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PERIODICITY AND EIGENVALUES OF MATRICES OVER

QUASI-MAX-PLUS ALGEBRAS

By

Horst Brunotte

Abstract. We extend the notion of a max-plus algebra and study

periodicity and eigenvalues of matrices over this new structure

thereby generalizing some well-known results on matrices over a

max-plus algebra.

1. Introduction

The concept of the standard max-plus algebra over the real numbers has

turned out to be a useful tool in applications (discrete event systems, optimal

control, game theory) and several other fields of mathematics (matrix theory,

combinatorics, asymptotic analysis, geometry). The reader is referred to [4, 9, 12]

for details. M. Gavalec [10] introduced the notion of a max-plus algebra in a

broader framework (see Section 2 for details) and proved among other things that

every irreducible matrix over a max-plus algebra in this new setting is almost

linear periodic. We establish a generalization of this result (see Theorem 3.5

below).

Our main concern is an extension of the notion ‘max-plus algebra’ by

introducing a quasi-max-plus algebra (see the Definition 2.3). This concept is

inspired by a certain dioid over the integers which was introduced in [1] for the

description of primitive matrices over polynomial rings. We study periodicity

properties and eigenvalues of matrices over a quasi-max-plus algebra (see

Theorems 3.7, 3.8 and 3.10). In an appendix we mainly collect some results which

are well-known under stronger prerequisites, but which are needed here in a more

general setting.
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2. Definition and Examples of Quasi-Max-Plus Algebras

In this paper we always let ðD;l;pÞ be a commutative dioid with neutral

elements e and e, respectively, i.e., D is a commutative unital semiring with

idempotent addition (see [2, Definition 4.1]).1 As customary we often omit the

multiplication sign p if there is no fear of confusion. In particular, we write

an ¼ ap � � �p a|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n factors

ða A D; n A N>0Þ

and a0 ¼ e. If not stated otherwise we always use the natural (partial) order

on D, i.e., aa b if and only if al b ¼ b (see [2, Section 4.3.2]). In particular, the

natural order is compatible with addition and e is the minimal element of D (see

[2, Theorem 4.28]).

For the sake of completeness we recall several definitions. The dioid D is

called
� entire if for all a; b A D the equation ab ¼ e implies a ¼ e or b ¼ e (see

[2, Definition 4.11]),
� cancellative if for a; b; g A D with ab ¼ ag and a0 e we have b ¼ g,
� archimedean if for all a; b A D there is some g A D such that gbb a

provided b0 e (see [2, Definition 4.33]),
� algebraically closed2 if for every a A D and n A N>0 the equation xn ¼ a

admits a solution in D.

Finally we say that D satisfies the weak stabilization condition (see [8,

Definition 1.1.5]) if for all a; b; l; m A D there exist g; n A D and N A N such that

for all nbN we have

aln l bmn ¼ gnn:

A particular class of dioids was introduced under the name ‘extremal algebra’

by J. Nedoma [14] in 1974 and under the name ‘max-plus algebra’ by M. Gavalec

[10] in 2000. Here we prefer the more suggestive latter notion. Let ðG;þ;aÞ be

an abelian linearly ordered divisible group with neutral element 0 and e B G a

new element. We call the dioid ðGU feg;l;pÞ the max-plus algebra generated

by G where the operations are given by l¼ max and p¼ þ and e enjoys the

1By abuse of notation we use the same symbols e and e for the neutral elements of all dioids which

occur in the subsequent text.

2 In [4] this property is called radicable. In the translation [7] this property is inadvertently named

‘algebraic completeness’.
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properties

e < g ðg A GÞ;

and

eþ g ¼ gþ e ¼ e ðg A GU fegÞ:

Correspondingly, the dioid D is called a max-plus algebra if there exists a

commutative linearly ordered divisible group G such that D is the max-plus

algebra generated by G.

Example 2.1. Let G be an additive divisible subgroup of the real

numbers R. Then ðGU f�yg;max;þÞ is a max-plus algebra.3 In par-

ticular, the standard max-plus algebra (or simply max-algebra) fits into

these settings. For details and applications we refer the reader to [4].

The following elementary properties of max-plus algebras can be verified in a

straightforward manner.

Proposition 2.2. Let D be a max-plus algebra.

(i) D is a commutative linearly ordered idempotent semifield4 of characteristic

zero and with neutral elements e and e, respectively. Moreover, e is the

minimal element of D.

(ii) D is cancellative.

