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The aim of this paper is to describe some geometrical aspects of Riemannian
manifolds with a pole. A point $0$ of a Riemannian manifold is called a pole, if
the exponential map $\exp$ is a diffeomorphism at $0$ . Simply connected complete

Riemannian manifolds of nonpositive curvature (the Euclidean space, the hyper-

bolic space and a simply connected symmetric space of noncompact type, etc.)

and a paraboloid of revolution are typical examples of Riemannian manifolds with
a pole.

We give in 1 a sufficient condition on the existence of a pole in terms of

curvature. Hessian comparison theorem, conformal changes of a metric and a
generalization of Cartan’s fixed point theorem are discussed in 2 ([6], [1] [2]).

And we argue in 3 the order of a holomorphic function on a K\"ahler manifold
with a pole ([7]).

1. As an easy consequence, a Riemannian manifold with a pole is diffeo-
morphic to the Euclidean space. On the contrary, any complete Riemannian
manifold diffeomorphic to the Euclidean space does not necessarily have a pole.

The following proposition gives a sufficient condition on the existence of a
pole.

PROPOSITION 1. Let $M$ be a connected complete Riemannian manifold and $N$

be a complete surface with a pole $p$ . Assume that $M$ has a point $0$ such that the
sectional curvature $K(\Pi_{\gamma}t))\leqq Gaussian$ curvature of $N$ at a point with distance $t$

from $p$ for all $t>0$ , every normal geodesic $\gamma$ issuing from $0$ and every plane
$\Pi(t)$ containing $\dot{\gamma}(t)$ . Then $\exp_{0}$ is of maximal rank. If, moreover, $M$ is simply
connected, then $0$ is a pole.

PROOF. It is sufficient to show that $0$ has no conjugate point on each geo-
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desic issuing from $0$ ([4]). Let $\gamma$ be a normal geodesic from $0$ and $J$ a Jacobi
field along $\gamma$ such that $J(O)=0$ and $\nabla_{l}J\neq 0$ at $t=0$ . Suppose that $J(t_{0})=0$ for
$t_{0}>0$ . Without loss of generality we may assume that $J(t)\neq 0$ for $0<t<t_{0}$ and
that $J$ is perpendicular to $\gamma$ . Since $J$ satisfies the Jacobi’s equation, $\langle\nabla_{l}^{2}J, J\rangle=$

$-\langle R(J,\dot{\gamma})\dot{\gamma}, J\rangle=-K(J\wedge\dot{\gamma})\Vert J\Vert^{2}$ . On the other hand, by Schwarz’ inequality
$\langle\nabla_{t}^{2}J, J\rangle=1/2d^{2}/dt^{2}(\Vert J\Vert^{2})-\Vert\nabla_{t}J\Vert^{2}\leqq 1/2d^{2}/dt^{2}(\Vert J\Vert^{2})-(d/dt\Vert J\Vert)^{2}=\Vert J\Vert(d^{2}/dt^{2}\Vert J\Vert)$

for $0<t<t_{0}$ . Then we have

$\frac{d^{2}}{dt^{2}}\Vert J\Vert+K(J(t)\wedge\dot{\gamma}(t))\Vert J\Vert\geqq 0$ . (1)

Note that $|d/dt\Vert J\Vert|$ is bounded for $t\rightarrow+O$ , since $|d/dt\Vert J\Vert|\leqq\Vert\nabla_{l}J\Vert$ for $0<t<t_{0}$ .
Let $\gamma^{\prime}$ be a normal geodesic issuing from $p$ in $N$. Since $p$ is a pole, each

nontrivial Jacobi field $J^{\prime}$ along $\gamma^{\prime}$ such that $J^{\prime}(O)=0$ and $J^{\prime}\perp\gamma^{\prime}$ has no zero point

for $t>0$ . Since $N$ is two dimensional, $J^{\prime}(t)=h(t)E(t)$ where $E$ is a parallel unit
field along $\gamma^{\prime}$ and $h(t)$ is a smooth function such that $h(O)=0$ and $h(t)>0$ for
$t>0$ . By Jacobi’s equation, we have

$\frac{d^{2}}{dt^{2}}h(t)+K^{\prime}(J^{\prime}(t)\wedge\dot{\gamma}^{\prime}(t))h(t)=0$ . (2)

On the other hand, by the curvature condition together with the lemma be-
low, it follows that $h$ has a zero for $0<t<t_{0}$ . Thus we have a contradiction.

