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DIMENSION OF SPECIAL $\mu$-SPACES

By

Takemi MIZOKAMI

K. Nagami in [5] called a space $X$ a $\mu$-space if $X$ is embedded in the count-

able product of paracompact $\sigma$-metric spaces. Especially he called $X$ a cubic $\mu-$

space if $X$ is the countable product itself of paracompact $\sigma$ -metric spaces and

proved that if $X$ is a cubic $\mu$-space, then the following statements are equivalent:

(1) $\dim X\leqq n$ , (2) $X=\bigcup_{i=1}^{n+1}X_{i}$ , where $\dim X_{i}\leqq 0$ for each $i,$ (3) $IndX\leqq n$ and (4)

there exists a closed mapping $f$ of a $\mu$-space $Z$ with $\dim Z\leqq 0$ onto $X$ such that

ord $f\leqq n+1$ , Recently he in [7] defined the class of free L-spaces between those

of LaSnev and $\mu$-spaces, and proved there that if $C$ is the class of free L-spaces

and $X\in C$, then the above (1), (2), (3) and the following (4) are equivalent: (4)

there exists a closed mapping $f$ of $Z\in C$ with $\dim Z\leqq 0$ onto $X$ such that ord $ f\leqq$

$n+1$ . In this paper we define the class $C$ of special $\mu$-spaces which are spaces

which can be embedded in the countable product of special $\sigma$ -metric spaces and

study the dimension of such spaces. In Theorem 2 it is proved that every free

L-space is a special $\mu$-space and in Theorem 3 that every special $\mu$-space is the
perfect image of a free L-space. Though it is proved by K. Nagami that a space
$X$ is a free L-space if and only if $X$ is embedded in the conutable product of

almost metric spaces, it is proved in Corollary 3 to Theorem 3 that if $X$ is a

special $\mu$ -space, then $X\subset\prod_{i=1}^{\infty}X_{i}$ , where each $X_{i}$ is an almost metric space plus

one point. In Theorem 4 the above (1), (2), (3), (4) are shown to be equivalent

even if $C$ is the class of special $\mu$-spaces.
All spaces are assumed to be Hausdorff, otherwise the contrary is stated.

All mappings are assumed to be continuous. $N$ always denotes the positive

integers

DEFINITION 1 (K. Nagami [4]). A space $X$ is called a $\sigma$-metric space if

$X=\bigcup_{i=1}^{\infty}X_{i}$ , where each $X_{i}$ is a closed metrizable subspace of $X$. Such $\{X_{i}\}$ is

called a scale of $X$. A scale $\{X_{i}\}$ is called monotone if $X_{i}\subset X_{i+1}$ for every $i\in\backslash $ .
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The following argument is due to K. Nagami [4]: If $X$ is a paracompact
$\sigma$-metric space with a monotone scale $\{X_{i}\}$ , then there exists a contraction $\rho$ of
$X$ onto a metric space $\hat{X}$ such that $\rho|X_{i}$ is a homeomorphism onto a closed sub-
space $\rho(X_{i})$ of $\hat{X}$ for each $i\in N$. Such a pair $(\hat{X}, \rho)$ is called a replica of $X$.

DEFINITION 2 (K. Nagami [6, Definition 4.4, 1.1]). Let $F$ be a closed set of a
space $X$. An open cover of $X-F$ is called an anti-cover of $F$. An anti-cover $cU$

of $F$ is said to be uniformly approaching (to $F$ ) if for every open set $G$ of $X$,
$\overline{S(X-G,V)}\cap F\cap G=\emptyset$ . $cU$ is said to be approaching (to $F$ ) if for every open
neighborhood $G$ of $F,$ $ S(X-G, cU)\cap F=\emptyset$ .

Every closed set of a metrizable space has a uniformly approaching anti-
cover [6, Remark 4.5]. This fact is used frequently in the later discussion.

DEFINITION 3. A $\sigma$-metric space $X$ is said to have a special scale $\{X_{i} : i\in N\}$

if $\{X_{i}\}$ is a scale of $X$ such that each $X_{i}$ has a uniformly approaching anti-cover.
A space $X$ is called a special $\sigma$ -metric space if $X$ is a paracompact $\sigma$ -metric space

with a special scale. A space is called a special $\mu$-space if it is embedded in the

countable product of special $\sigma$ -metric spaces.

By a routine check it is easily seen that a space $X$ has a special scale if

and only if $X$ has a special and monotone scale. Therefore in the below discus-
sion, we do not distinguish between usual and monotone scales. As seen in [2,

Example 1] every paracompact $\sigma$ -metric space need not be special $\sigma$ -metric, and

every special $\sigma$ -metric space is $M_{1}$ , but not the converse.

DEFINITION 4 ( $K$ Nagami [7, Definition 1.2]). For a space $X$, consider a pair
$\mathcal{P}=(\mathcal{F}, \{q]_{F} : F\in \mathcal{F}\})$ of a $\sigma$ -discrete closed collection $\mathcal{F}$ of $X$ and a collection of

anti-covers $CU_{F}$ of $F\in \mathcal{F}$ . $\mathcal{P}$ is called a free L-structu $re$ if for each point $p\in X$

and each open neighborhood $U$ of $p$ , there exist a finite collection $F_{1},$ $\cdots$ , $F_{k}$ of

$\mathcal{F}$ and a canonical neighborhood $U_{i}$ of each $F_{i}$ with $p\in\bigcap_{i=1}^{k}F_{i}\subset\bigcap_{i=1}^{k}U_{i}\subset U$. $X$ is

called a free L-space if $X$ is a paracompact space with a free L-structure. ( $U$ is

called a canonical neighborhood of $F$ with respect to $CU_{F}$ if $U$ is an open neigh-

borhood of $F$ such that for each $ i\in NS^{i}(X-U, \subseteq U_{F})\cap F=\emptyset$ . Especially when the

relation holds for $i=1,$ $U$ is called a semi-canonical neighborhood of $F.$ )

DEFINITION 5 (K. Nagami [7, Definition 3.1]). Let $X$ be a space. The set of

all points of $X$ which have the metric neighborhoods is said to be the metric
part of $X$. The complement of the metric part is said to be the nonmetric part.
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$X$ is said to be an almost metric space if the following three conditions are
satisfied:

a) $X$ is perfectly normal and paracompact.
b) The collection of points of the nonmetric part $X_{0}$ is discrete.
c) $X_{0}$ has an anti-cover approaching to $X_{0}$ .

THEOREM 1 (The embedding theorem for free L-spaces [7, Theorem 3.4]).

A space $X$ is a free L-space if and only if $X$ is embedded in the countable prod-

uct of almost metric spaces.

THEOREM 2. Every free L-space is a special $\mu$-space.

PROOF. It is proved that every almost metric space is a special $\sigma$-metric
space, and therefore by Theorem 1 every free L-space is embedded in the count-

able product of special $\sigma$-metric spaces. Indeed, let $X$ be an almost metric space
with its nonmetric part $X_{0}$ . Let $\{U(p):p\in X_{0}\},$ $\{V(p):p\in X_{0}\}$ be two discrete
open collections of $X$ such that

$p\in V(p)\subset\overline{V(p)}\subset U(p)$ for every $p\in X_{0}$ .

Let $\subset U$ be an approaching anti-cover of $X_{0}$ and set

$q]_{0}=(X-\cup\{\overline{V(p)}:p\in X_{0}\})\cup(\cup\{q]|U(p):p\in X_{0}\})$ .
Then $cU_{0}$ is a uniformly approaching anti-cover of $X_{0}$ . Let

$X_{0}=\bigcap_{i=1}^{\infty}G_{n}$ , $\overline{G_{n+1}}\subset G_{n}$ for every $n\in N$ ,

where each $G_{n}$ is open in $X$. Let $\mathcal{V}_{n}$ be a uniformly approaching anti-cover of
$X_{n}=X-G_{n}$ in the metric subspace $X-X_{0}$ . Set

$cU_{n}=\mathcal{V}_{n}\cup\{G_{n+1}\}$ .
Then $\subset U_{n}$ is a uniformly approaching anti-cover of $X_{n}$ . Therefore $\{X_{n} : n=0,1, \cdots\}$

is a special scale of $X$.

THEOREM 3. If $X$ is a special $\mu$-space, then $X$ is the perfect image of a free
L-space.

PROOF. Part 1: As a special case, we shall show that if $X$ is a special $\sigma-$

metric space, then $X$ is the perfect image of a free L-space. Let $\{X_{i} : i\in N\}$ be
a special scale of $X$. Let $(\hat{X}, \rho)$ be its replica with respect to $\{X_{i}\}$ . $\hat{X}$ is the
image of a metric space $Y$ with $\dim Y\leqq 0$ under a perfect mapping $g$ . Construct
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$Z$ as follows:
$Z=\{(x, y)\in X\times Y:\rho(x)=g(y)\}$ .