(iii) For every a A D and n A N>0 the equation xn ¼ a has a unique solution in

D, namely

a=n :¼ a

n
:

In particular, D is algebraically closed, and we have e=n ¼ e:

(iv) Let a A D and n;m A N>0. Then

am

nm
¼ a

n
:

3 In connection with the set RU f�y;yg we always use the conventions ð�yÞG ð�yÞ ¼ �y and

�y < x, j�yj > x for all x A R. Furthermore, every positive real divides Gy.

4See [2, Definition 3.1].
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(v) Let a; b A D and n;m A N>0. Then

a

n
<

aþ b

nþm

implies a=n < b=m:

It is well-known that new dioids can be formed on cartesian products of D:

Either we equip Dn with componentwise sum and product or we form the free

symmetrized dioid on D (see [8, Sections 1.1 and 2.2]). Based on ideas of [1] we

now introduce a di¤erent construction thereby extending the notion of a max-plus

algebra.

Definition 2.3. The dioid ðD;l;pÞ is called a quasi-max-plus algebra if it

satisfies the following properties:

(i) There exist a max-plus algebra F and a totally ordered set S with at

most two elements such that DJF � S.

(ii) The projection on the first component p : D ! F is a dioid homomor-

phism which enjoys the following properties:

(a) p�1ðfeFgÞ ¼ e and p�1ðfeFgÞ ¼ e.

(b) For all a; b A D the following implication holds.5

pðaÞ ¼ pðbÞ ) ðal bÞ2 ¼ maxfa2; b2g ða; b A DÞ:

(iii) The second components of the neutral elements of D equal the minimal

element of S, i.e., we have e2 ¼ e2 ¼ min S.

(iv) For all a A D we have ða1;min SÞ A D.

(v) For all a; b A Dnfeg we have

ðabÞ2 ¼ maxfa2; b2g:

(vi) D is algebraically closed.

Example 2.4. Plainly, every max-plus algebra can be regarded as a

quasi-max-plus algebra: Just take S to be a singleton.

5We write xi for the i-th component of the element x of the cartesian product of a family of sets

ðXiÞi A I .
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In addition to the natural order we impose the lexicographical order on a

quasi-max-plus algebra by

a <lex b , a1 < b1 or ða1 ¼ b1 and a2 < b2Þ:

The following basic properties of a quasi-max-plus algebra will be used in the

sequel.

Proposition 2.5. Let D the quasi-max-plus algebra contained in F � S where

F is a max-plus algebra and S a totally ordered set with at most two elements.

(i) D is a commutative unital entire semiring of characteristic zero with

idempotent addition, and its neutral elements are ðe;min SÞ and

ðe;min SÞ, respectively.

(ii) D is totally ordered by the lexicographical order, and ðe;min SÞ is its

minimal element.

(iii) Let a; b A D with aa b. Then we have aalex b.

(iv) Let a; b A D with a <lex b. If g A Dnfeg then ag <lex bg:

(v) For all a; b A D and n A N>0 the equation an ¼ bn implies a ¼ b:

(vi) For every a A D and n A N>0 the equation xn ¼ a admits a unique so-

lution in D, namely ða1=n; a2Þ, and we also write this solution as

a=n:

(vii) pðDÞ is an algebraically closed max-plus algebra.

(viii) Let E be a subdioid of a D. Then E is quasi-max-plus algebra if and only

if E is algebraically closed and ða1;min SÞ A E for all a A E.

Proof. (i), (vii) This can easily be checked.

(ii) Let a; b A D. By Proposition 2.2 we may assume a1 a b1, hence

aalex b.

(iii) By assumption we have al b ¼ b, thus a1 l b1 ¼ b1, hence a1 a b1.

Thus we are done provided a1 < b1 or S ¼ q. Therefore, let us assume a1 ¼ b1
and S0q. Then we have a2 a b2 by definition.

(iv) Assume agblex bg: Then we have

a1g1 ¼ ðagÞ1 b ðbgÞ1 ¼ b1g1

which implies a1 b b1. But then we have ablex b: Contradiction.
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(v) If a ¼ e then clearly b ¼ e. Therefore we let a; b0 e and assume a <lex b.

From (iv) we infer

a2 <lex ab <lex b
2

and analogously an <lex b
n: Contradiction. Similarly we show the impossibility of

a >lex b and then deduce our assertion.

(vi) The existence of a solution is clear by divisibility. In case a ¼ e the only

solution is e. Otherwise, uniqueness follows from the fact that ðDnfegÞ1 is

contained in a group.

