SOME GEOMETRICAL ASPECTS OF RIEMANNIAN MANIFOLDS WITH A POLE

(dedicated to Professor Isamu Mogi for his 60'th birthday)
By
Mitsuhiro ITOH

The aim of this paper is to describe some geometrical aspects of Riemannian manifolds with a pole. A point o of a Riemannian manifold is called a pole, if the exponential map exp is a diffeomorphism at o. Simply connected complete Riemannian manifolds of nonpositive curvature (the Euclidean space, the hyperbolic space and a simply connected symmetric space of noncompact type, etc.) and a paraboloid of revolution are typical examples of Riemannian manifolds with a pole.

We give in 1 a sufficient condition on the existence of a pole in terms of curvature. Hessian comparison theorem, conformal changes of a metric and a generalization of Cartan's fixed point theorem are discussed in 2 ([6], [1] [2]). And we argue in $\boldsymbol{3}$ the order of a holomorphic function on a Kähler manifold with a pole ([7]).

1. As an easy consequence, a Riemannian manifold with a pole is diffeomorphic to the Euclidean space. On the contrary, any complete Riemannian manifold diffeomorphic to the Euclidean space does not necessarily have a pole.

The following proposition gives a sufficient condition on the existence of a pole.

Proposition 1. Let M be a connected complete Riemannian manifold and N be a complete surface with a pole p. Assume that M has a point o such that the sectional curvature $\left.K\left(\Pi_{\gamma} t\right)\right) \leqq$ Gaussian curvature of N at a point with distance t from p for all $t>0$, every normal geodesic γ issuing from o and every plane $\Pi(t)$ containing $\dot{\gamma}(t)$. Then $\exp _{0}$ is of maximal rank. If, moreover, M is simply connected, then o is a pole.

Proof. It is sufficient to show that o has no conjugate point on each geo-

[^0]desic issuing from o ([4]). Let γ be a normal geodesic from o and J a Jacobi field along γ such that $J(0)=0$ and $\nabla_{t} J \neq 0$ at $t=0$. Suppose that $J\left(t_{0}\right)=0$ for $t_{0}>0$. Without loss of generality we may assume that $J(t) \neq 0$ for $0<t<t_{0}$ and that J is perpendicular to γ. Since J satisfies the Jacobi's equation, $\left\langle\nabla_{i}^{2} J, J\right\rangle=$ $-\langle R(J, \dot{\gamma}) \dot{\gamma}, J\rangle=-K(J \wedge \dot{\gamma})\|J\|^{2}$. On the other hand, by Schwarz' inequality $\left\langle\nabla_{t}^{2} J, J\right\rangle=1 / 2 d^{2} / d t^{2}\left(\|J\|^{2}\right)-\left\|\boldsymbol{\nabla}_{t} J\right\|^{2} \leqq 1 / 2 d^{2} / d t^{2}\left(\|J\|^{2}\right)-(d / d t\|J\|)^{2}=\|J\|\left(d^{2} / d t^{2}\|J\|\right)$ for $0<t<t_{0}$. Then we have
\[

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}}\|J\|+K(J(t) \wedge \dot{\gamma}(t))\|J\| \geqq 0 \tag{1}
\end{equation*}
$$

\]

Note that $|d / d t\|J\||$ is bounded for $t \rightarrow+0$, since $|d / d t\|J\|| \leqq\left\|\boldsymbol{\nabla}_{t} J\right\|$ for $0<t<t_{0}$.
Let γ^{\prime} be a normal geodesic issuing from p in N. Since p is a pole, each nontrivial Jacobi field J^{\prime} along γ^{\prime} such that $J^{\prime}(0)=0$ and $J^{\prime} \perp \gamma^{\prime}$ has no zero point for $t>0$. Since N is two dimensional, $J^{\prime}(t)=h(t) E(t)$ where E is a parallel unit field along γ^{\prime} and $h(t)$ is a smooth function such that $h(0)=0$ and $h(t)>0$ for $t>0$. By Jacobi's equation, we have

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} h(t)+K^{\prime}\left(J^{\prime}(t) \wedge \dot{\gamma}^{\prime}(t)\right) h(t)=0 \tag{2}
\end{equation*}
$$

On the other hand, by the curvature condition together with the lemma below, it follows that h has a zero for $0<t<t_{0}$. Thus we have a contradiction.