Let $f,$ $\sigma$ be the resrrictions of the projections onto $X,$ $Y$, respectively. Then $Z$

is a paracompact $\sigma$-metric space with a scale $\{Z_{i}=f^{-1}(X_{i}):i\in N\}$ such that
$\dim Z\leqq 0$ and $\sigma|Z_{i}$ is a homeomorphism of $Z_{i}$ onto a closed subspace $\sigma(Z_{i})$ of $Y$.
Let $\{V_{i} : i\in N\}$ be a sequence of uniformly approaching anti-covers of each $X_{i}$

in $X$. Since every closed set of a metric space has a uniformly approaching anti-
cover, there exists a uniformly approaching anti-cover $\mathcal{V}_{i}$ of $\sigma(Z_{i})$ in $Y$. Set

$w_{i}=(cU_{i}\times \mathcal{V}_{i})|Z$ .
Then $cW_{i}$ is an anti-cover of $Z_{i}$ with the following property:

$(^{*})$ If $P,$ $Q$ is a pair of open sets of $X,$ $Y$, respectively, then

$\overline{S(Z-P\times Q,\wp_{i})}^{Z}\cap(P\times Q)\cap Z_{i}=\emptyset$ .
We shall show that $Z$ is a free L-space. Assume that each $9V_{i}=\{W_{a} : \alpha\in A_{i}\}$ is
locally finite in $Z-Z_{i}$ and finitely multiplicative, that is, every finite intersection
of members of $cW_{i}$ belongs to $cW_{i}$ . Let $p_{i}$ : $Z-Z_{i}\rightarrow K_{i}$ be the canonical mapping

such that
$p_{l}(z)=\sum\{\phi_{a}(z)\alpha:\alpha\in A_{i}\}$ ,

where each $K_{i}$ is the nerve of $cI\nu_{i}$ and $\phi_{\alpha}$ is a continuous mapping of $Z-Z_{i}$ onto

$[0,1]$ such that $W_{a}=coz(\phi_{\alpha})$ and $\{\phi_{\alpha} : \alpha\in A_{i}\}$ is a partition of unity. We define

the topology $X_{i}$ of the disjoint sum $T_{i}=K_{i}\cup Z_{i}$ as follows: Let $\mathcal{F}_{i}(K_{i})$ be the
metric topology of $K_{i}$ and for an open set $V$ of $Z$ let $\Delta(V)$ be the totality of

subsets $\delta$ of $A_{i}$ such that

$L(V, \delta)=(V\cap Z_{i})\cup(\cup\{W_{a} : \alpha\in\delta\})$

is an open set of $Z$. For each $\delta\in\Delta(V)$ , set

$M(V, \delta)=(V\cap Z_{i})\cup(\cup\{St(\alpha):\alpha\in\delta\})$ ,

where $St(\alpha)$ means the star of the vertex $\alpha$ in $K_{i}$ . Thus $\mathcal{F}_{i}$ is defined to be the

topology having as its base

$ 9^{\cdot}(K_{i})\cup$ { $M(V,$ $\delta):\delta\in\Delta(V),$ $V$ open in $Z$}.

Indeed, if $\delta_{1}\in\Delta(V_{1}),$ $\delta_{2}\in\Delta(V_{2})$ , where $V_{1},$ $V_{2}$ are open in $Z$, then

$M(V_{1}, \delta_{1})\cap M(V_{2}, \delta_{2})=((V_{1}\cap V_{2})\cup Z_{i})\cup(\cup\{St(\alpha):\alpha\in\delta\})$

for some $\delta\subset A_{i}$ such that

$((V_{1}\cap V_{2})\cap Z_{i})\cup(\cup\{W_{\alpha} : \alpha\in\delta\})=L(V_{1}, \delta_{1})\cap L(V_{2}, \delta_{2})$
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is open in $Z$. Hence $\delta\in\Delta(V_{1}\cap V_{2})$ . Define a transformation $f_{i}$ : $Z\rightarrow(T_{i}, \mathcal{F}_{i})$ as
follows:

$f_{i}|Z_{i}=id_{z_{t}}$ , $f_{i}|(Z-Z_{i})=p_{i}$ .

Then from the construction of $g_{i}f_{i}$ is easily seen to be continuous and onto.

Define a transformation $f:Z\rightarrow\prod_{i=1}^{\infty}(T_{i}, X_{i})$ as follows:

$f(x)=(f_{i}(x))_{i\in N}$ , $x\in Z$ .
Then $f$ is a continuous mapping. Suppose $x\neq y,$ $x,$ $y\in Z$. Then $x,$ $y\in Z_{i}$ for
some $i\in N$. Then $f_{i}(x)\neq f_{i}(y)$ , implying $f(x)\neq f(y)$ . Hence $f$ is one-to-one. We
shall show that $f$ is an open mapping of $Z$ onto $f(Z)$ . Let $V$ be an open set of
$Z$. Suppose $f(x)\in f(V)$ . Then for some $m\in Nx\in Z_{m}\cap V\subset V$. There exists a
pair $P,$ $Q$ of open sets of $X,$ $Y$, respectively, such that $x\in(P\times Q)\cap Z\subset V$. Apply
$(^{*})$ for $P,$ $Q$ to get $\delta\subset A_{m}$ such that $L((P\times Q)\cap Z, \delta)$ is an open neighborhood of
$x$ in $Z$, and $L((P\times Q)\cap Z, \delta)\subset(P\times Q)\cap Z$. Then $M((P\times Q)\cap Z, \delta)$ is an open
neighborhood of $f_{m}(x)$ . Set

$O=(\prod_{i=1}^{\infty}O_{i})\cap f(Z)$ ,

$O_{i}=T_{i}$ if $i\neq m,$ $O_{m}=M((P\times Q)\cap Z, \delta)$ .

Then $O$ is an open neighborhood of $f(x)$ in $f(Z)$ such that $O\subset f(V)$ . Thus $f(V)$

is an open set of $f(Z)$ , proving that $f$ is an open mapping. It remains to prove
that each $(T_{i}, \mathcal{F}_{i})$ is a free L-space, but this is proved in Part 3.

Part 2: For the later use, we shall show that $Z_{i}\subset(T_{i}, X_{i})$ is the countable
intersection of closures in $T_{i}$ of open sets containing $Z_{i}$ . From the construction

of $Z,$ $Z_{i}=\bigcap_{n=1}^{\infty}V_{n}$ , where each $V_{n}$ is open in $Z$. By the repeated use of $(^{*})$ there

exists a $\delta_{n}\in\Delta(V_{n})$ such that

$Z_{i}\subset L(V_{n}, \delta_{n})\subset V_{n}$ , $S(L(V_{n}, \delta_{n})$ . $\llcorner 1W,$ ) $\subset V_{n}$ .
Then it follows that

$Z_{i}=\bigcap_{n=1}^{\infty}M(V_{n}, \delta_{n})=\bigcap_{n=1}^{\infty}\overline{M(V_{n},\delta_{n}})^{\overline{A}}i$

Part 3: We shall show that each $(T_{i}, \mathcal{F}_{i})$ can be embedded in the countable
product of almost metric spaces. Since $Z_{i}$ is a zero-dimensional metric space,
there exists a sequence $\{\mathcal{H}_{n} ; n\in N\}$ of covers of $Z_{i}$ such that

(i) each $\mathcal{H}_{n}=\{H_{\lambda} : \lambda\in\Lambda_{n}\}$ is a discrete collection of closed and open sets
of $Z_{i}$ ,
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(ii) $\mathcal{H}=\bigcup_{n=1}^{\infty}\mathcal{H}_{n}$ is an open base for $Z_{i}$ .
Let $R_{n}$ be the disjoint sum of $K_{i}$ and $\Lambda_{n}$ and define a transformation $q_{n}$ : $T_{i}\rightarrow R_{n}$

as follows:
$q_{n}(p)=p$ if $p\in K_{i}$ ,

$ q_{n}(p)=\lambda$ if $p\in H_{\lambda},$ $\lambda\in\Lambda_{n}$ .
Let the topology of $R_{n}$ be the quotient one with respect to $q_{n}$ : $T_{\iota}\rightarrow R_{n}$ . Define

a transformation $q:T_{i}\rightarrow\prod_{n=1}^{\infty}R_{n}$ by

$q(x)=(q_{n}(x))_{n\in N}$ , $x\in T_{i}$ .

Then $q$ is a continuous mapping. Suppose $x\neq y,$ $x,$ $y\in T_{i}$ . If $x,$ $y\in K_{i}$ , then
$x=q_{n}(x)\neq q_{n}(y)=y$ for every $n\in N$. If $x,$ $y\in Z_{i}$ , then there exists an $n\in N$ such
that

$x\in H_{\lambda},$ $y\in H_{\lambda},$ , $\lambda\neq\lambda^{\prime},$ $\lambda,$ $\lambda^{\prime}\in\Lambda_{n}$ .

