$ also defines a linking homo-
morphism
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$\hat{\eta}$ ; $\mathcal{F}(\{x_{i,k}|1\leqq i\leqq g, 1\leqq k\leqq n\})-Q_{P}$

by putting $\hat{\eta}(x_{i.k})=\eta(x_{1.i.k})$ .
Now Corollary 7.3 in [6] shows that

$\eta(\mathcal{D}_{k}l_{K})=lk(\tilde{K}_{i},\tilde{K}_{j})$ for $k\in O_{j}$ .
(For definition of $\mathcal{D}_{k}$ , see [6, p. 1318].)

Since $\theta(l_{K})=\hat{\theta}(l_{\hat{K}})^{m}$ , it follows that $\eta(\mathcal{D}_{k}l_{K})=m\hat{\eta}(\mathcal{D}_{i}l_{\hat{K}})$ .
Since $\hat{\eta}\mathcal{D}_{k}(l_{\hat{K}})$ is of the form $a/b,$ $\eta(\mathcal{D}_{k}l_{K})$ is of the fhrm $ma/b$ , and hence

$lk(\tilde{K}_{i},\tilde{K}_{j})$ is of the form $ma/b$ . This proves Theorem 3.2.

REMARK. An analogous theorem for a dihedral representation $\theta:G(K)\rightarrow D_{n}$

$\leqq S(J_{n})$ has been proven in [7] under complicated conditions, which confirm the
existence of the dihedral covering linkage invariant. R. I. Hartley also obtains a
similar result.

COROLLARY 3.3. Under the same assumption as in Theorem 3.2,

$lk(\tilde{K}_{i},\tilde{K}_{j})=mlk_{\hat{M}}(K_{i}, K_{j})$ ,

where $\hat{M}$ is the branched covering space of $S^{3}$ branched along rt associated with
$\hat{\theta}$ , and $K_{1},$

$\cdots,$
$K_{r}$ are knots that cover rt in $\hat{M}$, and $lk_{\hat{M}}(K_{i}, K_{j})$ denotes the link-

ing number between $K_{i}$ and $K_{j}$ in $\hat{M}$, and assume that $\tilde{K}_{i}$ and $K_{i}$ correspond to
the same orbit in $J_{n}$ .

PROOF. This is essentially what we have shown in the proof of Theorem 3.2.

\S 4. Equivalent representations.

Let $(K, \tau)$ be a periodic knot of order $m$ .
Let $\theta:G(K)\rightarrow\Gamma\leqq S(J_{n})$ be a representation. Then, $\theta,$ $\theta\tau_{*},$

$\cdots,$ $\cdots,$
$\theta\tau_{*}^{m-1}$ are

also representations of $G(K)$ . They may be equivalent to each other. Even, if
they are not equivalent, the corresponding spaces are homeomorphic. In parti-
cular, we have

PROPOSITION 4.1. Covering linkage invariants obtained from these representa-
tions are identical as sets.

EXAMPLE 2. Let $K_{0}$ be a trefoil knot and let $K=K_{0}\# K_{0}$ . Obviously, $K$ has
period 2. Let $\theta:G(K)\rightarrow D_{3}\leqq S(J_{3})$ be a representation given in Fig. 3. Then the
second representation $\theta\tau_{*};$ $G(K)\rightarrow D_{3}\leqq S(J_{3})$ is given in Fig. 4. Since there is no
inner automorphism $\rho$ of $S(J_{3})$ with $\theta\tau_{*}=\rho\theta,$

$\theta$ is not equivalent to $\theta\tau_{*}$ . How-
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ever, the covering linkage invariants are {2} for both $\theta$ and $\theta\tau_{*}$ .

Fig. 3. Fig. 4.

In this section, we prove that under certain conditions, $\theta\tau_{*}$ and $\theta$ cannot be
equivalent for many $\theta$ .