(vii), (viii) Clear by the above. r

We now construct our principal example, namely a quasi-max-plus algebra

over the nonnegative real numbers. On the set

R :¼ ððRb0 U f�ygÞ � f0; 1gÞnfð�y; 1Þ; ð0; 1Þg

endowed with the usual order relation we introduce two binary operations:

ðr; aÞl ðs; bÞ ¼ ðmaxfr; sg; dþððr; aÞ; ðs; bÞÞÞ; and

ðr; aÞp ðs; bÞ ¼ ðrþ s; d�ððr; aÞ; ðs; bÞÞÞ;

where the functions dþ; d� : R�R ! f0; 1g are defined as follows. First,

dþððr; aÞ; ðs; bÞÞ ¼ 1 if one of the following four conditions is satisfied:

(i) maxfjr� sj; a; bg ¼ 1,

(ii) r > sþ 1 and a ¼ 1,

(iii) s > rþ 1 and b ¼ 1,

(iv) 0 < jr� sj < 1,

otherwise dþððr; aÞ; ðs; bÞÞ ¼ 0. Second, d�ððr; aÞ; ðs; bÞÞ ¼ maxfa; bg if r; s A R, and

d�ððr; aÞ; ðs; bÞÞ ¼ 0; otherwise. Obviously, these definitions extend the one given

in [1, Section 6.3].

Now we collect some properties of subsets of R.

Theorem 2.6. Let T 0 f0g be an additively closed subset of Rb0 and set

T ¼ ððT � f0; 1gnfð0; 1ÞgÞU fe; eg;l;pÞ

with e ¼ ð�y; 0Þ and e ¼ ð0; 0Þ.
(i) T is a commutative entire archimedian dioid with neutral elements e

and e, respectively.
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(ii) For all a; b A T with b0 e; e there exists N A N such that for all nbN

we have

al bn ¼ b n:

(iii) T satisfies the weak stabilization condition.

(iv) If t=n A T for all t A T and n A N>0 then T is an algebraically closed

quasi-max-plus algebra.

Proof. We leave the rather lengthy, but straightforward verification to the

reader. r

Remark 2.7. In general, T cannot be embedded into the standard max-plus

algebra. Otherwise, for t A T V ð0; 1� we would have

ðt; 1Þ ¼ ðt; 0Þl ð0; 0Þ A fðt; 0Þ; ð0; 0Þg

which is impossible.

3. Matrices Over Quasi-Max-Plus Algebras

In this section we let DJF � S be a quasi-max-plus algebra where F is a

max-plus algebra and S a linearly ordered set with at most two elements. For

r A N>0 the set of matrices Dr�r is a dioid and a D-semimodule where the matrix

operations are defined as usual.

Let A A Dr�r. The digraph6 GðAÞ is the weighted digraph ð½r�;E;wÞ with

vertex set ½r�, edge set

E ¼ fði; jÞ A ½r�2 : Aij 0 eg

and weight function w : E ! Dnfeg with

wði; jÞ ¼ Aij

for all ði; jÞ A E; here we use the abbreviation ½r� ¼ f1; . . . ; rg. We write q 0 Jc q

if the path q is a cycle extension of the path q 0, and we denote by jqj the length

of q. We let P
ðnÞ
A ði; jÞ (PA; elði; jÞ, respectively) be the set of all paths of length n

(all elementary paths, respectively) from i to j.

6 If not stated otherwise we use the terminology of [11].
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Let q ¼ ði0; i1; . . . ; inÞ be a path of positive length n in GðAÞ. We call

suppðqÞ ¼ fi0; i1; . . . ; ing the support,

wðqÞ ¼ Ai0; i1 p � � �pAin�1; in

the weight and

wðqÞ ¼ wðqÞ
jqj

the mean weight of q (see Proposition 2.5).

Let K be a subgraph of GðAÞ. K is said to be nontrivial if it contains at

least one cycle of positive length. The high period of K is defined by

hperðKÞ ¼ gcdfjcj : c cycle of positive length in K and wðcÞ ¼ GðAÞg;

if the set on the right hand side is nonvoid, and hperðKÞ ¼ 0; otherwise; here7

lðKÞ ¼ maxfwðcÞ : c cycle of positive length in Kg

is the maximal cycle mean weight of K (cf. [10, p. 169]). Every cycle c in K with

wðcÞ ¼ lðKÞ is called a critical cycle in K, and a cycle in GðAÞ is critical if it

takes the maximal mean weight lðAÞ :¼ lðGðAÞÞ. Further, we use the abbre-

viation SCC GðAÞ (SCC� GðAÞ, respectively) for the set of strongly connected

components (nontrivial strongly connected components, respectively) of GðAÞ.
Following [10, p. 169] we say that the vertices i and j are highly connected

if i and j are contained in a critical cycle; in this case we write i1h j. The

subgraphs of GðAÞ induced by the classes of 1h are called highly connected

components of GðAÞ. A highly connected component is called trivial if it does

not possess a cycle of positive length with cycle mean weight equal to lðAÞ.
Analogously as above, we denote by HCC GðAÞ (HCC� GðAÞ, respectively) the

set of highly connected components (nontrivial highly connected components,

respectively) of GðAÞ.