Thus $q_{n}(x)=\lambda\neq q_{n}(y)=\lambda^{\prime}$ . If $x\in K_{i},$ $y\in Z_{i}$ , then for each $n\in N$ and for some
$\lambda\in\Lambda_{n}q_{n}(x)=x\neq\lambda=q_{n}(y)$ . Hence $q$ is one-to-one. To see that $q$ is an open
mapping of $T_{i}$ onto $q(T_{i})$ , let $V$ be an open set of $T_{i}$ and $q(x)\in q(V)$ . Without

loss of generality we can assume $x\in V\cap Z_{i}$ . Since $\mathcal{H}$ is an open base for $Z_{i}$ ,

there exists an $n\in N$ such that $x\in H_{\lambda}\subset V\cap Z_{i}$ for some $\lambda\in\Lambda_{n}$ . Let $H_{\lambda}^{\prime}$ be an
open set of $Z$ with $H_{\lambda}^{\prime}\cap Z_{i}=H_{\lambda}$ and $H_{\lambda}^{\prime}\subset f_{i}^{-1}(V)$ . By the property $(^{*})$ there exists
a $\delta\in\Delta(H_{\lambda}^{\prime})$ such that $H_{\lambda}\subset L(H_{\lambda}^{\prime}, \delta)\subset H_{\lambda}^{\prime}$ . Then $q_{n}(M(H_{\lambda}^{\prime}, \delta))$ is an open neighbor-

hood of $\lambda$ in $R_{n}$ such that $q_{n}(M(H_{\lambda}^{\prime}, \delta))\subset q_{n}(V)$ . Set

$O=(\prod_{j=1}^{\infty}O_{j})\cap q(T_{i})$ ,

$O_{j}=R_{j}$ if $j\neq n,$ $O_{n}=q_{n}(M(H_{\lambda}^{\prime}, \delta))$ .
Then $O$ is an open neighborhood of $q(x)$ such that $O\subset q(V)$ . Hence $q$ is an em-
bedding.

Part 4: Each $R_{n}$ is an $M_{1}$-space. 0bviously $R_{n}$ is Hausdorff. To see that
$R_{n}$ is regular, suppose $p\in V$ for an open set $V$ of $R_{n}$ and a point $p\in R_{n}$ . As

seen in part 2, $\Lambda_{n}$ is written as

$\Lambda_{n}=\bigcap_{m=1}^{\infty}W_{m}=\bigcap_{m=1}^{\infty}\overline{W}_{m^{R_{n}}}$ ,

where each $W_{m}$ is an open set of $R_{n}$ . If $p\in K_{i}$ , then $p\not\in\overline{W}_{m}^{R_{n}}$ for some $m\in N$

and by the regularity of $K_{i}$ , there exists an open set $N$ such that

$p\in N\subset\overline{N}^{R_{n}}\subset(R_{n}-W_{m})\cap V$ .
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Consider the case $ p=\lambda$ . Since $H_{\lambda}\subset f_{i}^{-1}(q_{n}^{-1}(V))$ , there exists a closed and open
set $U$ of $Z$ such that

$U\cap Z_{i}=H_{\lambda}$ , $U\subset f_{i}^{-1}(q_{n}^{-1}(V))$ .
By $(^{*})$ there exists a $\delta\in\Delta(U)$ such that

$L(U, \delta)\subset U$ , $S(L(U, \delta),$ $9V_{i}$) $\subset U$ .
Then $N=q_{n}(M(U, \delta))$ is an open neighborhood of $p$ such that $\overline{N}^{R_{n}}\subset V$. Hence $R_{n}$

is regular.
Since $Z$ is paracompact, $\dim Z\leqq 0$ and each $\mathcal{H}_{n}$ is a discrete collection of

closed and open sets of $Z_{i}$ , there exists a discrete collection $\{H_{\lambda}^{\prime} : \lambda\in\Lambda_{n}\}$ of closed
and open sets of $Z$ such that $H_{\lambda}^{\prime}\cap Z_{i}=H_{\lambda}$ for each $\lambda\in\Lambda_{n}$ . For each $\lambda\in\Lambda_{n}$ , take
a $\delta_{\lambda}\in\Delta(H_{\lambda}^{\prime})$ such that

$L(H_{\lambda}^{\prime}, \delta_{\lambda})\subset H_{\lambda}^{\prime}$ , $S(L(H_{\lambda}^{\prime}, \delta),$ $\wp_{i}$ ) $\subset H_{\lambda}^{\prime}$ .
Then $\{M(H_{\lambda}^{\prime}, \delta_{\lambda}):\lambda\in\Lambda_{n}\}$ is discrete in $T_{i}$ , for if

$ St(\alpha)\cap M(H_{\lambda_{1}}^{\prime}, \delta_{\lambda_{1}})\neq\emptyset$ , $ St(\alpha)\cap M(H_{\lambda_{2}}^{\prime}, \delta_{\lambda_{2}})\neq\emptyset$ ,
then

$ St(\alpha)\cap St(\beta_{1})\neq\emptyset$ , $ St(\alpha)\cap St(\beta_{2})\neq\emptyset$

for some $\beta_{1}\in\delta_{\lambda_{1}},$ $\beta_{2}\in\delta_{\lambda_{2}}$ . These mean
$ W_{\alpha}\cap W_{\beta_{1}}\neq\emptyset$ , $ W_{\alpha}\cap W_{\beta_{2}}\neq\emptyset$ .

Hence $ L(H_{\lambda_{1}}^{\prime}, \delta_{\lambda_{1}})\cap L(H_{\lambda_{2}}^{\prime}, \delta_{\lambda_{2}})\neq\emptyset$ , a contradiction. Since $K_{i}$ is paracompact, there
exists a locally finite (in $K_{i}$) open cover $\mathcal{V}=\{V_{\xi} : \xi EE\}$ of $K_{i}$ refining { $St(\alpha)$ :
$\alpha\in A_{i}\}$ . For each $\lambda\in\Lambda_{n}$ , let $\Delta_{0}(\lambda)$ be the collection of all subsets $\delta$ of $\Xi$ such
that

$H(\lambda, \delta)=H_{\lambda}\cup(\cup\{V_{\xi} : \xi\in\delta\})$

is an open set of $T_{i}$ and $H(\lambda, \delta)\subset M(H_{\lambda}^{\prime}, \delta_{\lambda})$ . Then $\{H(\lambda, \delta):\delta\in\Delta_{0}(\lambda)\}$ is closure-
preserving in $T_{i}$ and therefore by the discreteness of $\{M(H_{\lambda}^{\prime}, \delta_{\lambda}):\lambda\in\Lambda_{n}\}$ it fol-
lows that $\{H(\lambda, \delta):\delta\in\Delta_{0}(\lambda), \lambda\in\Lambda_{n}\}$ is closure-preserving in $T_{i}$ . Since as seen
in part 2, $\Lambda_{n}$ is the countable intersection of closures in $R_{n}$ of open neighbor-
hoods of $\Lambda_{n}$ and $K_{i}$ is metrizable, there exists a $\sigma$-localIy finite (in $R_{n}$ ) open
collection $\mathscr{Q}_{0}$ of $R_{n}$ which is an open base for the subspace $K_{i}$ . Put

$B_{n}=\{B(\lambda, \delta)=\{\lambda\}\cup(\cup\{V_{\text{\’{e}}} : \xi\in\delta\}):\delta\in\Delta_{0}(\lambda), \lambda\in\Lambda_{n}\}$ ,

$\mathscr{Q}=\mathscr{Q}_{0}\cup(\bigcup_{n\Rightarrow 1}^{\infty}s_{n})$ .

Then ve is a $\sigma$ -closure-preserving open collection of $R_{n}$ . To see that S) is an
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open base for $R_{n}$ , let $p\in V$ for an open set $V$ and a point $p\in R_{n}$ . If $p\in K_{i}$ ,

then obviously $p\in B\subset V$ for some $B\in B_{0}$ . Suppose $p=\lambda\in\Lambda_{n}$ . There exists a
$\delta_{0}\in\Delta(H_{\lambda}^{\prime})$ such that

$S(M(H_{\lambda}^{\prime}, \delta_{0}),$ $\{St(\alpha):\alpha\in A_{i}\})\subset q_{n}^{-1}(V)\cap M(H_{\lambda}^{\prime}, \delta_{\lambda})$ .
$\mathcal{V}<\{St(\alpha):\alpha\in A_{i}\}$ implies that there exists a $\delta\in\Delta_{0}(\lambda)$ such that

$S(M(H_{\lambda}^{\prime}, \delta_{0}),$ $\mathcal{V}$ ) $=H(\lambda, \delta)\subset q_{n}^{-1}(V)\cap M(H_{\lambda}^{\prime}, \delta_{\lambda})$ .

