SOME GEOMETRICAL ASPECTS OF RIEMANNIAN MANIFOLDS WITH A POLE

(dedicated to Professor Isamu Mogi for his 60'th birthday)

By

Mitsuhiro Itoh

The aim of this paper is to describe some geometrical aspects of Riemannian manifolds with a pole. A point *o* of a Riemannian manifold is called a *pole*, if the exponential map exp is a diffeomorphism at *o*. Simply connected complete Riemannian manifolds of nonpositive curvature (the Euclidean space, the hyperbolic space and a simply connected symmetric space of noncompact type, etc.) and a paraboloid of revolution are typical examples of Riemannian manifolds with a pole.

We give in 1 a sufficient condition on the existence of a pole in terms of curvature. Hessian comparison theorem, conformal changes of a metric and a generalization of Cartan's fixed point theorem are discussed in 2 ([6], [1] [2]). And we argue in 3 the order of a holomorphic function on a Kähler manifold with a pole ([7]).

1. As an easy consequence, a Riemannian manifold with a pole is diffeomorphic to the Euclidean space. On the contrary, any complete Riemannian manifold diffeomorphic to the Euclidean space does not necessarily have a pole.

The following proposition gives a sufficient condition on the existence of a pole.

PROPOSITION 1. Let M be a connected complete Riemannian manifold and N be a complete surface with a pole p. Assume that M has a point o such that the sectional curvature $K(\Pi_{\tau}t)) \leq G$ aussian curvature of N at a point with distance t from p for all t>0, every normal geodesic γ issuing from o and every plane $\Pi(t)$ containing $\dot{\gamma}(t)$. Then \exp_0 is of maximal rank. If, moreover, M is simply connected, then o is a pole.

PROOF. It is sufficient to show that *o* has no conjugate point on each geo-Received May 22, 1980

Mitsuhiro ITOH

desic issuing from o ([4]). Let γ be a normal geodesic from o and J a Jacobi field along γ such that J(0)=0 and $\nabla_t J \neq 0$ at t=0. Suppose that $J(t_0)=0$ for $t_0>0$. Without loss of generality we may assume that $J(t)\neq 0$ for $0 < t < t_0$ and that J is perpendicular to γ . Since J satisfies the Jacobi's equation, $\langle \nabla_t^2 J, J \rangle =$ $-\langle R(J, \dot{\gamma})\dot{\gamma}, J \rangle = -K(J \wedge \dot{\gamma}) ||J||^2$. On the other hand, by Schwarz' inequality $\langle \nabla_t^2 J, J \rangle = 1/2 d^2/dt^2 (||J||^2) - ||\nabla_t J||^2 \leq 1/2 d^2/dt^2 (||J||^2) - (d/dt ||J||)^2 = ||J||(d^2/dt^2 ||J||)$ for $0 < t < t_0$. Then we have

$$\frac{d^2}{dt^2} \|J\| + K(J(t) \wedge \dot{\gamma}(t)) \|J\| \ge 0.$$
(1)

Note that |d/dt ||J|| is bounded for $t \rightarrow +0$, since $|d/dt ||J|| \leq ||\mathcal{V}_t J||$ for $0 < t < t_0$.

Let γ' be a normal geodesic issuing from p in N. Since p is a pole, each nontrivial Jacobi field J' along γ' such that J'(0)=0 and $J' \perp \gamma'$ has no zero point for t>0. Since N is two dimensional, J'(t)=h(t)E(t) where E is a parallel unit field along γ' and h(t) is a smooth function such that h(0)=0 and h(t)>0 for t>0. By Jacobi's equation, we have

$$\frac{d^2}{dt^2}h(t) + K'(J'(t) \wedge \dot{\gamma}'(t))h(t) = 0.$$
(2)

On the other hand, by the curvature condition together with the lemma below, it follows that h has a zero for $0 < t < t_0$. Thus we have a contradiction.

