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EMBEDDING PRODUCTS IN SYMMETRIC

PRODUCTS OF CONTINUA

By

Enrique Castañeda-Alvarado and Javier Sánchez-Martínez

Abstract. Let X be a continuum. For each natural number n, FnðX Þ
is the nth-symmetric product of X and X n is the product of X with

itself n times. In this paper we consider the problem of determining

the continua X such that X n can be embedded in FnðXÞ. Moreover,

we characterize finite graphs X for which X 2 is embeddable in

F2ðX Þ.

1. Introduction

The symbol N will denote the set of positive integers. A continuum means

a compact connected and metric space. Given a continuum X and n A N, we

denote by X n the product of X with itself n times with the product topology and

by FnðX Þ the hyperspace of all nonempty subsets of X with at most n points,

equipped with the Hausdor¤ metric (see [13, Definition 0.1, p. 1]). This is the so

called nth-symmetric product of X . It is known that FnðXÞ is a continuous image

of X n (see [2, p. 877]). Symmetric products were introduced by K. Borsuk and S.

Ulam in [2]. They proved that, for I ¼ ½0; 1� and n ¼ 1; 2; 3, FnðIÞ is homeo-

morphic to I n; for nb 4, FnðIÞ is not homeomorphic to any subset of Rn and

F2ðS1Þ is homeomorphic to Möbius strip, where S1 is a simple closed curve. In

[11], R. Molski proved that F2ðI 2Þ is homeomorphic to the 4-cell and for nb 3

neither FnðI 2Þ nor F2ðI nÞ is homeomorphic to any subset of R2n. In [3], R. Bott

corrected Borsuk’s [1] statement that F3ðS1Þ is homeomorphic to S1 � S2 by

showing that F3ðS1Þ is homeomorphic to the 3-sphere S3. Since S1 � S1 can not

be embedded in F2ðS1Þ, a natural problem arises to determine continua X such
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that X n can be embedded in FnðXÞ. The paper consists of four section. In Section

2, we give necessary definitions. In Section 3, we characterize finite graphs X for

which X 2 is embeddable in F2ðXÞ. Finally, in Section 4, we study some continua

X for which X n can be embedded in FnðXÞ.

2. Definitions

Given a continuum Z and a subset A of Z, clZðAÞ, intZðAÞ and qZðAÞ
denote, respectively, the closure, interior and boundary of A in Z. The symbol jAj
denotes the cardinality of A.

By a graph we mean a continuum which can be written as the union of

finitely many arcs any two of which are either disjoint or intersect only in one or

both of their end points. By an edge of a graph X we shall always mean one of

those arcs. The end points of the edges of X are called vertices of X . Given a

point x A X and n A N, the order of X at x, denoted by ordðx;X Þ, is n provided

that for every e > 0 there exists an open set U of X containing x such that

diamðUÞ < e and qX ðUÞ consists of exactly n points (see [14, Lemma 9.7,

p. 143]). For each vertex v A X we have either ordðv;XÞ ¼ 1 if v is an end point

of X or ordðv;XÞb 2 otherwise. If ordðv;X Þb 3, then v is called a ramification

point of X . The set of all ramification points of X will be denoted by RðXÞ. By
a simple n� od (nb 3) we mean a graph X with only one ramification point,

exactly n end points and without circles. A simple 3� od will be called a simple

triod. A complete graph Km is a graph with exactly m vertices such that any

two vertices are joined by an edge of the graph. Let V be the set of vertices of

graph G; G is a bipartite graph with vertex clases V1 and V2 if V ¼ V1 UV2,

V1 VV2 ¼ q and each edge of G joins a vertex of V1 to a vertex of V2. The

graph G is said bipartite complete if each vertex of V1 is joined to every vertex

of V2 by edges of G, if jV1j ¼ m and jV2j ¼ n; G is denoted by Km;n. Given

a continuum X , the cone over X is the quotient space X � ½0; 1�=X � f1g (see

[9, Definition 5.1, p. 126]). The cone over X will be denoted by coneðX Þ.
Given open subsets U1; . . . ;Um of a continuum X , let

hU1; . . . ;Umi ¼ A A FnðXÞ : AH 6
m

i¼1

Ui and for each i A f1; . . . ;mg; AVUi0q

( )
:

It is known that the sets of the form hU1; . . . ;Umi form a basis for the topology

of FnðXÞ called the Vietoris topology (see [13, Theorem 0.11, p. 9]), and that the

Vietoris topology and the topology induced by the Hausdor¤ metric are the same

(see [13, Theorem 0.13, p. 9]).
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3. Embedding X 2 in F2ðXÞ

In this section, we study when X 2 can be embedded in F2ðXÞ, in the

particular case when X is a graph. For every nb 3, Tn denotes a simple n-od.