Hence $\lambda\in B(\lambda, \delta)\subset V$. This completes the proof of part 4.
Part 5: $R_{n}$ is shown to be an almost metric space. Obviously $\{\{\lambda\}:\lambda\in\Lambda_{n}\}$

is discrete in $R_{n}$ . To see that $\Lambda_{n}$ has an approaching anti-cover, it suffices to

prove that $Z_{i}$ has an approaching anti-cover $cU=\{St(\alpha):\alpha\in A_{i}\}$ . Let $U$ be an
open set of $T_{i}$ such that $Z_{i}\subset U$ . By $(^{*})$ there exists a $\delta\subset A_{i}$ such that

$W=Z_{i}\cup(\cup\{St(\alpha):\alpha\in\delta\})$

is an open neighborhood of $Z_{i}$ such that $W\subset U$ and $S(W_{\alpha}, \wp_{i})\subset f_{i}^{-1}(U)$ for every
$\alpha\in\delta$ . It is easily seen that $ W\cap S(T_{i}-U, cU)=\emptyset$ . Hence $R_{n}$ is an almost metric

space.

Part 6: Let $X\subset\prod_{\ell=1}^{\infty}X_{i}$ , where each $X_{i}$ is a special $\sigma$ -metric space. By the

above argument, there exists a perfect mapping $f_{i}$ of a free L-space $Z_{i}$ onto $X_{i}$ .

Construct a mapping $f:\prod_{i=1}^{\infty}Z_{i}\rightarrow\prod_{i=1}^{\infty}X_{i}$ by

$f(x)=(f_{i}(x_{i}))_{i\in N}$ , $x=(x_{i})\in\prod_{i=1}^{\infty}Z_{i}$ .

Let $Z_{0}=f^{-1}(X)$ and $g=f|Z_{0}$ . Then $g:Z_{0}\rightarrow X$ is a perfect mapping of a free L-

space onto $X$. This completes the proof.

Since every free L-space is $M_{1}$ , every special $\mu$-space is an image of an $M_{1^{-}}$

space by a perfect and irreducible mapping, and therefore by [1, Theorem 3.4]

every special $\mu$-space is $M_{1}$ .

COROLLARY 1. The following are equivalent:

(1) $X$ is a free L-space with $\dim X=0$ .
(2) $X\subset\prod_{i=1}^{\infty}X_{i}$ , where each $X_{i}$ is a special $\sigma$-metric space with $\dim X_{i}=0$ .

PROOF. (1) $\rightarrow(2)$ follows immediately from [7, Theorem 3.8]. (2) $\rightarrow(1)$ : By

the preceding proof each $X_{i}$ is a free L-space. $\dim X=0$ follows from [7,

Lemma 3.7].
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COROLLARY 2. If $X$ is a special $\sigma$ -metric space with $\dim X\leqq n$ , then there
exists a closed mapping $f$ of a free L-space $Z$ with $\dim Z\leqq 0$ onto $X$ snch that
ord $f\leqq n+1$ .

PROOF. In part 1 of the preceding proof, $f$ is chosen to be a mapping with
ord $f\leqq n+1$ .

In the next corollary, a space $R_{n}^{*}$ is called an almost metric space plus one
point if $R_{n}^{*}=R_{n}\cup\{p_{n}\}$ with $p_{n}\not\in R_{n}$ , where $R_{n}$ is an almost metric space. Note
that $R_{n}^{*}$ need not be Hausdorff.

COROLLARY 3. If $X$ is a special $\mu$-space, then $X$ is embedded in the countable
product of almost metric spaces plus one point.

PROOF. It suffices to prove that if $Z$ is a special $\sigma$ -metric space then $Z$ is
embedded in the countable product of such spaces. Let $\{Z_{i}\}$ be the special scale
and let $w_{i}=\{W_{\alpha} : \alpha\in A_{i}\}$ be a uniformly approaching anti-cover of $Z_{i}$ . Define a
space $(T_{i}, 9_{i})$ in the similar way to part 1 of the preceding proof. Then we
have $Z\subset\prod_{i=1}^{\infty}(T_{i}, \mathcal{F}_{i})$ . Therefore it suffices to prove that each $(T_{i}, \mathcal{F}_{i})$ can be

embedded in the countable product of almost metric spaces plus one point. Let
$\bigcup_{n=1}^{\infty}\mathcal{H}_{n}$ be an open base for the subspace $Z_{i}$ , where each $\mathcal{H}_{n}=\{H_{\lambda} : \lambda\in\Lambda_{n}\}$ is

discrete in $Z_{i}$ . Let $R_{n}^{*}$ be the disjoint sum of $K_{i},$ $\Lambda_{n}$ and $\{r_{n}\}$ , where $ r_{n}\not\in$

$K_{i}\cup(\bigcup_{n=1}^{\infty}\Lambda_{n})$ and $R_{n}$ the disjoint sum of $K_{i}$ and $\Lambda_{n}$ . That is,

$R_{n}^{*}=R_{n}\cup\{r_{n}\}$ , $R_{n}=K_{i}\cup\Lambda_{n}$ .
Define a transformation $q_{n}$ : $T_{i}\rightarrow R_{n}^{*}$ as follows:

$q_{n}(p)=p$ if $p\not\in K_{i}$ ,

$ q_{n}(p)=\lambda$ if $p\in H_{\lambda},$ $\lambda\in\Lambda_{n}$ ,

$q_{n}(p)=r_{n}$ if $p\in Z_{i}-\cup\{H_{\lambda} : \lambda\in\Lambda_{n}\}$ .
We introduce into $R_{n}^{*}$ the quotient topology with respect to $q_{n}$ . Define a trans-

formation $q:T_{i}\rightarrow\prod_{n=1}^{\infty}R_{n}^{*}$ as follows $\cdot$:

$q(p)=(q_{n}(p))_{n\in N},$ $p\in T_{i}$ .
As seen in the preceding proof, $q$ is an embedding. Thus we shall show that
each $R_{n}^{*}$ is an almost metric space plus one point, that is, $R_{n}$ is an almost metric
space. First, we shall show that $R_{n}$ is an $M_{1}$-space. To see that $R_{n}$ is regular,
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suppose $\lambda\in V$ for an open set $V$ and a point $\lambda\in\Lambda_{n}$ . There exists a $\delta\in\Delta(H_{\lambda}^{\prime})$

such that
$S(L(H_{\lambda}^{\prime}, \delta),$ $\varphi_{i}$) $\subset f_{i}^{-1}(q_{n}^{-1}(V))\cap H_{\lambda}^{\prime}$ ,

where $H_{\lambda}^{\prime}$ is an open set of $Z$ such that

$H_{\lambda}^{\prime}\cap Z_{i}=H_{\lambda}$ , $\overline{H}_{\lambda^{Z}}^{\prime}\cap H_{\mu}=\emptyset$ for every $\mu\neq\lambda,$ $\mu\in\Lambda_{n}$ .
Set

$V_{0}=\{\lambda\}\cup(\cup\{St(\alpha):\alpha\in\delta\})$ .
Then $V_{0}$ is an open neighborhood of $\lambda$ such that $\overline{V}_{0^{R_{n}}}\subset V$. Thus $R_{n}$ is regular.
Since

$Z(n)=K_{i}\cup(\cup\{H_{\lambda} : \lambda\in\Lambda_{n}\})$

is paracompact and $\{H_{\lambda} : \lambda\in\Lambda_{n}\}$ is a discrete closed collection in $Z(n)$ , there
exists an open collection $\{H_{\lambda}^{\prime} : \lambda\in\Lambda_{n}\}$ of $Z$ such that $H_{\lambda}=H_{\lambda}^{\prime}\cap Z_{i}$ for every $\lambda\in\Lambda_{n}$

and $\{\overline{H}_{\lambda^{Z(n)}}^{\prime} : \lambda\in\Lambda_{n}\}$ is discrete in $Z(n)$ . Take a $\delta_{\lambda}\in\Delta(H^{\prime})$ such that $L(H_{\lambda}^{\prime}, \delta_{\lambda})$

$\subset H_{\lambda}^{\prime}$ . Let $\mathcal{V}=\{V_{\xi} : \xi\in-\cdot-\}$ be a locally finite (in $K_{i}$) open over of $K_{i}$ refining
$\{St(\alpha):\alpha\in A_{i}\}$ . For each $\lambda\in\Lambda_{n}$ , let $\Delta_{0}(\lambda)$ be the collection of all subsets $\delta$ of $--$

such that
$H(\lambda, \delta)=H_{\lambda}\cup(\cup\{V_{\xi} : \xi\in\delta\})$

is an open set of $T_{i}$ and $H(\lambda, \delta)\subset M(H_{\lambda}^{\prime}, \delta_{\lambda})$ . We repeat the essential part of the
proof of part 4. This completes the proof.

K. Nagami proved recently that the statements (1), (2), (3) and (4) in the next
theorem are equivalent for a free L-space $X$ [$7$ , Theorem 2.3]. In this section
we shall show that these statements are equivalent for every special $\mu$-space $X$.

