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ON PROJECTIVE NORMALITY AND DEFINING EQUATIONS

OF A PROJECTIVE CURVE OF GENUS THREE EMBED-
DED BY A COMPLETE LINEAR SYSTEM

By

Masaaki HOMMA

Introduction. Let $\phi_{L}$ : $Cc_{\nu}P^{h^{0}(L)-1}$ be the projective embedding of a complete

non-singular curve $C$ of genus $g$ by means of $\Gamma(L)$ , where $L$ is a very ample

invertible sheaf on $C$ . We will study the homogeneous coordinate ring and the

ideal of definition $I(L)$ of $\phi_{L}(C)$ in the case $g=3$ . Our results are summarized
in the following table. (If the genus of $C$ is less than three, answers to the

same kind of problems are easy.) In the table we will say that the homogeneous

ideal $I(L)$ is generated strictly by its elements of degrees $\nu_{1},$ $\cdots,$ $\nu_{m}$ if $I(L)$ is
generated by its elements of degrees $\nu_{1},$ $\cdots,$ $\nu_{m}$ and $I(L)$ is not generated by its
elements of degrees $\nu_{1},$

$\cdots$ , $\hat{\nu}_{j},$ $\cdots$ , $\nu_{m}$ for any $\nu_{j}(1\leqq j\leqq m)$ , where $\hat{\nu}_{j}$ means that
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Notation and Terminology. We fix an algebraically closed field $K$. We use
the word “curve” to mean a complete non-singular curve over $K$. For a finite
dimensional vector space $V,$ $S^{m}V$ means the m-th symmetric power of $V$. Let
$L$ be an invertible sheaf on a curve $C$ . We denote by $L^{m}$ the m-th tensor product
$L^{\otimes m}$ . For the vector space of global sections $\Gamma(L)$ , we define $I_{m}(L)$ (or simply
$I_{m})$ and $I(L)$ , by

$I_{m}(L)=Ker[S^{m}\Gamma(L)-\Gamma(L^{m})]$

and

$I(L)=\bigoplus_{m\geq 0}I_{m}(L)$ .

We denote by $\omega_{C}$ the canonical invertible sheaf on $C$ , and by Pic $(C)$ the set of
invertible sheaves of degree $d$ on $C$ . For a coherent sheaf $\mathcal{F}$ on $C,$ $h^{i}(\mathcal{F})$ is the
dimension of the vector space $H^{i}(C, \mathcal{F})$ over $K$.

\S 1. Known facts.

This section consists of two parts. In the first part we will state some
general facts concerning our problems. In the second part we will determine
the set of very ample invertible sheaves on a curve of genus three.

Let $L$ be an invertible sheaf on a proiective variety $X$ . According to
Mumford [4], we say that $L$ is normally generated if $L$ is ample and the natural
map $\Gamma(L)^{\otimes m}\rightarrow\Gamma(L^{m})$ is surjective for any positive integer $m$ . Obviously, $\Gamma(L)^{\otimes m}$

$\rightarrow\Gamma(L^{m})$ is surjective for all $m\geqq 1$ if and only if $\Gamma(L^{m})\otimes\Gamma(L)\rightarrow\Gamma(L^{m+1})$ is surjec-

tive for all $m\geqq 1$ . If $X$ is a normal variety and $L$ is normally generated, then
$L$ is very ample and $\phi_{L}(C)$ is projectively normal, and the converse is true too.

The following theorem was proved by Mumford [4, Corollary to Theorem 6].

THEOREM 1.1. Let $L$ be an invertible sheaf of degree $d$ on a curve of genus
$g$ . If $d\geqq 2g+1$ , then $L$ is normally generated.

A proof of the following “Noether’s Theorem” is found in [6].
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THEOREM 1.2. Let $C$ be a curve. Then the following conditions are eqivalent:
(1) $C$ is non-hyperelliptic, and
(2) the canonical sheaf $\omega_{C}$ is normally generated.

Concerning the ideal of definition $I(L)$ of $\phi_{L}(C)$ , Saint-Donat [5] proved,

THEOREM 1.3. Let $L$ be an invertible sheaf of degree $d$ on a curve of genus $g$ .
(a) If $d\geqq 2g+1$ , then $I(L)$ is generated by $I_{2}$ and $I_{3}$ .
(b) If $d\geqq 2g+2$ , then $I(L)$ is generated by $I_{2}$ .