LEMMA (Sturm's Comparison Theorem [3]). Let u_i be C²-functions defined on [0, a], i=1, 2, which satisfy

$$\frac{d^{2}}{dt^{2}}u_{1}(t) + A_{1}(t)u_{1}(t) \ge 0$$

$$\frac{d^{2}}{dt^{2}}u_{2}(t) + A_{2}(t)u_{2}(t) = 0, \qquad (3)$$

$$u_{1}(0) = u_{2}(0) = 0, \quad \dot{u}_{1}(0) > 0 \quad and \quad \dot{u}_{2}(0) > 0,$$

where A_i are C⁰-functions on [0, a]. Assume that $A_1(t) \leq A_2(t)$ for $0 \leq t \leq a$ and u_2 never vanishes on (0, a]. Then u_1 also never vanishes on (0, a].

PROOF OF LEMMA. Note that $u_2(t)>0$ for t>0 from the initial condition. Suppose that $u_1(t_0)=0$ for some $t_0 \in (0, a]$. Without loss of generality we may assume that $u_1(t)>0$ for $0 < t < t_0$. From (3), we have, for $0 < t < t_0$,

$$0 < \int_0^t \{u_2(\ddot{u}_1 + A_1u_1) - u_1(\ddot{u}_2 + A_2u_2)\} dt$$

hence $\dot{u}_2(t)/u_2(t) < \dot{u}_1(t)/u_1(t)$. Then we have, for sufficiently small positive number $c, \log \{u_2(t)/u_2(c)\} = \int_c^t \{\dot{u}_2(t)/u_2(t)\} dt \leq \int_c^t \{\dot{u}_1(t)/u_1(t)\} dt = \log \{u_1(t)/u_1(c)\} \text{ for } c < t < t_0.$ Since $u_i(c) > 0, i=1, 2, u_2(t_0) = \lim_{t \to t_0 = 0} u_2(t) < \lim_{t \to t_0 = 0} \{u_2(c)/u_1(c)\} u_1(t) = 0.$ This leads a contradiction.

2. Let M be a Riemannian manifold with a pole o. The distance function $\rho(\cdot)=d(\cdot, o)$ has singularity only at o. By comparing the radial curvatures, Siu and Yau [6] and also Greene and Wu [1] showed the comparison theorem on Hessian of the distance functions. By radial curvature K(t) for a normal geodesic $\gamma: [0, \infty) \rightarrow M, \gamma(0)=o$, we mean the sectional curvature of a plane which contains the tangent vector $\dot{\gamma}$ at $\gamma(t)$. Hessian of a smooth function f is defined by Hess $(f)(X, Y)=X(\tilde{Y}f)-(\nabla_X \tilde{Y})f$, where \tilde{Y} is a local extension of Y.

By using Schwarz' inequality again, we have a description of the comparison theorem in a free manner on any dimensional condition.

PROPOSITION 2 (Hessian Comparison Theorem). Let (M, σ) and (N, p) be Riemannian manifolds with poles σ and p respectively. Assume that for all t>0, the radial curvatures satisfy $K_M(t) \leq K_N(t)$ for each normal geodesics γ and σ issuing from the poles. Then

$$Hess_{M}(\rho_{M})(X, X) \ge Hess_{N}(\rho_{N})(Y, Y)$$
,

where X and Y are unit vectors at $\gamma(t)$ and $\sigma(t)$ such that $X \perp \gamma(t)$ and $Y \perp \sigma(t)$, t > 0, respectively.

Note that if f is an increasing smooth function on $(0, \infty)$, then

$$Hess_{\mathcal{M}}(f \circ \rho_{\mathcal{M}})(X, X) \geq Hess_{\mathcal{N}}(f \circ \rho_{\mathcal{N}})(Y, Y),$$

since $Hess(f \circ \rho) = f' \cdot Hess(\rho) + f'' d\rho \otimes d\rho$.