LEMMA. Let $X$ be a paracompact $\sigma$ -space with a closed network $\mathcal{F}=\bigcup_{i=1}^{\infty}\mathcal{F}_{i}$ ,

where each $\mathcal{F}_{i}$ is locally finite in $X$, and each $\mathcal{F}_{i}$ has a locally finite open collec-
tion $\{V(F):F\in \mathcal{F}_{i}\}$ of $X$ such that $F\subset V(F)$ for every $F\in \mathcal{F}_{i}$ . Assume that if
$p\in c$ for an open set $G$ and a point $p\in x$, then there exists an $F_{p}\in \mathcal{F}$ and an
open set $V_{p}$ such that

$p\in F_{p}\cap V_{p}\subset G\cap V(F_{p})$ ,

$IndB(V_{p})\leqq n-1$ .
Then $IndX\leqq n$ .

PROOF. Let $H,$ $K$ be a pair of disjoint closed sets of $X$ and $H_{1},$ $K_{1}$ be a pair
of open sets of $X$ such that

$H\subset H_{1}$ , $K\subset K_{i}$ , $\overline{H}_{1}\cap\overline{K}_{1}=\emptyset$ .
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Take for each point $p\in X$ an $F_{p}\in \mathcal{F}$ an open set $V_{p}$ such that

$ p\in F_{p}\subset V_{p}\subset$ ( $X-\overline{H}_{1}$ or $X-\overline{K}_{1}$ ) $\cap V(F_{p})$ ,

$IndB(V_{p})\leqq n-1$ .
Choose a subset $X_{0}\subset X$ such that

$\mathcal{F}_{0}=\{F_{p} : p\in X\}=\{F_{p} : p\in X_{0}\}$ ,

$F_{p}\neq F_{p}$ , if $p,$ $p^{r}\in X_{0},$ $p\neq p^{\prime}$

Since $\mathcal{F}_{0}$ covers $X,$ $\mathcal{V}=\{V_{p} : p\in X_{0}\}$ covers $X$. It is easily seen that $\mathcal{V}$ is a $\sigma-$

Iocally finite open collection such that $\subset V<\{X-H, X-K\}$ . Thus by [3, Theorem
11. 12] $H,$ $K$ are separated by a closed set $P$ with $IndP\leqq n-1$ and we have
$IndX\leqq n$ .

In the proof of the next theorem we use the following term: An anti-cover
$cU$ of $F$ in $X$ is said to be approaching (uniformly approaching) to $F$ with respect
to an open collection $\mathcal{V}$ if for every open set $V\in \mathcal{V}$ with $F\subset V$ (for every open
set $V\in \mathcal{V}$ ) $\overline{S(X-V,cU)}\cap F=\emptyset(\overline{S(X-V,qJ})\cap V\cap F=\emptyset)$ .

THEOREM 4. For a special $\mu$-space $X$ the following are equivalent:
(1) $\dim X\leqq n$ .
(2) There exists a closed mapping $f$ of a special $\mu$-space $Z$ with $\dim Z\leqq 0$

onto $X$ such that ord $f\leqq n+1$ .
(3) $X=\bigcup_{i=1}^{n+1}Z$, where $\dim Z_{i}\leqq 0$ for each $i$ .
(4) $IndX\leqq n$ .

PROOF. The implications (2) $\rightarrow(3)\rightarrow(4)\rightarrow(1)$ are already known. Thus it re-
mains to prove the implication (1) $\rightarrow(2)$ . Suppose $X\subset\prod_{i=1}^{\infty}X_{i}$ and $\dim X\leqq n$ , where

each $X_{i}$ is a $\sigma$-metric space with a special scale $\{X_{im} : m\in N\}$ . Let $cW_{im}$ be a
uniformly approaching anti-cover of $X_{im}$ . Let $\mathcal{F}_{im}=\bigcup_{j=1}^{\infty}\mathcal{F}_{imj}$ be a network of the

subspace $X_{im}$ , where each $\mathcal{F}_{imj}=\{F_{\lambda} : \lambda\in\Lambda_{imj}\}$ is a discrete closed collection of
$X_{im}$ . By [4, Theorem 2] there exists a replica $\rho_{i}$ : $X_{i}\rightarrow\hat{X}_{i}$ such that

(1) if $G$ is an open set of $X_{i}$ with $p\in G\cap X_{im}$ , then there exists an open set
$W$ of $X_{i}$ such that $p\in W\cap X_{im}\subset G$ and $\rho_{i}(W)$ is open in $\hat{X}_{i}$ .

Let $\mathcal{V}_{imj}=\{V_{\lambda} : \lambda\in\Lambda_{imj}\}$ be a discrete open collection of $X_{i}$ such that $F_{\lambda}\subset V_{\lambda}$

for each $\lambda\in\Lambda_{imj}$ . Set
$F_{imj}=\cup\{F_{\lambda} : \lambda\in\Lambda_{imj}\}$ .

Since $\rho_{i}(F_{imj})$ is a closed set of a metric space $\hat{X}_{i}$ , there exists an approaching
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anti-cover $V_{imj}$ of $F_{imj}$ in $X_{i}$ with respect to { $\rho_{i}^{-1}(V):V$ open in $\hat{X}_{i}$ }. Let
$\pi_{i}$ : $X\rightarrow X_{i}$ be the restriction to $X$ of the projection and set

$X_{im}^{\prime}=\pi_{i}^{-1}(X_{im})$ ,

$\mathcal{F}_{imj}^{\prime}=\pi_{i}^{-1}(\mathcal{F}_{imj})=\{F_{\lambda}^{\prime}=\pi_{i}^{-1}(F_{\lambda}):\lambda\in\Lambda_{imj}\}$ ,

$V_{imj}^{\prime}=\pi_{i}^{-1}(q\int_{\ell mj})$ ,

$\mathcal{V}_{imj}^{\prime}=\pi_{i}^{-1}(\mathcal{V}_{imj})=\{V_{\lambda}^{\prime} : \lambda\in\Lambda_{imj}\}$ ,

$\subset W_{im}^{\prime}=\pi_{i}^{-1}(\wp_{im})$ ,

$H_{imj}=\pi_{i}^{-1}(F_{imj})=\cup\{F_{\lambda}^{\prime} : \lambda\in\Lambda_{imj}\}$ ,

$V_{imj}=\cup\{V_{\lambda}^{\prime} : \lambda\in\Lambda_{imj}\}$ .
Then $cU_{imj}^{\prime}$ is an approaching anti-cover of $H_{imj}with_{\sim}^{P}respect$ to $\{\pi_{\overline{i}}(\rho_{i}^{-1}(V)):V$

open in $\hat{X}_{i}$ }. Let $\bigcup_{k=1}^{\infty}cU_{imjk}$ is an anti-cover of $H_{imj}$ in $X$ refining $cU_{imj}^{\prime}$ , where

each $cu_{imjk}=\{U_{imjk\alpha} : \alpha\in A_{imjk}\}$ is a discrete open collection of $X-H_{imj}$ . Set

$U_{imjk}=\cup\{U_{imjk\alpha} : \alpha\in A_{imjk}\}$ .

$U_{imjk}=\bigcup_{t=1}^{\infty}K_{imjkt}$ ,

where each $K_{imjkl}$ is a closed set of $X$. Similarly since $cW_{lm}^{\prime}$ is a uniformly

approaching anti-cover of $X_{im}^{\prime}$ with respect to { $\pi_{i}^{-1}(V):V$ open in $X_{i}$}, we can

get an anti-cover $\bigcup_{j=1}^{\infty}\subset W_{imj}$ of $X_{im}^{\prime}$ in $X$ refining $cW_{im}^{\prime}$ , where each $\subset W_{imj}=$

$\{W_{imj\beta} : \beta\in B_{imj}\}$ is a discrete open collection of $X-X_{im}^{\prime}$ . Set

$W_{imj}=\cup\{W_{imj\beta} : \beta\in B_{imj}\}$ .

$W_{imj}=\bigcup_{k=1}^{\infty}L_{imjk}$ ,

where each $L_{imjk}$ is a closed set of $X$. Write the countable collection of disjoint

pairs of closed sets as follows:

$\{(K_{imjkl}, X-U_{imjk}):i, m, j, k, t\in N\}$

$\cup\{(L_{imjk}, X-W_{imj}):i, m, j, k\in N\}$

$=\{(P_{i}, Q_{i}):i\in N\}$ .
By [6, Lemma 3.6] there exists a contraction $\rho$ of $X$ onto a metric space $\hat{X}$ with
$\dim\hat{X}\leqq n$ such that each pair $(\rho(P_{i}), \rho(Q_{i}))$ is a disjoint pair of closed sets of $\hat{X}$.
Let $\mathcal{G}_{i}=\{G_{i\mu} : \mu\in M_{i}\},$ $i\in N$ be a sequence of locally finite open covers of $\hat{X}$ satis-
fying the following: For each $i\in N$,
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1) mesh $\mathcal{G}_{i}\leqq 1/i$ ,

2) $\mathcal{G}_{i+1}<\mathcal{G}_{i}$ ,

3) $\mathcal{G}_{i}<\{\hat{X}-\rho(P_{i}),\hat{X}-\rho(Q_{i})\}$ ,

4) ord $\mathcal{G}_{i}\leqq n+1$ .
Let $p_{i}^{i+1}$ : $M_{i+1}\rightarrow M_{i}$ be a transformation such that $ p_{i}^{i+1}(\lambda)=\mu$ yields $\overline{G}_{i+1\lambda}\subset G_{i\mu}$ .
Set

$Y=\{\langle\mu_{i}\rangle\in\lim_{\leftarrow}\{M_{i}, p_{i}^{i+1}\} : \bigcap_{i=1}^{\infty}G_{i\mu}\neq\emptyset\}$ .