In the previous paper [3], we learned a slight generalization of Theorem 1.3(a):

THEOREM 1.4. If $L$ is a normally generated invertible sheaf on a curve $C$

with $H^{1}(C, L)=(O)$ , then $I(L)$ is generated by $I_{2}$ and $I_{3}$ .

An invertible sheaf $L$ on $C$ is very ample if and only if $\Gamma(L)$ separates two

distinct points and infinitely near points, so we have:

PROPOSITION 1.5. An invertible sheaf on $C$ is very ample if and only if
$h^{0}(C, L(-P-Q))=h^{0}(C, L)-2$

for any $P,$ $Q\in C$ (including the case $P=Q$ ).

A precise proof of Proposition 1.5 can be found in [2, IV Proposition 3.1].

COROLLARY 1.5.1. If $L$ is an invertible sheaf on a curve of genus $g$ , whose
degree is not less than $2g+1$ , then $L$ is very ample.

COROLLARY 1.5.2. An invertible sheaf $L$ of degree $2g$ on a curve $C$ of
genus $g$ is not very ample if and only if $L$ is isomorphic to $\omega_{c}(P+Q)$ for some
points $P,$ $Q\in C$ (may be $P=Q$ ).

The following two propositions are useful to determine the set of very ample
invertible sheaves on a curve of genus three. The first one is “Halphen’s
Theorem” [2, IV Proposition 6.1], and the second one is famous as “Clifford’s
Theorem”.

PROPOSITION 1.6. Let $C$ be a curve of genus $g\geqq 2$ , and let $d$ be an integer.
Then $C$ has a very ample invertible sheaf $L$ of degree $d$ with $h^{1}(L)=0$ if and
only if $d\geqq g+3$ .
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PROPOSITION 1.7. Let $L$ be an invertible sheaf on $C$ with $h^{0}(L)>0$ and
$h^{1}(L)>0$ . Then

$2(h^{0}(L)-1)\leqq\deg L$ .
Furthermore, equality occurs if and only if either $L\cong \mathcal{O}_{C}$ or $L\cong\omega_{C}$ or $C$ is
hyperelliptic and $L\cong(f^{*}\mathcal{O}_{P^{1}}(1))^{\otimes r}(0\leqq r\leqq g-1)$ , where $f:C\rightarrow P^{1}$ is a double covering.

COROLLARY 1.7.1. Let $C$ be a curve of genus $g\geqq 1$ , and let $L$ be an invertible

sheaf on $C$ with $h^{0}(L)>0$ and $h^{1}(L)>0$ . Then

$h^{0}(L)\leqq g$ .
Furthermore, equality occurs if and only if $L\cong\omega_{C}$ .

REMARK 1.8. Let $L$ be an invertible sheaf on a curve of genus $g\leqq 2$ . Then
$L$ is very ample if and only if $\deg L\geqq 2g+1$ .

PROOF. In the case of $g=0$ or 1, our remark can be proved easily. If $g=2$ and
$L$ is very ample, then we have $h^{1}(L)=0$ by Corollary 1.7.1. Therefore our remark
follows from Corollary 1.5.1 and Proposition 1.6.

PROPOSITION 1.9. Let $C$ be a curve of genus three. Then we have,

$\overline{|_{\frac{d=6}{d\geqq 7}}^{\underline{\frac{d}{d\leqq 3}}}\overline{\frac{d=5}{}}\frac{}{Pic^{6}(C)-\{\omega_{c}(P+Q)|P,Q\in C\}}\frac\frac{No_{C}ne.\prime if.Cishypere11iptic\{\omega\},ifCisnon- hypere11iptic}{None}d}$

C.

$\ovalbox{\tt\small REJECT}$

PROOF. In the case of $d\geqq 6$ , our results follows from Corollaries 1.5.1 and
1.5.2. By Halphen’s Theorem there is no very ample invertible sheaf $L$ of degree
$d\leqq 5$ with $h^{1}(L)=0$ . By virtue of Corollary 1.7.1, a possibility of a very ample

invertible sheaf $L$ of degree $d\leqq 5$ with $h^{1}(L)>0$ is only the canonical invertible
sheaf $\omega_{C}$ . On the other hand, $\omega_{C}$ is very ample if and only if $C$ is non-hyper-
elliptic. This completes the proof.
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\S 2. Projective normality.