Lemma 3.1. Assume lðKÞ ¼ l for all K A SCC� GðAÞ.
(i) We have lðAÞ ¼ l.

(ii) Let l ¼ e. Then we have wðcÞ1 a e for all cycles c of GðAÞ, and for all

K 0 A SCC� GðAÞ there exists a K A HCC� GðAÞ with KJK 0. Fur-

thermore, if c is a cycle in GðAÞ which consists of vertices belonging to

critical cycles then c is critical.

7Throughout we use the convention max q ¼ min S if ðS;aÞ is an ordered set with a minimal

element.
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Proof. (i) Let c be a critical cycle in GðAÞ. It is easy to see that there is

a K A SCC� GðAÞ with suppðcÞJK. Thus c is a cycle of K and therefore

lðKÞblex wðcÞ. Now the proof can easily be completed.

(ii) Clearly, we have

wðcÞ1
jcj ¼ wðcÞ1 a e;

thus wðcÞ1 a en ¼ e: Let K 0 A SCC� GðAÞ and choose a cycle c in K 0 with

wðcÞ ¼ e. Then all vertices of c are highly connected, thus there is K A

HCC� GðAÞ with suppðcÞJK. Let k A K. Then k is highly connected to a

vertex of c, thus k A K 0, and this shows KJK 0. The last assertion is clear by

[2, Theorem 3.96]. r

The following two technical lemmas provide an essential step in the proof of

Theorem 3.5. For convenience we introduce

pA ¼ lcmfhperðKÞ : K A HCC� GðAÞg:

Lemma 3.2. There exists some M A N such that for all nbM and every

K A HCC� GðAÞ there is a critical cycle c in K with the following properties.

(i) jcj ¼ npA

(ii) Every elementary critical cycle in K occurs in c at least once.

Proof. This is a straightforward application of a well-known result of

elementary number theory (e.g., see [15, Lemma A.3]). r

Lemma 3.3. Let lðKÞ ¼ e for all K A SCC� GðAÞ. There exists N A N such

that for all nbN, i; j A ½r� and q0 A PA; elði; jÞ the following statements hold:

(i) Either there does not exist a cycle extension q A PAði; jÞ of q0 with jqj ¼ n

or every cycle extension q A PAði; jÞ of q0 with jqj1 n ðmod pAÞ and

wðqÞ ¼ maxfwðq 00Þ : q 00 A P
ðjqjÞ
A ði; jÞ; q0 Jc q

00g

is of the form

q ¼ q0c1 � � � ct;

where c1; . . . ; ct are critical cycles of GðAÞ, and we have wðqÞ ¼ wðq0Þ and

jqj1 jq0j ðmod pAÞ.
(ii) If q A P

ðnÞ
A;�ði; jÞ is a cycle extension of q0, m A N>0 and q̂q :¼ q0c1 � � � ct A

P
ðnþmpAÞ
A ði; jÞ with critical cycles c1; . . . ; ct then q̂q A P

ðnþmpAÞ
A;� ði; jÞ. Here we
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set

P
ðtÞ
A;�ði; jÞ ¼ fq A PðtÞði; jÞ : wðqÞbwðq 0Þ for all q 0 A P

ðtÞ
A ði; jÞg

for t A N>0.

Proof. This can be proved analogously to [13, Lemma 3.2] using

Lemma 3.2. r

In order to mitigate the condition lðKÞ ¼ e for all K A SCC� GðAÞ we need

some preparation. The reader is referred to the appendix for the periodicity

notions we are using in the sequel.

Lemma 3.4. Let D be a quasi-max-plus algebra, A A Dr�r and B :¼ pðAÞ.
(i) GðAÞ ¼ GðpðAÞÞ, in particular the cycles of GðAÞ and GðpðAÞÞ coincide.