Lemma (Sturm's Comparison Theorem [3]). Let u_{i} be C^{2}-functions defined on $[0, a], i=1,2$, which satisfy

$$
\begin{align*}
& \frac{d^{2}}{d t^{2}} u_{1}(t)+A_{1}(t) u_{1}(t) \geqq 0 \\
& \frac{d^{2}}{d t^{2}} u_{2}(t)+A_{2}(t) u_{2}(t)=0, \tag{3}\\
& u_{1}(0)=u_{2}(0)=0, \quad \dot{u}_{1}(0)>0 \quad \text { and } \quad \dot{u}_{2}(0)>0,
\end{align*}
$$

where A_{i} are C^{0}-functions on $[0, a]$. Assume that $A_{1}(t) \leqq A_{2}(t)$ for $0 \leqq t \leqq a$ and u_{2} never vanishes on $(0, a]$. Then u_{1} also never vanishes on ($\left.0, a\right]$.

Proof of Lemma. Note that $u_{2}(t)>0$ for $t>0$ from the initial condition. Suppose that $u_{1}\left(t_{0}\right)=0$ for some $t_{0} \in(0, a]$. Without loss of generality we may assume that $u_{1}(t)>0$ for $0<t<t_{0}$. From (3), we have, for $0<t<t_{0}$,

$$
0<\int_{0}^{t}\left\{u_{2}\left(\ddot{u}_{1}+A_{1} u_{1}\right)-u_{1}\left(\ddot{u}_{2}+A_{2} u_{2}\right)\right\} d t
$$

$$
\begin{aligned}
& =\left.\left(u_{2} \dot{u}_{1}-u_{1} \dot{u}_{2}\right)\right|_{0} ^{t}-\int_{0}^{t}\left(A_{2}-A_{1}\right) u_{1} u_{2} d t \\
& <u_{2}(t) \dot{u}_{1}(t)-u_{1}(t) \dot{u}_{2}(t),
\end{aligned}
$$

hence $\dot{u}_{2}(t) / u_{2}(t)<\dot{u}_{1}(t) / u_{1}(t)$. Then we have, for sufficiently small positive number $c, \log \left\{u_{2}(t) / u_{2}(c)\right\}=\int_{c}^{t}\left\{\dot{u}_{2}(t) / u_{2}(t)\right\} d t \leqq \int_{c}^{t}\left\{\dot{u}_{1}(t) / u_{1}(t)\right\} d t=\log \left\{u_{1}(t) / u_{1}(c)\right\}$ for $c<t<t_{0}$. Since $u_{i}(c)>0, i=1,2, u_{2}\left(t_{0}\right)=\lim _{t \rightarrow t_{0}-0} u_{2}(t)<\lim _{t \rightarrow t_{0}-0}\left\{u_{2}(c) / u_{1}(c)\right\} u_{1}(t)=0$. This leads a contradiction.
2. Let M be a Riemannian manifold with a pole o. The distance function $\rho(\cdot)=d(\cdot, o)$ has singularity only at o. By comparing the radial curvatures, Siu and Yau [6] and also Greene and Wu [1] showed the comparison theorem on Hessian of the distance functions. By radial curvature $K(t)$ for a normal geodesic $\gamma:[0, \infty) \rightarrow M, \gamma(0)=0$, we mean the sectional curvature of a plane which contains the tangent vector $\dot{\gamma}$ at $\gamma(t)$. Hessian of a smooth function f is defined by Hess $(f)(X, Y)=X(\tilde{Y} f)-\left(\nabla_{X} \tilde{Y}\right) f$, where \tilde{Y} is a local extension of Y.

By using Schwarz' inequality again, we have a description of the comparison theorem in a free manner on any dimensional condition.

Proposition 2 (Hessian Comparison Theorem). Let (M, o) and (N, p) be Riemannian manifolds with poles o and p respectively. Assume that for all $t>0$, the radial curvatures satisfy $K_{M}(t) \leqq K_{N}(t)$ for each normal geodesics γ and σ issuing from the poles. Then

$$
\operatorname{Hess}_{M}\left(\rho_{M}\right)(X, X) \geqq \operatorname{Hess}_{N}\left(\rho_{N}\right)(Y, Y)
$$

where X and Y are unit vectors at $\gamma(t)$ and $\sigma(t)$ such that $X \perp \gamma(t)$ and $Y \perp \sigma(t)$, $t>0$, respectively.