In this section we will determine the set of normally generated invertible
sheaves on a curve $C$ of genus three. The answer to the same kind of problem

for a curve of genus $g\leqq 2$ is easy. Indeed, by Remark 1.8 and by Theorem 1.1
an invertible sheaf $L$ is normally generated if and only if $L$ is very ample.

In the case of genus three, by Theorem 1.1 an invertible sheaf $L$ is normally

generated if $\deg L\geqq 7$ , and by Theorem 1.2 the canonical invertible sheaf $\omega_{C}$ is
normally generated if $C$ is non-hyperelliptic. Therefore, to show our table it
suffices to prove the following theorem.

THEOREM 2.1. Let $C$ be a curve of genus three, and let $L$ be a very ample
invertible sheaf of degree 6 on C. Then $L$ is normally generated if and only if
$C$ is non-hyperelliptic.

PROOF. (Step 1) First we will show that $L$ is normally generated if and only
if $\phi_{L}(C)$ is not contained any quadric surface in $P^{3}$ . Indeed, $L$ is normally
generated if and only if $\Gamma(L^{m})\otimes\Gamma(L)\rightarrow\Gamma(L^{m+1})$ is surjective for all $m\geqq 1$ . By
the lemma of Castelnuovo [4], these maps are surjective when $m\geqq 2$ . Hence,

$L$ is normally generated,

$\in\Gamma(L)\otimes\Gamma(L)-\Gamma(L^{2})$ is surjective,

$\Leftarrow\ni S^{2}\Gamma(L)-\Gamma(L^{2})$ is surjective.

Since $\dim S^{2}\Gamma(L)=\dim\Gamma(L^{2})$ , these conditions are equivalent to the condition that
$S^{2}\Gamma(L)\rightarrow\Gamma(L^{2})$ is iniective. The last condition means that $\phi_{L}(C)$ is not contained
any quadric surface in $P^{3}$ .

It is well known that a quadric surface in $P^{s}$ is a union of planes (may be
non-reduced) or an irreducible quadric cone, which is a projective cone of a 2-
uple embedding of $P^{1}$ , or a non-singular quadric surface, which is a Segre
embedding of $P^{1}\times P^{1}$ into $P^{3}$ . Obviousely, a union of planes dose not contain
$\phi_{L}(C)$ . In the next step, we will show that an irreducible quadric cone does not
contain $\phi_{L}(C)$ , either.

(Step 2) Let $F$ be an irreducible quadric cone with vertex $O$ in $P^{s}$ . Let

$P^{3}\times P^{2}\supset PF\subset P^{8}\underline{\pi}$

be the monoidal transformation of $F$ with center $0$ . Then $p_{2}|F$ factors through
a 2-uple embedding of $P^{1}$ :
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and then
$F_{\rightarrow P^{1}}^{q}$

coincides with the geometrically ruled surface Proj $(S(\mathcal{O}_{P^{1}}\oplus$

$\mathcal{O}_{P^{1}}(-2)))\rightarrow P^{1}$ [ $2,$ $V(5)$ Example 2.11.4].

If $C_{0}$ is the inverse image $\pi^{-1}(O)$ of $0$ and $f$ is a fibre of $q$ of a point,
then Pic $(F)$ is isomorphic to $ZC_{0}\oplus Zf$. A canonical divisor $K_{F}$ of $F$ is linearly

equivalent to $-2C_{0}-4f$, and the intersection pairing on $F$ is given by

$C_{0}^{2}=-2$ , $C_{0}\cdot f=1$ and $f^{2}=0$ [1, p. 33].

Let $D$ be a curve of genus $g$ on $F$, and let $\tilde{D}$ be the strict transform of $D$

on fl. Assume that $\mathfrak{H}$ is linearly equivalent to $aC_{0}+bf$. Then by the adjunction
formula, we have

$2g-2=-2(a^{2}-ab+b)$ .
If the vertex $0$ lies on $D$ , then $1=D\cdot c_{0}=-2a+b$ . Therefore we have $g=a(a-1)$ ,

so $g$ is even. If the vertex $0$ does not lie on $D$ , then $0=\tilde{D}\cdot C_{0}=-2a+b$ . Therefore
we have $g=(a-1)^{2}$ , so $g$ is a square number. We conclude that any curve of
genus 3 does not lie on $F$.

