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ON A CLASSIFICATION OF AROSZAJN TREES
By
Masazumi HANAZAWA

§1. Introduction.

In their paper [5], Devlin and Shelah introduced new concepts on w,-trees
to characterize certain topological concepts on w;-trees. These are almost-Souslin
trees and w,-trees with property 7. The concept of w,-trees with club (closed
unbounded) antichains also has been stated there. Souslin trees and special
Aronszajn trees are famous concepts on w;-trees. If we assume V=L, every
concept on w,-trees treated in is equivalent to one of the above in the sequal
as shown there (In particular, an w;-tree T is a normal space under the tree
topology iff it has property 7, if V=L holds. In this connection, if we would
study a classification of Aronszajn trees without assuming V=L, it might be
natural to consider the normality instead of property 7, since the class of w;-
trees with property 7 is just the intersection of the class of almost-Souslin trees
and the class of normal w;-trees; see the proof of Theorem 4.2 there). Recalling
that the special Aronszajn trees are just the @Q-embeddable w;-trees, we deal with
also the concept of R-embeddable w,-trees in this paper.

Now by these concepts we can classify Aronszajn trees into several categories.
Our purpose is to check the non-voidness of each of these categories assuming
V=L.

The particular knowledge on w,-trees could be obtained from [2], or [5]
The familiarity of the properties of & and O* given in and may be
helpful.

§ 2. Preliminaries.

We adopt the notations and conventions of current set theory. In particular
an ordinal is the set of its predecessors, lower case Greek letters are used to
denote ordinals, cardinals are initial ordinals, w is the first infinite ordinal and
hence the set of natural numbers and w, is the first uncountable ordinal. The
cardinality of X is denoted by |X|. A set ESw, is stationary iff ENC+0 for
every closed unbounded (club) set CSw,. When X is a subset of the domain of
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a function f€ B4 (C{R: RS BxA}), we denote {f(x): x€X} by f[X1.

A tree is a poset T, <r such that for every x&T, the set £={yeT: y<gpx}
is well-ordered by <r. The order-type of £ under <7 is the height of xin T,
ht (x). The a-th level of T is the set T,={x€T: ht (x)=a}. We set T | a=
\Ug<aT s, which is also a tree with the ordering <7. Define T [ C=U,ecTa If
XCT, X! a stands for XN\T | «. The height of T, ht(7), is the least a such
that T.=0. A branch of T is a maximal chain of 7. If a branch has order-
type a, it is called an a-branch. A subset X of T will be called unbounded in
T iff {ht(x): x€ X} is unbounded in ht(7). An antichain of T is a pairwise
incomparable subset of 7. A subset 7’ of T is called a subtree of T if 2&T’
for all xeT".

An w-tree is a tree T such that:

(i) ht(M)=cw;;

(ii) (Va<o)[|T.|=wl;

(i) (Ya<B<o)(VxeT)@y, 1Ty #y: & x<ry: & x<ry:l;

(iv) (Va<w)(Vx, yeTHlUim (@)—[x=ye£=71].

A subset X of an w,-tree will be called stationary (resp. club) iff {ht (x): x€ X}
is stationary (resp. club) in o,

Let T be an w,-tree. If a, beT, a<rb, we set:

[a, bJ={x=T:a<rx=rb}(a closed interval);

(a, b]={x€T : a<rx=rb};

(a, b)={x€T : a<rx<rb}(an open interval).

We make T into a topological space by taking as an open basis all sets of the
form (a, b) for a<zb and all sets of the form [0, a) for a€T. This topology
is the tree topology on T. Notice that (a, b] is an oren set in this topolegy.

We shall also use the following constants:

R={a<w;:lim(a)};

Q=the set of rational numbers;

R=the set of real numbers;

©&=the set of all stationary subsets of w;;

€=the set of all club subsets of w,;

izUa<wIRa+l .

We shall use the set € as a tree by defining x<ryy by xCy. {£0, 0>} is one
of the minimal elements of the tree . We denote it by Or.

