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ORTHOCOMPACTNESS OF INVERSE LIMITS
AND PRODUCTS

By

Yasushi AOKI

Introduction. A topological space is said to be orthocompact if every open
cover has an interior-preserving open refinement. B. M. Scott and H. J. K. Junnila
have investigated the finite product theory for orthocompactness and have shown
in [4] and [11] that several known theorems concerning normality of product

spaces with compact or metric factors remain true if one replaces “paracompact”

by “metacompact” and ”normal” by “orthocompact” in the theorems. Scott has
also proved in [12] that a finite product of locally compact linearly ordered
topological space is orthocompact if and only if it is normal. In this paper we
study the behavior of orthocompactness of inverse limits and infinitely many
procuct spaces.

In Section 1 we present some definitions and preliminary lemmas which are
used in later sections. Inverse systems are considered in Section 2. Let
$\{X_{\alpha}, f_{\alpha\beta}\}$ be an inverse system over a directed set $A$ and let $X$ be the inverse
limit of this system. For each $\alpha\in A$ , let $f_{\alpha}$ : $X\rightarrow X_{\alpha}$ be the projection map. First

we deal with the case that $X$ is $|A|$ -paracompact and all $f_{\alpha}\prime s$ are pseudo-open

maps. Next we deal with the case that $X$ is $|A|$ -metacompact and all $f_{\alpha}\prime s$ are
closed maps. In both cases we will prove that $X$ is orthocompact if all $X_{\alpha}\prime s$ are
orthocompact. The first case is used in Section 3 to investigate the orthocompact-

ness of product spaces. Metacompactness as well as normality and paracom-
pactness of the limit space $X$ is also considered in this section.

In Section 3 we will consider product spaces. A. H. Stone [14] has proved

that the product of uncountably many copies of the countable discrete space is
not normal. We will show that this space is not orthocompact. The main
theorem of this section is that a product of arbitrarily many ordinals is ortho-
compact if and only if it is normal. This is a partial generalization of Scott’s

result [12] which is stated above.
The last section contains some examples.
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1. Preliminaries.

In this paper $n,$
$\lambda$ and $\kappa$ will denote cardinal numbers and $\omega$ the first infinite

ordinal. As the usual convention, an ordinal is the set of smaller ordinals and
a cardinal is an initial ordinal. Whenever we regard an ordinal as a topological
space, it will be assumed to have the order topology. The space $\kappa^{\lambda}$ is the
Tychonoff product of $\lambda$ copies of the space $\kappa$ . The cofinality of an ordinal $\alpha$

will be denoted by $cf(\alpha)$ , and the cardinality of a set $A$ will be denoted by $|A|$ .
Throughout this paper, no separation axioms are assumed unless otherwise

stated, and all maps are continuous. For a subset $A$ of a space $X$, cl $A$ (resp.

int $A$ ) denotes the closure (resp. interior) of $A$ in $X$. The word “iff” reads “if
and only if”.

DEFINITION 1.1 (Junnila [5]). Let $d$ be a family of subsets of a space $X$.
The family $cq$ is said to be interior-preserving (resp. closure-preserving) if we
have int ( $\cap\{A|A\in\circ t^{\prime}\}=\cap\{intA|A\in d^{\prime}\}$ (resp. cl $(\cup\{A|A\in\cup i^{\prime}\}=\cup\{c1A|A\in d^{\prime}\})$

for every subfamily $\llcorner\ell^{\prime}$ of $d$ .

DEFINITION 1.2. A space $X$ is $\lambda$-orthocompact ( $\lambda$-metacompact, $\lambda$-paracompact,
resp.) if every open cover of $X$ of $cardinality\leqq\lambda$ has an interior-preserving (point-

finite, locally finite, resp.) open refinement. (In this paper, a refinement always

means a cover.)

Of course, a space is an orthocompact (metacompact, paracompact, resp.)

space iff it is $\lambda$-orthocompact ( $\lambda$-metacompact, $\lambda$-paracompact, resp.) for every $\lambda$ .
In the case that we deal with $\lambda$-orthocompact spaces, $\lambda$-metacompact spaces,

etc., the following lemma is very useful, and we will use it without referring
explicitly. The proof of it is clear.

LEMMA 1.3. A space $X$ is $\lambda$-orthocompact ( $\lambda$-metacompact, $\lambda$-paracompact,
resp.) iff for every open cover $v=\{U_{\xi}|\xi\in--\}$ of $X$ with $|\Xi|\leqq\lambda$ , there is an
interior-prese rving (point-finite, locally finite, resp.) open cover $\mathcal{V}=\{V_{\xi}|\xi\in\Xi\}$ of
$X$ such that $V_{\xi}\subseteqq U_{\xi}$ for each $\xi\in-\cdot-$ .

DEFINITION 1.4 (Scott [11]). A space $X$ is $\sigma(\lambda)$-orthocompact ( $\sigma(\lambda)$-metacom-
pact, $\sigma(\lambda)$-paracompact, resp.) if every open cover of $X$ has a refinement of type
$\cup\{\mathcal{V}_{\gamma}|\gamma\in\Gamma\}$ such that $|\Gamma|\leqq\lambda$ and $\mathcal{V}_{\gamma}$ is an interior-preserving (point-finite,

locally finite, resp.) family of open subsets of $X$ for every $\gamma\in\Gamma$.

DEFINITION 1.5. A space $X$ is $\sigma(\lambda)$-normal if for every open cover $\{U_{1}, U_{2}\}$

of $X$, there is an open cover $\{V_{i\gamma}|\gamma\in\Gamma, i=1,2\}$ of $X$ such that $|\Gamma|\leqq\lambda$ and
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cl $V_{i\gamma}\subseteqq U_{i}$ for every $\gamma\in\Gamma$ and $i=1,2$ .

PROPOSITION 1.6 (Scott [11]). Let $X$ be a $\lambda$-metacompact and $\sigma(\lambda)$-ortho-
compact (resp. $\sigma(\lambda)$-metacompact) space, then $X$ is orthocompact (resp. metacompact).

With a similar method of the proof of Proposition 1.6, we have the following
proposition.

PROPOSITION 1.7. Let $X$ be a $\lambda$-paracompact and $\sigma(\lambda)$-normal (resp. $\sigma(\lambda)-$

paracompact) space, then $X$ is normal (resp. paracompact).