(Step 3) In this step, we will show that if a curve $C$ of genus 3 and degree

6 in $P^{3}$ lies on a non-singular quadric surface $F$, then $C$ is hyperelliptic.
First, note that

Pic $(F)=Pic(P^{1}\times P^{1})=p_{1}^{*}$Pic $(P^{1})\oplus p^{*}{}_{2}Pic(P^{1})=Z\oplus Z$ ,

where $p_{1}^{*}\mathcal{O}_{P^{1}}(1)$ corresponds to $(1, 0)$ and $p_{2}^{*}\mathcal{O}_{P^{1}}(1)$ corresponds to $(0,1)$ . Obviously,

a canonical divisor $K_{F}$ corresponds to $(-2, -2)$ , and a hyperplane section on $F$

corresponds to $(1, 1)$ . The intersection pairing on $F$ is given by $D\cdot D^{\prime}=ab^{\prime}+ba^{\prime}$

for two divisors $D$ and $D^{\prime}$ corresponding to $(a, b)$ and $(a^{\prime}, b^{\prime})$ respectively.

Assume that $C$ corresponds to $(a, b)$ . Then we have

$6=\deg_{P^{3}}C=(C\cdot H)_{P^{3}}=(C\cdot H|_{F})_{F}=a+b$ ,

where $H$ is a hyperplane of $P^{3}$ , and

2 $\cdot$ $3-2=C\cdot(C+K_{F})=2ab-2a-2b$ .
Hence, we have “ $a=4,$ $b=2$ ’ or “ $a=2,$ $b=4’$ . Since $F=P^{1}\times P^{1}$ , we may assume
that $C$ corresponds to $(4, 2)$ Consider the diagram:
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$p_{1}$

$C\subset F=P^{1}\times P^{1}-P^{1}$ .

If $f:C\rightarrow P^{1}$ is defined by the restriction of $p_{1}$ to $C$ , then $f$ is surjective and then

$\deg f=\deg f^{*}\mathcal{O}_{P^{1}}(1)=\deg p_{1}^{*}o_{P^{1}}(1)|C=2$ .

Therefore $C$ is hyperelliptic.
(Step 4) The final step, for a given hyperelliptic curve $C$ of genus 3 and a

given very ample invertible sheaf $L$ of degree 6 on $C$ , we construct a non-singular

quadric surface in $P^{3}$ containing $\phi_{L}(C)$ .
Since $C$ is hyperelliptic, there is a morphism $f:C\rightarrow P^{1}$ of degree 2. We put

$M_{0}=f^{*}\mathcal{O}_{P^{1}}(1)$ , and $M=L\otimes M_{0}^{-1}$ . Then the canonical map

$(\#)$ $\Gamma(M)\otimes\Gamma(M_{0})-\Gamma(L)$

is an isomorphism. To prove this, note that $\Gamma(M_{0})$ is a base point free pencil.
By the “base point free pencil trick” [6], we have an isomorphism $Ker[\Gamma(M)$

$\otimes\Gamma(M_{0})\rightarrow\Gamma(L)]\cong\Gamma(M\otimes M_{0}^{-1})$ . Assume that $\Gamma(M\otimes M_{0}^{-1})\neq(0)$ . Then there are
two points $P$ and $Q$ on $C$ such that $M\otimes M_{0}^{-1}\cong \mathcal{O}_{C}(P+Q)$ . Hence $L\cong M_{0}^{2}(P+Q)$

$\cong\omega_{C}(P+Q)$ . This contradicts the very ampleness of $L$ . Therefore the map $(\#)$

is injective. On the other hand, $\dim\Gamma(M)\otimes\Gamma(M_{0})=\dim\Gamma(L)$ , so the map $(\#)$ is
an isomorphism. By the isomorphism $(\#)$ we obtain the following commutative
diagram:

Segre embedding

This completes our proof.

\S 3. Defining equations.

In this section we will study the homogeneous ideal $I(L)$ for a curve of
genus $g\leqq 3$ with a very ample invertible sheaf $L$ .