An Aronszajn tree is an w,-tree with no w,-branch. A Souslin tree is an
w;-tree with no uncountable antichain. An Aronszajn tree is special if it is the
union of a countable collection of antichains. An ;-tree is an almost-Souslin
tree iff it has no stationary antichain. An w,-tree T has property 7 iff, when-
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ever X is an antichain of T, there is a club set CSw; such that T\7T [ C con-
tains a closed neighborhood of X. A tree T is called R-embeddable iff there is
e:T—R such that x<ry—e(x)<e(y). Q-embeddability is defined similarly.
We set:
ST=the class of Souslin trees;
rST=the class of w,-trees with property 7;
AST=the class of almost-Souslin trees;
NCA=the class of w,-trees with no club antichain;
SAT=the class of special Aronszajn trees;
RE=the class of R-embeddable w,-trees;
AT=the class of Aronszajn trees.
The following are clear and/or famous facts:

ProproSITION 1. (1) ST<SySTSASTSNCA,

(ii) SATSRECAT,

(iliy STSAT,

(iv) ASTNSAT=0,

(v) STNRE=0.

Thus we obtain a classification of AT as shown by the following diagram :

T — R
—— AST )
9 )

e ST 10 11
RE
3 7 8

' s

The purpose of this paper is to check that these eleven categories are all non-
void under the hypothesis V=L. It will be done in the next section.

It needs some more preparations for the next section. First we expand the
principles <& and .

g is the principle that asserts the existence of a sequence {Z, : a <w,> such
that :

(1) whenever T is an w,-tree which is a subtree of ¥ (an w;-subtree of I,

for short) and XCT, {a<w,: X|a=27,}S;

(2) whenever T is an w,;-subtree of ¥ and e is a function: T—R, {a<w;:
e (Tla)=2Z,}€6;

3) (VSCw){a<w;: SNa=Z,} =&].
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PROPOSITION 2. O« 4.

PrOOF. We shall show the non-trivial arrow. Recall that < asserts that
there is a sequence <S,: a<w,) such that S,Sa and (VYSCw,)[{a: SNna=S.} €&].
Assume . Since ¢ implies CH, |Z|=|U 0w, R* =0, X(2*)*|=w, and also
| RXZ¥ | =w,. Hence there exists a bijection b: TI(RXT)Jow,—w,. Let{S.: a<wy
be a O-sequence. Put Z,=b7'[S.]. We show that (Z,: a<w,> is a {g-sequence.
To check (1), let T be an w;-subtree of ¥ and let XCT. Put C;={1€£2:
(VxeT ! A[b(x)<A]}. Then C,e€, since T is an w;-tree (that means in particular
that T | « is countable for every a<w,). Put C,={2€2:{VxeT)[b(x)<i—
xeT } 2]}. Clearly C,e€. Put E,=Con\CiN{a: b[XINa=S.}. Then E,€6,
since {a:b[X]Nna=S.} . If 2€E,, then b[X | JCAN[X]=S; and b~*[S:]
=b"[AN[X]JICXNT | ==X ' 2. Thus {a<w,: X I a=Z,} contains the station-
ary set E,. To check (2), let eeR?. Put C,={1€Q:(VxeT ! HLb( e(x), x))
<A e6. Put C,;={Ac2: (Vx=T)[b( e(x), xD)<A—x&T [ 2]} €. Then it can
be shown similarly that the set {@a<w,:e ! (T | )=Z,} contains the stationary
set ConCin{a: blelna=S,}. We can check (3) similarly.

Let O¥ be the principle which asserts that there is a sequence {{W¢{:i<w}:
a<w;) such that:

(1) whenever T is an w;-subtree of T and XCT, {a<w,: X | a=WY¢ for
some 1} contains a club set;

(2) whenever T is an w,-subtree of ¥ and e=RT, {a<w;: e (T | a)=W¥
for some 7} contains a club set;

) (VScw){a<w,: SNna=W¢ for some i<w} contains a club set].

Then we obtain the following by the same argument :

PROPOSITION 3. O*eOF,
Next we define a subtree Tz of T by the following :

Tr={x€T: (Va, pedom (x))[a<f—x(a)<x(B)]} .

Note that the ordinal ht (x) is the maximum element of dom (x) for any x&X.
For x=%y we denote x(ht(x)) by m(x). This function m clearly embeds T in
R. So % is an R-embeddable tree and hence the following holds:

PROPOSITION 4. If T is an w,-subtree of Ty, then TERE.
§3. Non-voidness of each of the categories.

The existence of a Souslin tree under V=L is first proved by R.B. Jensen.
The proof of the famous following theorem can be seen in [4].
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THEOREM 1 (). There is a Souslin tree.

Devlin and Shelah virtually showed the following (See Lemma 4.3 and its

proof in [5]):

THEOREM 2 (). There is an Aronszajn tree with property y which 1is
neither Souslin nor R-embeddable.