THEOREM 4.2. Let $(K, \tau)$ be a periodic knot of order $p$ , an odd prime. Sup-
pose that $G(K)$ has a representation $\tilde{\theta}$ on $D_{p}$ of degree $p$ such that $\tilde{\theta}(x_{1,1})=$

$(1p-1)(2p-2)\cdots((p-1)/2(p+1)/2)$ . If $G(K)=G(K/\tau)$ does not have a repre-
sentation on $D_{p}$ , then there is one and only one representation $\theta$ such that $\theta\tau_{*}\equiv\theta$ .

PROOF. We use the same notation and symbols as those used in \S 3. We
study a representation $\theta$ such that $\theta\tau_{*}\equiv\theta$ . Since $G(K)\# D_{p}$ , it follows from Pro-
position 3.1 (2) that $\theta\tau_{*}\neq\theta$, and hence there is an inner automorphism $\rho$ of $S(J_{p})$

such that $\theta\tau_{*}=\rho\theta$ . Since $\tau_{*}$ has order $p,$ $\rho$ must have order $p$ and $\rho\neq id$ .
Therefore, $\rho$ is a conjugation by a cycle $(12 \cdots p)^{\lambda}$ for some $\lambda\neq 0$ .

Since $\tau_{*}(x_{j,i})=x_{j+1.i}$ , we have $\theta(x_{j+1.i})=\theta\tau_{*}(x_{j.i})=\theta\tau_{*}^{j}(x_{1,i})=\rho^{f}\theta(x_{1.i})$ and hence,
$\theta$ is completely determined if $\theta_{0}$ : $\pi_{1}(N_{p}-K)\rightarrow D_{p}\leqq S(J_{p})$ is given subject to
$\theta_{0}(x_{1.q+i})(=\theta\tau_{*}(x_{1.i}))=\rho\theta_{0}(x_{1.i})$ , since $x_{2,i}=x_{1,q+i}$ in $G(K)$ . Therefore, we study $\theta_{0}$ .
Now, a slightly modified argument used in [3, p. 160-162] shows that each repre-
sentation $\theta_{0}$ : $\pi_{1}(N_{p}-K)\rightarrow D_{p}\leqq S(J_{p})$ corresponds to a solution of the system of

linear equations (4.1), (4.2) over the field $Z/(p)$ :

(4.1) $\left\{\begin{array}{l}a_{11}x_{1}+a_{12}x_{2}+\cdots+a_{1,g}x_{g}\equiv 0\\a_{21}x_{1}+a_{22}x_{2}+\cdots+a_{2.g}x_{g}\equiv 0\\\ldots\cdots (modp)\end{array}\right.$

(4.2)
$\left\{\begin{array}{l}x_{1}+\lambda\equiv x_{q+1},\\x_{2}+\lambda\equiv x_{q+2}\\.\\.\\.\\x_{d}+\lambda\equiv x_{q+d}, (q+d=g)\end{array}\right.a_{q.1}x_{1}+a_{q},x_{2}+\cdots+a_{q.g}x_{g}\equiv 0(mod p)$
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where the coefficient matrix $A=\Vert a_{ij}\Vert_{1\leq i\leq q.1\leq j\leq g}$ , of (4.1), is the Jacobian matrix

$\Vert\frac{\partial R_{i}}{\partial x_{j}}\Vert$

evaluated at $x_{1}=x_{2}=\cdots=x_{g}=-1$ . The correspondence between a solution and
a representation will be given as follows.

Let $(x_{1}, x_{2}, \cdots, x_{g})=(c_{1}, c_{2}, \cdots , c_{g})$ be a non-trivial solution of (4.1), (4.2). Let
$\langle a, b|a^{2}=b^{p}=(ab)^{2}=1\rangle$ be a presentation of $D_{p}$ . Then $\theta_{0}:\pi_{1}(N_{p}-K)\rightarrow D_{p}$ is
given by