REMARK 3.1. Let $C$ be a curve of genus $g\leqq 2$ , and let $L$ be a very ample

invertible sheaf of degree $d$ on $C$ .
(a) If $d\geqq 2g+2$ , then $I(L)$ is generated strictly by $I_{2}$ .
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(b) If $g=2$ and $d=5(=2g+\cdot 1)$ , then $I(L)$ is generated strictly by $I_{2}$ and $I_{3}$ .
(C) If $g=l$ and $d=3(=2g+1)$ , then $I(L)$ is generated strictly by $I_{3}$ .
(d) If $g=0$ and $d=1(=2g+1)$ , then $I(L)=(O)$ .
A proof of this remark is easy, so we omit it.

THEOREM 3.2. Let $L$ be a very ample invertible sheal of degree $d$ on a
curve $C$ of genus three.

(a) If $d\geqq 8$ , then $I(L)$ is generated strictly by $I_{2}$ .
(b) If $d=7$ , then $I(L)$ is generated strictly by $I_{2}$ and $I_{3}$ .
(c) If $C$ is non-hyperelliptic and $d=6$ , then $I(L)$ is generated strictly by $I_{3}$ .
(d) If $C$ is non-hyperelliptic and $L=\omega_{C}$ , then $I(\omega_{C})$ is generated strictly by $I_{4}$ .

PROOF. (a) It is a special case of Theorem 1.3 (b).

(b) By Theorem 1.3 (a), $I(L)$ is generated by $I_{2}$ and $I_{3}$ . Assume that $I(L)$

is generated by $I_{2}$ . Since $\dim I_{2}(L)=3,$ $\phi_{L}(C)$ is a complete intersections of three
quadric hypersurfaces in $P^{4}$ . Therefore we have $\deg_{P^{4}}\phi_{L}(C)=8$ . This contradicts
the fact $\deg L=7$ .

(c) By Theorem 1.4, $I(L)$ is generated by $I_{2}$ and $I_{3}$ . On the other hand, by

the proof of Theorem 2.1 we have $I_{2}(L)=(0)$ .
(d) It is well known that $\phi_{\omega}c(C)$ is plane quartic.

Q. E. D.

By this theorem, to show our table it suffices to prove the following theorem.

THEOREM 3.3. Let $L$ be a very ample invertible sheaf of degree 6 on a
hyperelliptic curve $C$ of genus 3. Then $I(L)$ is generated strictly by $I_{2}$ and $I_{4}$ .

A proof of the theorem will be given at the last part of this section.
Let $M_{1},$

$\cdots,$
$M_{r}$ be invertible sheaves on a projective variety. $\ovalbox{\tt\small REJECT}(M_{1}, \cdots , M_{r})$

denotes the kernel of the canonical map:

$\Gamma(M_{1})\otimes\cdots\otimes\Gamma(M_{r})-\Gamma(M_{1}\otimes\cdots\otimes M_{r})$ .

LEMMA 3.4. Let $L$ be an ample invertible sheaf on a projective variety, and
let $m$ be a positive integer greater than 1. Assume that

$\Gamma(L)^{\otimes(m-1)}-\Gamma(L^{m-1})$

and
$\Gamma(L)^{\otimes m}-\Gamma(L^{m})$

are surjective. Then
$\Gamma(L)\otimes 9t(L^{m-1}, L)-R(L^{m}, L)$
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is surjective if and only if
$I_{m}(L)\otimes\Gamma(L)-I_{m+1}(L)$

is surjective.

DEFINITION 3.5. (1) Let $X$ be a normal closed subuariety of $P^{N}$ , and let

$R(X)=\bigoplus_{i=0}^{\infty}R(X)_{i}$ be the homogeneous coordinate ring of X. $\tilde{R(X)}$ denotes the

normalization of $R(X)$ . It is well known that $\tilde{R(X)}$ is a graded ring too. We
can define the non-negative integer $n(X\subset P^{N})$ by

$n(X\subset P^{N})={\rm Min}$ { $n\in N|\tilde{R(X)_{i}}=R(X)_{i}$ for all $i\geqq n$}.

(2) Let $L$ be a very ample invertible sheaf on the normal projective variety
X. We define the non-negative integer $n(L)$ by

$n(L)=n(x^{\phi_{L}}=P^{h^{0}(L)-1})$ .