LEMMA (Sturm’s Comparison Theorem [3]). Let $u_{i}$ be $C^{2}$-functions defined
on $[0, a],$ $i=1,2$ , which satisfy

$\frac{d^{2}}{dt^{2}}u_{1}(t)+A_{1}(t)u_{1}(t)\geqq 0$

$\frac{d^{2}}{dt^{2}}u_{2}(t)+A_{2}(t)u_{2}(t)=0$ , (3)

$u_{1}(0)=u_{2}(0)=0$ , $\dot{u}_{1}(0)>0$ and $\dot{u}_{2}(0)>0$ ,

where $A_{i}$ are $C^{0}$-functions on $[0, a]$ . Assume that $A_{1}(t)\leqq A_{2}(t)$ for $0\leqq t\leqq a$ and

$u_{2}$ never vanishes on $(0, a$ ]. Then $u_{1}$ also never vanishes on $(0, a$ ].

PROOF OF LEMMA. Note that $u_{2}(t)>0$ for $t>0$ from the initial condition.
Suppose that $u_{1}(t_{0})=0$ for some $t_{0}\in(0, a$ ]. Without loss of generality we may

assume that $u_{1}(t)>0$ for $0<t<t_{0}$ . From (3), we have, for $0<t<t_{0}$ ,

$0<\int_{0}^{l}\{u_{2}(\ddot{u}_{1}+A_{1}u_{1})-u_{1}(\ddot{u}_{2}+A_{2}u_{2})\}dt$
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$=(u_{2}\dot{u}_{1}-u_{1}\dot{u}_{2})|_{0}^{t}-\int_{0}^{t}(A_{2}-A_{1})u_{1}u_{2}dt$

$<u_{2}(t)\dot{u}_{1}(t)-u_{1}(t)\dot{u}_{2}(t)$ ,

hence $\dot{u}_{2}(t)/u_{2}(t)<\dot{u}_{1}(t)/u_{1}(t)$ . Then we have, for sufficiently small positive number

$c$ , Iog $\{u_{2}(t)/u_{2}(c)\}=\int_{c}^{l}\{\dot{u}_{2}(t)/u_{2}(t)\}dt\leqq\int_{c}^{t}\{\dot{u}_{1}(t)/u_{1}(t)\}dt=\log\{u_{1}(t)/u_{1}(c)\}$ for $c<t<t_{0}$ .

Since $u_{i}(c)>0,$ $i=1,2,$ $u_{2}(t_{0})=\lim_{l\rightarrow t_{0}-0}u_{2}(t)<\lim_{t\rightarrow t_{0}- 0}\{u_{2}(c)/u_{1}(c)\}u_{1}(t)=0$ . This leads a
contradiction.

2. Let $M$ be a Riemannian manifold with a pole $0$ . The distance function
$\rho(\cdot)=d(\cdot, 0)$ has singularity only at $0$ . By comparing the radial curvatures, Siu
and Yau [6] and also Greene and Wu [1] showed the comparison theorem on
Hessian of the distance functions. By radial curvature $K(t)$ for a normal geodesic
$\gamma:[0, \infty)\rightarrow M,$ $\gamma(0)=0$ , we mean the sectional curvature of a plane which contains
the tangent vector $\dot{\gamma}$ at $\gamma(t)$ . Hessian of a smooth function $f$ is defined by
$Hess(f)(X, Y)=X(\tilde{Y}f)-(\nabla_{X}\tilde{Y})f$, where $\tilde{Y}$ is a local extension of $Y$.

By using Schwarz’ inequality again, we have a description of the comparison
theorem in a free manner on any dimensional condition.

PROPOSITION 2 (Hessian Comparison Theorem). Let $(M, 0)$ and $(N, p)$ be Rie-
mannian manifolds with poles $0$ and $p$ respectively. Assume that for all $t>0$ , the
radial curvatures satisfy $K_{M}(t)\leqq K_{N}(t)$ for each normal geodesics $\gamma$ and $\sigma$ issuing

from the poles. Then

$Hess_{M}(\rho_{M})(X, X)\geqq Hess_{N}(\rho_{N})(Y, Y)$ ,

where $X$ and $Y$ are unit vectors at $\gamma(t)$ and $\sigma(t)$ such that $X\perp\gamma(t)$ and $Y\perp\sigma(t)$ ,

$t>0$ , respectively.