Devlin and Shelah virtually showed the following (See Theorem 4.4 and its

proof in [5]):

THEOREM 3 (O*). There is an R-embeddable, almost-Souslin tree which has
not property 7.

The following is also pointed out by Devlin and Shelah (See §5 of [G)):

THEOREM 4 (O). There is a special Aronszajn tree with no club antichain.
THEOREM 5. There is a special Aronszajn tree with club antichains.

PRrROOF. This is essentially a well-known construction of TSAT. We need
only a trivial care to guarantee T& NCA here. We define an w,-subtree T of
Zr by induction on levels. The construction is carried out to ensure that T
satisfies the following condition :

(1) if a<f<w, and x&T, and 0<¢<Q, there is a y=Tj such that x<ry
& m(y)=m(x)+q.

We set:

To={0r} ;

Toni={xV{{g, a+D}: xeT, & mx)<qe@} .

Let 4 be a limit ordinal. To define T, with each x€T [ 4 and each
geQN(0, o0), associate an increasing sequence x<zx,<zpx; <7 <rpx,<g - such
that x,€7T [ 2 and lim,<,ht (x,)=2 and lim,..m(x,)=m(x)+q. (This is possible
by (1)). Set:

ti(x, =Uncox,\J {<m(x)+q, D} ;

Ti={tix, ¢): x€T 12 & 0<q=qQ} .

Then T=U<,,T: is a @-embeddable w,-tree and hence T=SAT (it is known
that TeSAT iff T is Q-embeddable for an w;-tree T ; see e.g. [4]). Besides
the set {f:(0r, 1): A= £} is a club antichain, q.e.d.
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THEOREM 6 (O*). There is an R-embeddable w,-tree with property 7.

PROOF. We define an w,-subtree T of T by induction on the levels. The
construction is carried out to ensure that 7 satisfies the following condition :
(1) if a<fB<w, and x&T, and ¢>0, then there is a y=T; such that
x<ry and m(y)<m(x)+q.
Let <{{W3: n<w} : a<w,> be a $¥-sequence.
We set:
Ty={0r} :

Ton={xV{{g, a+D}; xeT, & ¢q€Qn(m(x), 1)} .

Suppose lim (). We shall define T';. Fix an increasing sequence <{4,: n<w)
confinal in 4. For each xT | 4 and each ¢q=@QN\(m(x), 1), we pick inductively
Xa, x¥€T | 2 and ¢,€R for n<w so that the following hold:

(@) xo=x & ¢go=¢;

(b) if W2 is an antichainof T [ 2and AyeT I Ax.<rysWi & m(y)<q.],
then x,<rx¥eWi & m(x¥)<qgr & quri=(g@+m(x¥))/2;

otherwise, x,<rx% & m(x¥)<(M(x2)+92)/2 & qni1i=m(xa)+¢2)/2;
(€) x¥<rxnu & A<ht(xn41) & M(xns) <Gnsr
And put:

tx(X, q>:Un<wxnU{<San<wm(xn), 2>} .
We set:

Tr={txx, @: x€T | 4, q€Q@N(m(x), 1)} .
The following are immediate from the definition of #;(x, ¢):
(d) m(ti(x, P)=¢n1<q=¢q;
(e) if W3 is an antichainof 7 [ 2and @yeT [ Alx.<rysWi & m(y)<q.],
then @y <rt:(x, HLyesWil;
(f) if W2 is an antichain of 7 [ 4 and xf< W4, then
VyeWi)lx.<ry—q=m(y)] & m(t:(x, @)<(m(x.)+q)/2.

Now we shall show that T=\Ua<e,T« is as required. 7T is obviously an R-
embeddable w,-tree. To show Te<yST, let X be an antichain of T. Define
C,=€ by the following:

Co={2€2: (VxeT ' HVqeQN(m(x), D)Ly X)[x<ry
& m(»)<q]l—-Qye X ' Ax<ry & m(y)<qll}.

Take C,=€ so that:
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C,e{A€Q: X [ A==W2% for some n<w}.