PROOF. We shall prove this by following [6]. Since o is a pole, there is a global vector field \tilde{X} on M such that (1) $\tilde{X}(o)=0$, (2) $\tilde{X}(\gamma(t))=X$, (3) $[\tilde{X}, \partial/\partial \rho]=0$ and (4) \tilde{X} is a Jacobi field along $\gamma|_{[0, t]}$ perpendicular to γ . Then we have

$$Hess_{\mathcal{M}}(\rho_{\mathcal{M}})(X, X) = \int_{0}^{t} \{ \| \mathcal{V}_{\partial/\partial \rho} \widetilde{X}(s) \|^{2} - K_{\mathcal{M}}(\widetilde{X}(s) \wedge \dot{\gamma}(s)) \| \widetilde{X}(s) \|^{2} \} ds$$
$$= I_{0}^{t}(\widetilde{X}).$$

Mitsuhiro Itoh

There is also a global field \tilde{Y} satisfying the similar condition and $Hess_N(\rho_N)(Y, Y) = I_0^t(\tilde{Y})$. Let Z(s) be a vector field along σ defined by Z(s) = ||X(s)|| E(s), where E is a unit parallel field along σ such that E(t) = Y. Then ||Z|| = ||X||, Z(0) = 0 and Z(t) = Y. By Schwarz' inequality, we have $||\overline{V}_{\partial/\partial\rho_N}Z|| \le ||\overline{V}_{\partial/\partial\rho_M}X||$. From the curvature condition, $K_M(X(s) \wedge \dot{\gamma}(s))||X(s)||^2 \le K_N(Z(s) \wedge \dot{\sigma}(s))||Z(s)||^2$, hence

$$Hess_{\mathbf{M}}(\rho_{\mathbf{M}})(X, X) = I_0^t(\widetilde{X}) \ge I_0^t(\widetilde{Z}).$$

From the property of the quadratic form I_0^t , we have $I_0^t(\tilde{Z}) \ge I_0^t(\tilde{Y}) = Hess_N(\rho_N)(Y, Y)$.

A C^2 -function f is called *convex* (*strictly convex*) if and only if $Hess(f) \ge 0$ (>0). Note that f is convex (strictly convex) if and only if $(f \circ \gamma)'' \ge 0$ ($(f \circ \gamma)'' > 0$) for every geodesic γ . The Hessian comparison theorem gives an estimation on the (strictly) convexity of a radial function. A function f on M is called *radial* if and only if f is a composition of ρ_M and a function defined on \mathbb{R}^+ .

COROLLARY 3. Let (M, o) and (N, p) be as in Proposition 2. If the curvature assumption in the proposition is satisfied and there is an increasing function $f: \mathbf{R}^+ \rightarrow \mathbf{R}, f' > 0$ such that $f \circ \rho_N$ is (strictly) convex, then $f \circ \rho_M$ is also (strictly) convex.

The Hessian of a radial function of a manifold with a pole is not necessarily positive definte. The above corollary gives an estimation of the convexity. By construction of a surface of revolution with Gaussian curvature K(s), the following theorem is obtained [1]: Suppose $\int_{0}^{\infty} s \ \bar{K}(s) ds < 1$, where $\ \bar{K}(s) = \max\{0, \text{ radial curvature at } x \text{ with } \rho(x) = s\}$. Then $(\mu/t)(g - d\rho \otimes d\rho)(X, X) \leq Hess(\rho)(X, X)$ at $x \text{ with } \rho(x) = t$, t > 0 for a positive constant μ such that $1 - \int_{0}^{\infty} s \ \bar{K}(s) ds \leq \mu \leq 1$.

Since $Hess(\rho^2)=2\rho \cdot Hess(\rho)+2d\rho \otimes d\rho$, we have a crucial estimation for the strictly convexity of ρ^2 .

Consider a paraboloid of revolution, $2z = x^2 + y^2$. Then the origin is a pole. The Gaussian curvature K(p) at p=(x, y, z) and $\rho(p)$ are written as $K(p)=1/\{(1+|p|^2)^2\}$ and $\rho(p)=1/2\{|p|\sqrt{1+|p|^2}+\log(|p|+\sqrt{1+|p|^2}), |p|^2=x^2+y^2\}$. $\rho^2(p)$ is not convex, on the other hand $Hess(|p|^2)=2/(1+|p|^2)\cdot(dx^2+dy^2)$, that is, $|p|^2$ is strictly convex. Note that K(p) has the same order as $1/\{\rho(p)^2\}$ at infinity $(\rho(p)\rightarrow\infty)$. Hence $\int_0^\infty s \cdot \overline{K}(s) ds$ diverges.

