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REMARK ON LOCALIZATIONS OF NOETHERIAN RINGS
WITH KRULL DIMENSION ONE

By

Hideo SATO

Let $R$ be a left noetherian ring with left Krull dimension $\alpha$ . For a left $R-$

module $M$ which has Krull dimension, we denote its Krull dimension by K-dim $M$

in this note. In the previous paper [6], we have shown that the family $F_{\beta}(R)=$

$t_{R}I\subseteq R|K-dimR/I\leq\beta\}$ is a left (Gabriel) topology on $R$ for any ordinal $\beta<\alpha$ . We
are most interested in the case when $R$ is (left and right) noetherian, $\alpha=1$ and
$\beta=0$ . Let $R$ be such a ring and we denote $F_{0}(R)$ by $F$. Let $A$ be the artinian
radical of $R$ . Then Lenagan [3] showed that $R/A$ has a two-sided artinian, two-
sided classical quotient ring $Q(R/A)$ . In this note, we shall show that $R_{F}$ , the
quotient ring of $R$ with respect to $F$, is isomorphic to $Q(R/A)$ as ring and we
shall investigate a more precise structure of $R_{F}$ under some additional assumptions.

In this note, a family of left ideals of $R$ is said to be a topology if it is a
Gabriel topology in the sense of Stenstrom’s book [7]. So a perfect topology in
this note is corresponding to a perfect Gabriel topology in [7]. Let $G$ be a left
topology on $R$, and $M$ a left $R$-module. A chain of submodules of $M$ ;

$M_{0}\supseteq M_{1}\supseteq\cdots\cdots\supseteq M_{r}$

is called a $G$-chain if each $M_{i-1}/M_{i}$ is not a $G$-torsion module. A $G$-chain of $M$

is said to be maximal if it has no proper refinement of $G$-chain.
The following lemma can be proved easily.

LEMMA 1. If $RM$ has a finite maximal G-chain of length $r$, then any G-chain
of $M$ has a finite lenglh $s$ and $s\leq r$.

Hence we can give a definition of $G$-dimension of $M$, denoted by G-dim $M$, as
follows; if $M$ has a finite maximal $G$-chain of length $r$, define G-dim $M=r$, and
G-dim $ M=\infty$ otherwise.

COROLLARY 2. For any short exact sequence of R-modules;

$0\rightarrow M^{\prime}\rightarrow M\rightarrow M^{\prime\prime}\rightarrow 0$

we have G-dim $M=G-dimM^{\prime}+G-dimM^{\prime\prime}$ .
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COROLLARY 3. Let $G\subseteq G^{f}$ be left topologies on $R$ , and $M$ a left R-module.

Then G-dim $M\geq G^{\prime}-dimM$

We apply Lenagan’s results ([3, Theorem 3.6] and [2, Theorem 3.1]) in the

following form.

THEOREM (Lenagan) Let $R$ be a (left and right) noetherian ring with lefl
Krull dimension one, and $A$ its artinian radical. Denote $R/A$ by $\overline{R}$ , and $x+A$ by

$\overline{x}$ for $x\in R$ . Let $S=$ { $s\in R|\overline{s}$ is a regular element in $\overline{R}.$ } Then the following state-

ments hold.
(1) $\Sigma(S)=\{Rs|s\in S\}$ is a cofinal family of $F$.
(2) $\overline{R}$ has a two-sided classical quotient ring $Q(\overline{R})$ .

We should remark that Lenagan showed that $Q(\overline{R})$ is a (left and right) artinian

ring. But in the assertion (2) we need only the existence of $Q(\overline{R})$ for our purpose.

In the following Lemmas 4, 5 and 6, $R$ is assumed to be a left noetherian

ring with left Krull dimension $\alpha$ .

LEMMA 4. (See [6, Theorem 3.1].) For any $\beta<\alpha,$ $F_{\beta}=\{RI\subseteq R|K-dimR/I\leq\beta\}$

is a left topology on $R$ .

LEMMA 5. Let $t_{F_{\beta}}$ be the torsion radical corresponding to the topology $F_{\beta}$ .
Then $rad^{\beta}(RR)=t_{F_{\beta}}(R)$ where $rad^{\beta}(RR)$ is the largest left ideal of $R$ whose Kmll

dimension is at most $\beta$ . (Cf. [6])

PROOF. Clear by definitions.

LEMMA 6. For every left ideal I of $R,$ $I\in F_{\beta}(R)$ if and only if $I+A/A\in F_{\beta}(R/A)$

where $A=t_{F_{\beta}}(R)$ .