Note that if f is an increasing smooth function on ($0, \infty$), then

$$
\operatorname{Hess}_{M}\left(f \circ \rho_{M}\right)(X, X) \geqq \operatorname{Hess}_{N}\left(f \circ \rho_{N}\right)(Y, Y),
$$

since Hess $(f \circ \rho)=f^{\prime} \cdot \operatorname{Hess}(\rho)+f^{\prime \prime} d \rho \otimes d \rho$.
Proof. We shall prove this by following [6]. Since o is a pole, there is a global vector field \tilde{X} on M such that (1) $\tilde{X}(o)=0$, (2) $\tilde{X}(\gamma(t))=X$, (3) $[\tilde{X}, \partial / \partial \rho]=0$ and (4) \tilde{X} is a Jacobi field along $\left.\gamma\right|_{[0, t]}$ perpendicular to γ. Then we have

$$
\begin{aligned}
\operatorname{Hess}_{M}\left(\rho_{M}\right)(X, X) & =\int_{0}^{t}\left\{\left\|\nabla_{\partial / \partial \rho} \tilde{X}(s)\right\|^{2}-K_{M}(\tilde{X}(s) \wedge \dot{\gamma}(s))\|\tilde{X}(s)\|^{2}\right\} d s \\
& =I_{0}^{t}(\tilde{X})
\end{aligned}
$$

There is also a global field \tilde{Y} satisfying the similar condition and $\operatorname{Hess}_{N}\left(\rho_{N}\right)(Y, Y)$ $=I_{0}^{t}(\tilde{Y})$. Let $Z(s)$ be a vector field along σ defined by $Z(s)=\|X(s)\| E(s)$, where E is a unit parallel field along σ such that $E(t)=Y$. Then $\|Z\|=\|X\|, Z(0)=0$ and $Z(t)=Y$. By Schwarz' inequality, we have $\left\|\nabla_{\partial / \partial \rho_{N}} Z\right\| \leqq\left\|\nabla_{\partial / \partial \rho_{M}} X\right\|$. From the curvature condition, $K_{M}(X(s) \wedge \dot{\gamma}(s))\|X(s)\|^{2} \leqq K_{N}(Z(s) \wedge \dot{\boldsymbol{\sigma}}(s))\|Z(s)\|^{2}$, hence

$$
\operatorname{Hess}_{M}\left(\rho_{M}\right)(X, X)=I_{0}^{t}(\tilde{X}) \geqq I_{0}^{t}(\tilde{Z}) .
$$

From the property of the quadratic form I_{0}^{t}, we have $I_{0}^{t}(\tilde{Z}) \geqq I_{0}^{t}(\tilde{Y})=\operatorname{Hess}_{N}\left(\rho_{N}\right)(Y, Y)$.
A C^{2}-function f is called convex (strictly convex) if and only if $\operatorname{Hess}(f) \geqq 0$ (>0). Note that f is convex (strictly convex) if and only if $(f \circ \gamma)^{\prime \prime} \geqq 0\left((f \circ \gamma)^{\prime \prime}>0\right)$ for every geodesic γ. The Hessian comparison theorem gives an estimation on the (strictly) convexity of a radial function. A function f on M is called radial if and only if f is a composition of ρ_{M} and a function defined on \boldsymbol{R}^{+}.

Corollary 3. Let (M, o) and (N, p) be as in Proposition 2. If the curvature assumption in the proposition is satisfied and there is an increasing function $f: \boldsymbol{R}^{+} \rightarrow \boldsymbol{R}, f^{\prime}>0$ such that $f \circ \rho_{N}$ is (strictly) convex, then $f \circ \rho_{\boldsymbol{M}}$ is also (strictly) convex.

The Hessian of a radial function of a manifold with a pole is not necessarily positive definte. The above corollary gives an estimation of the convexity. By construction of a surface of revolution with Gaussian curvature $K(s)$, the following theorem is obtained [1]: Suppose $\int_{0}^{\infty} s \bar{K}(s) d s<1$, where $\bar{K}(s)=\max \{0$, radial curvature at x with $\rho(x)=s\}$. Then $(\mu / t)(g-d \rho \otimes d \rho)(X, X) \leqq H e s s(\rho)(X, X)$ at x with $\rho(x)=t, t>0$ for a positive constant μ such that $1-\int_{0}^{\infty} s \bar{K}(s) d s \leqq \mu \leqq 1$.

Since Hess $\left(\rho^{2}\right)=2 \rho \cdot \operatorname{Hess}(\rho)+2 d \rho \otimes d \rho$, we have a crucial estimation for the strictly convexity of ρ^{2}.