Put C=C,nC,=6. Note that X\T | C=0 (Proof: Suppose we X"\T | C. Then
for some A€C and some x<7T | 1 and some g QU (m(x), 1), w=t,;(x, ¢) and for
some n<w, X | A==W4%. Since x,<rw and m(w)<g, (see (d)), AyeX)[x.<ry &
m(y)<gqy]. This implies FyeX | Alx.<ry & m(y)<qg,] since A€C, Since
X | 2=W4%, we obtain @y’ <;w)[y’€W4] (see (e)), which means that the antichain
X contains comparable elements, i.e. y’ and w; a contradiction, q.e.d.).

We shall give disjoint open sets U and V such that XCU and T | CCV.

(I) Definition of U. Let <4,:v<w,> be the monotone enumeration of CU {0}.
For each v<wj, let <x%: n<w) be a one-to-one enumeration of X\ (T | 4,+:\T | 4.
Pick y%,&€T ! 2,+,\T I 4, by induction on n so that the following hold :

(8 yn<lerxn;

) (%, x2INUicn(y%, x7]=0.

(This is possible since XN\T ! C=0 and X is an antichain). Then {(y¥%, x%]:
v<w; & n<w} is a family of pairwise disjoint open sets and x%e(y%, x%7].
Let 2% be the <-least element of :

{z=rxy : (m(yn)+m(xn)/2<m(2)} .

Notice that ht(z7)& 2 (note that whenever ht(x)e®Q, m(x)=sup {m(y): y<rx}
by the construction). Hence [z%, x%] is an open nbd of x%. Now put:

U:Uy<m1Un<w[z¥u -xl;z:l( —D;X) .

(II) Definition of V. Let weT | C. We first define its open nbd (w’, wl.
Put A=ht (w). There is an m<w such that X [ z=W?%,. By the definition of T,
there are xeT [ 2 and ¢=QN\(m(x), 1) such that w=t,(x, g). Let x and ¢ be
one of such pairs. We define an element w’<,w as follows (for the notation,
refer to the construction of #;(x, q)):

Case 1: xxeW?3. Put w'=xX.

Case 2: xhaeWh & (xm, wINU=0. Put w =1x,.

Case 3: x%a&Wh & (xp, wlNU+#0. Pick an interval [2%, x%] such that
(xm, wIN[2%, x%]#0 and put w’=the < -least element of (x,, wl\[2, x¥.

Claim. (w’, w]N\U=0.

PROOF. Suppose that w’ has been defined in Case 1. Then w'=x%Xec W4
=X [21=X. Note that X is an antichain and US {y: y<rx for some x< X}.
So {z:w'<rz} "U=0 which implies the assertion. If w’ has been defined in
Case 2, it is trivial. Suppose w’” has been defined in Case 3. Then w’&(x,, wl\
[z, x%]. Suppose (w’, w]NU=#0. Then we would be able to take an interval
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Czg, x#] such that (w’, wiN[z%, x¢1#0. Clearly x,<rpx% and x¢<T | A=W4.
By (f), gn=m(x%), gn=m(x#) and m(w)<(m(xm)+qn)/2. On the other hand,
(m(y§)+m(x§))/2<m(zf). Let ve(w’, wiNnlzf, x#]. Then (m(y§)+gn)/2=m(zf)
=m(v)=m(w)<(m(xp)+qgn)/2. It follows that y¥<rx,, since y#, xn<rx#. By
the same argument, y%, <rx,. Hence x,&(y¥, x#1N(y%, x%]; this is absurd since
x#, x% are clearly different and the elements of {(y¥, x¥]:v<w, & i<w} are
pairwise disjoint, q. e. d.
Now put:
V=U{w’, wl: weT | C}.

Obviously by the claim, VNU=% and T [ CCV, q.e.d.

THEOREM 7 (). There is an R-embeddable w,-tree which has no club antichain

and is neither almost-Souslin nor special Aronszajn.

ProoF. (If we assume O, such a tree can be easily obtained: for instance,
a direct union of T, RENAST (see or 6) and T,=SATNCA (see
Theorem 4)). Let (Z,:a<w,> be a {s-sequence. We define an w,-subtree T
of T by induction on the levels. As we define T, for A€ £, we shall also define
a (singleton or void) subset A; of T; so that A=\U{A4;: 1=} is a stationary
antichain of 7. The construction is carried out to ensure that 7 satisfies the
following condition :

1) if a<pf<w, and x€T, and g=€QN\(m(x), 2), there is a y&T; such that
x<ry, (x, yYINA=0 and m(y)<q.

We set:

Ty={07} ;

Ton={xV{q, a+D}: x€T, & q=QN(in(x), 2)}.