$g:Y\rightarrow\hat{X}$ is defined as follows:

$g(\langle\mu_{t}\rangle)=\bigcap_{i=1}^{\infty}G_{i\mu i}$ , $\langle\mu_{i}\rangle\in Y$ .

Then as seen in the proof of [7, Theorem 2.3], $g$ is a closed mapping of $Y$ with
$\dim Y\leqq 0$ onto $\hat{X}$ such that ord $g\leqq n+1$ . Construct $Z\subset X\times Y$ as follows:

$Z=\{(x, y)\in X\times Y:o(x)=g(y)\}$ .

Let $f,$ $\sigma$ be the restrictions of the projections of $x\times Y$ onto $X,$ $Y$, respectively.

Then $f$ is a closed mapping of $Z$ onto $X$ with ord $f\leqq n+1$ and $\sigma$ is a contraction
of $Z$ onto $Y$. The following statement (2) follows from Assertion 1 of the proof

of [7, Theorem 2.3]:

(2) For each $i\in N,$ $f^{-1}(P_{i}),$ $f^{-1}(Q_{i})$ can be separated in $Z$ by the empty set.
Since $X$ is a special $\mu$-space, $Z$ is also a special $\mu$-space. Therefore it remains
to prove $\dim Z\leqq 0$ . To prove this, we shall show the following statements (3),

(4) and (5).

(3) If $D$ is a semi-canonical neighborhood of $H_{imj}$ with respect to $cU_{imj}^{\prime}$,

then there exists a closed and open set $V$ of $Z$ such that

$f^{-1}(H_{imj})\subset V\subset f^{-1}(D)$ .

PROOF. Set $E=S(X-D, c.U_{imj}^{\prime})$ . Then $\mathcal{D}=\{f^{-1}(E), f^{-1}(D)-f^{-1}(H_{imj})\}$ is an
open cover of $Z-f^{-1}(H_{imj})$ . By (2) for each $i,$ $m,$ $j,$ $k,$ $t\in N$ there exsits a closed
and open set $R_{imjkl}$ of $Z$ such that

$f^{-1}(K_{imjkt})\subset R_{imjkt}\subset f^{-1}(U_{imjk})$ .
Set

$R_{imjkl\alpha}=R_{imjkt}\cap f^{-1}(U_{imjk\alpha})$ ,

$\mathcal{P}_{imjkl}=\{R_{imjkl\alpha} : \alpha\in A_{imjk}\}$ ,

$R_{imj}=\cup\{R_{imjkt} : k, t\in N\}$ .

Then $9l_{imj}$ is a $\sigma$-discrete cover of $Z-f^{-1}(H_{imj})$ consisting of closed and open
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sets of $Z$ refining $\mathcal{D}$ . Thus by [3, Theorem 11. 12] there exists a closed and
open set $V^{\prime}$ of $Z-f^{-1}(H_{imj})$ such that

$Z-(f^{-1}(E)\cup f^{-1}(H_{imj}))\subset V^{\prime}\subset f^{-1}(O)-f^{-1}(H_{imj})$ .
Since $D$ is semi-canonical, $V=V^{\prime}\cup f^{-1}(H_{imj})$ is the desired set.

(4) If $D$ is an open set of $X_{i}$ such that

$F_{imj}\subset D\subset\cup\{V_{\lambda} : \lambda\in\Lambda_{imj}\}$ ,

then there exists an open set $V$ of $Z$ such that

$V_{\cap}f^{-1}(X_{im}^{\prime})=f^{-1}(\pi_{i}^{-1}(D))\cap f^{-1}(X_{im}^{\prime})$ ,

$V\subset f^{-1}(\pi_{i}^{-1}(D))$

and such that $V\cap(Z-f^{-1}(X_{im}^{\prime}))$ is closed in $Z-f^{-1}(X_{im}^{\prime})$ .

PROOF. Set $E=S(X-\pi_{i}^{-1}(D), CW_{im}^{\prime})$ . Then

$\mathcal{D}=\{f^{-1}(E), f^{-1}(\pi_{i}^{-1}(D))\cap(Z-f^{-1}(X_{im}^{\prime}))\}$

is an open cover of the subspace $Z-f^{-1}(X_{im}^{\prime})$ . By (2) for each $i,$ $m,$ $j,$ $k\in N$

there exists a closed and open set $T_{imjk}$ of $Z$ such that

$f^{-1}(L_{imjk})\subset T_{imjk}\subset f^{-1}(W_{imj})$ .
Set

$T_{imjk\beta}=f^{-1}(W_{imj\beta}(\cap T_{imjk}$ ,

$\sigma_{imjk}=\{T_{imjk\beta} : \beta\in B_{imj}\}$ ,

$g_{im}=\cup\{g_{imjk} ; j, k\in N\}$ .
Then $\mathcal{F}_{im}$ is a $\sigma$-discrete cover of $Z-f^{-1}(X_{im}^{\prime})$ consisting of closed and open sets
of $Z$ and refining $\mathcal{D}$ . Thus by [3, Theorem 11. 12] again, there exists a closed
and open set $V^{\prime}$ of $Z-f^{-1}(X_{im}^{\prime})$ such that

$Z-(f^{-1}(E)\cup f^{-1}(X_{im}^{\prime}))\subset V^{\prime}\subset f^{-1}(\pi_{i}^{-1}(D))-f^{-1}(X_{im}^{\prime})$ .
Then $V=V^{\prime}\cup(f^{-1}(\pi_{i}^{-1}(D))\cap f^{-1}(X_{im}^{\prime}))$ is the desired set.

(5) If $U$ is an open set of $X$ with $x\in U$, then there exist a finite set
$\{\lambda_{1}, \cdots, \lambda_{k}\}$ of indices with $\lambda_{t}\in\Lambda_{i(t)m(t)j(t)},$ $t=1,$ $\cdots$ , $k$ , and a closed and open
set $O$ of $Z$ such that

$f^{-1}(x)\subset\bigcap_{l=1}^{k}f^{-1}(F_{\lambda}^{\prime})\subset O\subset f^{-1}(U)\cap(\bigcap_{{}^{t}\iota=1}^{k}f^{-1}(V_{\lambda_{t}}^{\prime}))$ .

PROOF. Let $x=\langle x_{i}\rangle\in U$. Then there exist an integer $k$ and open sets $U_{t}$ of
$X_{i(t)},$ $t=1,$ $\cdots,$

$k$ such that
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$x\in\bigcap_{l=1}^{k}\pi_{i(l)}^{-1}(U_{l})\subset U$ .

For each $t=1,$ $\cdots,$
$k$ , there exists an $m(t)\in N$ with $x_{i(t)}\in X_{i(t)m(t)}$ because

$\{X_{i(t)m} : m\in N\}$ is a scale of $X_{i(t)}$ . Since $\mathcal{F}_{i(t)m(t)}$ forms a network of $X_{i(t)m(t)}$ ,

we can choose a $\lambda_{l}\in\Lambda_{i(t)m(t)j(t)}$ with $x_{i(t)}\in F_{\text{{\it \‘{A}}}_{l}}\subset U_{t}$ . By (1) there exists an open

set $G_{l}$ of $X_{i(t)}$ such that

$F_{\lambda_{t}}\subset G_{t}\cap X_{i(t)m(t)}\subset V_{\lambda_{l}}\cap U_{t}$

and such that $\rho_{t(t)}(G_{l})$ is open in $\hat{X}_{i(t)}$ . For each $\lambda\neq\lambda_{l},$ $\lambda\in\Lambda_{i(t)m(t)j(t)}$ choose by

(1) again an open set $G_{\lambda}$ of $X_{i(t)}$ such that

$F_{\lambda}\subset G_{\lambda}\cap X_{i(t)m(t)}\subset V_{\lambda}$

and such that $\rho_{i(t)}(G_{\lambda})$ is open in $\hat{X}_{i(t)}$ . Set

$G(t)=G_{t}\cup(\cup\{G_{\lambda} : \lambda\in\Lambda_{i(t)m(t)j(t)}, \lambda\neq\lambda_{l}\})$ .