PROOF. Since $(R/A)/(I+A/A)\cong R/I+A$ as $R/A$-module and as $R$-module, $ I\in$

$F_{\beta}(R)$ implies that K-dim $ R/I+A\leq K-dimR/I\leq\beta$ . Thus $I+A/A\in F_{\beta}(R/A)$ . Con-
versely assume that $I+A/A\in F_{\beta}(R/A)$ . Then $ K-dim_{R/A}(R/I+A)\leq\beta$ . Since $I+A/I$

$\cong A/A\cap I$, K-dim $ I+A/I\leq K-dimA\leq\beta$ . Thus K-dim $ R/I\leq\beta$ . Hence we have $ I\in$

$F_{\beta}(R)$ .

In the sequel, $R$ is assumed to be a left and right noetherian ring with left

Krull dimension one. Denote $F_{0}(R)$ by $F$ and $F_{0}(\overline{R})$ by $F^{\prime}$ respectively. Here
$\overline{R}=R/A$ and $A=t_{F}(R)$ .
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LEMMA 7. $R_{F}\cong\overline{R}_{F^{\prime}}\cong Q(\overline{R})$ as ring.

PROOF. For any left ideal $I$ of $R$ , consider the following exact sequence:
$0\rightarrow I\cap A\rightarrow I\rightarrow I/I\cap A\rightarrow 0$ . Since $I\cap A$ is an F-torsion module and $\overline{R}=R/t_{F}(R)$ is F-

torsion-free, $Hom_{R}(I,\overline{R})\cong Hom_{R}(I/I\cap A,\overline{R})\cong Hom_{R^{-}}(\overline{I},\overline{R})$ where $\overline{I}=I+A/A$ . Clearly

the above isomorphisms are natural in $I$. Thus
$R_{F}=\lim_{\vec{I\in F}}Hom_{R}(I,\overline{R})\cong_{\frac{1i}{I}}m\rightarrow\in FHom_{\overline{R}}(\overline{I}$

,

$\overline{R})=\overline{R}_{F}$ , by Lemma 6. It follows from Lenagan’s theorem that $\overline{R}_{F^{}}\cong Q(\overline{R})$ as ring.

This complets the proof.

LEMMA 8. $F$ is a perfect topology.

PROOF. Let $S=$ { $s\in R|\overline{s}$ is a regular element in $\overline{R}$ }. Then by Lenagan’s

theorem, it is sufficient to prove that $bs=0$ for $b\in R$ and $s\in S$ implies $ub=0$ for

some $u\in S$ (see [7, XI, Proposition 6.3]). Now we have then $\overline{b}\overline{s}=0$ and hence $\overline{b}=0$ ,

that is, $b\in A$ . Thus $Rb\cong R/l(b)$ is artinian and hence $l(b)\in F$. Here $l(b)$ is the left

annihilator ideal of $b$ . It follows from Lenagan’s theorem that $ l(b)\cap S\neq\emptyset$ . This

shows that $\Sigma(S)$ is a cofinal family of $F$.

Recall that $R$ is said to satisfy the restricted minimum condition for left ideals

if $R/I$ is an artinian module for every dense left ideal I. (Cf. [6])

THEOREM 9. Let $R$ be a noelherian $QF-3$ ring satisfying the reslricted mini-

mum condition for left ideals. Then $R_{\Gamma}$ is a $QF$ ring where $F=F_{0}$ .

PROOF. By assumption, it follows from [6, Theorem 5.1] and [8, Proposition 1]

that $R$ has left Krull dimension at most one. Denote $R_{F}$ by $Q$ . Then by Lemma
8, QR is flat, and $Q\otimes_{R}N=0$ if and only if $N$ is an F-torsion module for any left
R-module $N$. Let $M$ be any finitely generated left Q-module. Then it follows
from the above facts that there exists a finitely generated, F-torsion-free left R-
module $N$ such that $M\cong Q\otimes_{R}N$ as left Q-module. Since $R$ satisfies the restricted
minimum condition for for left ideals, $RN$ is D-torsion-free where $D$ is the
topology of dense left ideals. Since $R$ is QF-3, $RN$ is a finitely generated torsion-
less module. Thus $RN$ can be embedded into a finitely generated free R-module
because $R$ is noetherian. Thus $QM$ can be embedded a finitely generated free Q-

module. Since $Q$ is a noetherian ring, it follows from the above facts that any
proper descending chain of left ideals of $Q$ is an F-chain of $RQ$ . Since an R-module
$Q/\overline{R}$ is an F-torsion module, we have $ F-dim_{R}Q=F-dim_{R}\overline{R}=F-dim_{R}R\leq D-dim_{R}R<\infty$

by Corollary 3 and [8, Proposition 1]. This shows that $QQ$ has finite length.