Let A=f2. We shall define T,;. Fix a sequence {1,:n<w) such that
SUpp<uoin=A. For each x&T [ 41 and each ¢g=QnN(m(x), 2), we pick x,=T [ 1
inductively for n<w so that the following hold:

(a) if Z; is an antichain of T [ 2 and 3yeT [ Dx<.yeZ; & (x, yIJNA
=0 & m(y)<q], then x<rx,€Z; & (x, x,JN\A=0 & m(x,)<q;

otherwise, x,=x;

(b) put g*=(m(x0)+q)/2;

©) xa<rXni1 & 2a<ht (xns) & (X5, Xn:i JNA=0 & m(xn41)<g*.

And we put:

ta(x, @=Un<wXxaJ {{SUprcam(xs), A} .

Case 1: If Z; is not an embedding: T [ A—QN[0, 1), then we set:
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Ti={t:(x, 9:x€T |2 & geQN(m(x), 2)} .

Case 2: If Z; is an embedding: T [ A—QN[0, 1), we need more preliminaries
to define T;. Let <g,:n<w) be an enumeration of all elements of Q@(0, 1).
We pick y,, yv5T | 2 and r,= R inductively for n<w as follows:

(d) »=0r & r,=1;

() if @yeT [ Ay<ry & Zi(y)=¢. & m(y)<r,], then y,<ry% &
Zi(y)=aqn & m(yDN<rs;

otherwise, y5¥=y.;

) YE<ryne1 & 2n=ht (Yosn) & M(Yne))<ra;

(g) 7’n+1':(7n(.y‘n.+1)"l_'rn)/z-
And we put:

U :Un<wynu {<Supn<wm(yn)’ '2>} .
Now we set:

Ti={u}\Vi{tx(x, 9: x€T [ 2 & q=QN(m(x), 2)} .
Note that (x, t:(x, 99JNA | 2z=0. For A€ we put:
0 if Z; is an antichain of T [ 4,
:{ {t2007, 1)} otherwise.

Clearly T | (A+1) satisfies (1). (Although ¢;(07, 1) is put in A, we can easily
find x such that (0Or, #;(x, 9)J"N\A=0).
We shall show that T=\U,<.,T« is as required. Clearly T RE.

Claim 1. Te&AST

PROOF. Put E={AsQ:Z, is not an antichain of T ['A}. Clearly Ec®.
Since (0r, ;(07, )IJNA ' 2=0 for all 2 E, A=\;egA; is an antichain of T.
{ht(x): xe A}=FE. Thus A is a stationary antichain.

Claim 2. TeNCA.

PROOF. Suppose that there were a club antichain X. Put:
C={2€2:(VxeT [ DNVqeQN\(m(x), 2)[(AyeT)[x<ryes X
& (x, yINA=0 & m(»)<ql—@yeT [ D[x<ryEX &
(x, YINA=0 & m(»)<q]l}.

Clearly C=€. Since {a: X 'a=Z,} =&, we can pick a 1eCni{ht(x): x€X}
such that X [21=Z;. Then XNT;+#0 and Z; is an antichain of 7 ' 1. Since
Z, is not an embedding: T | A—Q, T; is of the form {t;(x,¢q):x=T 1 &
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g=Qn(m(x), 2)}. Pick ti(x, 9 XNT,. Since (x, ta(x, ¢@JNA=0 (note that
(07, )e A iff Z; is not an antichain of T1A) and x<giti(x, 99X and
m(ti(x, )=<g*<q and AC, it holds that ye X [ D[x<ry & (x, yINA=0 &
m(y)<ql. Since X | 2=Z;, by (@), x<rx,€Z;CX. This means that an antichain
X contains comparable elements x,, £2(x, ¢); a contradiction.

Claim 3. T« SAT.

PROOF. Suppose that there were a Q-embedding e: T-QN[0, 1). Put:
C={1€2: Vg, reQWxeT [ DAyeD)x<ry & m(y)<g &
e(y)=r—@yeT  D[x<ry & m(y)<q & e(y)=r]l}.
Clearly Ce6. Since {1€R:e (T 1A)=Z;} €S, we can pick 2€C such that
e (T ' )=2Z;. Since Z; is an embedding: T 2—Q, u;=T,;. Pick n so that
gn=ce(u;) (€QN0, 1)). Let {y;:1<wy be the sequence that was used to define
u;. Then y,<rpuz & e(u))=¢n & MU=V n+1<Vn. Since A=(, it implies that

@AyeT [ D yn<ry & m(y)<r. & e(y)=gn]. Since e [ (T [ H=2Z;, by (e), Z:(y%)=4x-
Thus e(y¥)=g,=e(u;) & y%<ru,; This is absurd since e is a @-embedding.

is thus proved.