We observed that ρ^2 is not always strictly convex. However, we can find a new metric g^* from a conformal change of the given g such that ρ^{*2} is strictly convex.

PROPOSITION 4. Let (M, g, o) be a Riemannian manifold with a pole. Assume that the radial curvature K is bounded above by a suitable smooth function of ρ . Then there is a continuous function $f: \mathbb{R} \to \mathbb{R}$ such that $f \circ \rho \in C^{\infty}(M)$ and (1) (M, g^*, o) is also a Riemannian manifold with a pole o, where $g^* = e^{2f \circ \rho}g$, (2) the radial curvature of g^* is nonpositive and hence (3) the square of the distance function ρ^{*2} is strictly convex with respect to g^* .

Before proving this, we show following two statements by considering geometrical aspects of a metric g^* defined by $g^* = e^{2f^\circ \rho}g$.

PROPOSITION 5. Let γ is a normal g-geodesic issuing from o. Then a curve: $s \mapsto \gamma(t(s))$ is a normal g*-geodesic, where t(s) is the inverse function of $s(t) = \int_{a}^{t} e^{f(u)} du$.

PROOF. We apply the formulae of the covariant derivative with respect to a conformal change $g^* = e^{2f \circ \rho}g$ ([5]) to the curve $c(s) = \gamma(t(s))$:

$$\nabla_X^* Y = \nabla_X Y + d\sigma(X)Y + d\sigma(Y)X - g(X, Y) \text{ grad } \sigma,$$

$$\frac{\nabla^*}{ds} Y = \frac{\nabla}{ds} Y + \frac{d}{ds} \sigma(c(s))Y + (Y\sigma)\dot{c}(s) - g(\dot{c}(s), Y) \text{ grad } \sigma$$
(4)

 $(\sigma = f \circ \rho).$

Since $g^*(\dot{c}(s), \dot{c}(s))=1$, we have $(\nabla^*/ds)\dot{c}\perp\dot{c}$ by covariantly differentiating both sides. Let $Y_i, 1\leq i\leq n$, be orthonormal g-parallel vector fields such that $Y_n=\dot{\gamma}$. We shall show $(\nabla^*/ds)\dot{c}(s)\perp Y_i(t(s)), 1\leq i\leq n-1$. By covariantly differentiating $g^*(\dot{c}(s), Y_i(t(s))=0)$, we have

$$0 = g^* \left(\frac{\nabla^*}{ds} \dot{c}(s), Y_i(t(s)) \right) + g^* \left(\dot{c}(s), \frac{\nabla^*}{ds} Y_i(t(s)) \right).$$

From (4) together with the relations $\dot{c}(s) = (dt/ds)\dot{\gamma}$ and $grad \rho(s(t)) = \dot{\gamma}(t)$,

$$\frac{\nabla^*}{ds}Y_i(t(s)) = \frac{d}{ds}(f \circ \rho)(c(s))Y_i(s).$$

Hence we derive that $g^*((\nabla^*/ds)\dot{c}(s), Y_i(s)) = -g^*(\dot{c}(s), (\nabla^*/ds)Y_i(s)) = 0$. Thus, we have $(\nabla^*/ds)\dot{c}(s) \perp Y_i(s), 1 \leq i \leq n$, that is, $(\nabla^*/ds)\dot{c}(s) = 0$.

NOTE. If $\lim_{t\to\infty} \int_0^t e^{f(u)} du = +\infty$, c(s) is defined on the whole R and therefore $\exp: T_0 M \to M$ is a diffeomorphism with respect to g^* , that is, (M, g^*) has a pole o. The distance function $\rho^*(\cdot) = d^*(\cdot, o)$ with respect to g^* is given by