(4.3) $\{\theta_{0}^{0}(x_{q+i}^{i})=\rho^{i}\theta(x^{i_{i}})\theta(x)=b^{-c}a_{0}b^{c}=.(c_{i})(c_{i}.-1_{C_{i}}-2(’\frac{c_{i}+1)(c_{i}p-1}{2}, c_{i}+^{c}\frac{i+2)p-1}{2})$

Now eliminate unknowns $x_{q+1},$ $\cdots,$ $x_{q+l}$( using (4.2) to obtain

(4.4) $\left\{\begin{array}{l}(a_{11}+a_{1.q+1})x_{1}+\cdots+(a_{1,d}+a_{1,g})x_{d}+a_{1.d+1}x_{d+1}\\+\cdots+a_{1,q}x_{q}=-\lambda(a_{1,q+1}+\cdots+a_{1.g})\\\ldots\cdots\\(a_{q.1}+a_{q,q+1})x_{1}+\cdots+(a_{q.d}+a_{q,g})x_{d}+a_{q.d+1}x_{d+1}\end{array}\right.$

$+\cdots+a_{q\prime q}x_{q}=-\lambda(a_{q,q+1}+\cdots+a_{q,g})$ .
The coefficient matrix $B$ of (4.4) is exactly the Alexander matrix of $G(K)$ evalu-
ated at $x_{1}=x_{2}=\cdots=x_{q}=-1$ .

Let
$C=\left\{\begin{array}{llll}-\lambda(a_{1,q+1}+ & \cdots & a_{1}, & g)\\\vdots & & & \\-\lambda(a_{q}, & q+1+ & \cdots & a_{q,g})\end{array}\right\}$ .

Since $\theta\tau_{*}\equiv\theta$, there is at least one representation $\theta_{0}$ : $\pi_{1}(N_{p}-K)\rightarrow D_{p}$ . There-
fore, there is at least one solution for (4.4), and hence, rank $B=rank(BC)$ over
$Z/(p)$ .

By a property of the Alexander matrix, $\det B=0$ (see, for example, [3, $p$ .
162]) and thus rank $B\leqq q-1$ . However since $G(K)\neq\div D_{p}$ , it follows from [3] that
rank $B\geqq q-1$ over $Z/(p)$ , and hence rank $B=rank(BC)=q-1$ . Therefore, there
are exactly $p$ distinct solutions. We claim that representations corresponding to

these solutions are equivalent.
Let $v=(\alpha_{1}, \alpha_{2}, \cdots , \alpha_{q})$ and $w=(\beta_{1}, \beta_{2}, \cdots, \beta_{q})$ be two solutions of (4.4).

Then $v-w$ is a solution of the system of homogeneous linear equations

(4.5) $B\left\{\begin{array}{l}x_{1}\\x_{2}\\\vdots\\ x_{q}\end{array}\right\}\equiv 0$ $(mod p)$
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Since $v\neq w,$ $\alpha_{i}-\beta_{i}\neq 0$ for some $i$ .
Consider the system of equations with $q-1$ unknowns

(4.6) $B\ovalbox{\tt\small REJECT}^{X}x_{i-1}\alpha_{i}^{1}-\beta_{i}x_{i+1}x_{q}]\equiv 0$ $(mod p)$

Since rank $B=q-1,$ $(4.6)$ has a unique solution, if it exists. Now, since $\sum_{i=1}^{l}a_{j.i}=0$

for $j=1,2,$ $\cdots,$ $q$ , (this is a property of the Alexander matrix of a knot), one
(obvious) solution of (4.6) is $(\alpha_{i}-\beta_{i}, \cdots, \alpha_{i}-\beta_{i})$ . Therefore, $\alpha_{t}-\beta_{l}=\alpha_{i}-\beta_{i}=l$ ,

say, for all $t$ , and $w=(\alpha_{1}-l, \alpha_{2}-l, \cdots, \alpha_{q}-l)$ . Then the representations $\hat{\theta}_{1},\hat{\theta}_{2}$

corresponding to $v,$ $w$ are:

$\hat{\theta}_{1}(x_{k})=b^{-\alpha}kab^{\alpha}k$

$\hat{\theta}_{2}(x_{k})=b^{-(\alpha}k$ $ab^{\alpha_{k}-l}=b^{-l}\hat{\theta}_{1}(x_{k})b^{l}$

and hence $\hat{\theta}_{1}\equiv\hat{\theta}_{2}$ .
Therefore, if $\theta_{1}\tau_{*}\equiv\theta_{1}$ and $\theta_{2}\tau_{*}\equiv\theta_{2}$ , then $\theta_{1}\equiv\theta_{2}$ . To show that there exists $\theta$

such that $\tau\theta_{*}\equiv\theta$ , it only suffices to note [4] that $G(K)$ has $p^{s}-1/p-1(\equiv 1\not\equiv 0$

$(mod p))$ representations on $D_{p}$ for some integer $s$ .
This proves Theorem 4.2.

COROLLARY 4.3. Under the same assumption as in Theorem 4.2, if $G(K)$ has

more than one representations on $D_{p}$ , then there is a representation $\theta$ such that
$\theta,$ $\theta\tau_{*},$ $\theta\tau_{*}^{2},$

$\cdots,$
$\theta\tau_{*}^{p-1}$ are all inequivalent.

EXAMPLE 3. A knot $K=9_{47}$ (Fig. 5 below) has a period 3 and $K$ is a trivial

knot. $G(K)$ has 4 representations on $D_{3}\leqq S(J_{3})$ . The covering linkage invariants
of $K$ are {2/3}, {2/3}, {2/3}, $\{-2/3\}$ [ $4$ , p. 200]. The last covering linkage in-

variant corresponds to a representation $\theta$ such that $\theta\tau_{*}\equiv\theta$ .
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Fig. 5.

\S 5. Applications.

In order to show that a knot $K$ does not have period $p$ , first try to find a
representation of $G(K)$ onto $\Gamma\leqq s(J_{n})$ which has no automorphisms of order $p$ .
If there is only one representation (up to equivalent) and $\Gamma\triangleleft S(J_{n})$ , then $\theta\tau_{*}\equiv\theta$

yields $\theta\tau_{*}=\theta$ . Therefore $\theta$ induces a representation $\hat{\theta}:G(K)\rightarrow\Gamma\leqq s(J_{n})$ . Further,
if the covering linkage invariant is defined, we can apply Theorem 3.2 or Theo-
rem 4.2.

Besides these theorems, the following proposition will be used frequently.

PROPOSITION 5.1 [9, Theorem 1, p. 169].

Let $(K, \tau)$ be a periodic knot of order $p$ , a prime.
Let $\Delta(r)$ and $\hat{\Delta}(t)$ be the Alexander polynomials of $K$ and $ K=K/\tau$ . Then
(1) $\hat{\Delta}(t)$ divides $\Delta(t)$ and,
(2) $\Delta(t)\equiv\hat{\Delta}(t)^{p}(1+t+\cdots+f^{\lambda-1})^{p-1}(mod p)$ ,

where $\lambda$ is a positive integer such that $g$ . $c$ . $d$ . $(\lambda, p)=1$ .

PROPOSITION 5.2. A knot $10_{137}$ (Fig. 6 below) cannot have period 5.

PROOF. Since the Alexander polynomial of $K$ is $\Delta(t)=1-6t+11t^{2}-6t^{3}+t^{4}$

$=(1-3t+f^{2})^{2}$ , there is a representation $\theta:G(K)\rightarrow A_{4}\leqq S(J_{4})$ , where $A_{4}$ is the
alternating group on 4 letters. In fact, $\theta(a)=(123),$ $\theta(b)=(134),$ $\theta(c)=(243)$ , is one
of such representations, and $G(K)$ does not have other representations (up to
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Fig. 6.

equivalent). Suppose that $(K, \tau)$ is a periodic knot of order 5. Then $\theta\tau_{*}=\theta$ by

Corollary 2.3. Therefore, by Proposition 3.1, there exists $\hat{\theta}:G(K)\rightarrow A_{4}\leqq S(J_{4})$ .
Now it follows from Proposition 5.1 that $\hat{\Delta}(t)=1$ . But, then $c(K)$ cannot have a
representation onto $A_{4}$ [ $11$ , p. 609]. Therefore, $K$ cannot have period 5.