DEFINITION 1.8 ([3]). A space $X$ is $\lambda$-bounded if for each subset $A\subseteqq X$ with
$|A|\leqq\lambda$ , there is a compact set $C\subseteqq X$ such that $A\subseteqq C$.

PROPOSITION 1.9 ([3]). Every $\lambda$-bounded space is $\lambda$-compact.

At the present, a space $X$ is $\lambda$-compact iff each open cover of $X$ of cardinality
$\leqq\lambda$ has a finite subcover.

PROPOSITION 1.10 ([3]). $\lambda$-boundness is productive: that is, the product of
arbitrarily many $\lambda$-bounded spaces is also $\lambda$-bounded.

PROPOSITION 1.11. Let $\alpha$ be an ordinal (with the order topology), and let $\lambda$

be an infinite cardinal. Then the following are equivalent.
(1) $\alpha$ is $\lambda$-bounded.
(2) $\alpha$ is $\lambda$-compact.
(3) $ cf(\alpha)>\lambda$ or $cf(\alpha)\leqq 1$ .

The proof of Proposition 1.11 is obvious. More generally, the equivalence of
(1) and (2) for a linearly ordered topological space is proved in [3].

DEFINITION 1.12. A map $f:X\rightarrow Y$ is called pseudo-open if for each point
$y\in Y$ and a neighborhood $U$ of $f^{-1}(y),$ $f(U)$ is a neighborhood of $y$ .

It is clear that pseudo-open maps are onto maps and both open onto maps
and closed onto maps are pseudo-open.

2. Inverse limits.

In this section we consider inverse systems and orthocompactness as well as
metacompactness, normality and paracompactness of their limits. There are two
cases that we consider here. One is an inverse system with pseudo-open pro-
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jections from its limit space and the other is an inverse system with closed pro-
jections from its limit space.

First of all, the following propositions are useful to investigate inverse
systems over a directed set $A$ whose limit space are $|A|$ -paracompact or $|A|-$

metacompact. The first proposition is due to Mack [7], and the second is due

to Junnila [5]. Recall that a cover is directed if it is directed by set inclusion.

PROPOSITION 2.1. Let $\lambda$ be an infinite cardinal. A space $X$ is $\lambda$-paracompact

iff for each directed open cover $cU$ of $X$ with $|V|\leqq\lambda$ , there exists a locally finite
open cover $\mathcal{V}$ of $X$ such that {cl $V|V\in \mathcal{V}$ } refines $q$].

PROPOSITION 2.2. Let $V$ be an interior-preserving (especially, point-finite)

open cover of a space X. Then there exists a closure-preserving closed cover
$\mathcal{E}=\{E(x)|x\in X\}$ of $X$ such that $x\in E(x)\subseteqq St(x, cU)$ for every $x\in X$, where

St $(x, cU)=\cup\{U\in cU|x\in U\}$ .

Now we state and prove our theorems.

LEMMA 2.3. Let $\{X_{\alpha}, f_{\alpha\beta}\}$ be an inverse system over a directed set $A$ , and

let $X$ be the inverse limit of the system. Assume that all projections $f_{\alpha}$ : $X\rightarrow X_{\alpha}$

are pseudo-open maps and $X$ is $|A|$ -paracompact, then we have the following.

(1) If all $X_{\alpha}\prime s$ are orthocompact spaces, then $X$ is $\sigma(|A|)$-orthocompact.

(2) If all $X_{\alpha}\prime s$ are metacompact spaces, then $X$ is $\sigma(|A|)$-metacompact.

(3) If all $X_{\alpha}\prime s$ are normal spaces, then $X$ is $\sigma(|A|)$-normal.
(4) If all $X_{\alpha}\prime s$ are paracompact spaces, then $X$ is $\sigma(|A|)$-paracompact.

PROOF. If $A$ is finite, then the theorem is obvious. Hence we can assume
that $A$ is infinite. Let $|A|=\lambda$ .

First of all, for each open subset $U$ of $X$ and $\alpha\in A$ , let $G_{a}(U)$ denote the

largest open subset of $X_{\alpha}$ such that $fa^{1}(G.(U))\subseteqq U$. Then it is easy to see that

(a) $G_{\alpha}(U)\subseteqq G_{\alpha}(V)$ whenever $U$ and $V$ are open subsets of $X$ such that
$U\subseteqq V$.

If $\alpha\leqq\beta$ , then $f_{\beta}^{-1}(f_{\overline{a}}^{1}\beta(G_{\alpha}(U)))=(f_{a\beta}f_{\beta})^{-1}(G_{\alpha}(U))=f_{\overline{\alpha}^{1}}(G_{\alpha}(U))\subseteqq U$, and hence
$f_{\overline{\alpha}}\beta^{1}(G_{\alpha}(U))\subseteqq G_{\beta}(U)$ and $f_{\overline{a}^{1}}(G_{\alpha}(U))\subseteqq f_{\beta}^{-1}(G_{\beta}(U))$ . Moreover, for each $x\in U$, we
can take $\alpha\in A$ and an open subset $V$ of $X_{a}$ such that $x\in f_{\overline{a}^{1}}(V)\subseteqq U$. Then
$V\subseteqq G_{\alpha}(U)$ , and hence $x\in f_{a}^{-1}(G_{\alpha}(U))$ . Thus, for every open subset $U$ of $X$, we
have the following.

(b) If $\alpha,$ $\beta\in A$ and $\alpha\leqq\beta$ , then $f_{\overline{a}^{1}}(G_{\alpha}(U))\subseteqq f_{\beta}^{-1}(G_{\beta}(U))$ .
(c) $\cup\{f_{\overline{a}^{1}}(G_{a}(U))|\alpha\in A\}=U$.



0rthocompactness of inverse limits and products 245

Now we prove (1)$-(4)$ simultaneously.