(ii) K A SCC� GðAÞ if and only if K A SCC� GðpðAÞÞ.
(iii) Every critical cycle of GðAÞ is a critical cycle of GðpðAÞÞ, and we have

lðAÞ1 ¼ lðpðAÞÞ.
(iv) For each K A HCC� GðAÞ there is a K 0 A HCC� GðpðAÞÞ with

KJK 0:

(v) A is irreducible if and only if pðAÞ is irreducible.

(vi) Assume that A has at least one cycle and lðAÞ2 ¼ min S. Then the

critical cycles in GðAÞ and GðpðAÞÞ coincide.

(vii) If A is almost linear periodic then pðAÞ is almost linear periodic,

ldefðpðAÞÞa ldefðAÞ and lperðpðAÞÞ divides lperðAÞ, and pðQijÞ are the

entries of a linear factor matrix of pðAÞ where Q is a linear factor matrix

of A.

(viii) If lðKÞ ¼ lðK 0Þ for all K;K 0 A SCC� GðAÞ then lðKÞ ¼ lðK 0Þ for

all K;K 0 A SCC� GðBÞ.

Proof. (i), (ii) This can easily be checked.

(iii) We only show lðAÞ1 ¼ lðpðAÞÞ using (i). Assume lðAÞ1 > lðpðAÞÞ ¼: l.

Then there exists a cycle c in GðAÞ with wðcÞ1 > l, but c is a cycle in GðpðAÞÞ:
Contradiction. Thus we have lðAÞ1 a l. The assumption of strict inequality leads

to a cycle c 0 in GðpðAÞÞ with wðc 0Þ1 > lðAÞ1, hence wðcÞ > lðAÞ: Contradiction.
(iv) Let i; j A K and c a critical cycle with vertices i, j. Then wðcÞ1 ¼

lðpðAÞÞ by (iii), thus there is a K 0 A HCC� GðpðAÞÞ which contains every vertex

of c. We easily check KJK 0:
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(v) Clear by (i).

(vi) In view of (iii) it su‰ces to show that every critical cycle c in GðpðAÞÞ
is a critical cycle in GðAÞ: Suppose to the contrary that there is a cycle c 0 in

GðAÞ with wðcÞ < wðc 0Þ: The same relation then holds for the first components

because

wðcÞ2 b lðAÞ2 ¼ wðc 0Þ2;

and we deduce the contradiction

wðpðcÞÞ ¼ wðpðcÞÞ
jcj ¼ wðcÞ

jcj <
wðc 0Þ1
jc 0j ¼ wðpðc 0ÞÞ

jc 0j ¼ wðpðc 0ÞÞ:

(vii) By assumption the sequence A� :¼ ðAnÞn AN is almost linear periodic. Let

i; j A ½r�, pij :¼ lperðA�Þij A N>0 and lij A D with

ðAnþpij Þij ¼ ðAnÞijl
pij
ij ðn > ldefðA�ÞijÞ:

In particular, this holds for the first components, hence pðAÞ is almost linear

periodic, and ldefðpðAÞÞa ldefðAÞ. Furthermore, using Proposition 2.5 we check

that lperðpðA�ÞÞij divides pij , hence

lperðpðAÞÞ ¼ lcmflperðpðA�ÞÞij : i; j A ½r�g j lcmfpij : i; j A ½r�g ¼ lperðAÞ:

The proof can now easily be concluded.

(viii) Let K;K 0 A SCC� GðBÞ. Then K;K 0 A SCC� GðAÞ by (ii) and

lðKÞ1 ¼ lðK 0Þ1 by assumption. This shows that there cannot be a cycle c in K

with wðpðcÞÞ1 > lðK 0Þ1 which implies our assertion. r

Now we can state our first main result which slightly extends the structural

part of [10, Theorem 3.1] and generalizes a classical theorem on matrices over the

standard max-plus algebra [2, Section 3.7].

Theorem 3.5. Let D be a max-plus algebra, l A Dnfeg and A A Dr�r with

lðKÞ ¼ l for all K A SCC� GðAÞ. Then A is almost linear periodic, lperðAÞ ¼ pA

and ðlfacðAÞÞij ¼ l for all i; j A ½r�. More explicitly, we have

ðAnþpAÞij ¼ lpAðAnÞij ði; j A ½r�Þ

for all su‰ciently large n.

Proof. By Lemma 3.1 we have lðAÞ ¼ l, and for B :¼ ð�lÞA we have

lðBÞ ¼ e by Lemma 4.7.