Therefore it follows from [4, Corollary 6] that $Q$ is a QF ring.
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THEOREM 10. For a noetherian ring $R$ , the following statements are equivalent.
(1) $R$ is a two-sided order in a $QF$ ring and $K-dim_{R}R\leq 1$ .
(2) $R$ can be decomposed into a ring direct sum, say $R=A\oplus B$ , where $A$ is a

$QF$ ring and $B$ is a $QF-3$ ring satisfying the restricted minimum condition for left
ideals and Soc$(B)=0$ .

PROOF. Assume the statement (1). By [1, Theorem 10] we have a decomposi-
tion $R=A\oplus B$ where $A$ is the artinian radical of $R$ and Soc$(B)=0$ . By assumption,
it is clear that $A$ is a QF ring and $B$ has a QF classical two-sided quotient ring
$Q(B)$ . Thus $B$ is QF-3 (see [5, Theorem 1.5]). Let $S$ be the set of all regular
elements in B. Let $\underline{\backslash }(S)=\{Bs|s\in S\}$ . Then $\Sigma(S)\subseteq F_{0}(B)$ . Conversely assume $I\in D(B)$

where $D(B)$ is the topology of dense left ideal of $B$ . Since $Q(B)Q(B)$ is a cogener-
ator, we have $Q_{(}^{\prime}B$) $=Q(B)I$ and hence $ I\cap S\neq\emptyset$ . Hence $F_{0}(B)=D(B)$ . This shows
that $B$ satisfies the restricted minimum condition for left ideals.

Conversely assume the statement (2). Then it is immediate from Lenagan’s
theorem, Theorem 9 and Lemma 7.

In the remainder of this note, we assume that $R$ is a noetherian QF-3 ring
satisfying the restricted minimum condition for left ideals. So $R$ has left Krull
dimension one. We denote the topology of dense left ideals by $D$ and $F_{0}$ by $F$.
Let $S=R_{F}$ and $Q=R_{D}$ . Then we shall give a remark on the connection between
two rings, $S$ and $Q$ . Now, we have a commutative diagram of canonical ring
homomorphisms;

$R\rightarrow Q$

$\psi\backslash $ $/\psi$

$\backslash ()^{\backslash }$

because $D\subseteq F$ by assumption.
Then we have

$PROPOS1^{\prime}\Gamma 1ON11$ . Both $\psi$ and $\psi$ are left flat epimorphisms. $\lambda/IoreoverS$ is
injective both as left R-module and as left Q-module.

PROOF. By Lemma 8, $\phi$ is a left flat epimorphism and hence $\psi$ is an epimor-
phism. By Theorem 9, $S$ is an injective left S-module. So we see by adjointness
that $S$ is also injective as left R-module. Denote the artinian radical by $A$ , and
$R/A$ by $\overline{R}$ . Consider a canonical exact sequense;

$0\rightarrow R\rightarrow Q\rightarrow Q/R\rightarrow 0$ .



Remark on Localizations of Noetherian Rings with Krull 127

Since $Q/R$ is a D-torsion R-module, it is an F-torsion module. On the other hand,
$R\overline{R}$ is F-torsion-free and $RS$ is an essential extension of $RR$ . Thus $RS$ is F-torsion-
free. Hence we have $Hom_{R}(Q/R, S)=0$ . For any left ideal $I$ of $Q$ and Q-homomor-

phism $g$ of $QI$ into $QS$, there exists an R-homomorphism $\overline{g}$ which makes the below
diagram commutative;

$0\rightarrow Ig\downarrow/^{Q_{\overline{\mathcal{G}}}}\vec{j}$

$S$

where $j$ is an inclusion. Fix any element $q_{0}$ in $Q$ . Define an R-homomorphism $h$

of $Q$ into $S$ as follows;

$qh=q(q_{0}\overline{g})-(qq_{0})\overline{g}$ for any $q\in Q$ .

It is clear that $Rh=0$ . We have the induced R-homomorphism $\overline{h}$ such that the
following diagram is commutative;

$h$

$Q$ $\rightarrow$ $S$

$\pi^{\backslash }\backslash $ $\int\overline{h}$

$Q/R$

where $\pi$ is the canonical map. By the above remark, $\overline{h}=0$ and hence $h=0$ . This
shows that $\overline{q}$ is a Q-homomorphism and hence $QS$ is injective. It remains to show
that $S_{Q}$ is flat. Consider an exact sequence of left Q-modules:

$0\rightarrow X\rightarrow Y$.

Since $QS$ is injective, we have the following exact sequence;

$Hom_{Q}(Y, S)\rightarrow Hom_{Q}(X, S)\rightarrow 0$ .

Since $sS$ is a cogenerator, it is immediate by adjointness that the following sequ-
ence is exact.

$0\rightarrow S\otimes_{Q}X\rightarrow S\otimes_{Q}Y$.

Thus $S_{Q}$ is flat. This completes the proof.
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