Let $cu=\{U_{\xi}|\xi\in\Xi\}$ be an open cover of X. (In the case of (3), assume that
$|_{-}^{-}|=2.)$ For each $\alpha\in A$ , let $V_{\alpha}=\cup\{G_{\alpha}(U_{\xi})|\xi\in--\}$ . They by virtue of (b) and
(c), $\mathcal{V}=\{f_{\overline{\alpha}^{1}}(V_{\alpha})|\alpha\in A\}$ is a directed open cover of $X$. Since $X$ is $\lambda$-paracompact

it follows from Proposition 2,1 that there is a locally finite open cover $cW$ of $X$

such that {cl $ W|W\in\wp$} refines $\mathcal{V}$ . For each $\alpha\in A$ , let $W_{\alpha}=\cup\{W\in W|$

cl $W\subseteqq f_{\overline{\alpha}^{1}}(V_{\alpha})$ }. Since $cW$ is as above, it is easy to see the following.
(d) $W_{\alpha}$ is an open subset of $X$ such that cl $W_{\alpha}\subseteqq f_{\overline{\alpha}^{1}}(V_{\alpha})$ .
(e) If $\alpha,$ $\beta\in A$ and $\alpha\leqq\beta$ , then $W_{\alpha}\subseteqq W_{\beta}$ .
(f) $\cup\{W_{\alpha}|\alpha\in A\}=X$.

For each $x\in X$, we can take $\alpha\in A$ such that $x\in W_{\alpha}$ . By virtue of (c),
$W_{\alpha}=\cup\{f_{\overline{\alpha}^{1}}(G_{\beta}(W_{\alpha}))|\beta\in A\}$ . Hence $x\in f_{\beta}^{-1}(G_{\beta}(W_{\alpha}))$ for some $\beta\in A$ . Let
$\gamma\in A,$ $\gamma>\alpha,$ $\beta$ . Then by virtue of (a), (b) and (e), $x\in f_{\beta}^{-1}(G_{\beta}(W_{\alpha}))\subseteqq f_{\overline{\gamma}^{1}}(G_{\gamma}(W_{\alpha}))$

$\subseteqq f_{\overline{\gamma}^{1}}(G_{\gamma}(W_{\gamma}))$ . Thus we have
(g) $\cup\{f_{\overline{\alpha}^{1}}(G_{\alpha}(W_{\alpha}))|\alpha\in A\}=X$.

Moreover we can see that
(h) cl $G_{\alpha}(W_{\alpha})\subseteqq V_{\alpha}$ for every $\alpha\in A$ .

In fact, for each $y\in X_{\alpha}\backslash V_{\alpha},$ $f_{\overline{\alpha}^{1}}(y)\subseteqq f_{\overline{a}^{1}}(X_{a}\backslash V_{\alpha})=X\backslash f_{\overline{\alpha}^{1}}(V_{\alpha})\subseteqq X\backslash c1W_{\alpha}$ . Since $f_{\alpha}$

is pseudo-open, $f_{\alpha}(X\backslash cIW_{\alpha})$ is a neighborhood of $y$ . It is easy to see that
$ f_{\alpha}(X\backslash c1W_{\alpha})\cap G_{\alpha}(W_{\alpha})=\phi$ . Hence $y\in X_{\alpha}\backslash c1G_{\alpha}(W_{\alpha})$ , and we have cl $G_{\alpha}(W_{\alpha})\subseteqq V_{\alpha}$ .

In the case of (1), (2) or (4), by virtue of (h), there is an interior-preserving
(point-finite, locally finite, resp.) family $\{W_{\alpha\xi}|\xi\in--\}$ of open subsets of $X_{\alpha}$ such
that cl $G_{\alpha}(W_{\alpha})\subseteqq\cup\{W_{\alpha\xi}|\xi\in\Xi\}$ and $W_{\alpha\xi}\subseteqq G_{\alpha}(U_{\xi})$ for every $\xi\in--$ , and every
$\alpha\in A$ . Then the following are easily verified.

(i) $\{f_{\overline{a}^{1}}(W_{\alpha\xi})|\xi\in-\cdot-\}$ is an interior-preserving (point-finite, locally finite, resp.)

family of open subsets of $X$ for each $\alpha\in A$ .
(i) $f_{\overline{a}^{1}}(W_{\alpha\xi})\subseteqq U_{\xi}$ for every $\xi\in--$ and $\alpha\in A$ .
(k) $\cup\{f_{\overline{\alpha}^{1}}(W_{\alpha\xi})|\xi\in-\cdot-, \alpha\in A\}=X$.

Checking up conditions in Definition 1.4 we have shown that $X$ is a $\sigma(\lambda)-$

orthocompact ( $\sigma(\lambda)$-metacompact, $\sigma(\lambda)$-paracompact, resp.) space, by virtue of (i),
(j) and (k).

In the case of (3), let $--=\{\xi_{1}, \xi_{2}\}$ . For each $\alpha\in A$ , since $X_{\alpha}$ is normal, we
can find open subsets $W_{\alpha\xi_{1}}$ and $W_{\alpha\xi_{2}}$ of $X_{\alpha}$ such that cl $G_{\alpha}(W_{\alpha})\backslash G_{\alpha}(U_{\xi_{2}})\subseteqq W_{\alpha\xi_{1}}$

$\subseteqq c1W_{\alpha\xi_{1}}\subseteqq G_{\alpha}(U_{\xi_{1}})$ and cl $G_{\alpha}(W_{\alpha})\backslash W_{\alpha\xi_{1}}\subseteqq W_{a\xi_{2}}\subseteqq c1W_{\alpha\xi_{2}}\subseteqq G_{\alpha}(U_{\overline{\sigma}_{2}})$ . Then it is easy
to see that cl $G_{\alpha}(W_{\alpha})\subseteqq W_{\alpha\xi_{1}}\cup W_{\alpha\xi_{2}}$ .

Moreover, for each $x\in c1f_{\overline{\alpha}^{1}}(W_{\alpha\xi_{1}}),$ $f_{\alpha}(x)\in f_{\alpha}(c1f_{\overline{a}^{1}}(W_{\alpha\xi_{1}}))\subseteqq c1(f_{\alpha}(f_{\overline{\alpha}^{1}}(W_{\alpha\xi_{1}})))$

$\subseteqq c1W_{\alpha\xi_{1}}\subseteqq G_{\alpha}(U_{\xi_{1}})$ , and hence we have $x\in f_{\overline{a}^{1}}(G_{\alpha}(U_{\xi_{1}})\subseteqq U_{\xi_{1}}$ . Thus cl $f_{\overline{\alpha}^{1}}(W_{\alpha\xi_{1}})$

$\subseteqq U_{\xi_{1}}$ . Similarly, cl $f_{\overline{\alpha}^{1}}(W_{\alpha\xi_{2}})\subseteqq U_{\xi_{2}}$ . Hence the famiy $\{f_{\overline{a}^{1}}(W_{\alpha\xi_{i}})|\alpha\in A, i=1,2\}$
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satisfies the conditions in Definition 1.5. Thus $X$ is a $\sigma(\lambda)$-normal space. The
proof is complete.

