REMARK ON LOCALIZATIONS OF NOETHERIAN RINGS WITH KRULL DIMENSION ONE

By

Hideo Sato

Let R be a left noetherian ring with left Krull dimension α . For a left Rmodule M which has Krull dimension, we denote its Krull dimension by K-dim Min this note. In the previous paper [6], we have shown that the family $F_{\beta}(R) = {}_{R}I \subseteq R | K$ -dim $R/I \leq \beta$ } is a left (Gabriel) topology on R for any ordinal $\beta < \alpha$. We are most interested in the case when R is (left and right) noetherian, $\alpha = 1$ and $\beta = 0$. Let R be such a ring and we denote $F_0(R)$ by F. Let A be the artinian radical of R. Then Lenagan [3] showed that R/A has a two-sided artinian, twosided classical quotient ring Q(R/A). In this note, we shall show that R_F , the quotient ring of R with respect to F, is isomorphic to Q(R/A) as ring and we shall investigate a more precise structure of R_F under some additional assumptions.

In this note, a family of left ideals of R is said to be a topology if it is a Gabriel topology in the sense of Stenström's book [7]. So a perfect topology in this note is corresponding to a perfect Gabriel topology in [7]. Let G be a left topology on R, and M a left R-module. A chain of submodules of M;

$$M_0 \supseteq M_1 \supseteq \cdots \supseteq M_r$$

is called a *G*-chain if each M_{i-1}/M_i is not a *G*-torsion module. A *G*-chain of *M* is said to be maximal if it has no proper refinement of *G*-chain.

The following lemma can be proved easily.

LEMMA 1. If $_{R}M$ has a finite maximal G-chain of length r, then any G-chain of M has a finite length s and $s \leq r$.

Hence we can give a definition of G-dimension of M, denoted by G-dim M, as follows; if M has a finite maximal G-chain of length r, define G-dim M=r, and G-dim $M=\infty$ otherwise.

COROLLARY 2. For any short exact sequence of R-modules;

$$0 \to M' \to M \to M'' \to 0$$

we have G-dim M=G-dim M'+G-dim M''.

Received October 27, 1978. Revised February 6, 1979

COROLLARY 3. Let $G \subseteq G'$ be left topologies on R, and M a left R-module. Then G-dim $M \ge G'$ -dim M.

We apply Lenagan's results ([3, Theorem 3.6] and [2, Theorem 3.1]) in the following form.

THEOREM (Lenagan) Let R be a (left and right) noetherian ring with left Krull dimension one, and A its artinian radical. Denote R|A by \overline{R} , and x+A by \overline{x} for $x \in R$. Let $S = \{s \in R | \overline{s} \text{ is a regular element in } \overline{R}.\}$ Then the following statements hold.

- (1) $\Sigma(S) = \{Rs | s \in S\}$ is a cofinal family of **F**.
- (2) \bar{R} has a two-sided classical quotient ring $Q(\bar{R})$.

We should remark that Lenagan showed that $Q(\bar{R})$ is a (left and right) artinian ring. But in the assertion (2) we need only the existence of $Q(\bar{R})$ for our purpose.

In the following Lemmas 4, 5 and 6, R is assumed to be a left noetherian ring with left Krull dimension α .

LEMMA 4. (See [6, Theorem 3.1].) For any $\beta < \alpha$, $F_{\beta} = \{RI \subseteq R | K - dim R / I \le \beta\}$ is a left topology on R.

LEMMA 5. Let $t_{F_{\beta}}$ be the torsion radical corresponding to the topology F_{β} . Then $rad^{\beta}(_{R}R) = t_{F_{\beta}}(R)$ where $rad^{\beta}(_{R}R)$ is the largest left ideal of R whose Krull dimension is at most β . (Cf. [6])

PROOF. Clear by definitions.

LEMMA 6. For every left ideal I of R, $I \in \mathbf{F}_{\beta}(R)$ if and only if $I + A/A \in \mathbf{F}_{\beta}(R/A)$ where $A = t_{F_{\beta}}(R)$.

PROOF. Since $(R/A)/(I+A/A) \cong R/I+A$ as R/A-module and as R-module, $I \in \mathbf{F}_{\beta}(R)$ implies that K-dim $R/I+A \leq K$ -dim $R/I \leq \beta$. Thus $I+A/A \in \mathbf{F}_{\beta}(R/A)$. Conversely assume that $I+A/A \in \mathbf{F}_{\beta}(R/A)$. Then K-dim $_{R/A}(R/I+A) \leq \beta$. Since $I+A/I \cong A/A \cap I$, K-dim $I+A/I \leq K$ -dim $A \leq \beta$. Thus K-dim $R/I \leq \beta$. Hence we have $I \in \mathbf{F}_{\beta}(R)$.