61Periodicity and eigenvalues of matrices over quasi-max-plus algebras



Let p :¼ pA and N be a constant given by Lemma 3.3, nbN and

i; j A ½r�. Assume that there is some q A PA; elði; jÞ. By [10, Lemma 2.1] we have

ðBnÞij ¼ a
ðnÞ
q , and by Lemma 3.3 we have ðBnþpBÞij ¼ a

ðnÞ
q , hence

ðBnþpBÞij ¼ ðBnÞij :ð1Þ

On the other hand, if PA; elði; jÞ ¼ q then both sides of (1) equal e by Lemma

3.3.

Thus B is almost linear periodic with lfacðBÞ ¼ e by Lemma 4.6 and lperðBÞ
divides pB by Proposition 2.2. Arguing as in the proof of [10, Lemma 3.3] we see

that lperðBÞ cannot be smaller than pB, thus lperðBÞ ¼ pB.

An application of Lemma 4.7 concludes the proof. r

We can certainly recover the first part of [10, Theorem 3.1].

Corollary 3.6. Let D be a max-plus algebra and A A Dr�r be irreducible.

Then A is almost linear periodic, and we have lperðAÞ ¼ pA and lfacðAÞ ¼
lðAÞ0 e.

Proof. As SCC� GðAÞ is a singleton the assertion drops out of the

Theorem. r

Now we establish the analog of [5, Theorem 2.4].

Theorem 3.7. Let D be a quasi-max-plus algebra with weak stabilization

condition. Let E be a subdioid of D and A A E r�r be irreducible. Then A and

pðAÞ are almost linear periodic and lðAÞ0 e. Furthermore, we have ldefðAÞb
ldefðpðAÞÞ, ppðAÞ divides p :¼ lperðAÞ, ðlðAÞ1;min D2Þp A E and

Anþp ¼ ðlðAÞ1;min D2ÞpAn ðn > ldefðAÞÞ:

Proof. (i) Using Lemma 3.4 (v), (iii) and Corollary 3.6 we find that the

matrix B :¼ pðAÞ is irreducible and almost linear periodic, and lperðBÞ ¼ pB and

lfacðBÞ ¼ l1 with l :¼ lðAÞ.
(ii) Let i; j A ½r�. By the above we have

ðAnþtpBÞij1 ¼ ðBnþtpBÞij ¼ ðBnÞijl
tpB
1 ¼ l

tpB
1 ðAnÞij1 ðn > ldefðBÞ; t A N>0Þ:ð2Þ
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Furthermore, from [8, Proposition 1.2.2] we infer the existence of lij A D and

Nij; pij A N>0 such that

ðAnþtpij Þij ¼ l t
ijðAnÞij ðnbNij ; t A N>0Þ:ð3Þ

(iii) Let N ¼ maxfldefðBÞ;Nij : i; j A ½r�g and p ¼ lcmfpB; pij : i; j A ½r�g. By

(2) and (3) we have for all i; j A ½r�

ðAnþpÞij1 ¼ l
p
1 ðAnÞij1 ¼ l

p=pij
ij1 ðAnÞij1 ðn > NÞ:

Now, Proposition 2.2 (ii) yields

l
p=pij
ij1 ¼ l

p
1 ;

hence by (3) and the properties of a quasi-max-plus algebra

ðAnþpÞij ¼ ðlp
1 ; lij2ÞðAnÞij ¼ ðl1; lij2ÞpðAnÞij ðn > NÞ:

Thus A is almost linear periodic, and from Lemma 3.4 (vii) we know that pB

divides lperðAÞ and ldefðAÞb ldefðBÞÞ.
(iv) In case Card D2 ¼ 1 we are done. Otherwise we write D2 ¼ f0; 1g and

show that there is some MbN such that

ðAnþpÞij ¼ ðl1; 0ÞpðAnÞij ði; j A ½r�; n > MÞ:ð4Þ

Note that by the definition of p we have ðl1; 0Þp A E. We distinguish two

cases.

Case 1. For all i; j A ½r� and n > N we have ðAnÞij2 ¼ 0.

In this case we set M ¼ N.

Case 2. There is some i; j A ½r� and nij > N such that ðAnÞij2 ¼ 1.

For all i, j with this property we fix some nij. Now we choose M to be the

maximal nij and check that (4) is satisfied. This completes the proof. r

Now we study eigenvalues of certain matrices over quasi-max-plus algebras.

Theorem 3.8. Let D be a quasi-max-plus algebra and A A Dr�r.

(i) If A is nilpotent then e is the unique eigenvalue of A.

(ii) Let D satisfy the weak stabilization condition and A be irreducible.

Then e is not an eigenvalue of A, but ðlðAÞ1;min D2Þ is an eigenvalue

of A.