Note that if $f$ is an increasing smooth function on $(0, \infty)$ , then

$Hess_{M}(f\circ\rho_{M})(X, X)\geqq Hess_{N}(f\circ\rho_{N})(Y, Y)$ ,

since Hess $(f\circ\rho)=f^{\prime}\cdot Hess(\rho)+f^{\prime\prime}d\rho\otimes d\rho$ .

PROOF. We shall prove this by following [6]. Since $0$ is a pole, there is a
global vector field $\tilde{X}$ on $M$ such that (1) $\tilde{X}(0)=0,$ (2) $\tilde{X}(\gamma(t))=X,$ (3) $[\tilde{X}, \partial/\partial\rho]=0$

and (4) $\tilde{X}$ is a Jacobi field along $\gamma|_{[0.t]}$ perpendicular to $\gamma$ . Then we have

$Hess_{M}(\rho_{M})(X, X)=\int_{0}^{t}\{\Vert\nabla_{\partial/\partial\rho}\tilde{X}(s)\Vert^{2}-K_{M}(\tilde{X}(s)\wedge\dot{\gamma}(s))\Vert\tilde{X}(s)\Vert^{2}\}ds$

$=I_{0}^{t}(\tilde{X})$ .
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There is also a global field $\tilde{Y}$ satisfying the similar condition and $Hess_{N}(\rho_{N})(Y, Y)$

$=I_{0}^{t}(\tilde{Y})$ . Let $Z(s)$ be a vector field along $\sigma$ defined by $Z(s)=\Vert X(s)\Vert E(s)$ , where
$E$ is a unit parallel field along $\sigma$ such that $E(t)=Y$. Then $\Vert Z\Vert=\Vert X\Vert,$ $Z(O)=0$

and $Z(t)=Y$. By Schwarz’ inequality, we have $\Vert\nabla_{\partial/\partial\rho N}Z\Vert\leqq\Vert\nabla_{\partial/\partial\rho\Pi}X\Vert$ . From the
curvature condition, $K_{M}(X(s)\wedge\dot{\gamma}(s))\Vert X(s)\Vert^{2}\leqq K_{N}(Z(s)\wedge\dot{\sigma}(s))\Vert Z(s)\Vert^{2}$ , hence

$Hess_{M}(\rho_{M})(X, X)=I_{0}^{t}(\tilde{X})\geqq I_{0}^{t}(\tilde{Z})$ .
From the property of the quadratic form $I_{0}^{l}$ , we have $I_{0}^{l}(\tilde{Z})\geqq I_{0}^{t}(\tilde{Y})=Hess_{N}(\rho_{N})(Y, Y)$ .

A $C^{2}$-function $f$ is called convex (strictly convex) if and only if Hess $(f)\geqq 0$

$(>0)$ . Note that $f$ is convex (strictly convex) if and only if $(f\circ\gamma)^{\prime\prime}\geqq 0((f\circ\gamma)^{\prime\prime}>0)$

for every geodesic $\gamma$ . The Hessian comparison theorem gives an estimation on
the (strictly) convexity of a radial function. A function $f$ on $M$ is called radial
if and only if $f$ is a composition of $\rho_{M}$ and a function defined on $R^{+}$ .

COROLLARY 3. Let $(M, 0)$ and $(N, p)$ be as in Proposition 2. If the curvature
assumption in the proposition is satisfied and there is an increasing function
$f:R^{+}\rightarrow R,$ $f^{\prime}>0$ such that $f\circ\rho_{N}$ is (strictly) convex, then $f\circ\rho_{M}$ is also (strictly)

convex.

The Hessian of a radial function of a manifold with a pole is not necessarily
positive definte. The above corollary gives an estimation of the convexity. By
construction of a surface of revolution with Gaussian curvature $K(s)$ , the follow-
ing theorem is obtained [1]: Suppose $\int_{0}^{\infty}s\overline{K}(s)ds<1$ , where $\overline{K}(s)=\max\{0$ , radial

curvature at $x$ with $\rho(x)=s$ }. Then $(\mu/t)(g-d\rho\otimes d\rho)(X, X)\leqq Hess(\rho)(X, X)$ at
$x$ with $\rho(x)=t,$ $t>0$ for a positive constant $\mu$ such that $1-\int_{0}^{\infty}s\overline{K}(s)ds\leqq\mu\leqq 1$ .

Since Hess $(\rho^{2})=2\rho\cdot Hess(\rho)+2d\rho\otimes d\rho$ , we have a crucial estimation for the
strictly convexity of $\rho^{2}$ .