Then $\pi_{i(t)}^{-1}(G(t))$ is a semi-canonical neighborhood of $H_{i(t)m(t)j(t)}$ with respect to
$cU_{i(t)m(t)j(t)}^{\prime}$ . By (3) there exists a closed and open set $V(t)$ of $Z$ such that

$f^{-1}(H_{i(t)m(t)j(t)})\subset V(t)\subset f^{-1}(\pi_{i(t)}^{-1}(G(t)))$ .
Set

$D(t)=(U_{t}\cap V_{\lambda_{t}})\cup(\cup\{V_{\lambda} : \lambda\in\Lambda_{i(t)m(t)j(t)}, \lambda\neq\lambda_{l}\})$ .
Then $D(t)$ is an open set of $X_{i(t)}$ such that

$F_{i(t)m(t)j(t)}\subset D(t)\subset\cup\{V_{\lambda} : \lambda\in\Lambda_{i(t)m(t)j(t)}\}$ .

Therefore by (4) there exists an open set $W(t)$ of $Z$ such that

$W(t)\cap f^{-1}(X_{i(t)m(t)}^{\prime})=f^{-1}(\pi_{i(t)}^{-1}(D(t)))\cap f^{-1}(X_{i(t)m(t)}^{\prime})$ ,

$W(t)\subset f^{-1}(\pi_{i(t)}^{-1}(D(t)))$

and such that $W(t)\cap(Z-f^{-1}(X_{i(t)m(t)}^{\prime}))$ is closed in the subspace $Z-f^{-1}(X_{i(t)m(t)}^{\prime})$ .
Set

$O(t)=W(t)\cap f^{-1}(V_{\lambda_{t}}^{\prime})\cap V(t)$,

$O=\bigcap_{t=1}^{k}O(t)$ .

Then $0$ is a closed and open set of $Z$ with the required property. Set

$\mathcal{F}_{imjk}=f^{-1}(\mathcal{F}_{imj}^{\prime})\wedge\{\sigma^{-1}(p_{k}^{-1}(\mu)):\mu\in M_{k}\}$

$=\{P_{\xi} : \xi\in\Xi_{imjk}\}$ ,

$\mathcal{Q}_{imjk}=f^{-1}(\mathcal{V}_{imj}^{\prime})$ A $\{\sigma^{-1}(p_{k}^{-1}(\mu)):\mu\in M_{k}\}$

$=\{Q_{\xi} : \xi\in--imjk\}$ ,
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where each $p_{k}$ : $Y\rightarrow M_{k}$ is the restriction to $Y$ of the projection. Then each
$Q_{imjk}$ is a discrete open collection of $Z$ and $\mathcal{P}_{imjk}$ is a discrete closed collection
of $Z$ such that $P_{\xi}\subset Q_{\xi}$ for each $\xi\in--imjk$ . By (5) the following statement is
easily shown to be true.

(6) If $z\in U$ for an open set $U$ of $Z$ and a point $z\in Z$, there exist a finite
subset $\{\xi_{1}, \cdots \xi_{k}\}\subset\cup t_{imjk}^{-}$ : $i,$ $m,$ $j,$ $k\in N$ } and a closed and open set $O$ such
that

$z\in\bigcap_{j=1}^{k}P_{\xi_{j}}\subset O\subset\bigcap_{j=1}^{k}Q_{\xi_{j}}\cap U$ .

Thus by the above lemma, we have $IndZ\leqq 0$ . This completes the proof.

The author proved that the characterization (A) of $\dim X$ stated in the next
theorem is possible for a special $\sigma$ -metric space $X$ [ $2$ , Theorem 1] and for a free
L-space $X$ [ $2$ , Theorem 2]. Since by Theorem 2 every free L-space is a special
$\mu$-space, these two results can be regarded to be the corollaries to the next
theorem.

THEOREM 5. Let $X$ be a special $\mu$-space. Then
(A) $\dim X\leqq n$ if and only if there exists a $\sigma$-closure-preserving open base $cW$

for $X$ such that $\dim B(W)\leqq n-1$ for every $W\in W$ .

PROOF. The if part of (A) follows from [8, Lemma 7] because every special
$\mu$-space is $M_{1}$ . The only if part: If we can show the validity of (A) for the
case $n=0$ , then the only if part of (A) for the general case follows from [2,

Lemma 1] and Theorem 1, (1) $\leftrightarrow(2)$ . Suppose $A\subset\prod_{i=1}^{\infty}X_{i}$ and $\dim X\leqq 0$ , where cach
$X_{i}$ is a special $\sigma$-metric space with a scale $\{X_{im} : m\in N\}$ such that each $X_{im}$ has
a uniformly approaching anti-cover $cW_{im}$ . Let

$cU_{imj}=\{U_{imja} : \alpha\in A_{imj}\}$ , $\mathcal{F}_{imj}=\{F_{imj\alpha} : \alpha\in A_{imj}\}$ ,

$j\in N$ ,

be sequences of locally finite open covers of $X_{i}$ and of locally finite closed covers
of $X_{im}$ such that

$F_{imj\alpha}\subset U_{imj\alpha}$ for every $\alpha\in A_{imj}$

and such that
(1) if $p\in G$ for an open set $G$ of $X_{i}$ and a point $p\in X_{i\eta t}$ , then there exists

an $\alpha\in A_{imj}$ for some $\cdot$ $j\in N$ such that

$p\in F_{imj\alpha}\subset X_{im}\cap U_{imj\alpha}\subset G$ .
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Set
$cU_{imj}^{\prime}=\{U_{imja}^{\prime}=\pi_{i}^{-1}(U_{imj\alpha}):\alpha\in A_{imj}\}$ ,

$\mathcal{F}_{imj}^{\prime}=\{F_{imj\alpha}^{\prime}=\pi_{i}^{-1}(F_{imj\alpha}):\alpha\in A_{imj}\}$ ,

$w_{\ell m}^{J}=\{W_{tm\beta}^{\prime} : \beta\in B_{im}\}=\pi_{i}^{-1}(9V_{im})$ ,

$X_{im}^{\prime}=\pi_{i}^{-1}(X_{im})$ ,

where $\pi_{i}$ : $X\rightarrow X_{i}$ is the restriction of the projection. Since $X$ is hereditariry

paracompact, we can assume that each $cW_{i}^{\prime}$ is locally finite in the subspace $X-X_{im}^{\prime}$ .
Then $cW_{im}^{\prime}$ admits its closed shrinking $\{H_{im\beta} : \beta\in B_{im}\}$ with $H_{im\beta}\subset W_{im\beta}^{\prime}$ for

every $\beta\in B_{im}$ . Since $Ind(X-X_{im}^{\prime})\leqq 0$ , for every $\beta\in B_{im}$ there exists a closed

and open set $P_{im\beta}$ of $X-X_{im}^{\prime}$ such that

$H_{im\beta}\subset P_{im\beta}\subset W_{im\beta}^{\prime}$ .
For each $\alpha\in A_{imj}$, let $\Delta_{imj}(\alpha)$ be the totality of subsets $\delta$ of $B_{im}$ such that

(2) $P_{imj\alpha}(\delta)=(U_{imj\alpha}^{\prime}\cap X_{im}^{\prime})\cup(\cup\{P_{im\beta} : \beta\in\delta\})$

is an open set of $X$ such that

$F_{imj\alpha}^{\prime}\subset P_{imj\alpha}(\delta)\subset U_{imj\alpha}^{\prime}$ .
Set

$\mathfrak{N}=\{N_{k} : k\in N\}=\{A\subset N\times N\times N:|A|<\aleph_{0}\}$ .
Take an arbitrary $N_{k}\in \mathfrak{R}$ such that

$N_{k}=\{(i(t), m(t), j(t)):t=1, \cdots , s\}$

with $i(t),$ $m(t),$ $j(t)\in N,$ $t=1,$ $\cdots,$
$s$ . For each $\alpha=(\alpha_{1}, \cdots, \alpha_{s})\in\prod_{t\Rightarrow 1}^{s}A_{i(t)m(t)j(t)}$

$\bigcap_{t=1}^{s}F_{t(t)m(t)J^{(t)\alpha_{t}}}^{\prime}$ is closed and $\bigcap_{t=1}^{s}U_{i(t)m(t)j(t)\alpha_{t}}^{\prime}$ is open in $X$ such that

$\bigcap_{t=1}^{s}F_{i(t)m(t)J^{(t)\alpha}}^{\prime}\subset\bigcap_{{}^{t}\iota=1}^{s}U_{i(t)m(t)J^{(t)\alpha_{t}}}^{\prime}$ .

Since $IndX\leqq 0$ , there exists a closed and open set $V_{k\alpha}$ of $X$ such that

$\bigcap_{t=1}^{s}F_{i(t)m(t)j(t)\alpha_{t}}^{\prime}\subset V_{k\alpha}\subset\bigcap_{t=1}^{\$}U_{t(t)m(t)J^{(t)\alpha_{t}}}^{\prime}$ .