(iii) Suppose D2 ¼ f0; 1g, ðlðAÞ1; 1Þ A D and ðv11; 1Þ; . . . ; ðvr1; 1Þ A D for some

eigenvector ðv1; . . . ; vrÞ A Dr of A with eigenvalue ðlðAÞ1; 0Þ. Then

ðlðAÞ1; 1Þ is an eigenvalue of A with eigenvector ððv11; 1Þ; . . . ; ðvr1; 1ÞÞ.
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Proof. (i) This is a well-known classical result.

(ii) The first part is clear by Lemma 4.3, and for the second part we closely

follow [6, proof of Teorema 1]. By Theorem 3.7 there exist n;m A N such that

m > n > 0 and

Am ¼ lm�nAn

where we set l :¼ ðlðAÞ1;min D2Þ A Dnfeg. Then Theorem 4.5 yields our

assertion.

(iii) For each i A ½r� the equation

0
j A ½r�

Aijvj ¼ ðlðAÞ1; 0Þvi

implies

0
j A ½r�

Aijðvj1; 1Þ ¼ ðlðAÞ1; 1Þðvi1; 1Þ: r

We illustrate Theorem 3.8 by two easy examples.

Example 3.9. (i) The only eigenvalue of the matrix ð0; 0Þ A R is ð0; 0Þ, and
every element in Rnfð�y; 0Þg is an eigenvector.

(ii) The matrix ð1; 0Þ A R has exactly two eigenvalues, namely ð1; 0Þ and

ð1; 1Þ. In both cases ðx; 1Þ is an eigenvector provided x > 0.

Finally, we extend Theorem 3.7 and [1, Proposition 6.19] for the particular

dioid R.

Theorem 3.10. Let T 0 f0g be an additively closed subset of Rb0 and T

be defined as in Theorem 2.6. Further, let A A Tr�r be a non-nilpotent matrix

and assume lðKÞ ¼ lðK 0Þ for all K;K 0 A SCC� GðAÞ. Then A and pðAÞ are

almost linear periodic. Furthermore, we have ldefðAÞb ldefðpðAÞÞ, ðlðAÞ1; 0Þ
p A T

and p :¼ lperðAÞ divides ppðAÞ

Anþp ¼ ðlðAÞ1; 0Þ
p
An ðn > ldefðAÞÞ:

Thus

ðlðAÞ1; 0Þi; j A ½r� A Rr�r

defines a linear factor matrix of A.
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Proof. As A is non-nilpotent the digraph GðAÞ has at least one cycle

of positive length. In view of Lemma 3.4 (viii) and Lemma 3.1 (i) we have

lðAÞ ¼ lðKÞ ¼ lðK 0Þ for all K;K 0 A SCC� GðBÞ where we set B :¼ pðAÞ. We

infer from Theorem 3.5 that B is almost linear periodic, l :¼ lðAÞ1 defines the

linear factor of B, and lperðBÞ ¼ pB: Thus ðl; 0ÞpB A T and there exists N A N

such that

ððAnþpBÞijÞ1 ¼ ðBnþpBÞij ¼ ðBnÞijl
pB ¼ ððAnÞijÞ1l

pB ¼ ððAnÞij1ðl; 0Þ1Þ
pB :ð5Þ

Now, Lemma 3.4 shows that (5) also holds for the second components provided

n is large enough. This means that A is almost linear periodic, ðl; 0Þi; j A ½r� de-

fines a linear factor matrix of A and the relation between the linear defects of A

and B is clear by Lemma 3.4. Finally, Lemma 4.1 yields that lperðAÞ divides pB.

r

A central result of [13, Theorem 3.1] can now easily be generalized.

Corollary 3.11. Let A A Rr�r and assume that GðAÞ has at least one cycle

of positive length. The matrix A is eventually periodic if and only if lðKÞ ¼ e for

all K A SCC� GðAÞ. In this case per A divides pA.

Proof. We first observe that [13, Theorem 3.1] holds for any matrix over a

max-plus algebra whose graph has at least one cycle of positive length.