Consider a paraboloid of revolution, $2z=x^{2}+y^{2}$ . Then the origin is a pole.
The Gaussian curvature $K(p)$ at $p=(x, y, z)$ and $\rho(p)$ are written as $K(p)=$

$1/\{(1+|p|^{2})^{2}\}$ and $\rho(p)=1/2\{|p|\sqrt{1+|p|^{2}}+\log(|p|+\sqrt{1+|p|^{2}}),$ $|p|^{2}=x^{2}+y^{2}$ .
$\rho^{2}(p)$ is not convex, on the other hand Hess $(|p|^{2})=2/(1+|p|^{2})\cdot(dx^{2}+dy^{2})$ , that
is, $|p|^{2}$ is strictly convex, Note that $K(p)$ has the same order as $1/\{\rho(p)^{2}\}$ at

infinity $(\rho(p)\rightarrow\infty)$ . Hence $\int_{0}^{\infty}s\cdot\overline{K}(s)ds$ diverges.

We observed that $\rho^{2}$ is not always strictiy convex. However, we can find a
new metric $g^{*}$ from a conformal change of the given $g$ such that $\rho^{*2}$ is strictly
convex.
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PROPOSITION 4. Let $(M, g, 0)$ be a Riemannian manifold with a pole. Assume
that the radial curvature $K$ is bounded above by a suitable smooth function of $\rho$ .
Then there is a continuous function $f:R\rightarrow R$ such that $f\circ\rho\in C^{\infty}(M)$ and (1)
$(M, g^{*}, 0)$ is also a Riemannian manifold with a pole $0$ , where $g^{*}=e^{2f^{o}\rho}g,$ (2) the
radial curvature of $g^{*}$ is nonpositive and hence (3) the square of the distance
function $\rho^{*2}$ is strictly convex with respect to $g^{*}$ .

Before proving this, we show following two statements by considering geo-
metrical aspects of a metric $g^{*}$ defined by $g^{*}=e^{2f^{o}\rho}g$ .

PROPOSITION 5. Let $\gamma$ is a normal g-geodesic issuing from $0$ . Then a curve:
$s\mapsto\gamma(t(s))$ is a normal $g^{*}$-geodesic, where $t(s)$ is the inverse function $ofs(t)=$

$\int_{0}^{t}e^{f(u)}du$ .

PROOF. We apply the formulae of the covariant derivative with respect to a
conformal change $g^{*}=e^{2f\circ\rho}g$ ([5]) to the curve $c(s)=\gamma(t(s))$ :

$\nabla_{X}^{*}Y=\nabla_{X}Y+d\sigma(X)Y+d\sigma(Y)X-g(X, Y)$ grad $\sigma$ ,
(4)

$\frac{\nabla^{*}}{ds}Y=\frac{\nabla}{ds}Y+\frac{d}{ds}\sigma(c(s))Y+(Y\sigma)\dot{c}(s)-g(\dot{c}(s), Y)$ grad $\sigma$

$(\sigma=f\circ\rho)$ .
Since $g^{*}(\dot{c}(s),\dot{c}(s))=1$ , we have $(\nabla^{*}/ds)\dot{c}\perp\dot{c}$ by covariantly differentiating both
sides. Let $Y_{i},$ $1\leqq i\leqq n$ , be orthonormal g-parallel vector fields such that $Y_{n}=\dot{\gamma}$ .
We shall show $(\nabla^{*}/ds)\dot{c}(s)\perp Y_{i}(t(s)),$ $1\leqq i\leqq n-1$ . By covariantly differentiating
$g^{*}(\dot{c}(s), Y_{i}(t(s))=0$, we have

$0=g^{*}(\frac{\nabla^{*}}{ds}\dot{c}(s),$ $Y_{i}(t(s)))+g^{*}(\dot{c}(s),$ $\frac{\nabla^{*}}{ds}Y_{i}(t(s)))$ .

From (4) together with the relations $\dot{c}(s)=(dt/ds)\dot{\gamma}$ and grad $\rho(s(t))=\dot{\gamma}(t)$ ,

$\frac{\nabla^{*}}{ds}Y_{i}(t(s))=\frac{d}{ds}(f\circ\rho)(c(s))Y_{i}(s)$ .