Mitsuhiro Itoh

$$\rho^{*}(p) = \int_{0}^{\rho(p)} e^{f(u)} du, \qquad p \in M.$$

Now we shall consider the radial curvature of g^* . Let R and R^* be the curvature tensors of g and g^* respectively. Then we have ([5])

$$g^{*}(R^{*}(X, Y)Y, X) = e^{2f^{\circ}\rho}g(R(X, Y)Y, X) + 2S_{f \circ \rho}(X, Y)g^{*}(X, Y) - S_{f \circ \rho}(Y, Y)g^{*}(X, X) - S_{f \circ \rho}(X, X)g^{*}(Y, Y)$$
(5)

where

$$S_{\sigma} = Hess(\sigma) - d\sigma \otimes d\sigma + \frac{1}{2} \|grad \sigma\|^2 g, \qquad \sigma \in C^{\infty}(M).$$

The radial curvature $K^*(Y \wedge grad \rho)$ at $p (Y \perp grad \rho)$ with respect to g^* is written as

$$K^{*}(Y \wedge grad \rho) = e^{-2f \circ \rho} \{K(Y \wedge grad \rho) - f''(\rho(p)) - f''(\rho(p)) Hess(\rho)(Y, Y) / ||Y||^{2} \}.$$
(6)

The above formula is obtained as follows. Since $Y \perp grad \rho$,

$$\begin{split} K^*(Y \wedge grad \ \rho) &= \frac{1}{e^{4f^{\circ} \rho} \|Y\|^2 \cdot \|grad \ \rho\|^2} g^*(R^*(Y, \ grad \ \rho) \ grad \ \rho, \ Y) \\ &= e^{-2f^{\circ} \rho} \left\{ K(Y \wedge grad \ \rho) - S_{f \circ \rho}(grad \ \rho, \ grad \ \rho) / \|grad \ \rho\|^2 \\ &- S_{f \circ \rho}(Y, \ Y) / \|Y\|^2 \right\}. \end{split}$$

On the other hand, $S_{f \circ \rho} = f' \operatorname{Hess}(\rho) + \{f'' - f'^2\} d\rho \otimes d\rho + 1/2(f'^2)g$, hence we have (6).

PROPOSITION 6. There is a function $f \circ \rho \in C^{\infty}(M)$ such that the radial curvrture is nonpositive everywhere with respect to $g^* = e^{2f \circ \rho}g$.

PROOF. By the assumption of Proposition 4, we can choose smooth functions $\bar{K}(t)$ from R^+ to R which satisfies

 $\bar{K}(t) \ge \max\{0, \text{ radial curvature at } x, \rho(x) = t\}.$

Set $\overline{H}(t) = -\int_0^t \overline{K}(t) dt$, then \overline{H} is also smooth and satisfies that $\overline{H}(t) \leq \min \{Hess(\rho)(Y, Y) \text{ at } x, \rho(x) = t, Y \in M_x, ||Y|| = 1\}.$

The nonnegative function $\bar{u}(t) = \exp\left(-\int_{0}^{t} \bar{H}dt\right) \cdot \int_{0}^{t} \bar{K}(t) \exp\left(\int \bar{H}dt\right) dt$ is a solution of $d\bar{u}/dt + \bar{H}\bar{u} - \bar{K} = 0$. Then we have for \bar{u} ,

Some geometrical aspects of Riemannian manifolds

$$\begin{aligned} \frac{d\bar{u}}{dt}(t) + \bar{u}(t) \operatorname{Hess}(\rho)(Y, Y) / \|Y\|^2 - K(Y \wedge \operatorname{grad} \rho) \\ = \bar{u}(t) \left\{ \operatorname{Hess}(\rho)(Y, Y) / \|Y\|^2 - \bar{H}(t) \right\} + \left\{ \bar{K}(t) - K(Y \wedge \operatorname{grad} \rho) \right\} \leq 0, \end{aligned}$$

for each $Y \in M_x$, $\rho(x) = t$. Therefore, if we set $f(t) = \int_0^t \bar{u}(t) dt$, then (M, g^*) , $g^* = e^{2f^\circ \rho}g$ has nonpositive radial curvature from (6).

From these propositions, we have a required function $f \circ \rho$ in Proposition 4, since $\lim_{t\to\infty} \int_0^t e^{f(a)} da = \infty$ by $f' = \bar{u} \ge 0$. Thus Proposition 4 is proved.