Consider a paraboloid of revolution, $2 z=x^{2}+y^{2}$. Then the origin is a pole. The Gaussian curvature $K(p)$ at $p=(x, y, z)$ and $\rho(p)$ are written as $K(p)=$ $1 /\left\{\left(1+|p|^{2}\right)^{2}\right\} \quad$ and $\rho(p)=1 / 2\left\{|p| \sqrt{1+|p|^{2}}+\log \left(|p|+\sqrt{1+|p|^{2}}\right),|p|^{2}=x^{2}+y^{2}\right.$. $\rho^{2}(p)$ is not convex, on the other hand Hess $\left(|p|^{2}\right)=2 /\left(1+|p|^{2}\right) \cdot\left(d x^{2}+d y^{2}\right)$, that is, $|p|^{2}$ is strictly convex, Note that $K(p)$ has the same order as $1 /\left\{\rho(p)^{2}\right\}$ at infinity $(\rho(p) \rightarrow \infty)$. Hence $\int_{0}^{\infty} s \cdot \bar{K}(s) d s$ diverges.

We observed that ρ^{2} is not always strictiy convex. However, we can find a new metric g^{*} from a conformal change of the given g such that $\rho^{* 2}$ is strictly convex.

Proposition 4. Let (M, g, o) be a Riemannian manifold with a pole. Assume that the radial curvature K is bounded above by a suitable smooth function of ρ. Then there is a continuous function $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ such that $f \circ \rho \in C^{\infty}(M)$ and (1) $\left(M, g^{*}, o\right)$ is also a Riemannian manifold with a pole o, where $g^{*}=e^{2 f^{\circ} \rho} g$, (2) the radial curvature of g^{*} is nonpositive and hence (3) the square of the distance function $\rho^{* 2}$ is strictly convex with respect to g^{*}.

Before proving this, we show following two statements by considering geometrical aspects of a metric g^{*} defined by $g^{*}=e^{2 f^{\circ} \rho} g$.

Proposition 5. Let γ is a normal g-geodesic issuing from o. Then a curve: $s \mapsto \gamma(t(s))$ is a normal g^{*}-geodesic, where $t(s)$ is the inverse function of $s(t)=$ $\int_{0}^{t} e^{f(u)} d u$.

Proof. We apply the formulae of the covariant derivative with respect to a conformal change $g^{*}=e^{2 f \circ \rho} g$ ([5]) to the curve $c(s)=\gamma(t(s))$:

$$
\nabla_{\frac{1}{X}}^{\frac{*}{}} Y=\nabla_{X} Y+d \sigma(X) Y+d \sigma(Y) X-g(X, Y) \operatorname{grad} \sigma,
$$

$$
\begin{equation*}
\frac{\nabla^{*}}{d s} Y=\frac{\nabla}{d s} Y+\frac{d}{d s} \sigma(c(s)) Y+(Y \sigma) \dot{c}(s)-g(\dot{c}(s), Y) \operatorname{grad} \sigma \tag{4}
\end{equation*}
$$

($\sigma=f \circ \rho$).
Since $g^{*}(\dot{c}(s), \dot{c}(s))=1$, we have $\left(\nabla^{*} / d s\right) \dot{c} \perp \dot{c}$ by covariantly differentiating both sides. Let $Y_{i}, 1 \leqq i \leqq n$, be orthonormal g-parallel vector fields such that $Y_{n}=\dot{\gamma}$. We shall show $\left(\nabla^{*} / d s\right) \dot{c}(s) \perp Y_{i}(t(s)), 1 \leqq i \leqq n-1$. By covariantly differentiating $g^{*}\left(\dot{c}(s), Y_{i}(t(s))=0\right.$, we have

$$
0=g^{*}\left(\frac{\nabla^{*}}{d s} \dot{c}(s), Y_{i}(t(s))\right)+g^{*}\left(\dot{c}(s), \frac{\nabla^{*}}{d s} Y_{i}(t(s))\right)
$$

From (4) together with the relations $\dot{c}(s)=(d t / d s) \dot{\gamma}$ and $\operatorname{grad} \rho(s(t))=\dot{\gamma}(t)$,

$$
\frac{\nabla^{*}}{d s} Y_{i}(t(s))=\frac{d}{d s}(f \circ \rho)(c(s)) Y_{i}(s) .
$$

Hence we derive that $g^{*}\left(\left(\nabla^{*} / d s\right) \dot{c}(s), Y_{i}(s)\right)=-g^{*}\left(\dot{c}(s),\left(\nabla^{*} / d s\right) Y_{i}(s)\right)=0$. Thus, we have $\left(\nabla^{*} / d s\right) \dot{c}(s) \perp Y_{i}(s), 1 \leqq i \leqq n$, that is, $\left(\nabla^{*} / d s\right) \dot{c}(s)=0$.