Hence we derive that $g^{*}((\nabla^{*}/ds)\dot{c}(s), Y_{i}(s))=-g^{*}(\dot{c}(s), (\nabla^{*}/ds)Y_{i}(s))=0$ . Thus,
we have $(\nabla^{*}/ds)\dot{c}(s)\perp Y_{i}(s),$ $1\leqq i\leqq n$ , that is, $(\nabla^{*}/ds)\dot{c}(s)=0$ .

NOTE. If $\lim_{t\rightarrow\infty}\int_{0}^{t}e^{f(u)}du=+\infty,$ $c(s)$ is defined on the whole $R$ and therefore

$exp:T_{0}M\rightarrow M$ is a diffeomorphism with respect to $g^{*}$ , that is, $(M, g^{*})$ has a pole
0. The distance function $\rho^{*}(\cdot)=d^{*}(\cdot, 0)$ with respect to $g^{*}$ is given by
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$\rho^{*}(p)=\int_{0}^{\rho^{(}p)}e^{f(u)}du$ , $p\in M$ .

Now we shall consider the radial curvature of $g^{*}$ . Let $R$ and $R^{*}$ be the
curvature tensors of $g$ and $g^{*}$ respectively. Then we have ([5])

$g^{*}(R^{*}(X, Y)Y,$ $X$ ) $=e^{2f^{o}\rho}g(R(X, Y)Y,$ $X$ ) $+2S_{f\circ\rho}(X, Y)g^{*}(X, Y)$

(5)
$-S_{f\circ\rho}(Y, Y)g^{*}(X, X)-S_{f\circ\rho}(X, X)g^{*}(Y, Y)$

where

$ S_{\sigma}=Hess(\sigma)-d\sigma\otimes d\sigma+\frac{1}{2}\Vert$grad $\sigma\Vert^{2}g$ , $\sigma\in C^{\infty}(M)$ .

The radial curvature $K^{*}(Y\wedge grad\rho)$ at $p(Y\perp grad\rho)$ with respect to $g^{*}$ is
written as

$K^{*}(Y\wedge grad\rho)=e^{-2f^{o}\rho}\{K(Y\wedge grad\rho)-f^{\prime\prime}(\rho(p))$

(6)
$-f^{\prime}(\rho(p))$ Hess $(\rho)(Y, Y)/\Vert Y\Vert^{2}$}.

The above formula is obtained as follows. Since $ Y\perp grad\rho$ ,

$K^{*}(Y\wedge grad\rho)=\frac{1}{e^{4f\circ\rho}\Vert Y\Vert^{2}\cdot\Vert}$

grad $\rho\Vert^{2}g^{*}$
( $R^{*}(Y$, grad $\rho$ ) grad $\rho,$

$Y$ )

$=e^{-2f^{o}\rho}\{K(Y\wedge grad\rho)-S_{f\circ\rho}$( $ grad\rho$ , grad $\rho$ ) $/\Vert grad\rho\Vert^{2}$

$-S_{f\circ\rho}(Y, Y)/\Vert Y\Vert^{2}\}$ .

On the other hand, $S_{f_{0}\rho}=f^{\prime}Hess(\rho)+\{f^{\prime\prime}-f^{\prime 2}\}d\rho\otimes d\rho+1/2(f^{\prime 2})g$ , hence we
have (6).

PROPOSITION 6. There is a function $f\circ\rho\in C^{\infty}(M)$ such that the radial cur-
vrture is nonpositive eveywhere with respect to $g^{*}=e^{2f\circ}\rho g$ .

PROOF. By the assumption of Proposition 4, we can choose smooth functions
$\overline{K}(t)$ from $R^{+}$ to $R$ which satisfies

$\overline{K}(t)\geqq\max$ { $0$ , radial curvature at $x,$ $\rho(x)=t$ }.

Set $\overline{H}(t)=-\int_{0}^{t}\overline{K}(t)dt$ , then $\overline{H}$ is also smooth and satisfies that

$\overline{H}(t)\leqq\min$ {Hess $(\rho)(Y,$ $Y)$ at $x,$ $\rho(x)=t,$ $Y\in M_{x},$ $\Vert Y\Vert=1$ }.