THEOREM 8 (). There is an R-embeddable w,-tree with club antichains which

is not special Aronszajn.

PrROOF. A slight modification of the proof of The construction
of T, an w,-subtree of T p, is carried out to ensure that T satisfies the following

condition :
(1) if a<f<w, and x=T, and gEQN(m(x), 2), there is a y€Ts such that

x<ry & m(y)=q.
Let <Z,: a<w,> be a {g-sequence.
We set:

To=1{07} ;
Ton={x\J{{g at+D}: xe€T, & q=QN(m(x), 2)} .

Let 1=£2. With each x€T ' 2 and each g=@QN\(m(x), 2), we associate a
sequence {x,: n<w) such that:

Xo=x & x2<7Xpn1E€ET [ 2 & limuc, ht (x,)=24 & limyc,m(x,)=¢q.

And we put:
tl(xy (1):Un<wxnu {<q.v Z>} .
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Case 1. If Z, is not an embedding: T | A—@Q, then we set:
Ti={ti(x, 9: x€T [ 2 & g=(m(x), 2)} .

Case 2. If Z, is an embedding: T [ A—Q, we need preliminaries to define
T;. Let {g::i<w) be an enumeration of all elements of QN\(0, 1). Let <4;:i<w)
be a sequence of ordinals such that sup<.Ai=A4. Pick ya, y¥eT 2 and 7,€R
inductively for n<w so that the following hold:

(@) y,=07 & r,=1;

() if AyeT I Ay<ry & Z:()=¢x & m(y<r,], then y.<ry% &
Z:(y¥)=qn & (m(y¥)<rs;

otherwise, y5=1yn;

(© yi<rYnr1 & A=ht (yns1) & M(Yn+) <Vn}

(@) 7os1=n(yn+1)+72)/2.

Put u;=Uncoyn {{SUPr<om(ya), £}. We set:

Ti={u}\I{t:(x, 9: x€T [ 2 & QN (m(x), 2)} .
The tree T=U{T,: a<w,} is as required. Clearly TeRE. It is easily
checked that the set {x=T:m(x)=1} is a club antichain. T<&SAT can be

proved by the same argument as in the proof of T&SAT in the proof of
[Theorem 7, q.e.d.

THEOREM 9 (O¥).  There is an almost-Souslin, Aronszajn tree which is not
R-embeddable and has not property 7.

PrROOF. By %, we can obtain Ty, RENAST\yST from [Theorem 3. Let
T,€ST. We may assume T,N\T,=0. Put T=T,UT,; and define an ordering
<pon T by x<rpyelx, yeT, & x<y in T,JV[x, y&T, & x<y in T,]. lItis
easily checked that the tree T is as required, q.e.d.

THEOREM 10 (). There is an Aronszajn tree which contains no club antichain
and is neither almost-Souslin nor R-embeddable.

PrROOF. Let T, NCANRE\AST (see or7). Let T,€ST. Define
T from T, and T, in the same way as in the proof of The tree T
is obviously as required.

THEOREM 11 (). There is an Araonszajn tree which contains a club antichain
and 1s not R-embeddable.

PrROOF. Let T, RE\NCA (see and T,=ST. Then the tree T
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obtained from T, and T, in the same way as in the proof of is as
required.

§4. Remarks.

An Aronszajn tree T is called non-Souslin if every uncountable subset of T
contains an uncountable antichain (see [1]). This property follows from R-
embeddability. But J. E. Baumgartner has announced that the converse is not
true, in [Theorem 2 in in the following form :

If V=L[A] for some ASw,, then there are non-Souslin trees which are not
R-embeddable.

This property is also interesting. Unfortunately we have not obtained positive
results about it.

For x=T, let T, mean the w,-tree {yeT: x=<,y} with <,. In connection
with [Theorem 9, 10 and 11, we could show the following, although they might
be less interesting :

(1) @TeAT)VxeT)[T,c AST\(RE\JrST)];
(2) @TeATYVxeT)[T, NCA\(ASTRE)];
3) @TeAT)VxeT) [ T,« NCARE].
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