Note. If $\lim _{t \rightarrow \infty} \int_{0}^{t} e^{f(u)} d u=+\infty, c(s)$ is defined on the whole \boldsymbol{R} and therefore exp: $T_{0} M \rightarrow M$ is a diffeomorphism with respect to g^{*}, that is, $\left(M, g^{*}\right)$ has a pole o. The distance function $\rho^{*}(\cdot)=d^{*}(\cdot, o)$ with respect to g^{*} is given by

$$
\rho^{*}(p)=\int_{0}^{\rho(p)} e^{f(u)} d u, \quad p \in M .
$$

Now we shall consider the radial curvature of g^{*}. Let R and R^{*} be the curvature tensors of g and g^{*} respectively. Then we have ([5])

$$
\begin{align*}
g^{*}\left(R^{*}(X, Y) Y, X\right)= & e^{2 f^{\circ} \rho} g(R(X, Y) Y, X)+2 S_{f \circ \rho}(X, Y) g^{*}(X, Y) \tag{5}\\
& -S_{f \circ \rho}(Y, Y) g^{*}(X, X)-S_{f \circ \rho}(X, X) g^{*}(Y, Y)
\end{align*}
$$

where

$$
S_{\sigma}=\operatorname{Hess}(\sigma)-d \sigma \otimes d \sigma+\frac{1}{2}\|g r a d \sigma\|^{2} g, \quad \sigma \in C^{\infty}(M)
$$

The radial curvature $K^{*}(Y \wedge \operatorname{grad} \rho)$ at $p(Y \perp \operatorname{grad} \rho)$ with respect to g^{*} is written as

$$
\begin{align*}
K^{*}(Y \wedge \operatorname{grad} \rho)= & e^{-2 f \circ \rho}\left\{K(Y \wedge \operatorname{grad} \rho)-f^{\prime \prime}(\rho(p))\right. \tag{6}\\
& \left.-f^{\prime}(\rho(p)) \operatorname{Hess}(\rho)(Y, Y) /\|Y\|^{2}\right\}
\end{align*}
$$

The above formula is obtained as follows. Since $Y \perp \operatorname{grad} \rho$,

$$
\begin{aligned}
K^{*}(Y \wedge \operatorname{grad} \rho)= & \frac{1}{e^{4 \rho^{\circ} \rho}\|Y\|^{2} \cdot\|\operatorname{grad} \rho\|^{2}} g^{*}\left(R^{*}(Y, \operatorname{grad} \rho) \operatorname{grad} \rho, Y\right) \\
= & e^{-2 f^{\circ} \rho}\left\{K(Y \wedge \operatorname{grad} \rho)-S_{f \circ \rho}(\operatorname{grad} \rho, \operatorname{grad} \rho) /\|\operatorname{grad} \rho\|^{2}\right. \\
& \left.-S_{f \circ \rho}(Y, Y) /\|Y\|^{2}\right\}
\end{aligned}
$$

On the other hand, $S_{f \circ \rho}=f^{\prime} \operatorname{Hess}(\rho)+\left\{f^{\prime \prime}-f^{\prime 2}\right\} d \rho \otimes d \rho+1 / 2\left(f^{\prime 2}\right) g$, hence we have (6).

Proposition 6. There is a function $f \circ \rho \in C^{\infty}(M)$ such that the radial curvrture is nonpositive eveywhere with respect to $g^{*}=e^{2 f^{\circ} \rho} g$.

Proof. By the assumption of Proposition 4, we can choose smooth functions $\bar{K}(t)$ from \boldsymbol{R}^{+}to \boldsymbol{R} which satisfies

$$
\bar{K}(t) \geqq \max \{0, \text { radial curvature at } x, \rho(x)=t\}
$$

Set $\bar{H}(t)=-\int_{0}^{t} \bar{K}(t) d t$, then \bar{H} is also smooth and satisfies that

$$
\bar{H}(t) \leqq \min \left\{H e s s(\rho)(Y, Y) \text { at } x, \rho(x)=t, Y \in M_{x},\|Y\|=1\right\} .
$$

The nonnegative function $\bar{u}(t)=\exp \left(-\int_{0}^{t} \bar{H} d t\right) \cdot \int_{0}^{t} \bar{K}(t) \exp \left(\int \bar{H} d t\right) d t$ is a solution of $d \bar{u} / d t+\bar{H} \bar{u}-\bar{K}=0$. Then we have for \bar{u},

$$
\begin{aligned}
\frac{d \bar{u}}{d t} & (t)+\bar{u}(t) \operatorname{Hess}(\rho)(Y, Y) /\|Y\|^{2}-K(Y \wedge \operatorname{grad} \rho) \\
& =\bar{u}(t)\left\{\operatorname{Hess}(\rho)(Y, Y) /\|Y\|^{2}-\bar{H}(t)\right\}+\{\bar{K}(t)-K(Y \wedge \operatorname{grad} \rho)\} \leqq 0,
\end{aligned}
$$

for each $Y \in M_{x}, \rho(x)=t$. Therefore, if we set $f(t)=\int_{0}^{t} \bar{u}(t) d t$, then $\left(M, g^{*}\right), g^{*}=$ $e^{2 f \circ \rho} g$ has nonpositive radial curvature from (6).