The nonnegative function $\overline{u}(t)=\exp(-\int_{0}^{t}\overline{H}dt)\cdot\int_{0}^{t}\overline{K}(t)\exp(\int\overline{H}dt)dt$ is a solution

of $d\overline{u}/dt+\overline{H}\overline{u}-\overline{K}=0$ . Then we have for $\overline{u}$ ,
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$\frac{d\overline{u}}{dt}(t)+\overline{u}(t)$ Hess $(\rho)(Y, Y)/||Y\Vert^{2}-K(Y\wedge grad\rho)$

$=\overline{u}(t)$ {Hess $(\rho)(Y,$ $Y)/\Vert Y\Vert^{2}-\overline{H}(t)$ } $+\{\overline{K}(t)-K(Y\wedge grad\rho)\}\leqq 0$ ,

for each $Y\in M_{x},$ $\rho(x)=t$ . Therefore, if we set $f(t)=\int_{0}^{t}\overline{u}(t)dt$ , then $(M, g^{*}),$ $g^{*}=$

$e^{2f^{o}\rho}g$ has nonpositive radial curvature from (6).

From these propositions, we have a required function $ f\circ\rho$ in Proposition 4,

since $\lim_{t\rightarrow\infty}\int_{0}^{t}e^{f(a)}da=\infty$ by $f^{\prime}=\overline{u}\geqq 0$ . Thus Proposition 4 is proved.

At the last part of 2, we find a necessary condition for the existence of a
strictly convex radial function, by a group-theoretical version. The following

proposition is a generalization of E. Cartan’s fixed point theorem [2].

PROPOSITION 7 (Fixed Point Theorem). Let $(M, 0)$ be a Riemannian manifold
with a pole $0$ . Let $K$ be a compact Lie group which acts on $M$ as isometries. If
there is a strictly convex increasing radial function $ f\circ\rho$ , then $K$ has a common
fixed point.

REMARK. If $M$ is of negative curvature, then $\rho^{2}$ is strictly convex by com-
paring $M$ with a Euclidean space. Thus we have the well known E. Cartan’s
fixed point theorem [2]: A compact Lie group which acts as isometries on a
simply connected complete Riemannian manifold of negative curvature has a com-
mon fixed point.

PROOF. Let $dk$ denote the Haar measure on $K$, normalized by $\int_{K}dk=1$ .
Consider the real function $F$ on $M$ given by $F(x)=\int_{K}f\circ\rho(k\cdot x)dk$ . Then $F$ is a
nonnegative continuous function. Since $ f\circ\rho$ is exhaustion and the orbit of $0$ is
compact, there is a ball $B_{r}(0)$ such that $F(x)>F(0)$ for all $x\in B_{r}(0)$ . The closure
of $B_{r}(0)$ contains a minimum point $x_{O}$ for $F$. The point $x_{o}$ is also a minimum
for $F$ on $M$. Since $F(k\cdot x_{o})=F(x_{o})$ for $k\in K$, in order to prove the existence of
the fixed point, it is sufficient to show that $F(x)>F(x_{o})$ if $x\neq x_{0}$ . But this is

derived by the strictly convexity of $F$, since $F(\gamma(t))^{\prime\prime}=\int_{K}\{f\circ\rho(k\cdot\gamma(t))\}^{\prime\prime}dk$ for
every geodesic $\gamma$ .

3. Let $M$ be a complete open K\"ahler manifold. As in function theory, the
order $\gamma(f)$ of a holomorphic function $f$ is defined by

$\gamma(f)=\lim_{r\rightarrow+}\sup_{\infty}\log M(f, r)/\log r$ ,
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where $ M(f, r)=\sup$ { $|f(x)|$ ; $x\in M,$ $d(0,$ $x)=r,$ $0$ is a fixed point} [7]. The defini-
tion of $\gamma(f)$ does not depend on the choice of $0$ . If $\gamma(f)$ is positive finite, then
for each $\epsilon>0$, there are $C>0$ and $\nu>0$ such that $\gamma(f)\leqq\nu<\gamma(f)+\epsilon$ and $|f(x)|\leqq$

$C(1+\rho(x))^{\nu}$ for all $x\in M(\rho(x)=d(x, 0))$ .
We discuss some aspects of $\gamma(f)$ .
Let $(M, 0)$ be a K\"ahler manifold with a pole $0$ and $(N, p)$ a model space,

$\dim M=\dim N=n$ , which satisfy the radial curvature $K_{M}(t)\leqq the$ radial curvature
$K_{N(t)}$ for all $t>0$ . By a model we mean a Riemannian manifold $(N, p)$ with a
pole $p$ such that every linear isometry $\phi:N_{p}\rightarrow N_{p}$ is realized as the differential
of an isometry $\Phi:N\rightarrow N$ ([1]). Let $V_{M}(r)$ and $V_{N}(r)$ be the volumes of the open
balls $B_{M}(r)$ and $B_{N}(r)$ of radius $r$ around $0$ and $p$ in $M$ and $N$ respectively. Note
that by the sub-mean value property, $V_{M}(r)\geqq V_{N}(r)$ .

