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A NOTE ON SOME STRONG WHITNEY-REVERSIBLE
PROPERTIES

By
Akira Kovyama

1. All spaces considered in this paper are assumed to be metric. A continuum
means a compact connected space and a map means a continuous function. The
letter X will always denote a continuum. Let C(X) denote the hyperspace of
all non-empty subcontinua of X with the Hausdorff metric (see [7]). Whitney
[10] proved that for every continuum X there exists a map p:C(X)—[0, +o0)
satisfying

1) if A, BeC(X) and A% B, then p(A)s=p(B) and

(2) p({x})=0 for every x& X.

We shall call any map from C(X) to [0, +oo) satsfying the above conditions
(1) and (2) a Whitney map for C(X).

Nadler [7] introduced the concept of a strong Whitney-revesible property.
Let P be a topological property. We say that P is a strong Whitney-reversible
property provided whenever X is a continuum such that g '(¢) has the property
P for some Whitney map g for C(X) and every 0<t=p(X), then so does X.
Moreover he has shown that some topological properties are strong Whitney-
reversible properties. For example hereditary indecomposability and local con-
nectedness are such properties.

We refer readers to see [1] and [7] for the shape theory and the hyperspace
theory respectively if necesary.

2. We shall show that some topological properties are strong Whitney-
reversible properties.

THEOREM 1. Let p be a Whitney map for C(X). If there is a sequence
{ta} n=1 in (0, w(X)] such that t,—0 as n—+oo and p~'(t.) is an FAR for
each n=1, 2, 3, .-, then X is also an FAR.

Hence the property of being an FAR is a strong Whitney-reversible property.

PROOF. Let M be an arbitrary ANR and f: X—M be an arbitrary map.
Since M is an ANR and we can identify X with p~*(0)={{x}|x< X}, there are
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an open neighborhood U of X and a map f:U—M such that f|X=f. Then
there is an integer n=1 such that p ([0, t,J)CU. Since p7'(fn) is an FAR,
Flp¥(t.)=0, where 0 is a constant map. Hence there exists a map
g: [t p(X))—M such that gl (t)=Flp *(t»). Now we can define a map
h:C(X)—M as the following formula;

hl/.t"l([(), tn])—’:flp'l([o, t.]) and
Rlp(Cta, p(XDD=4¢.

Since C(X) is an FAR (see [3]), A=0. Hence f=h|X=0. Therefore X is an
FAR.

REMARK 1. By the example of Petrus the converse of Theorem 1 is

false.

REMARK 2. By the proof of Theorem 1 the property of being acyclic is a
strong Whitney-reversible property. But it is not Whitney property (see [5] by
the same example of Petrus [8].

THEOREM 2. Let p be a Whitney map for C(X). Let P be a class of compact

connected polyhedra. If there is a sequence {ta} n=1 in (0, u(X)] such that
t,—0 as n—+oo and p ' (t,) 1s an hereditarily indecomposable PB-like continuum

(see [6])) for each n=1, 2, 3, -+, then X is also an hereditarily indecomposable

P-like continuum.
Hence the property of being an hereditarily indecomposable P-like continuum

is a strong Whitney-reversible property.

RROOF. By [7] X is hereditarily indecomposable. Hence it is sufficient to
show that X is P-like. Without loss of generality we may assume that the

sequence {f,} n=1 is decreasing. Now for each n=1, 2, 3, --- we define a
function %,: X—p(t,) such that x& na(x)Epu(t,) for every x€X. Since X
is hereditarily indecomposable, for each n=1, 2,3, :,n is well-defined and
continuous (see [2]). Similarily for each n=1, 2, 3, --- we can define a map

DPui o (En)) = "N (tn) such that ACp.(A) for each Aep *(tns). Then
{~'(ta), Pa} is an inverse sequence of P-like continua and onto bonding maps.
Moreover we hold that pn7n+1=7. for each n=1, 2, 3, -~-. Then it is clear that
X is homeomorphic to the invese limit(&rp_ {e~(t5), pa}. Therefore X is P-like.

In particular the convese of the result of Krasinkiewicz (4.2. [47]) is hold.

COROLLARY 1. Let p be a Whitney map for C(X). If there exists a sequence
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{t,} n=1 in (0, w(X)] such that t,—0 as n—+0° and p (tn) is an hereditarily
indecomposable tree-like continum for each n=1, 2, 3, -, then X is also an heredi-

tarily indecomposable tree-like continuum.
The next lemma is usefull for our results.

LeMMA (Krasinkiewicz and Nadler [5]). Let p be a Whitney map for C(X).
If X contains an n-odd (n=3), there exists to,>0 such that p~'(t,) contains an
(n—1)-disk.

THEOREM 3. Let p be a Whitney map for C(X). If dim g }(t)S=n<+oo for
every t€(0, w(X)] and one of the following conditions is satisfied, then dim X=n:

(1) dim X< oo,

(2) p~Nt) is locally connected for every t=(0, u(X)],

(3) p~*(t) is hereditarily indecomposable for every t<(0, u(X)1.

PrOOF. First we shall show the case (1). The following inequality is clearly

hold.
dim C(X)=<1-+max{dim g~ (#)| t €[0, p(X)]} <H+oo.

Then by the result of Rogers [9] dim X=dim ¢~ t) for some t<(0, p(X)1.
Hence dim X=n.

Next we shall the case (2). Then X is locally connected by [(71. If
dim X=2, for every m=3 X contains an (m+1)-odd. But by Lemma this fact
contradicts the assumption. Hence dim X=1.

In the case (3) by the same way of the proof of Theorem 2 we can show

that dim X=n.

COROLLARY 2. Let p be a Whitney map for C(X). If p\(t) is locally connected
and dim p ' (t)Sn<+oco for every t<(0, w(X)], then X is a finite graph. In
particular if dim p~'(t)=1 for every te(0, p(X)1, X is an arc or a circle.

PROOF. By the proof of Theorem 3 X is one-dimensional and locally connected.
If X has infinitely many ramification points or a point with an infinite order, for
every m>1 X contains (m-+1)-odd. Then by Lemma dim g '(¢)Zn for some
t=(0, p(X)]. This contradicts our assumption. Hence X has at most finitely
many ramification points and the order of each point of X is finite. Therefore
X is a finite graph.

The following corollary is an easy consequence of Theorem 1 and Corollary 2.
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COROLLARY 3. Let p be a Whitney map for C(X). If p X t) is locally
connected, dim p~Y(t)=n<-+oo and an FAR for every t<(0, p(X)], X is a tree.
In particular if dim p~'(¢)=1 for every t€(0, ,(X)], X is an arc.

REMARK 3. Corollary 1 also can be proved by Theorem 1, Theorem 3 and
the fact that hereditary indecomposability is a strong Whitney-reversible property.

REMARK 4. The author does not know whether the conditions of Theorem
3 are essential. But it seems not to be essential.

Related to Theorem 1 the following problem is open.

PROBLEM. Is the property of being an FANR or a movable continuum a
strong Whitney-reversible property ?
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