From Propositions 1.6, 1.7 and Lemma 2.3, we get

THEOREM 2.4. Uuder the same conditions as in Lemma 2.3, we have the
following.

(1) If all $X_{\alpha}\prime s$ are orthocompact spaces, then so is $X$.
(2) If all $X_{a}\prime s$ are metacompact spaces, then so is $X$.
(3) If all $X_{a}\prime s$ are normal spaces, then so is $X$.
(4) If all $X_{\alpha}\prime s$ are paracompact spaces, then so is $X$.

COROLLARY 2.5. Let $\{X_{i}|i\in I\}$ be a family of spaces, and let $X=\Pi\{X_{i}|i\in I\}$

be $|I|$ -paracompact. Then $X$ is orthocompact (metacompact, normal, paracompact,
resp.) iff for each finite subset $I^{\prime}$ of $I,$ $\Pi\{X_{i}|i\in I^{\prime}\}$ is orthocompact (metacompact,
normal, paracompact, resp.).

PROOF. If $I$ is finite, there is nothing to prove. Hence we can assume that
$I$ is infinite. Let $A$ be the set of all finite subsets of $I$ , then $A$ is a directed
set by set inclusion. For each $\alpha\in A$ , let $Y_{\alpha}=\Pi\{X_{i}|i\in\alpha\}$ . And for each pair
$\alpha,$ $\beta\in A$ with $\alpha\subseteqq\beta$ , let $f_{\alpha\beta}$ : $Y_{\beta}\rightarrow Y_{\alpha}$ be the natural projection map, that is,
$f_{\alpha\beta}((x_{i})_{i\in\beta})=(x_{i})_{i\in\alpha}$ for every $(x_{i})_{i\in\beta}\in Y_{\beta}$ . Then it is well-known that $\{Y_{\alpha}, f_{\alpha\beta}\}$

is an inverse system over $A$ and the limit of this system is homeomorphic to $X$,

moreover the projection maps from the limit space can be viewed as the natural
projection maps from $X$, hence they are open onto, a fortiori pseudo-open. Since
$|A|=|I|$ , we can apply Theorem 2.4 to obtain Corollary 2.5. The proof is
complete.

COROLLARY 2.6. Let $\{X_{n}, f_{nm}\}$ be an inverse sequence over $\omega$, and let $X$ be
the inverse limit of the sequence. Suppose all $f_{nm}\prime s$ are open onto maps and $X$

is countably paracompact (that is, $\omega$-paracompact). Then the statements of Theorem
2.4 are also true.

PROOF. If all $f_{nm}\prime s$ are open onto maps, then all projections $f_{n}$ : $X\rightarrow X_{n}$ are
also open onto maps. Hence by virtue of Theorem 2.4, the proof is complete.

REMARK. The statements (3) and (4) of Corollary 2.6 are proved in Nagami
[9].

LEMMA 2.7. Let $\{X_{a}, f_{\alpha\beta}\}$ be an inverse system over a directed set $A$ , and
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let $X$ be the inverse limit of the system. Assume that all projections $f_{\alpha}$ : $X\rightarrow X_{\alpha}$

are closed maps and $X$ is $|A|$ -metacompact, then we have the following.
(1) If all $X_{a}\prime s$ are orthocompact spaces, then $X$ is $\sigma(|A|)$ -orthocompact.
(2) If all $X_{\alpha}\prime s$ are metacompact spaces, then $X$ is $\sigma(|A|)$ -metacompact.
(3) If all $X_{\alpha}\prime s$ are normal spaces, then $X$ is $\sigma(|A|)$-normal.
(4) If all $X_{\alpha}\prime s$ are paracompact spaces, then $X$ is $\sigma(|A|)$-paracompact.

PROOF. If $A$ is finite, then the theorem is obvious. Hence we can assume
that $A$ is infinite. Let $|A|=\lambda$ . We prove (1)$-(4)$ simultaneously. The proof is
quite similar to that of Lemma 2.3, hence we use the same notations that are
defined in the proof of Lemma 2.3.

Let (
$U=\{U_{\xi}|\xi\in-\cdot-\}$ be an open cover of X. (In the case of (3), assume that

$|$ E7 $|=2.$ ) Then, as in the proof proof of Lemma 2.3, $\{f_{\overline{a}^{1}}(V_{\alpha})|\alpha\in A\}$ is a directed
open cover of $X$, where $V_{\alpha}=\cup\{G_{\alpha}(U_{\xi})|\xi\in-\cdot-\}$ for every $\alpha\in A$ . Since $X$ is $\lambda-$

metacompact, there is a point-finite open cover $w=\{W_{\alpha}|\alpha\in A\}$ of $X$ such that
$W_{\alpha}\subseteqq f_{\overline{\alpha}^{1}}(V_{\alpha})$ for every $\alpha\in A$ . By virtue of Proposition 2.2, we can find a closure-
preserving closed cover $\{E(x)|x\in X\}$ such that

(a) $x\in E(x)\subseteqq St(x, \wp)$ for every $x\in X$.
Let $\Phi$ be the set of all finite subsets of $A$ , then it is clear that

(b) $|\Phi|=\lambda$ .
Since $A$ is a directed set, for each $ B\in\Phi$ , we can take $\alpha(B)\in A$ such that $\alpha\leqq\alpha(B)$

for every $\alpha\in B$ . Moreover, for each $ B\in\Phi$ , let $E(B)$ denote the union of all
$E(x)$ such that $\{\alpha\in A|x\in W_{\alpha}\}=B$ , then

(c) $\{E(B)|B\in\Phi\}$ is a closed cover of $X$, and
(d) $E(B)\subseteqq f_{\overline{a}(B)}^{1}(V_{\alpha(B)})$ .

Indeed, (c) is obvious since $cW$ is a point-finite cover of $X$ and by virtue of (a),

and (d) is implied by the following relations:
$E(B)\subseteqq\cup\{W_{\alpha}|\alpha\in B\}\subseteqq\{f_{\overline{\alpha}^{1}}(V_{\alpha})|\alpha\in B\}\subseteqq f_{\overline{\alpha}(B)}^{1}(V_{\alpha(B)})$ .