In the sequel, R is assumed to be a left and right noetherian ring with left Krull dimension one. Denote $F_0(R)$ by F and $F_0(\bar{R})$ by F' respectively. Here $\bar{R} = R/A$ and $A = t_F(R)$. LEMMA 7. $R_F \cong \overline{R}_{F'} \cong Q(\overline{R})$ as ring.

PROOF. For any left ideal I of R, consider the following exact sequence: $0 \rightarrow I \cap A \rightarrow I \rightarrow I/I \cap A \rightarrow 0$. Since $I \cap A$ is an F-torsion module and $\bar{R} = R/t_F(R)$ is Ftorsion-free, $\operatorname{Hom}_R(I, \bar{R}) \cong \operatorname{Hom}_R(I/I \cap A, \bar{R}) \cong \operatorname{Hom}_{\bar{R}}(\bar{I}, \bar{R})$ where $\bar{I} = I + A/A$. Clearly
the above isomorphisms are natural in I. Thus $R_F = \lim_{I \to F'} \operatorname{Hom}_R(I, \bar{R}) \cong \lim_{\bar{I} \in F'} \operatorname{Hom}_{\bar{R}}(\bar{I}, \bar{R})$ $\bar{R}_{F'} \cong Q(\bar{R})$ as ring.
This complets the proof.

LEMMA 8. F is a perfect topology.

PROOF. Let $S = \{s \in R | \bar{s} \text{ is a regular element in } \bar{R}\}$. Then by Lenagan's theorem, it is sufficient to prove that bs=0 for $b \in R$ and $s \in S$ implies ub=0 for some $u \in S$ (see [7, XI, Proposition 6.3]). Now we have then $\bar{b}\bar{s}=0$ and hence $\bar{b}=0$, that is, $b \in A$. Thus $Rb \cong R/l(b)$ is artinian and hence $l(b) \in F$. Here l(b) is the left annihilator ideal of b. It follows from Lenagan's theorem that $l(b) \cap S \neq \emptyset$. This shows that $\Sigma(S)$ is a cofinal family of F.

Recall that R is said to satisfy the restricted minimum condition for left ideals if R/I is an artinian module for every dense left ideal I. (Cf. [6])

THEOREM 9. Let R be a noetherian QF-3 ring satisfying the restricted minimum condition for left ideals. Then R_F is a QF ring where $F=F_0$.

PROOF. By assumption, it follows from [6, Theorem 5.1] and [8, Proposition 1] that R has left Krull dimension at most one. Denote R_F by Q. Then by Lemma 8, Q_R is flat, and $Q \otimes_R N = 0$ if and only if N is an F-torsion module for any left R-module N. Let M be any finitely generated left Q-module. Then it follows from the above facts that there exists a finitely generated, F-torsion-free left R-module N such that $M \cong Q \otimes_R N$ as left Q-module. Since R satisfies the restricted minimum condition for for left ideals, $_RN$ is D-torsion-free where D is the topology of dense left ideals. Since R is QF-3, $_RN$ is a finitely generated torsion-less module. Thus $_RN$ can be embedded into a finitely generated free R-module because R is noetherian. Thus $_QM$ can be embedded a finitely generated free Q-module. Since Q is a noetherian ring, it follows from the above facts that any proper descending chain of left ideals of Q is an F-chain of $_RQ$. Since an R-module Q/\bar{R} is an F-torsion module, we have F-dim $_RQ = F$ -dim $_R\bar{R} = F$ -dim $_RR \leq D$ -dim $_RR < \infty$ by Corollary 3 and [8, Proposition 1]. This shows that $_QQ$ has finite length. Therefore it follows from [4, Corollary 6] that Q is a QF ring.

THEOREM 10. For a noetherian ring R, the following statements are equivalent. (1) R is a two-sided order in a QF ring and K-dim_RR ≤ 1 .

(2) R can be decomposed into a ring direct sum, say $R=A\oplus B$, where A is a QF ring and B is a QF-3 ring satisfying the restricted minimum condition for left ideals and Soc(B)=0.