Now we show the following

PROPOSITION 8. Assume that $V_{M}(r)\sim r^{\alpha},$ $V_{N}(r)\sim r^{\beta},$ $\beta\geqq 1(r\rightarrow\infty)$ . If a holo-
morphic function $f$ has $\gamma(f)<1+(\beta-\alpha)/2$ , then $df=0$ at $0$ .

REMARK. If $(M, 0)$ is of nonpositive curvature and $\alpha<2n+2$ in the above
proposition, then a bounded holomorphic function is constant, since every point
gives a pole. Note that $V_{N}(r)\sim r^{2n}$ for $(N, p)=(c^{n}, 0)$ with a flat metric.

Before the proof of the proposition, we have some lemmas.

LEMMA (Sub-mean-value Property). Let $\phi$ be a continuous nonnegative sub-
harmonic function on $M$, then

$\int_{B_{M}(r)}\phi\geqq V_{N}(r)\phi(0)$ for all $r>0$ .

For the proof, see Theorem $B,$ $[1]$ .

LEMMA (Integral Inequality of the Laplacian). Assume that $(d/dr)V_{N}(r)$ is an
increasing function. Let $f$ be a nonnegative subharmonic function. Then for all
$\lambda,$ $0<\lambda<1$ , there is a constant $\gamma=\gamma_{\lambda}>0$ such that

$\int_{B_{M}(\lambda r)}\Delta f\leqq\frac{\gamma}{\gamma^{2}}\int_{B_{M}(r)}f$ . (7)

PROOF. Since $f\geqq 0$ , we have, from $(3,6)$ in [1]

$\int_{B_{M}(r)}[\Delta f(\int_{t=\rho}^{t=r}\frac{dt}{v_{N}(t)})]dv\leqq\frac{1}{v_{N}(r)}\int_{s_{M^{(r)}}}fdo(r)$ ,

which implies
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$\int_{0}^{r}\int_{t}^{r}(\int_{s_{M(t)}}\Delta fd\omega(t))\frac{ds}{v_{N}(s)}dt\leqq\frac{1}{v_{N}(r)}\int_{S_{M}(r)}fd\omega(r)$ ,

where $v_{N}(r)=v(r)$ denotes the volume of the r-sphere $S_{N}(r)$ around $p$ in $N$.
By using Fubini’s theorem with respect to $s$ and $t$ on the left hand side, we

have

$\frac{1}{v(r)}\int_{S(r)}fd\omega(r)\geqq\int_{0}^{r}[\int_{0}^{s}(\int_{S(t)}\Delta fd\omega(t))dt]\frac{ds}{v(s)}$

$=\int_{0}^{r}(\frac{1}{v(s)}\int_{B(S)}\Delta f)ds$ .

Multiply by $v(r)$ and integrate relative to $r$ . Then

$\int_{B(u)}f\leqq\int_{0}^{u}v(r)[\int_{0}^{r}(\frac{1}{v(s)}\int_{B(s)}\Delta f)ds]dr$ .

Slnce $\Delta f\geqq 0$,

$\int_{0}^{r}\frac{1}{v(s)}(\int_{B(s)}\Delta f)ds\geqq\int_{\sqrt{}\overline{\lambda}r}^{r}\frac{1}{v(s)}(\int_{B(\sqrt{}\overline{\lambda}r)}\Delta f)ds=(\int_{B(\sqrt{}\overline{\lambda}r)}\Delta f)$ . $\int_{\sqrt{}\overline{\lambda}r}^{r}\frac{ds}{v(s)}$

and that

$\int_{0}^{u}v(r)(\int_{0}^{r}\frac{1}{v(s)}\int_{B(S)}\Delta fds))dr\geqq\int_{0}^{u}v(r)(\int_{B(\sqrt{}\lambda r})\Delta f)(\int_{\sqrt{}\overline{\lambda}r}^{r}\frac{ds}{v(s)})dr$

$\geqq\int_{\sqrt{}\overline{\lambda}u}^{u}(v(r)\cdot\int_{\sqrt{}\overline{\lambda}r}^{r}\frac{ds}{v(s)})dr\cdot(\int_{B(\lambda u)}\Delta f)\geqq(1-\sqrt{\lambda})(1-\lambda)\frac{u^{2}}{2}\int_{B(\lambda u)}\Delta f$ ,

where the last inequality follows from $v_{N}(r)$ being increasing. Hence we obtain
the inequality (7).