From these propositions, we have a required function $f \circ \rho$ in Proposition 4, since $\lim _{t \rightarrow \infty} \int_{0}^{t} e^{f(a)} d a=\infty$ by $f^{\prime}=\bar{u} \geqq 0$. Thus Proposition 4 is proved.

At the last part of $\mathbf{2}$, we find a necessary condition for the existence of a strictly convex radial function, by a group-theoretical version. The following proposition is a generalization of E. Cartan's fixed point theorem [2].

Proposition 7 (Fixed Point Theorem). Let (M, o) be a Riemannian manifold with a pole o. Let K be a compact Lie group which acts on M as isometries. If there is a strictly convex increasing radial function $f \circ \rho$, then K has a common fixed point.

Remark. If M is of negative curvature, then ρ^{2} is strictly convex by comparing M with a Euclidean space. Thus we have the well known E. Cartan's fixed point theorem [2]: A compact Lie group which acts as isometries on a simply connected complete Riemannian manifold of negative curvature has a common fixed point.

Proof. Let $d k$ denote the Haar measure on K, normalized by $\int_{K} d k=1$. Consider the real function F on M given by $F(x)=\int_{K} f \circ \rho(k \cdot x) d k$. Then F is a nonnegative continuous function. Since $f \circ \rho$ is exhaustion and the orbit of o is compact, there is a ball $B_{r}(o)$ such that $F(x)>F(o)$ for all $x \in B_{r}(o)$. The closure of $B_{r}(o)$ contains a minimum point x_{0} for F. The point x_{0} is also a minimum for F on M. Since $F\left(k \cdot x_{0}\right)=F\left(x_{0}\right)$ for $k \in K$, in order to prove the existence of the fixed point, it is sufficient to show that $F(x)>F\left(x_{0}\right)$ if $x \neq x_{0}$. But this is derived by the strictly convexity of F, since $F(\gamma(t))^{\prime \prime}=\int_{K}\{f \circ \rho(k \cdot \gamma(t))\}^{\prime \prime} d k$ for every geodesic γ.
3. Let M be a complete open Kähler manifold. As in function theory, the order $\gamma(f)$ of a holomorphic function f is defined by

$$
\gamma(f)=\lim _{r \rightarrow+\infty} \sup \log M(f, r) / \log r,
$$

where $M(f, r)=\sup \{|f(x)| ; x \in M, d(o, x)=r, o$ is a fixed point [7]. The definition of $\gamma(f)$ does not depend on the choice of o. If $\gamma(f)$ is positive finite, then for each $\varepsilon>0$, there are $C>0$ and $\nu>0$ such that $\gamma(f) \leqq \nu<\gamma(f)+\varepsilon$ and $|f(x)| \leqq$ $C(1+\rho(x))^{\nu}$ for all $x \in M(\rho(x)=d(x, o))$.

We discuss some aspects of $\gamma(f)$.
Let (M, o) be a Kähler manifold with a pole o and (N, p) a model space, $\operatorname{dim} M=\operatorname{dim} N=n$, which satisfy the radial curvature $K_{M}(t) \leqq$ the radial curvature $K_{N(t)}$ for all $t>0$. By a model we mean a Riemannian manifold (N, p) with a pole p such that every linear isometry $\phi: N_{p} \rightarrow N_{p}$ is realized as the differential of an isometry $\Phi: N \rightarrow N([1])$. Let $V_{M}(r)$ and $V_{N}(r)$ be the volumes of the open balls $B_{M}(r)$ and $B_{N}(r)$ of radius r around o and p in M and N respectively. Note that by the sub-mean value property, $V_{M}(r) \geqq V_{N}(r)$.

Now we show the following
Proposition 8. Assume that $V_{M}(r) \sim r^{\alpha}, V_{N}(r) \sim r^{\beta}, \beta \geqq 1(r \rightarrow \infty)$. If a holomorphic function f has $\gamma(f)<1+(\beta-\alpha) / 2$, then $d f=0$ at o.

REMARK. If (M, o) is of nonpositive curvature and $\alpha<2 n+2$ in the above proposition, then a bounded holomorphic function is constant, since every point gives a pole. Note that $V_{N}(r) \sim r^{2 n}$ for $(N, p)=\left(C^{n}, o\right)$ with a flat metric.