PROOF. Assume the statement (1). By [1, Theorem 10] we have a decomposition $R=A\oplus B$ where A is the artinian radical of R and Soc(B)=0. By assumption, it is clear that A is a QF ring and B has a QF classical two-sided quotient ring Q(B). Thus B is QF-3 (see [5, Theorem 1.5]). Let S be the set of all regular elements in B. Let $\Sigma(S)=\{Bs|s\in S\}$. Then $\Sigma(S)\subseteq F_0(B)$. Conversely assume $I\in D(B)$ where D(B) is the topology of dense left ideal of B. Since $_{Q(B)}Q(B)$ is a cogenerator, we have Q(B)=Q(B)I and hence $I\cap S\neq \emptyset$. Hence $F_0(B)=D(B)$. This shows that B satisfies the restricted minimum condition for left ideals.

Conversely assume the statement (2). Then it is immediate from Lenagan's theorem, Theorem 9 and Lemma 7.

In the remainder of this note, we assume that R is a noetherian QF-3 ring satisfying the restricted minimum condition for left ideals. So R has left Krull dimension one. We denote the topology of dense left ideals by D and F_0 by F. Let $S=R_F$ and $Q=R_D$. Then we shall give a remark on the connection between two rings, S and Q. Now, we have a commutative diagram of canonical ring homomorphisms;

$$\begin{array}{c} R \longrightarrow Q \\ \phi \searrow \swarrow \phi \\ S \end{array}$$

because $D \subseteq F$ by assumption.

Then we have

PROPOSITION 11. Both ϕ and ψ are left flat epimorphisms. Moreover S is injective both as left R-module and as left Q-module.

PROOF. By Lemma 8, ϕ is a left flat epimorphism and hence ψ is an epimorphism. By Theorem 9, S is an injective left S-module. So we see by adjointness that S is also injective as left *R*-module. Denote the artinian radical by A, and R/A by \bar{R} . Consider a canonical exact sequense;

$$0 \to R \to Q \to Q/R \to 0.$$

Since Q/R is a **D**-torsion *R*-module, it is an **F**-torsion module. On the other hand, $_R\bar{R}$ is **F**-torsion-free and $_RS$ is an essential extension of $_RR$. Thus $_RS$ is **F**-torsionfree. Hence we have $\operatorname{Hom}_R(Q/R, S)=0$. For any left ideal *I* of *Q* and *Q*-homomorphism *g* of $_QI$ into $_QS$, there exists an *R*-homomorphism \bar{g} which makes the below diagram commutative;

where j is an inclusion. Fix any element q_0 in Q. Define an R-homomorphism h of Q into S as follows;

$$qh = q(q_0 \bar{g}) - (qq_0)\bar{g}$$
 for any $q \in Q$.

It is clear that Rh=0. We have the induced R-homomorphism h such that the following diagram is commutative;

$$\begin{array}{ccc} Q & \xrightarrow{h} & S \\ \pi & & /\bar{h} \\ Q/R \end{array}$$

where π is the canonical map. By the above remark, $\bar{h}=0$ and hence h=0. This shows that \bar{g} is a Q-homomorphism and hence ${}_{Q}S$ is injective. It remains to show that S_{Q} is flat. Consider an exact sequence of left Q-modules:

$$0 \to X \to Y.$$

Since $_{Q}S$ is injective, we have the following exact sequence;

$$\operatorname{Hom}_{Q}(Y, S) \to \operatorname{Hom}_{Q}(X, S) \to 0.$$

Since ${}_{s}S$ is a cogenerator, it is immediate by adjointness that the following sequence is exact.

$$0 \to S \otimes_Q X \to S \otimes_Q Y.$$

Thus S_Q is flat. This completes the proof.

References

- Ginn, S. M. and Moss, P. B.: A decomposition theorem for noetherian orders in artinian rings, Bull. London Math. Soc. 9 (1977) 177-181.
- [2] Lenagan, T.H.: Noetherian rings with Krull dimension one, J. London Math. Soc.
 (2) 15 (1977) 43-47.

Hideo Sato

- [3] Lenagan, T.H.: Artinian quotient rings of Macaulay rings, Lecture Notes in Math. 545, Springer, Berlin (1976).
- [4] Rutter, E.A.: A characterization of QF-3 rings, Pacific J. Math. 51 (1974) 533-536.
- [5] Sato, H.: On localizations of a 1-Gorenstein ring, Sci. Rep. Tokyo Kyoiku Daigaku A. 13 (1977) 188-193.
- [6] Sato, H.: On maximal quotient rings of QF-3 1-Gorenstein rings with zero socle, to appear in Osaka J. Math.
- [7] Stenström, B.: Rings of quotients, Grundlehren Wissenschaften 217, Springer, Berlin (1975).
- [8] Sumioka, T.: On non-singular QF-3' rings with injective dimension ≤1, Osaka J. Math. 15 (1978) 1-11.

Wakayama University