LEMMA (Cauchy’s inequality for derivatives of holomorphic functions). For
each holomorphic function $f$ on $M$,

$\Vert df\Vert^{2}(0)\leqq\frac{\gamma}{V_{N}(r/2)r^{2}}\int_{B_{M}(r)}|f|^{2}$ .

PROOF. Since $\Delta|f|^{2}=\Vert df\Vert^{2}$ and $\Delta\Vert df\Vert^{2}=\Vert\nabla df\Vert^{2}$ , from above lemmas,

$\Vert df\Vert^{2}(0)\leqq\frac{1}{V_{N}(r/2)}\int_{B_{M}(r/2)}\Vert df\Vert$

$=\frac{\gamma}{V_{N}(r/2)r^{2}}\int_{B(r)}|f|^{2}$ , where $\gamma=\gamma_{1/2}$ .

PROOF OF PROPOSITION 8. Since $\gamma(f)<1+1/2(\beta-\alpha)$ , there is $\nu>0$ such that
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$\gamma(f)<\nu<1+(\beta-\alpha)/2$ , hence we have $|f(x)|<C(1+\rho(x))^{\nu}$ for some $C>0$ . Then,
from the above,

$\Vert df\Vert^{2}(0)\leqq\frac{\gamma}{V_{N}(r/2)r^{2}}\int_{B(r)}|f|^{2}\leqq\frac{\gamma C^{2}}{V_{N}(r/2)r^{2}}(1+r)^{2\nu}V_{M}(r)\sim r^{(2\nu- 2+\alpha-\beta)}$ .
Letting $ r\rightarrow\infty$ , we have $df=0$ at $0$ .

As an application of the proposition, we have the following

COROLLARY 9. Let $F=(f^{1}, \cdots, f^{N});M\rightarrow C^{N}$ be a holomorphic mapping. If
$\sum_{j=1}^{n}\gamma(f^{i_{j}})<n-n(\alpha-\beta)/2$ for each $1\leqq i_{1}<\cdots<i_{n}\leqq N$, then $F$ is not of maximal

rank at $0$ .
Moreover, if $M$ is a Stein manifold and $F;M\rightarrow C^{N}$ is a proper holomorphic

imbedding, then $\sum_{j=1}^{n}\gamma(f^{i_{j}})\geqq n-n(\alpha-\beta)/2$ for some $1\leqq i_{1}<\cdots<i_{n}\leqq N$.

PROOF. Consider the holomorphic n-forms $df^{t_{1}}\wedge\cdots\wedge df^{i_{n}},$ $1\leqq i_{1}<\cdots<i_{n}\leqq N$.
From the proposition, we have an estimate of the norm of $df^{i_{1}}\wedge\cdots\wedge df^{\ell_{n}}$ ;

$\Vert df^{i_{1\wedge}}\cdots\wedge df^{i_{n}}\Vert^{2}(0)\leqq\prod_{j=1}^{n}\Vert df^{t_{j}}\Vert^{2}(0)\leqq\prod_{j=1}^{n}\frac{\gamma}{V_{N}(r/2)r^{2}}\int_{B(r)}|f^{i_{j}}|^{2}$

$=\frac{\gamma^{n}}{V_{N}(r/2)^{n}\cdot r^{2n}}\prod_{j}\int_{B(r)}|f^{i}!|^{2}$

$\leqq\gamma^{n}\Pi C_{j}^{2}\cdot\frac{(1+r)^{2\Sigma\nu}J\cdot V_{M}(r)^{n}}{V_{N}(r/2)^{n}r^{zn}}$ ,

where $\nu_{j}>0,$ $j=1,$ $\cdots,$ $n$ , satisfy $\gamma(f^{i_{j}})<\nu_{j}<\gamma(f^{i_{j}})+\epsilon_{j}$ and $\sum_{j}\nu_{j}<n-n(\alpha-\beta)/2$ .
By letting $ r\rightarrow\infty$ , we have $df^{i_{1}}\wedge\cdots\wedge df^{i_{n}}=0$ at $0$ .

The last statement is easily derived from the above argument, since the $F$ is
of maximal rank everywhere.
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