At the last part of 2, we find a necessary condition for the existence of a strictly convex radial function, by a group-theoretical version. The following proposition is a generalization of E. Cartan's fixed point theorem [2].

PROPOSITION 7 (Fixed Point Theorem). Let (M, o) be a Riemannian manifold with a pole o. Let K be a compact Lie group which acts on M as isometries. If there is a strictly convex increasing radial function $f \circ \rho$, then K has a common fixed point.

REMARK. If M is of negative curvature, then ρ^2 is strictly convex by comparing M with a Euclidean space. Thus we have the well known E. Cartan's fixed point theorem [2]: A compact Lie group which acts as isometries on a simply connected complete Riemannian manifold of negative curvature has a common fixed point.

PROOF. Let dk denote the Haar measure on K, normalized by $\int_{K} dk = 1$. Consider the real function F on M given by $F(x) = \int_{K} f \circ \rho(k \cdot x) dk$. Then F is a nonnegative continuous function. Since $f \circ \rho$ is exhaustion and the orbit of o is compact, there is a ball $B_r(o)$ such that F(x) > F(o) for all $x \in B_r(o)$. The closure of $B_r(o)$ contains a minimum point x_o for F. The point x_o is also a minimum for F on M. Since $F(k \cdot x_o) = F(x_o)$ for $k \in K$, in order to prove the existence of the fixed point, it is sufficient to show that $F(x) > F(x_o)$ if $x \neq x_o$. But this is derived by the strictly convexity of F, since $F(\gamma(t))'' = \int_{K} \{f \circ \rho(k \cdot \gamma(t))\}'' dk$ for every geodesic γ .

3. Let M be a complete open Kähler manifold. As in function theory, the order $\gamma(f)$ of a holomorphic function f is defined by

$$\gamma(f) = \limsup_{r \to +\infty} \log M(f, r) / \log r$$
,

Mitsuhiro Itoh

where $M(f, r) = \sup\{|f(x)|; x \in M, d(o, x) = r, o \text{ is a fixed point}\}$ [7]. The definition of $\gamma(f)$ does not depend on the choice of o. If $\gamma(f)$ is positive finite, then for each $\varepsilon > 0$, there are C > 0 and $\nu > 0$ such that $\gamma(f) \leq \nu < \gamma(f) + \varepsilon$ and $|f(x)| \leq C(1+\rho(x))^{\nu}$ for all $x \in M$ ($\rho(x) = d(x, o)$).

We discuss some aspects of $\gamma(f)$.

Let (M, o) be a Kähler manifold with a pole o and (N, p) a model space, dim $M=\dim N=n$, which satisfy the radial curvature $K_M(t) \leq the$ radial curvature $K_{N(t)}$ for all t>0. By a model we mean a Riemannian manifold (N, p) with a pole p such that every linear isometry $\phi: N_p \rightarrow N_p$ is realized as the differential of an isometry $\Phi: N \rightarrow N$ ([1]). Let $V_M(r)$ and $V_N(r)$ be the volumes of the open balls $B_M(r)$ and $B_N(r)$ of radius r around o and p in M and N respectively. Note that by the sub-mean value property, $V_M(r) \geq V_N(r)$.

Now we show the following

PROPOSITION 8. Assume that $V_M(r) \sim r^{\alpha}$, $V_N(r) \sim r^{\beta}$, $\beta \ge 1$ $(r \to \infty)$. If a holomorphic function f has $\gamma(f) < 1 + (\beta - \alpha)/2$, then df = 0 at o.

REMARK. If (M, o) is of nonpositive curvature and $\alpha < 2n+2$ in the above proposition, then a bounded holomorphic function is constant, since every point gives a pole. Note that $V_N(r) \sim r^{2n}$ for $(N, p) = (C^n, o)$ with a flat metric.

Before the proof of the proposition, we have some lemmas.

LEMMA (Sub-mean-value Property). Let ϕ be a continuous nonnegative subharmonic function on M, then

$$\int_{B_M(r)} \phi \ge V_N(r)\phi(o) \quad \text{for all } r > 0 \,.$$

For the proof, see Theorem B, [1].