It is easy to show that

$n(L)={\rm Min}$ { $n\in N|\Gamma(L)^{\otimes i}\rightarrow\Gamma(L^{i})$ is surjective for all $i\geqq n$}.

COROLLARY 3.6. Let $L$ be a very ample invertible sheaf on an n-dimensional
projective va riety X. Assume that $H^{i}(X, L^{j})=(0)$ for any integers $i,$ $j>0$ . If
$\alpha={\rm Max}(n+3, n(L)+1)$ , then $I(L)$ is generated by $I_{2},$ $\cdots$ , $I_{\alpha}$ .

The proofs of Lemma 3.4 and Corollary 3.6 are similar to those of [3, Pro-
position 1.2 and Corollary 1.3].

Next, we will calculate $n(L)$ for a very ample invertible sheaf $L$ of degree
6 on a hyperelliptic curve of genus 3.

PROPOSITION 3.7. Let $L$ be a very ample invertible sheaf of degree 6 on a
$\beta_{m}$

hyperelliptic curve $C$ of genus 3. Then $\Gamma(L)^{\otimes m}-\Gamma(L^{m})$ is surjective for all
$m\geqq 3,$ $i$ . $e.,$ $n(L)=3$ .

PROOF.(*) We prove the surjectivity of $\beta_{m}$ : $\Gamma(L)^{\otimes m}\rightarrow\Gamma(L^{m})(m\geqq 3)$ by induc-
tion on $m$ . For a given $m\geqq 3$ , we consider the following commutative diagram:

(’) The author expresses his heartfelt thanks to the referee for a valuable sugges $\cdot$

tion, which simplified the proof.
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$\Gamma(L)^{\emptyset(m+1)}\underline{-\beta_{m}\otimes 1}--\Gamma(L^{m})\otimes\Gamma(L)$

By the induction hypothesis $\beta_{m}$ is surjective, and also $\beta_{m}\otimes 1$ is surjective. By
the lemma of Castelnuvo $\gamma_{m}$ is suriective, and also $\beta_{m+1}$ is surjective. Therefore,
to prove our assertion, it suffices to prove the surjectivity of $\beta_{3}$ . By Step 4 in
the proof of Theorem 2.1, there is an irreducible quadric surface $Q$ in $P^{3}$ contain-
ing $\phi_{L}(C)$ . The curve $\phi_{L}(C)$ can not be contained in a quadric surface other
than $Q$ , because $\phi_{L}(C)$ is not contained in any $P^{2}$ and $\deg\phi_{L}(C)=6$ . Hence we
have $I_{2}(L)=K\cdot q$, where $q$ is a quadratic form defining the quadric surface $Q$ . If
$\phi_{L}(C)$ is contained in an irreducible cubic surface $H$, then $\phi_{L}(C)$ coincides with
the complete intersection $Q\cap H$, because $\phi_{L}(C)$ and $Q\cap H$ have degree 6. But
the genus of a curve which is a complete intersection of surfaces of degrees 2
and 3 is equal to 4. This is a contradiction. Therefore, we have $ I_{3}(L)=K\cdot q\copyright s_{1}\oplus$

$\oplus K\cdot q\copyright s_{4}$ , where $\{s_{1}, \cdots s_{4}\}$ is a basis of $\Gamma(L)$ and the symbel \copyright means a
symmetric product. Consider the exact sequence

$0-I_{3}(L)-S^{3}\Gamma(L)\Gamma(L^{3})\underline{\beta_{3}}$ .
The left hand vector space has dimension 4 by the above result, the middle
vector space has dimension 20, and right hand vector space has dimension 16
by the theorem of Riemann-Roch. So we conclude that $\beta_{3}$ is suriective.

Q. E. D.

PROOF OF THEOREM 3.3. By Corollary 3.6 and Proposition 3.7, $I(L)$ is
generated by $I_{2},$ $I_{3}$ and $I_{4}$ . By the proof of Proposition 3.7, $I_{2}=K\cdot q$ and
$I_{3}=K\cdot q\copyright s_{1}\oplus\cdots\oplus K\cdot q\copyright s_{4}$ . Therefore, $I(L)$ is generated by $I_{2}$ and $I_{4}$ . Obviously,
$I_{2}$ does not generate $I(L)$ . This completes the proof.
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