Set

(3) $W_{k\alpha}(\delta)=(\bigcap_{t=1}^{s}P_{i(t)m(t)j(t)\alpha_{t}}(\delta_{l}))\cap V_{k\alpha}$ ,

$\delta=(\delta_{1}, \cdots, \delta_{s})\in\prod_{t=1}^{s}\Delta_{i(t)m(t)j(t)(\alpha_{l})}$ ,
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$cW_{k}(\alpha)=\{W_{k\alpha}(\delta):\delta\in\prod_{t=1}^{s}\Delta_{i(t)m(t)j(t)}(\alpha_{t})\}$ ,

$C\nu_{k}=\cup t^{c}W_{k}(\alpha):\alpha\in\prod_{t=1}^{s}A_{i(t)m(t)j(t)}\}$ ,

$CW=\cup t^{c}W_{k}$ : $k\in N$}.

Then we shall show that $cW$ has the required property. To see this, we shall
establish the following statements (4), (5) and (7).

(4) $cW$ consists of closed and open sets of $X$.
This follows (3) and from the fact that each $V_{k\alpha},$ $P_{im\beta},$ $\beta\in B_{im}$ are closed

and open in $X,$ $X-X_{im}^{\prime}$ , respectively.
(5) $cW$ is a $\sigma$-closure-preserving collection in $X$.
Note that each $\{V_{k\alpha} : \alpha\in\prod_{t=1}^{s}A_{i(t)m(t)j(t)}\}$ is locally finite in $X$ in the sense

that every point of $X$ has a neighborhood in $X$ which intersects $V_{k\alpha}$ for finitely

many different $\alpha\in\prod_{t=1}^{s}A_{i(t)m(t)j(t)}$ . Since by (3) $W_{k\alpha}(\delta)\subset V_{k\alpha}$ for every $\delta\in$

$\prod_{t=1}^{s}\Delta_{i(t)m(t)j(t)}(\alpha_{l})$ , it follows that it suffices to show that each $cW_{k}(\alpha)$ is closure-

preserving in $X$ in order to show (5). Let $N_{k}\in \mathfrak{N}$ with $|N_{k}|=s$ and $\alpha$ be as
follows:

$N_{k}=\{(i(t), m(t), j(t)):t=1, \cdots, s\}$ ,

$\alpha=(\alpha_{1}, \cdots, \alpha_{l})\in\prod_{l=1}^{\$}A_{i(t)m(t)j(t)}$ .

To show that $cW_{k}(\alpha)$ is closure-preserving in $X$, we shall show by induction on
$n=1,$ $\cdots$ $s$ the following proposition $(P_{n})$ :

$(P_{n})$ For every subset $M\subset\{1, \cdots, s\}$ with $|M|\leqq n$

$\mathcal{P}(M)=\{W_{K}(\delta)=(\bigcap_{l\in M}P_{i(t)m(t)j(t)\alpha_{t}}(\delta_{t}))\cap V_{k\alpha}$ ;

$\delta=(\delta_{t})_{l\in H}\in\prod_{t\in M}\Delta_{i(t)m(t)J^{(t)}}(\alpha_{t})\}$

is closure-preserving in $X$.
Take $M\subset\{1, \cdots, s\}$ with $|M|=1$ . If $M=\{(i, m, j)\}$ with $(i, m, j)\in N_{k}$ , then

it is easily seen that $\mathcal{P}(M)$ is closure-preserving in $X$ because $V_{k\alpha}$ is closed and
open in $X$ and $\{P_{im\beta}\cap V_{k\alpha} : \beta\in B_{im}\}$ is locally finite in $X-X_{im}^{\prime}$ . Assume that
$(P_{m})$ is true for every $m=1,$ $\cdots,$ $n-1$ . Let $M\subset\{1, \cdots, s\}$ with $|M|=n$ , and let
$\Delta_{0}$ be an arbitrary subset of $\prod_{l\in M}\Delta_{i(t)m(t)j(t)}(\alpha_{l})$ . Suppose that

(6) $p\in\overline{\cup\{W_{M}(\delta):\delta\in\Delta_{0}\}}$ .
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If $p\in X-\bigcup_{t\in M}X_{i(t)m(t)}^{\prime}$ , then $p\in W_{M}(\delta)$ for some $\delta\in\Delta_{0}$ because

$\{(\bigcap_{t\in M}P_{i(t)m(t)\beta_{l}})\cap V_{k\alpha} : (\beta_{t})_{\iota\in M}\in\prod_{l\in M}B_{i(t)m(t)}\}$

is locally finite at $p$ . If $p\in\bigcap_{l\in M}X_{i(t)m(t)}^{\prime}$ , then $p\in W_{M}(\delta)$ for every $\delta$ is obtained
from the relation

$\overline{\cup\}W_{M}(\delta):\delta\in\Delta_{0}\}}\cap(\bigcap_{t\in H}X_{i(t)m(t)}^{\prime})$

$\subset V_{k\alpha}\cap(\bigcap_{t\in M}X_{t(t)m(t)}^{\prime})\subset W_{M}(\delta)$ .

As the final case, we consider the case $p\in\bigcup_{l\in M}X_{i(t)m(t)}^{\prime}-\bigcap_{t\in M}X_{i(t)m(t)}^{\prime}$ . Set

$M^{\prime}=\{t\in M:p\not\in X_{t(t)m(t)}^{\prime}\}$ .
Then $1\leqq|M^{\prime}|<n$ . Obviously from (6)

$p\in\cup\{W_{M^{\prime}}(\delta):\delta=(\delta_{t})_{t\in M}\in\Delta_{0}\}$ .
By the induction assumption, $p\in W_{M},(\delta)$ for some $\delta=(\delta_{t})_{t\in M}\in\Delta_{0}$ . Since $p\in W_{M-M^{l}}(\delta)$ ,
$p\in W_{M}(\delta)$ . This shows that $\mathcal{P}(M)$ is closure-preserving in $X$. Therefore it fol-
lows from $(P_{s})$ that $\mathcal{P}(\{1, \cdots, s\})=\wp_{k}(\alpha)$ is closure-preserving in $X$.

(7) $cW$ is an open base for $X$.
Suppose that $p\in G$ for an open set $G$ and a point $p$ of $X$. There exist an

$s\in N$ and an open set $U_{l}$ of $X_{i(t)},$ $t=1,$ $\cdots$ $s$ , such that

$p\in\bigcap_{t=1}^{l}\pi_{i(t)}^{-1}(U_{t})\subset G$ .

We have an $m(t)\in N$ such that $p_{i(t)}\in X_{i(t)m(t)}$ . By (1) chose a $j(t)\in N$ and an
$\alpha_{t}\in A_{i(t)m(t)j(t)}$ such that

$p_{i(t)}\in F_{t(t)m(t)j(t)\alpha}\subset U_{i(t)m(t)j(t)\alpha}\iota\iota^{\cap X_{i(t)m(t)j(t)}\subset U_{t}}$ .
Since $\wp_{t(t)m(t)}$ is a uniformly approaching anti-cover of $X_{i(t)m(t)}$ in $X_{i(t)}$ and
$\{P_{i(t)m(t)}\beta : \beta\in B_{i(t)m(t)}\}<\psi_{i(t)m(t)}^{\prime}$ there exists a $\delta_{t}\in\Delta_{i(t)m(t)j(t)}(\alpha_{l})$ such that
$P_{i(t)m(t)j(t)\alpha_{l}}(\delta_{l})$ defined by (2) is an open set of $X$ such that

$F_{i(t)m(t)j(t)\alpha_{l}}^{\prime}\subset P_{i(t)m(t)j(t)\alpha_{t}}(\delta_{t})$

$\subset U_{i(t)m(t)j(t)\alpha_{l^{\cap}}}^{\prime}\pi_{i(t)}^{-1}(U_{t})$ .
Set

$\delta=(\delta_{1}, \cdots, \delta_{s})\in\coprod_{t=1}^{s}\Delta_{i(t)m(t)J^{(t)}}(\alpha_{t})$ ,

$\alpha=(\alpha_{1}, \cdots, \alpha_{s})\in\Pi A_{i(l)m(t)J^{(t)}}$ ,
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$ N_{k}=\{(i(t), m(t), j(t)):t=1, \cdots , s\}\in\Re$ .
Then we have

$p\in W_{ka}(\delta)\subset G$ .
This completes the proof.

Finally we propose the problem:

PROBLEM. Is every special $\mu$-space a free L-space ?

If there exists a space that is a special $\mu$-space which is not a free L-space,

then from Theorem 3 it follows that the problem of K. Nagami [7, Problem 2.11]

is answered negatively.
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Addendum

I am informed by the refree and S. Oka that Theorem 4 is generalized to

the class of $\mu$-spaces, which is strictly weaker than that of special $\mu$-spaces.
This is stated in S. Oka’s paper “Free patched spaces and fundamental theorems

of dimension theory”, which is forthcoming in Bull. Acad. Polon.
Quite recently, in the letter to the author, S. Oka has pointed the following:

THEOREM. If $X$ is a paracompact $\sigma$ -metric space with a scale $\{X_{i} : i\in N\}$

such that each $X_{i}$ has an approaching anti-cover in $X$, then $X$ is a free L-space.

Therefore the problem stated in the final part is solved by him positively.
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