PROPOSITION 5.3. A knot $K=9_{35}$ cannot have period 7.

PROOF. Suppose that $(K, \tau)$ is a periodic knot of order 7. There is only one
representation $\theta:G(K)\rightarrow A_{4}\leqq S(J_{n})[11]$ and hence $\theta\tau_{*}\equiv\theta$ . Since $A_{4}$ has no auto-

morphism of order 7, $\theta\tau_{*}\equiv\theta$ yields $\theta\tau_{*}=\theta$ . Now, the covering linkage invariant

of $K$ associated with $\theta$ is defined and it is {3/4}. Since $H_{1}(M^{*} ; Z)=Z_{4}$ , it follows

from Theorem 3.2, that $3/4\equiv 0(mod 7)$ which obviously fails. Therefore, $9_{35}$ can-
not have period 7.

PROPOSITION 5.4. A knot $K=9_{46}$ connot have period 3.

PROOF. Suppose that $(K, \tau)$ is a periodic knot of order 3. Since $\Delta(r)=$

$2-5t+2t^{2},\hat{\Delta}(t)$ of $ K=K/\tau$ must be 1 by Proposition 5.1. Therefore, $G(K)+D_{3}$

[3]. However, $G(K)$ has 4 representations onto $D_{3}$ [$4$ , p. 200]. Thus, Theorem

4.2 implies that there are two representations $\theta_{1}$ and $\theta_{2}$ such that no two of
$\theta_{1}(\equiv\theta_{1}\tau_{*}),$ $\theta_{2},$ $\theta_{2}\tau_{*},$ $\theta_{2}\tau_{*}^{2}$ are equivalent. But the covering linkage invariants cor-
responding to $\theta_{2},$ $\theta_{2}\tau_{*},$ $\theta_{2}\tau_{*}^{2}$ must coincide by Proposition 4.1. This is not the

case, because they are $\{-2/3\},$ $\{-2/3\},$ $\{2/3\}$ , {--} [4, p. 200]. Therefore, $9_{46}$

cannot have period 3.
Finally, to prove that knots $8_{10},8_{20},9_{24}$ cannot have certain periods, we srudy

their possible orbit knots $K$.

PROPOSITION 5.5. Let $(K, \tau)$ be a periodic knot. If $K$ is a fibre knot, then

$ K=K/\tau$ is either a fibre knot or a trivial knot.
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PROOF. Let $G=G(K)=\pi_{1}(S^{3}-K)$ and $H=\pi_{1}(S^{3}-\hat{K})$ . Then $H=G/N$ for some
normal subgroup $N$ in $G$ . Since $K$ is a fibre knot, $G^{\prime}$ , the commutator subgroup
of $G$ , is finitely generated, and hence, $H^{\prime}=(G/N)^{\prime}=G^{\prime}N/N\cong G^{\prime}/N\cap G^{\prime}$ is also
finitely generated. Therefore, if $H^{\prime}\neq 1$ , then $K$ is a fibre knot. If $H^{\prime}=1$ , then
$K$ is unknotted, since $H$ is abelian.

PROPOSITION 5.6. Knots $8_{10},8_{20},9_{24}$ are fibre knots.

PROOF. $8_{10}$ and $9_{24}$ are alternating knots and their Alexander polynomials
are monic. Therefore, by Theorem 1.1 in [8], they are fibre knots. The fact
that $8_{20}$ is also a fibre knot is known, but it is also easy to show that the com-
mutator subgroup of the group of $8_{20}$ is free of rank 4.

PROPOSITION 5.7. Knots $8_{10},8_{20}$ cannot have any period.