By hypothesis, $f_{\alpha(B)}$ is a closed map. Hence $f_{\alpha(B)}(E(B))$ is closed in $X_{\alpha(B)}$ ,
and $\{G_{\alpha(B)}(U_{\xi})|\xi\in--\}$ is a family of open subsets of $X_{\alpha(B)}$ which covers $f_{\alpha(B)}(E(B))$ ,
by virtue of (d). Thus, as in the proof of Lemma 2.3, for each $ B\in\Phi$ , there exists
an interior-preserving (point-finite, –, locally finite, resp.) family $\{W_{B\xi}|\xi\in--\}$ of
open subsets of $X_{\alpha(B)}$ such that $f_{\alpha(B)}(E(B))\subseteqq\cup\{W_{B\xi}|\xi\in\Xi\}$ and $W_{B\xi}\subseteqq G_{\alpha(B)}(U_{\xi})$

for every $\xi\in-\cdot-$ . (In the above and below, “–,, reads “without any property”.)
Moreover, in the case of (3), we can take $W_{B\xi}$ such that cl $W_{B\xi}\subseteqq G_{\alpha(B)}(U_{\xi})$ . Then
it is easy to see the following.

(e) $\{f_{\overline{\alpha}(B)}^{1}(W_{B\xi})|\xi\in-\cdot-\}$ is an interior-preserving (point-finite, –, locally finite,
resp.) family of open subsets of $X$.
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(f) $f_{\overline{a}(B)}^{1}(W_{B\xi})\subseteqq U_{\xi}$ for every $\xi\in--$ .
(g) $\cup\{f_{\overline{\alpha}(B)}^{1}(W_{B\xi})|\xi\in--\}=X$.

Moreover, in the case of (3), we have
$(f^{\prime})$ cl $f_{\overline{\alpha}(B)}^{1}(W_{B\xi})\subseteqq U_{\xi}$ for every $\xi\in-\cdot-$ .

In fact, since cl $W_{B\xi}\subseteqq G_{\alpha(B)}(U_{\xi})$ , we have $f_{\alpha(B)}(c1f_{\overline{a}(B)}^{1}(W_{B\xi}))\subseteqq c1(f_{\alpha(B)}(f_{\overline{\alpha}(B)}^{1}(W_{B\xi})))$

$\subseteqq c1W_{B\xi}\subseteqq G_{\alpha(B)}(U_{\xi})$ . Hence cl $f_{\overline{a}(B)}^{1}(W_{B\xi})\subseteqq f_{\overline{\alpha}(B)}^{1}(G_{\alpha(B)}(U_{\xi}))\subseteqq U_{\xi}$ .
By virtue of (b), (e), (f) and (g) (or (b), (e), $(f^{\prime})$ and $(g)$), $U$ has an appropriate

open refinement mentioned in Definition 1.4 (or Definition 1.5). Hence the proof

is complete.

From Propositions 1.6 and 1.7 and Lemma 2.7, we get

COROLLARY 2.8 (Katuta [6]). Let $\{X_{a}, f_{\alpha\beta}\}$ be an inverse system over a
directed set $A$ , and let $X$ be the inverse limit of the system. Assume that all
projections $f_{\alpha}$ : $X\rightarrow X_{\alpha}$ are closed maps and $X$ is $|A|$ -paracompact, $th\vee\rho n$ we have

the following.
(a) If all $X_{\alpha}\prime s$ are normal spaces, then so is $X$.
(b) If all $X_{\alpha}\prime s$ are paracompact spaces, then so is $X$.

THEOREM 2.9. Let $\{X_{\alpha}, f_{\alpha\beta}\}$ be an inverse system over a directed set $A$ , and
let $X$ be the inverse limit of the system. Assume that all projections $f_{\alpha}$ : $X\rightarrow X_{\alpha}$

are closed maps and $X$ is $|A|$ -metacompact, then we have the following.
(a) If all $X_{a}\prime s$ are orthocompact spaces, then so is $X$.
(b) If all $X_{a}\prime s$ are metacompact spaces, then so is $X$.

REMARK. (1) Since normality and paracompactness are closed hereditary

properties, in Corollary 2.8, we can assume that all projections are closed onto

maps. Thus Corollary 2.8 is also from Theorem 2.4, since closed onto maps are
pseudo-open.

(2) Note that Theorem 2.9 is of the form which is obtained from Corollary

2.8 by replacing “paracompact” by “metacompact” and ”normal” by “orthocompact”.

3. Products.

In this section we investigate the product theory for orthocompactness.

THEOREM 3.1. For a space $X$, the following are equivalent.
(1) $X$ is $\lambda$-metacompact.
(2) $X\times Y$ is $\lambda$-metacompact for every compact space $Y$ of weight at most $\lambda$ .
(3) $X\times Y$ is $\lambda$-orthocompact for every compact space $Y$ of weight at most $\lambda$ .
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(4) $X\times I^{\lambda}$ is $\lambda$-orthocompact, where I is the closed unit interval.
(5) $X\times 2^{\lambda}$ is $\lambda$-orthocompact.
(6) $X\times A(\lambda)$ is $\lambda$-orthocompact, where $A(\lambda)$ is the space of one-point compacti-

fication of the discrete space of cardinality $\lambda$ .

PROOF. Since the product of a $\lambda$-metacompact space with a compact space is
also $\lambda$-metacompact, the implication (1) $\rightarrow(2)$ is obvious. The implications (2) $\rightarrow(3\rangle$

$\rightarrow(4)\rightarrow(5)$ are clear. Since $A(\lambda)$ can be embedded in $2^{\lambda}$ as a closed subset, (5) $\rightarrow$