Before the proof of the proposition, we have some lemmas.
Lemma (Sub-mean-value Property). Let ϕ be a continuous nonnegative subharmonic function on M, then

$$
\int_{B_{M}(r)} \phi \geqq V_{N}(r) \phi(o) \quad \text { for all } r>0
$$

For the proof, see Theorem B, [1].
Lemma (Integral Inequality of the Laplacian). Assume that $(d / d r) V_{N}(r)$ is an increasing function. Let f be a nonnegative subharmonic function. Then for all $\lambda, 0<\lambda<1$, there is a constant $\gamma=\gamma_{\lambda}>0$ such that

$$
\begin{equation*}
\int_{B_{M}(\lambda r)} \Delta f \leqq \frac{\gamma}{r^{2}} \int_{B_{M^{\prime}}(r)} f . \tag{7}
\end{equation*}
$$

Proof. Since $f \geqq 0$, we have, from $(3,6)$ in [1]

$$
\int_{B_{M}(r)}\left[\Delta f\left(\int_{t=\rho}^{t=r} \frac{d t}{v_{N}(t)}\right)\right] d v \leqq \frac{1}{v_{N}(r)} \int_{S_{M}(r)} f d \omega(r)
$$

which implies

$$
\int_{0}^{r} \int_{t}^{r}\left(\int_{S_{M}(t)} \Delta f d \omega(t)\right) \frac{d s}{v_{N}(s)} d t \leqq \frac{1}{v_{N}(r)} \int_{S_{M}(r)} f d \omega(r),
$$

where $v_{N}(r)=v(r)$ denotes the volume of the r-sphere $S_{N}(r)$ around p in N.
By using Fubini's theorem with respect to s and t on the left hand side, we have

$$
\begin{aligned}
\frac{1}{v(r)} \int_{S(r)} f d \omega(r) & \geqq \int_{0}^{r}\left[\int_{0}^{s}\left(\int_{S(t)} \Delta f d \omega(t)\right) d t\right] \frac{d s}{v(s)} \\
& =\int_{0}^{r}\left(\frac{1}{v(s)} \int_{B(s)} \Delta f\right) d s
\end{aligned}
$$

Multiply by $v(r)$ and integrate relative to r. Then

$$
\int_{B(u)} f \leqq \int_{0}^{u} v(r)\left[\int_{0}^{r}\left(\frac{1}{v(s)} \int_{B(s)} \Delta f\right) d s\right] d r
$$

Since $\Delta f \geqq 0$,

$$
\int_{0}^{r} \frac{1}{v(s)}\left(\int_{B(s)} \Delta f\right) d s \geqq \int_{\sqrt{\lambda} r}^{r} \frac{1}{v(s)}\left(\int_{B(\sqrt{\lambda} r)} \Delta f\right) d s=\left(\int_{B(\sqrt{\lambda} r)} \Delta f\right) \cdot \int_{\sqrt{\lambda} r}^{r} \frac{d s}{v(s)}
$$

and that

$$
\begin{aligned}
& \left.\int_{0}^{u} v(r)\left(\int_{0}^{r} \frac{1}{v(s)} \int_{B(s)} \Delta f d s\right)\right) d r \geqq \int_{0}^{u} v(r)\left(\int_{B(\sqrt{\lambda} r)} \Delta f\right)\left(\int_{\sqrt{\lambda} r}^{r} \frac{d s}{v(s)}\right) d r \\
& \quad \geqq \int_{\sqrt{\lambda} u}^{u}\left(v(r) \cdot \int_{\sqrt{\lambda} r}^{r} \frac{d s}{v(s)}\right) d r \cdot\left(\int_{B(\lambda u)} \Delta f\right) \geqq\left(1-\sqrt{\bar{\lambda})(1-\lambda) \frac{u^{2}}{2} \int_{B(\lambda u)} \Delta f,}\right.
\end{aligned}
$$

where the last inequality follows from $v_{N}(r)$ being increasing. Hence we obtain the inequality (7).