PROOF. The Alexander polynomials of $8_{10}$ and $8_{20}$ are, respectively,

$\Delta(t)=1-3t+6t^{2}-7t^{3}+6t^{4}-3t^{6}+t^{6}=(1-t+t^{2})^{3}$

and
$\Delta(t)=1-2t+3t^{2}-2t^{3}+t^{4}=(1-t+t^{2})^{2}$ .

Therefore, it follows from Proposition 5.1 that $8_{10}$ can have only prime periods 2
or 3 with $\Delta(\hat{K})=1-t+t^{2}$ for both cases, and $8_{20}$ can have only prime period 2
with $\Delta(K)=1-t+t^{2}$ . Since $8_{10}$ and $8_{20}$ are fibre knots, rt must be a fibre knot
with $\Delta(\hat{K})=1-t+t^{2}$ . Such a knot rt must be the trefoil knot [2, p. 245].

Now for $K=8_{10}$ or $8_{20},$ $G(K)$ has a (unique) representation onto $D_{3}$ and $ c(K\rangle$

also has a (unique) representation. Then, by Corollary 3.3, we have $lk_{\overline{M}}(\tilde{K}_{1},\tilde{K}_{2})$

$=plk_{\hat{M}}(\hat{K}_{1}, K_{2})$ , for $p=2$ , or 3. But it is known [4, p. 200] that $lk_{\hat{M}}(K_{1}, K_{2})=\pm 2$

and $lk_{\overline{M}}(\tilde{K}_{1},\tilde{K}_{2})=0$ . This proves Proposition 5.7,

PROPOSITON 5.8. A knot $K=9_{24}$ cannot have any period.

PROOF. Since $\Delta(t)=(1-t+t^{2})^{2}(1-3t+t^{2})$ , the possible prime period is 2 and
$\Delta(\hat{K})=1-t+t^{2}$ or $1-3t+t^{2}$ by Proposition 5.1. Since $K$ is a fibre knot, so is
$\hat{K}$ and then, $K$ is either a trefoil knot or the figure eight knot [2, p. 245], noting
that the latter has property $(P)$ . Now, suppose that $K$ is a trefoil knot. Then
each of $G(K)$ and $c(K)$ has a (unique) representation onto $D_{3}$ , and Corollary 3.3
implies that

$lkff(\tilde{K}_{1},\tilde{K}_{2})=2lk_{\hat{M}}(K_{1}, K_{2})$ .
But,

$lk_{\overline{M}}(\tilde{K}_{1},\tilde{K}_{2})=0$ , while $lk_{\hat{M}}(K_{1}, K_{2})=\pm 2$ ,
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[4, p. 200], a contradiction.
Suppose that $K$ is the figure eight knot. Then each of $G(K)$ and $c(K)$ has

a (unique) representation onto $D_{5}$ . Then $lk_{\overline{l}}(\tilde{K}_{1},\tilde{K}_{2})=2lk_{\hat{H}}(K_{1}, K_{2})$ , where $\tilde{K}_{1},$ $K_{1}$

are knots with covering index 1. A simple computation shows, however, that
$lk_{\overline{H}}(\tilde{K}_{1},\tilde{K}_{2})=0$ and $lk_{\hat{H}}(K_{1}, K_{2})=\pm 2$ . This contradiction proves Proposition 5.8.

The following table lists all prime periods of knots with less than 10 cross-
ing points. The number in a circle indicates the possible period whose existence

is not confirmed.