(6) is also clear.
To prove (6) $\rightarrow(1)$ , we can assume that $A(\lambda)=\{a_{\alpha}|\alpha\leqq\lambda\}$ and $a_{\lambda}$ is the only

non-isolated point of $A(\lambda)$ . Let $cU=\{U_{\alpha}|\alpha<\lambda\}$ be an open cover of $X$. Then it
is easy to see that $\{U_{\alpha}\times(A(\lambda)\backslash \{a_{\alpha}\})|\alpha<\lambda\}\cup\{X\times(A(\lambda)\backslash \{a_{\lambda}\})\}$ is an open cover
of $X\times A(\lambda)$ . Since $X\times A(\lambda)$ is $\lambda$-orthocompact, there is an interior-preserving open
cover $\{V_{\alpha}|\alpha\leqq\lambda\}$ of $X\times A(\lambda)$ such that $V_{\alpha}\subseteqq U_{\alpha}\times(A(\lambda)\backslash \{a_{\alpha}\})$ for each $\alpha<\lambda$ and
$V_{\lambda}\subseteqq X\times(A(\lambda)\backslash \{a_{\lambda}\})$ . For each $\alpha<\lambda$ , let $W_{\alpha}$ be the set of all $x\in X$ such that
$(x, a_{\lambda})\in V_{\alpha}$ . Then we can easily show that $w=\{W_{\alpha}|\alpha<\lambda\}$ is an open cover of
$X$ and $W_{\alpha}\subseteqq U_{\alpha}$ for every $\alpha<\lambda$ . Moreover, since $\{V_{\alpha}|\alpha\leqq\lambda\}$ is interior-preserving
and $(x, a_{\lambda})\in\cap\{W_{a}\times\{a_{\lambda}\}|x\in W_{\alpha}, \alpha<\lambda\}\subseteqq\cap\{V_{\alpha}|x\in W_{\alpha}, \alpha<\lambda\}\subseteqq\cap\{X\times(A(\lambda)\backslash \{a_{\alpha}\})|$

$x\in W_{\alpha},$ $\alpha<\lambda$ } $=X\times(A(\lambda)\backslash \{a_{\alpha}|x\in W_{\alpha}, \alpha<\lambda\}),$ $\{\alpha<\lambda|x\in W_{\alpha}\}$ must be finite for
every $x\in X$. Hence $\subset W$ is a point-finite open refinement of $cU$ . Thus $X$ is $\lambda-$

metacompact, and the proof is complete.

REMARK. The equivalence of (1)$-(5)$ in Theorem 3.1 is essentially proved in
[11]. Since there is a space $X$ such that $X\times A(\lambda)$ is normal but $X$ is not $\lambda-$

paracompact (Example 4.3), the equivalence of (1) and (6) itself seems to be of
interest.

As an immediate application of Theorem 3.1, we will state two theorems
concerning orthocompactness of the product of uncountably many copies of a
space, which are compaired to the following propositions concerning normality of
the product of uncountably many copies of a space.

Let $N$ denote the space of all positive integers with the discrete topology,
and $\omega_{1}$ the first uncountable ordinal.

PROPOSITION 3.2 (Stone [14]). $N^{\omega}1$ is not normal.

PROPOSITION 3.3 (Noble [10]). For a $T_{2}$-space $X$, the following are equivalent.
(1) $X^{\lambda}$ is normal for every $\lambda$ .
(2) $X$ is compact.
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THEOREM 3.4. $N^{\omega}1$ is not orthocompact.

PROOF. Assume that $N^{\omega_{1}}$ is orthocompact. Since $N^{\omega_{1}}\times N^{\omega_{1}}$ is homeomorphic

to $N^{\omega_{1}}$ and $N^{\omega_{1}}$ has a closed subspace homeomorphic to $2^{\omega_{1}}$ . Hence it follows

from Theorem 3.1 that $N^{\omega_{1}}$ is $\omega_{1}$-metacompact. Since $N^{\omega_{1}}$ is of weight $\omega_{1}$ , it is
metacompact. It is well-known that $N^{\omega_{1}}$ is separable ($e$ . $g$ . $[2]$ Plll), and that
every separable matacompact space is Lindelof. Hence $N^{\omega_{1}}$ is a Lindelof regular

space, which is a contradiction since $N^{\omega_{1}}$ is not normal by Proposition 3.2. Thus
$N^{\omega_{1}}$ cannot be orthocompact.

THEOREM 3.5. Let $X$ be a $T_{1}$-space of weight $\gamma$ . Then the following are
equivalent.

(1) $X^{\lambda}$ is orthocompact for every $\lambda$ .
(2) $X^{\mu}$ is orthocompact, where $\mu={\rm Max}\{\omega_{1}, \gamma\}$ .
(3) $X$ is compact.

PROOF. (3) $\rightarrow(1)\rightarrow(2)$ are obvious.
(2) $\rightarrow(3)$ : Since $X^{\omega_{1}}$ is orthocompact, it follows from Theorem 3.4 that $X$

cannot contain a closed subspace homeomorphic to $N$. Hence $X$ is countably

compact. Since $X^{\gamma}$ is orthocompact, it follows from Theorem 3.1 that $X$ is
metacompact. As is well-known that every countably compact and metacompact

space is compact ($e$ . $g$ . $[2]$ P400), $X$ is compact. The proof is complete.

Concerning orthocompactness of finite products, Scott has first shown in [11]

that a finite product of ordinals is orthocompact iff it is normal, and later he
generalized his result as follows. Note that each ordinal is a locally compact

linearly ordered topological space.

PROPOSITION 3.6 (Scott [12]). $A$ finite product of locally compact linearly

ordered topological spaces is orthocompact iff it is normal.

In the rest of this section, we will show, together with Conover’s result [1],

that a product of arbitrarily many ordinals is orthocompact iff it is normal. This

is a partial generalization of Proposition 3.6.
From the result of Scott in [11], we have the following.

PROPOSITION 3.7. Let $\alpha$ and $\beta$ be ordinals such that $cf(\alpha)\leqq cf(\beta)$ and $\alpha\times\beta$

is orthocompact. Then one of the following is satis fied:
(a) $ cf(\alpha)\leqq\omega$ and $ cf(\beta)\leqq\omega$ ;
(b) $cf(\alpha)\leqq\omega,$ $ cf(\beta)>\omega$ and $\alpha<cf(\beta)$ ;

(c) $ cf(\alpha)=\alpha>\omega$ and $\alpha=\beta$ .
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Recall that an ordinal $\alpha$ is regular iff $ cf(\alpha)=\alpha$ , and a subset of $\alpha$ is called

stationary iff it intersects every closed unbounded subset of $\alpha$ . The following

lemma is known as the “Pressing Down Lemma”. For a proof of this lemma,

see [11].

LEMMA. 3.8. Let $\kappa$ be an uncountable regular ordinal, and let $S$ be a station-

$ary$ subset of $\kappa$ . If $ f:S\rightarrow\kappa$ be a function such that $ f(\alpha)<\alpha$ for every $\alpha\in S$ ,

then there is $\alpha\in\kappa$ such that $f^{-1}(\alpha)$ is stationary in $\kappa$ .

PROPOSITION 3.9. Let $\kappa$ be an uncountable regular ordinal, then the space $\kappa$

is not $\kappa$-metacompact.