Lemma 3.1. Let n A N, with nb 3, then Tn � Tn can not be embedded in

F2ðTnÞ.

Proof. By [5, Lemma 3.2, p. 59], Tn � Tn is homeomorphic to coneðKn;nÞ.
By [4, Lemma 2, p. 70], F2ðTnÞ is homeomorphic to coneðZÞ, where Z is the

union of Kn and n pairwise disjoint arcs, each one of them intersecting Kn

in exactly one of its vertices. Suppose, to the contrary, that there exists an

embedding h : coneðKn;nÞ ! coneðZÞ. Let v and v 0 be the vertices of coneðKn;nÞ
and coneðZÞ, respectively. By [5, Lemma 3.3, p. 60], each point p A coneðZÞ�
fv 0g has a basis of neighborhoods b in coneðZÞ such that for each U A b, U can

be embedded in R3. So, hðvÞ ¼ v 0, which implies that the cylinder Kn;n � I

embeds in the cylinder Z � I . Looking at neighborhood bases of points of these

two cylinders, we conclude that Kn;n can be embedded in Z, therefore 2n ¼
jRðKn;nÞja jRðZÞj ¼ n, but this is imposible. This contradiction concludes the

proof of this lemma. r

The following result is obvious since Tm � ½0; 1� can be embedded in R3

while Tk � Tl can not, because coneðKk; lÞ can not be embedded in R3 (see

[4, Lemma 4, p. 73]).

Lemma 3.2. Let k; l;m A N, with k; l;mb 3. Then Tk � Tl can not be

embedded in Tm � ½0; 1�.

Theorem 3.3. If X is a graph with jRðXÞja 1, then X 2 can be embedded

in F2ðX Þ if and only if X is an arc.

Proof. If X is an arc its second symmetric product is homeomorphic to X 2.

Now, let X 2 embed in F2ðXÞ. If jRðXÞj ¼ 0, X is an arc or a simple closed curve

(see [14, Proposition 9.5, p. 142]). Since S1 � S1 can not be embedded in F2ðS1Þ,
X is an arc.

Suppose that RðXÞ ¼ fpg and that h : X 2 ! F2ðXÞ is an embedding. Let

r ¼ ordðp;XÞ. So, ðp; pÞ A X 2 has a basis of neighborhoods b such that if

U A b then U is homeomorphic to Tr � Tr (see [5, Lemma 3.4, p. 61]). Take
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fa; bg A F2ðXÞ such that hððp; pÞÞ ¼ fa; bg. By [5, Lemma 3.3, p. 60], we have the

following three cases:

Case I If ordða;XÞa 2 and ordðb;X Þa 2, then fa; bg has a basis of neigh-

borhoods g in F2ðXÞ, such that if U A g then U is homeomorphic to

½0; 1�2.
Case II If ordða;X Þa2 and b¼ p, then fa; bg has a basis of neighborhoods g

in F2ðXÞ, such that if U A g then U is homeomorphic to Tr � ½0; 1�.
Case III If fa; bg ¼ fpg, then fa; bg has a basis of neighborhoods g in F2ðXÞ,

such that if U A g then U is homeomorphic to F2ðTrÞ.

We conclude that Tr � Tr can be embedded in ½0; 1�2, Tr � ½0; 1� or F2ðTrÞ. This is
a contradiction by Lemmas 3.2 and 3.1. Then X 2 can not be embedded in F2ðXÞ.

r

Theorem 3.4. Let X be a graph. If RðXÞ0q then X 2 can not be embedded

in F2ðXÞ.

Proof. If jRðXÞj ¼ 1 it follows by Theorem 3.3. Suppose on the contrary

that RðX Þ ¼ fx1; . . . ; xkg, with kb 2, and that there exists an embedding

h : X 2 ! F2ðXÞ. Let ri ¼ ordðxi;XÞ. It is clear that for each i; j A f1; . . . ; kg,
ðxi; xjÞ A X 2 has a basis of neighborhoods b in X 2 such that if U A b, then U is

homeomorphic to Tri � Trj .

By [5, Lemma 3.3, p. 60] and Lemma 3.2, for each i; j A f1; . . . ; kg, there

exist l; s A f1; . . . ; kg such that hððxi; xjÞÞ ¼ fxl ; xsg. Therefore the sets fðxi; xjÞ A
X 2 : i; j A f1; . . . ; kgg and

ffxi; xjg A F2ðX Þ : i; j A f1; . . . ; kgg

have the same cardinality, which is impossible. r

Using the Theorems 3.3 and 3.4, we get the following result.

Corollary 3.5. Let X be a graph. X 2 can be embedded in F2ðXÞ if and only

if X is an arc.