$\overline{KN0T}$PERIODS KNOT $PE\overline{RI0DSKN}\overline{0T}$PERIODS KNOT PERIODS

$3_{1}$ 2,3 $8_{8}$ 2 $9_{8}$ 2 $9_{29}$

$4_{1}$ 2 $8_{9}$ 2 $9_{9}$ 2 $9_{30}$

$5_{1}$ 2,5 $8_{10}$ $-$ $9_{10}$ 2 $9_{31}$ 2
$5_{2}$ 2 $8_{11}$ 2 $9_{11}$ 2 $9_{32}$

$6_{1}$ 2 $8_{12}$ 2 $9_{12}$ 2 $9_{33}$

$6_{2}$ 2 $8_{13}$ 2 $9_{13}$ 2 $9_{34}$

63 2 $8_{14}$ 2 $9_{14}$ 2 $9_{35}$ \copyright , 3
$7_{1}$ 2,7 $8_{15}$ 2 $9_{15}$ 2 $9_{36}$

$7_{2}$ 2 $8_{16}$ $-$ $9_{16}$ 2 $9_{37}$ \copyright

$7_{3}$ 2 $8_{17}$ $-$ $9_{17}$ 2 $9_{38}$

$7_{4}$ 2 $8_{18}$ 2 $9_{18}$ 2 $9_{39}$

$7_{5}$ 2 $8_{19}$ 2,3 $9_{19}$ 2 $9_{40}$ 2,3

$7_{6}$ 2 $8_{20}$ $-$ $9_{20}$ 2 $9_{41}$ 3
$7_{7}$ 2 $8_{21}$ 2 $9_{21}$ 2 $9_{42}$

$8_{1}$ 2 $9_{1}$ 2,3 $9_{22}$ $-$ $9_{43}$

$8_{2}$ 2 $9_{2}$ 2 $9_{23}$ 2 $9_{44}$

83 2 $9_{3}$ 2 $9_{24}$ $-$ $9_{45}$

$8_{4}$ 2 $9_{4}$ 2 $9_{26}$ \copyright $9_{46}$ 2
$8_{5}$ 2 $9_{5}$ 2 $9_{26}$ 2 $9_{47}$ 3
$8_{6}$ 2 $9_{6}$ 2 $9_{27}$ 2 $9_{48}$ \copyright

$\underline{8_{7}29_{7}29_{28}29_{49}3}$

References

[1] Burde, G., \"Uber periodische Knoten, Archiv der Math 30 (1978), 487-492.
[2] Burde, G. and Zieschang, H., Neuwirthsche Knoten und Fl\"achenabbildungen, Abh.

Math. Sem. Hamburg, 31 (1967) 239-246.
[3] Fox, R. H., A quick trip through knot theory, Topology of Three Manifolds and

Related Topics (Prentice Hall, 1962) 120-167.
[4] Fox, R. H., Metacyclic invariants of knots and links, Can. J. Math. 22 (1970) 193-

201.
[5] Gordon, C. McA., Litherlands, R. A. and Murasugi, K., Signatures of covering links.

(to appear)



On symmetry of knots 347

[6] Hartley, R. I., and Murasugi, K., Covering linkage invariants, Can. J. Math. 29
(1977) 1312-1339.

[7] L\"udicke, U., Darstellungen der Verkettungsgruppe und zyklische Knoten, Dissert.

Univ. of Frankfurt, (1978).

[8] Murasugi, K., On a certain subgroup of the groups of an alternating link, Amer.

J. Math. 85 (1963) 544-550.
[9] Murasugi, K., On periodic Knots, Comm. Math. Helv. 4 (1971) 162-174.
[10] Perko, K., On dihedral covering spaces of knots, Inventiones Math. 34 (1976) 77-82.
[11] Riley, R., Homomorphisms of knot groups on finite groups, Math. of Computation

25 (1971) 603-619.
]12] Rolfsen, D., Knots and links, Publish or Perish, Inc. Math. Lecture Series, 7 (1976).

[13] Trotter, H. F., Periodic Automorphisms of groups and knots, Duke Math. J. 28
(1961) 553-557.

Department of Mathematics
University of Toronto
Toronto, Ontario $M5S$ 1A1
Canada


	ON SYMMETRY OF KNOTS
	\S 1. Introduction
	\S 2. Preliminaries
	\S 3. Covering linkage ...
	THEOREM 3.2. ...

	\S 4. Equivalent representations.
	THEOREM 4.2. ...

	\S 5. Applications.
	References