Lemma (Cauchy's inequality for derivatives of holomorphic functions). For each holomorphic function f on M,

$$
\|d f\|^{2}(0) \leqq \frac{r}{V_{N}(r / 2) r^{2}} \int_{B_{M}(r)}|f|^{2}
$$

Proof. Since $\Delta|f|^{2}=\|d f\|^{2}$ and $\Delta\|d f\|^{2}=\|\nabla d f\|^{2}$, from above lemmas,

$$
\begin{aligned}
\|d f\|^{2}(0) & \leqq \frac{1}{V_{N}(r / 2)} \int_{B_{M}(r / 2)}\|d f\| \\
& =\frac{r}{V_{N}(r / 2) r^{2}} \int_{B(r)}|f|^{2}, \quad \text { where } r=\gamma_{1 / 2}
\end{aligned}
$$

Proof of Proposition 8. Since $\gamma(f)<1+1 / 2(\beta-\alpha)$, there is $\nu>0$ such that
$\gamma(f)<\nu<1+(\beta-\alpha) / 2$, hence we have $|f(x)|<C(1+\rho(x))^{\nu}$ for some $C>0$. Then, from the above,

$$
\|d f\|^{2}(0) \leqq \frac{\gamma}{V_{N}(r / 2) r^{2}} \int_{B(r)}|f|^{2} \leqq \frac{r C^{2}}{V_{N}(r / 2) r^{2}}(1+r)^{2 \nu} V_{M}(r) \sim r^{(2 \nu-2+\alpha-\beta)} .
$$

Letting $r \rightarrow \infty$, we have $d f=0$ at o.
As an application of the proposition, we have the following
Corollary 9. Let $F=\left(f^{1}, \cdots, f^{N}\right) ; M \rightarrow C^{N}$ be a holomorphic mapping. If $\sum_{j=1}^{n} \gamma\left(f^{i j}\right)<n-n(\alpha-\beta) / 2$ for each $1 \leqq i_{1}<\cdots<i_{n} \leqq N$, then F is not of maximal rank at o.

Moreover, if M is a Stein manifold and $F ; M \rightarrow \boldsymbol{C}^{N}$ is a proper holomorphic imbedding, then $\sum_{j=1}^{n} \gamma\left(f^{i j}\right) \geqq n-n(\alpha-\beta) / 2$ for some $1 \leqq i_{1}<\cdots<i_{n} \leqq N$.

Proof. Consider the holomorphic n-forms $d f^{i_{1}} \wedge \cdots \wedge d f^{i_{n}}, 1 \leqq i_{1}<\cdots<i_{n} \leqq N$. From the proposition, we have an estimate of the norm of $d f^{i_{1}} \wedge \cdots \wedge d f^{i_{n}}$;

$$
\begin{aligned}
\left\|d f^{i_{1}} \wedge \cdots \wedge d f^{i_{n}}\right\|^{2}(o) & \leqq \prod_{j=1}^{n} \| d f^{i_{j} \|^{2}(o) \leqq \prod_{j=1}^{n} \frac{\gamma}{V_{N}(r / 2) r^{2}} \int_{B(r)}\left|f^{i_{j}}\right|^{2}} \\
& =\frac{\gamma^{n}}{V_{N}(r / 2)^{n} \cdot r^{2 n}} \prod_{j} \int_{B(r)}\left|f^{i_{j}}\right|^{2} \\
& \leqq \gamma^{n} \Pi C_{j}^{2} \cdot \frac{(1+r)^{2 \Sigma \nu_{j}} \cdot V_{M}(r)^{n}}{V_{N}(r / 2)^{n} r^{2 n}}
\end{aligned}
$$

where $\nu_{j}>0, j=1, \cdots, n$, satisfy $\gamma\left(f^{i_{j}}\right)<\nu_{j}<\gamma\left(f^{i_{j}}\right)+\varepsilon_{j}$ and $\sum_{j} \nu_{j}<n-n(\alpha-\beta) / 2$. By letting $r \rightarrow \infty$, we have $d f^{i_{1}} \wedge \cdots \wedge d f^{i_{n}}=0$ at o.

The last statement is easily derived from the above argument, since the F is of maximal rank everywhere.

References

[1] Greene, R.E. and Wu, H., Function theory on manifolds which possess a pole. Springer-Verlag, Berlin (1979).
[2] Helgason, S., Differential geometry and symmetric spaces. Acad. Press, New York (1962).
[3] Klingenberg, W., Eine Vorlesung über Differentialgeometrie. Springer-Verlag, Berlin (1973).
[4] Milnor, J., Morse theory. Princeton Univ. Press, Princeton (1963).
[5] Schouten, J. A., Ricci-Calculus. Springer-Verlag, Berlin (1954).
[6] Siu, Y. T. and Yau, S. T., Complete Kähler manifolds with nonpositive curvature
of faster than quadratic decay. Annals of Math., 105 (1977) 225-264.
[7] Wu, H., Some open problems in the study of noncompact Kähler manifolds. Symp. of Geometric Theory of several complex variables at Kyoto. 1978 (manuscription).

Institute of Mathematics
University of Tsukuba
Sakura-mura Niihari-gun
Ibaraki 305 JAPAN

[^0]: Received May 22, 1980