4. a-Self-Homeomorphic Continua

Definition 4.1. Let a be a cardinal number and let X be a continuum. We

say that X is a-self-homeomorhic if there exist a mutually disjoint proper sub-

continua of X which are homeomorphic to X .
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Remark 4.2. It is clear that every n-cell is m-self-homeomorphic for each

m; n A N.

Proposition 4.3. Let n A N and X be a continuum. If X is n-self-

homeomorphic then X m can be embedded in FmðXÞ for each ma n.

Proof. Let ma n. Since X is n-self-homeomorphic, X is m-self-

homeomorphic. Therefore, there exist pairwise disjoint subcontinua A1; . . . ;Am of

X , such that Ai is homeomorphic to X . Consider the map f X
m : X m ! FmðXÞ

given by f X
m ððx1; . . . ; xmÞÞ ¼ fx1; . . . ; xmg (see [2, p. 877]). So, f X

m jQm
i¼1

Ai
:
Qm
i¼1

Ai !

FmðX Þ is an embedding. Since
Qm
i¼1

Ai is homeomorphic to Xm, we conclude that

X m can be embedded in FmðX Þ. r

Proposition 4.4. Let X be a continuum. X is 2-self-homeomorphic if and

only if X is n-self-homeomorphic for each nb 2.

Proof. It follows from Definition 4.1. r

As a consequence of propositions 4.3 and 4.4 we have the following result.

Corollary 4.5. Let X be a continuum. If X is 2-self-homeomorphic then X n

can be embedded in FnðXÞ for each n A N.

Corollary 4.6. Let X be a graph. X is 2-self-homeomorphic if and only if X

is an arc.

Proof. It follows from Corollary 3.5 and Proposition 4.4. r

Corollary 4.7. Let X be a continuum. If X contains a Hilbert cube, then

X n can be embedded in FnðXÞ for each n A N.

Proof. It follows from Corollary 4.5 and [12, Theorem 1, p. 241]. r

The following definitions appear in [7, p. 217] and [6, p. 283–284].

Definition 4.8. A topological space X is self-homeomorphic (strongly self-

homeomorphic, respectively) if for any open set U HX there is a set V HU

(with nonempty interior, respectively) homeomorphic to X .
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Definition 4.9. A topological space X is pointwise self-homeomorphic

(strongly pointwise self-homeomorphic, respectively) at a point x A X if for any

neighborhood U of x there is a set V (a neighborhood of x, respectively) such

that x A V HU and V is homeomorphic to X . A space X is pointwise self-

homeomorphic (strongly pointwise self-homeomorphic, respectively) if it is point-

wise self-homeomorphic (strongly pointwise self-homeomorphic, respectively) at

each point.

The following fact is easy to see, compare with [7, Theorem 2.5, p. 217].

Proposition 4.10. Definitions 4.1, 4.8 and 4.9 satisfy: 4:1 ) 4:8 ) 4:9.

Concerning this proposition, in [7, Problems 6.21 and 6.23, p. 237] the

authors asked whether X is pointwise self-homeomorphic if X is a self-

homeomorphic or a strongly self-homeomorphic dendrite. A negative answer

to both these questions is given in [15], where a dendrite is constructed which

is strongly self-homeomorphic (at each of its points) but not pointwise self-

homeomorphic (at some of its end points). In [8], the authors generalize the

Pyrih’s example given in [15].

Corollary 4.11. There are uncontably many topologically di¤erent dendrites

such that X n can be embedded in FnðXÞ for each n A N.

Proof. This is a consequence of Propositions 4.3, 4.10 and [7, Corollary

6.5, p. 230]. r

The following proposition on cartesian products is easy to see, compare with

[7, Proposition 2.11, p. 219].

Proposition 4.12. All types of self-homeomorphic spaces considered above

are preserved by Cartesian products (of arbitrarily many factors).

Other examples of continua such that X n can be embedded in FnðXÞ are the

Sierpiński universal curve, the Sierpiński triangle, the Menger curve, the familly

of plane continua constructed in [6, Section 4] and by the previus proposition,

cartesian products with factors being a-self-homeomorphic continua.
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Example 4.13. There exists a continuum X such that for each m; n A N, X n

can be embedded in FnðXÞ but X is not m-self-homeomorphic.

Proof. Consider Y a continuum homeomorphic to the capital letter H. Let

X ¼ Y � I and A1;A2; . . . ;An be pairwise disjoint cylinders in X , each one of

them homeomorphic to X . Then hA1; . . . ;Ani is homeomorphic to X n and is

contained in FnðXÞ, but X is not m-self-homeomorphic for every m A N. r

Question 4.14. Does there exist a dendrite X such that X n can be embedded

in FnðX Þ and X is not m-self-homeomorphic, for m; n A N?

Question 4.15. Does there exist a continuum X such that X n can be

embedded in FnðXÞ but X does not contain a proper subcontinuum Y homeo-

morphic to X ?
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