LEMMA (Integral Inequality of the Laplacian). Assume that $(d/dr)V_N(r)$ is an increasing function. Let f be a nonnegative subharmonic function. Then for all λ , $0 < \lambda < 1$, there is a constant $\gamma = \gamma_{\lambda} > 0$ such that

$$\int_{B_M(\lambda r)} \Delta f \leq \frac{\gamma}{r^2} \int_{B_M(r)} f.$$
⁽⁷⁾

PROOF. Since $f \ge 0$, we have, from (3, 6) in [1]

$$\int_{B_{M}(r)} \left[\varDelta f\left(\int_{t=\rho}^{t=r} \frac{dt}{v_{N}(t)} \right) \right] dv \leq \frac{1}{v_{N}(r)} \int_{S_{M}(r)} f d\omega(r) ,$$

which implies

Some geometrical aspects of Riemannian manifolds

$$\int_{0}^{r} \int_{t}^{r} \left(\int_{S_{M}(t)} \Delta f \, d\omega(t) \right) \frac{ds}{v_{N}(s)} dt \leq \frac{1}{v_{N}(r)} \int_{S_{M}(r)} f \, d\omega(r) ,$$

where $v_N(r) = v(r)$ denotes the volume of the r-sphere $S_N(r)$ around p in N.

By using Fubini's theorem with respect to s and t on the left hand side, we have

$$\frac{1}{v(r)} \int_{\mathcal{S}(r)} f \, d\omega(r) \ge \int_0^r \left[\int_0^s \left(\int_{\mathcal{S}(t)} \Delta f \, d\omega(t) \right) dt \right] \frac{ds}{v(s)}$$
$$= \int_0^r \left(\frac{1}{v(s)} \int_{\mathcal{B}(s)} \Delta f \right) ds.$$

Multiply by v(r) and integrate relative to r. Then

$$\int_{B(u)} f \leq \int_0^u v(r) \left[\int_0^r \left(\frac{1}{v(s)} \int_{B(s)} \Delta f \right) ds \right] dr.$$

Since $\Delta f \geq 0$,

$$\int_{0}^{r} \frac{1}{v(s)} \left(\int_{B(s)} \Delta f \right) ds \ge \int_{\sqrt{\lambda}r}^{r} \frac{1}{v(s)} \left(\int_{B(\sqrt{\lambda}r)} \Delta f \right) ds = \left(\int_{B(\sqrt{\lambda}r)} \Delta f \right). \quad \int_{\sqrt{\lambda}r}^{r} \frac{ds}{v(s)}$$

and that

$$\int_{0}^{u} v(r) \left(\int_{0}^{r} \frac{1}{v(s)} \int_{B(s)} \Delta f \, ds \right) dr \ge \int_{0}^{u} v(r) \left(\int_{B(\sqrt{\lambda}r)} \Delta f \right) \left(\int_{\sqrt{\lambda}r}^{r} \frac{ds}{v(s)} \right) dr$$
$$\ge \int_{\sqrt{\lambda}u}^{u} \left(v(r) \cdot \int_{\sqrt{\lambda}r}^{r} \frac{ds}{v(s)} \right) dr \cdot \left(\int_{B(\lambda u)} \Delta f \right) \ge (1 - \sqrt{\lambda}) (1 - \lambda) \frac{u^{2}}{2} \int_{B(\lambda u)} \Delta f \,,$$

where the last inequality follows from $v_N(r)$ being increasing. Hence we obtain the inequality (7).

LEMMA (Cauchy's inequality for derivatives of holomorphic functions). For each holomorphic function f on M,

$$\|df\|^{2}(0) \leq \frac{\gamma}{V_{N}(r/2)r^{2}} \int_{B_{M}(r)} |f|^{2}.$$

PROOF. Since $\Delta |f|^2 = ||df||^2$ and $\Delta ||df||^2 = ||\nabla df||^2$, from above lemmas,

....

$$\|df\|^{2}(0) \leq \frac{1}{V_{N}(r/2)} \int_{B_{M}(r/2)} \|df\|$$

= $\frac{\gamma}{V_{N}(r/2)r^{2}} \int_{B(r)} |f|^{2}$, where $\gamma = \gamma_{1/2}$.