PROOF. The open cover $\{[0, \alpha]|\alpha<\kappa\}$ of $\kappa$ has no point-finite refinement.

In fact, let $cU$ be any open refinement of this cover, then there is a function

$ f:\kappa\backslash \{0\}\rightarrow\kappa$ such that $ f(\alpha)<\alpha$ for each $\alpha\in\kappa\backslash \{0\}$ and $\{\{0\}\}\cup\{(f(\alpha), \alpha]|\alpha\in\kappa\backslash \{0\}\}$

is a refinement of $cU$ . By virtue of Lemma 3.8, there is $\alpha\in\kappa$ such that $|f^{-1}(\alpha)|$

$=\kappa$ . For each $\beta\in f^{-1}(\alpha)$ , we can take $U_{\beta}\in^{C}U$ and $\alpha(\beta)<\kappa$ such that $(f(\beta), \beta$]

$=(\alpha, \beta]\subseteqq U_{\beta}\subseteqq[0, \alpha(\beta)]$ . Since $\kappa$ is regular, we can find $T\subseteqq f^{-1}(\alpha)$ such that

$|\{U_{\beta}|\beta\in T\}|=\kappa$ . It is obvious that $\alpha+1\in\cap\{U_{\beta}|\beta\in T\}$ . Thus $cU$ cannot be

point-finite at $\alpha+1$ . The proof is complete.

From Propositions 3.1 and 3.9, we get

$PROPOSlT10N3.10$ . Let $\kappa$ be an uncountable regular ordinal, then $\kappa\times 2^{\kappa}$ is not

orthocompact.

The following lemmas are well-known.

LEMMA 3.11. Let $f:X\rightarrow Y$ be a closed onto map such that $f^{-1}(y)$ is $\lambda$-compact

for every $y\in Y$. If $Y$ is $\lambda$-paracompact, then so is $X$.

LEMMA 3.12. Let $X$ be a $\lambda$-compact space and let $Y$ be a space of character

$\leqq\lambda$ , then the projection from $X\times Y$ onto $Y$ is a closed map.

Recall that a map $f:X\rightarrow Y$ is perfect iff it is a closed map such that $f^{-1}(y)$

is compact for every $y\in Y$. A space $X$ is a paracompact M-space in the sence

of Morita [8] iff there are a metric space $M$ and a perfect map from $X$ onto $M$.

PROPOSITION 3.13. Let $X$ be a $\lambda$-compact space and let $Y$ be a paracompact

M-space. Then $X\times Y$ is $\lambda$-paracompact.
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PROOF. There are a metric space $M$ and a perfect onto map $f:Y\rightarrow M$.
Let $g:X\times Y\rightarrow X\times M$ be the map defined by $g(x, y)=(x, f(y))$ for every $(x, y)$

$\in X\times Y$. Let $p;X\times M\rightarrow M$ be the projection map. Then $p$ is a closed map by
Lemma 3.12, and $p^{-1}(z)$ is $\lambda$-compact for every $z\in M$. By virtue of Lemma 3.11,
$X\times M$ is $\lambda$-paracompact. Since $g$ is a perfect map, it follows from Lemma 3.11
that $x\times Y$ is $\lambda$-paracompact. The proof is complete.

Now we prove our main theorem in this section.

THEOREM 3.14. Let $\{\alpha_{i}|i\in I\}$ be a collection of non-zero ordinals $u^{I}ith$

$|I|\geqq 2$ . Let $I_{1}=\{i\in I|cf(\alpha_{i})=1\},$ $I_{2}=\{i\in I|cf(\alpha_{i})=\omega\}$ and $I_{3}=\{i\in I|cf^{\prime_{\backslash }}\alpha_{i})>\omega\}$ .
Then the following are equivalent.

(1) $\Pi\{\alpha_{i}|i\in I\}$ is orthocompact.
(2) $\Pi\{\alpha_{i}|i\in I\}$ is normal.
(3) $|I_{2}|\leqq\omega$ and one $oJ$ the following is satisfied:

(a) $ I_{3}=\phi$ ;
(b) $I_{3}=\{i_{0}\},$ $|I_{1}|<cf(\alpha_{i_{0}})$ and $\alpha_{i}<cf(\alpha_{i_{0}})$ for every $i\in I_{1}\cup l_{2}$ ;
(c) $|I_{3}|\geqq 2$ and there exists an uncountable regular ordinal $\kappa$ such that

$\alpha_{i}=\kappa$ for every $i\in I_{3},$ $\alpha_{i}<\kappa$ for every $i\in I_{1}\cup I_{2}$ and $|I_{1}\cup I_{2}|<\kappa$ .

PROOF. The equivalence (2) (3) is proved by Ccnover (Theorem 3 of [1]).

Hence we only prove the equivalence (1) (3).

First of all, let $X=\Pi\{\alpha_{i}|i\in I\}$ and $X_{k}=\Pi\{\alpha_{i}|i\in I_{k}\}$ for $k=1,2,3$ . Since
$I=I_{1}\cup I_{2}\cup I_{3},$ $X=X_{1}\times X_{2}\times X_{\mathfrak{g}}$ .

Now we prove (1) $\rightarrow(3)$ . Assume that $X$ is orthocompact. Now that for
each $i\in I_{1}\cup I_{2}$ and $j\in I_{3},$ $\alpha_{i}\times\alpha_{j}$ is orthocompact and $cf(\alpha_{i})\leqq\omega<cf(\alpha_{j})$ . Hence it
follows from (b) of Proposition 3.7 that $\alpha_{i}<cf(\alpha_{j})$ for each $i\in I_{1}\cup I_{2}$ and $j\in I_{3}$ .
Similarly, from (c) of Proposition 3.7, it follows that if $|I_{3}|\geqq 2$ then there is a
regular ordinal $\kappa$ such that $\alpha_{j}=\kappa$ for every $j\in I_{3}$ . Thus it is sufficient to prove

that $|I_{2}|\leqq\omega$ and $|I_{1}\cup I_{2}|<cf(\alpha_{j})$ for every $j\in I_{3}$ . For each $i\in I_{2},$ $\alpha_{i}$ contains a
closed subspace which is homeomorphic to $N$. If $|I_{2}|>\omega$, then $X_{2}$ and hence $X$

contains a closed subspace homeomorphic to $N^{\omega_{1}}$ which is a contradiction by

virtue of Theorem 3.4. Hence $|I_{2}|\leqq\omega$ . If $|I_{1}\cup I_{2}|\geqq cf(\alpha_{j})$ for some $j\in I_{3}$ , then

we are led to a contradiction as follows. Let $ cf(\alpha_{j})=\kappa$ . Then $\kappa$ is an uncount-

able regular ordinal and $\alpha_{j}$ contains a closed subspace hcmeomorphic to $\kappa$ . Since
$|I_{1}\cup I_{2}|\geqq\kappa,$ $X_{1}\times X_{2}$ contains a closed subspace homeomorphic to $2^{\kappa}$ . Thus $X$

contains a closed subspace homeomorphic to $\kappa\times 2^{\kappa}$ , which is a contradiction by

virtue of Proposition 3.10. Hence, as above, the implication (1) $\rightarrow(3)$ is proved.

Next, we prove (3) $\rightarrow(1)$ . Assume that (3) holds. Since the implication (3)



0rthocompactness of inverse limits and products 253

$\rightarrow(2)$ is true, $X$ is normal. Hence, from Proposition 3.6, $\Pi\{\alpha_{i}|i\in I^{\prime}\}$ is ortho-
compact for every finite subset $I^{\prime}$ of $I$ . We can assume that $I$ is an infinite set

and let $|I|=\lambda$ . By virtue of Corollary 2.5, it is sufficient to show that $X$ is $\lambda-$

paracompact. First, note that for each $i\in I_{2},$ $\alpha_{i}$ is a locally compact Lindel\"of

regular space and hence it is a paracompact M-space. Since $|I_{2}|\leqq\omega,$ $X_{2}$ is also
a paracompact M-space. Moreover, since $X_{1}$ is a compact $T_{2}$-space $X_{1}\times X_{2}$ is a
paracompact M-space.

In the case (a) of (3), there is nothing to prove. In the case (b), since it can
be easily seen that $\lambda<cf(\alpha_{i_{0}}),$ $X_{3}=\alpha_{i_{0}}$ is $\lambda$-compact by Proposition 1.11. In the
case (c), since $\lambda<\kappa=cf(\kappa)$ , it follows from Proposition 1.11 that $\alpha_{i}=\kappa$ is $\lambda$-bounded
for every $i\in I_{3}$ . Hence by virtue of Propositions 1.9 and 1.10, $X_{3}$ is $\lambda$-compact.

Thus in any case of (a), (b) and (c), we have shown that $X_{3}$ is $\lambda$-compact. By

virtue of Proposition 3.13, $X=(X_{1}\times X_{2})\times X_{3}$ is $\lambda$-paracompact. The proof is
complete.

In the proof above we have also obtained

COROLLARY 3.15. Let $\{\alpha_{n}|n<\omega\}$ be a countable family of ordinals. Then
$\Pi\{\alpha_{n}|n<\omega\}$ is countably paracompact.

COROLLARY 3.16. Let $\{\alpha_{n}|n<\omega\}$ be a countable family of ordinals. Then
the following are equivalent.

(1) $\Pi\{\alpha_{n}|n<\omega\}$ is orthocompact.
(2) $\Pi\{\alpha_{n}|n\in A\}$ is orthocompact for every finite subset $ A\subseteqq\omega$ .
(3) $\Pi\{\alpha_{n}|n<\omega\}$ is normal.
(4) $\Pi\{\alpha_{n}|n\in A\}$ is normal for every finite subset $ A\subseteqq\omega$ .

COROLLARY 3.17. Let $\kappa$ be an uncountable regular ordinal, and let $\lambda$ be a
cardinal. Then the following are equivalent.

(1) $\kappa^{\lambda}$ is orthocompact.
(2) $\kappa^{\lambda}$ is normal.
(3) $\lambda<\kappa$ .

REMARK. The equivalence (2) (3) in Corollary 3.17 is proved by Conover [1].

4. Examples.

EXAMPLE 4.1. Let $Y$ be an orthocompact space which is not countably meta-

compact, such a space exists, $e$ . $g$ . Scott [13]. For each $ n<\omega$ , let $X_{n}=Y\times 2^{n}$ . And

for each $n\leqq m$ , let $f_{nm}$ : $X_{m}\rightarrow X_{n}$ be the natural projection map. Then $\{X_{n}, f_{nm}\}$
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is an inverse system over $\omega$, and the inverse limit $X$ of this system is homeo-
morphic to $Y\times 2^{\omega}$ . It is easy to see that all $X_{n}$ are orthocompact spaces and all
projections $f_{n}$ : $X\rightarrow X_{n}$ are closed and open onto maps. But by virtue of Theorem
3.1 $X$ is not orthocompact, since $Y$ is not countably metacompact.

Thus for (a) of Thorem 2.9 the condition that $X$ is $|A|$ -metacompact cannot
be dropped.

EXAMPLE 4.2. Let $Y$ be a Dowker space, (that is, a normal space which is
not countably paracompact.) Then, as in Example 4.1, we can construct an
inverse system of normal spaces and open and closed bonding maps, whose
limit space is not normal.

EXAMPLE 4.3. Let $\omega(X)$ be the weight of a space $X$. Although that if
$X\times A(\omega(X))$ is orthocompact then $X$ is metacompact by Theorem 3.1, the normality
of $X\chi A(\omega(X))$ need not imply that $X$ is paracompact. For example, $\omega_{1}\times A(\omega_{1})$

is a normal space but $\omega_{1}$ is not paracompact. $\omega_{1}\times A(\omega_{1})$ is also a simple example
of a (collectionwise) normal space which is not orthocompact.

More generally, for each pair of cardinals $\lambda$ and $\kappa$ such that $\omega<cf(\kappa)\leqq\lambda$ ,
the product space $\kappa\times A(\lambda)$ is collectionwise normal and not orthocompact.

EXAMPLE 4.4. Let $\{\alpha_{i}|i\in I\}$ be a family such that $|I|=\omega_{1}$ and $\alpha_{\iota}=\omega_{1}$ for
every $i\in I$ . Then, by virtue of Corollary 3.17, $\Pi\{\alpha_{i}|i\in A\}$ is orthocompact and
normal for every countable subset $A$ of $I$ , but $\Pi\{\alpha_{t}|i\in I\}$ is neither orthocompact
nor normal. Hence Corollary 3.16 cannot be generalized to an uncountable
family of ordinals.
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