PROOF OF PROPOSITION 8. Since $\gamma(f) < 1 + 1/2(\beta - \alpha)$, there is $\nu > 0$ such that

 $\gamma(f) < \nu < 1 + (\beta - \alpha)/2$, hence we have $|f(x)| < C(1 + \rho(x))^{\nu}$ for some C > 0. Then, from the above,

$$\|df\|^{2}(0) \leq \frac{\gamma}{V_{N}(r/2)r^{2}} \int_{B(r)} |f|^{2} \leq \frac{\gamma C^{2}}{V_{N}(r/2)r^{2}} (1+r)^{2\nu} V_{M}(r) \sim r^{(2\nu-2+\alpha-\beta)}$$

Letting $r \rightarrow \infty$, we have df = 0 at o.

As an application of the proposition, we have the following

COROLLARY 9. Let $F=(f^1, \dots, f^N)$; $M \to \mathbb{C}^N$ be a holomorphic mapping. If $\sum_{j=1}^n \gamma(f^{i_j}) < n-n(\alpha-\beta)/2$ for each $1 \le i_1 < \dots < i_n \le N$, then F is not of maximal rank at o.

Moreover, if M is a Stein manifold and F; $M \to \mathbb{C}^N$ is a proper holomorphic imbedding, then $\sum_{j=1}^n \gamma(f^{i_j}) \ge n - n(\alpha - \beta)/2$ for some $1 \le i_1 < \cdots < i_n \le N$.

PROOF. Consider the holomorphic *n*-forms $df^{i_1} \wedge \cdots \wedge df^{i_n}$, $1 \leq i_1 < \cdots < i_n \leq N$. From the proposition, we have an estimate of the norm of $df^{i_1} \wedge \cdots \wedge df^{i_n}$;

$$\|df^{i_{1}}\wedge\cdots\wedge df^{i_{n}}\|^{2}(o) \leq \prod_{j=1}^{n} \|df^{i_{j}}\|^{2}(o) \leq \prod_{j=1}^{n} \frac{\gamma}{V_{N}(r/2)r^{2}} \int_{B(r)} |f^{i_{j}}|^{2}$$
$$= \frac{\gamma^{n}}{V_{N}(r/2)^{n} \cdot r^{2n}} \prod_{j} \int_{B(r)} |f^{i_{j}}|^{2}$$
$$\leq \gamma^{n} \prod C_{j}^{2} \cdot \frac{(1+r)^{2\sum \nu_{j}} \cdot V_{M}(r)^{n}}{V_{N}(r/2)^{n}r^{2n}},$$

where $\nu_j > 0$, $j=1, \dots, n$, satisfy $\gamma(f^{i_j}) < \nu_j < \gamma(f^{i_j}) + \varepsilon_j$ and $\sum_j \nu_j < n-n(\alpha-\beta)/2$. By letting $r \to \infty$, we have $df^{i_1} \wedge \dots \wedge df^{i_n} = 0$ at o.

The last statement is easily derived from the above argument, since the F is of maximal rank everywhere.

References

- [1] Greene, R.E. and Wu, H., Function theory on manifolds which possess a pole. Springer-Verlag, Berlin (1979).
- [2] Helgason, S., Differential geometry and symmetric spaces. Acad. Press, New York (1962).
- [3] Klingenberg, W., Eine Vorlesung über Differentialgeometrie. Springer-Verlag, Berlin (1973).
- [4] Milnor, J., Morse theory. Princeton Univ. Press, Princeton (1963).
- [5] Schouten, J.A., Ricci-Calculus. Springer-Verlag, Berlin (1954).
- [6] Siu, Y.T. and Yau, S.T., Complete Kähler manifolds with nonpositive curvature

Some geometrical aspects of Riemannian manifolds

of faster than quadratic decay. Annals of Math., 105 (1977) 225-264. [7] Wu, H., Some open problems in the study of noncompact Kähler manifolds. Symp. of Geometric Theory of several complex variables at Kyoto. 1978 (manuscription).

> Institute of Mathematics University of Tsukuba Sakura-mura Niihari-gun Ibaraki 305 JAPAN