Let A be eventually periodic. Then B :¼ pðAÞ is eventually periodic, hence for

any K A SCC� GðpðAÞÞ we have lðKÞ1 ¼ e by [13, Theorem 3.1]. Then Lemma

3.4 (ii) yields lðKÞ ¼ e for all K A SCC� GðAÞ.
Conversely, if lðKÞ ¼ e for all K A SCC� GðAÞ then Theorem 3.10 yields

ðAnþpÞij ¼ ðAnÞij ðnbN; i; j A ½r�Þ

with some N A N, and an application of Lemma 4.1 completes the proof. r

4. Appendix

Let ðS; �Þ be an abelian semigroup and a� ¼ ðanÞn AN be a sequence of

elements of S. Following [10, Definition 2.3, 2.4] we say that a� is almost linear

periodic8 if there are N A N, p A N>0 and b A S such that

anþp ¼ bp � an ðn > NÞ:ð6Þ

65Periodicity and eigenvalues of matrices over quasi-max-plus algebras



In this case the smallest p A N>0 such that there are N A N and b A S with (6) is

called the linear period of a�, and we write p ¼ lper a�. The minimal N A N such

that there is some b A S which satisfies (6) for p ¼ lper a� is called the linear

defect of a�, and we write N ¼ ldef a�. Finally, an element b with (6) for

p ¼ lper a� and N ¼ ldef a� is called a linear factor of a�. In case b is unique we

write b ¼ lfac a�.

Lemma 4.1. Let ðS; �Þ be an abelian cancellative semigroup and assume that

for all x; y A S and n A N>0 the equation xn ¼ yn implies x ¼ y: Further, let

a� ¼ ðakÞk AN be an almost linear periodic sequence in S, i.e., there exist b A S,

N A N and m A N>0 with

anþm ¼ anb
m

for every n > N.

(i) We have

anþtm ¼ anb
tm

for every t A N>0 and n > N.

(ii) lfacða�Þ ¼ b.

(iii) lperða�Þ divides m.

Proof. (i) Clear by induction.

(ii) Assume that there are c A S, M A N and k A N>0 with

anþk ¼ anck

for all n > M. For large enough n we then have by (i)

anc
km ¼ anþkm ¼ anb

km;

which yields ckm ¼ bkm and then c ¼ b.

(iii) Clearly, we have p :¼ lperða�Þam: Write m ¼ qpþ r with q; r A N,

q > 0 and r < p. If r ¼ 0 we are done. Otherwise, applying (i) again we find for

large enough n

anb
qpþr ¼ anb

m ¼ anþm ¼ aðnþrÞþqp ¼ anþrb
qp;

8Our definition slightly di¤ers from the one given in [1, Definition 6.1].
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hence

anb
r ¼ anþr;

contradicting the definition of p. r

We collect some well-known results for commutative unital semirings. The

first one is stated in [3, Theorem 3.24] for matrices over the complex numbers.

However, it is easy to see that it remains true in a more general setting (cf.

[5, Theorem 2.5], [7, Assertion 7.2]).

Theorem 4.2 [3, Theorem 3.24]. Let S be a commutative unital semiring and

M A Sr�r. Then there exists a permutation matrix P A Sn�n such that

PMPT ¼

M11 M12 � � � M1n

0 M22 � � � M2n

..

. . .
. . .

. ..
.

0 � � � 0 Mnn

0
BBBB@

1
CCCCA:ð7Þ

Here nb 1 and the blocks M11; . . . ;Mnn that occur in the diagonal in (7) are

square matrices which are either 0 or irreducible.9 The blocks M11; . . . ;Mnn are

uniquely determined to within simultaneous permutation of their rows and columns,

but their ordering in (7) is not necessarily unique. The form on the right hand side

of (7) is called the Frobenius normal form of M.

For the study of the ultimate behavior of the sequence of powers of a matrix

over S we recall the following definitions. The matrix A A Sr�r is called
� eventually periodic if the sequence A� :¼ ðAnÞn AN is eventually periodic

(see for instance [13, Definition 2.4] where the notion ‘almost periodic’ was

coined for this property); in this case we write

perðAÞ ¼ perðA�Þ:

� almost linear periodic if for all i; j A ½r� the sequence

ðA�Þij ¼ ððAnÞijÞn AN A SN

9Observe the di¤erent notion of irreducibility in [3].
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is almost linear periodic. In this case we write

ldefðAÞ ¼ ldefðA�Þ; lperðAÞ ¼ lperðA�Þ:

If there is a unique linear factor we write lfacðAÞ ¼ lfacðA�Þ.
From now on we let D be a commutative entire dioid. The following result is

well-known for the standard max-plus algebra (e.g., see [4]).

Lemma 4.3. Let A A Dr�r be irreducible and assume A0 ðeÞ. Further, let

l A D be an eigenvalue of A with eigenvector v A Dr. Then l0 e and vi 0 e for all

i A ½r�:

Proof. By definition we have vj 0 e for some j A ½r�: For all i; k A ½r� we

have

Akivi a lvk:ð8Þ

Let us assume l ¼ e. Then by (8) we find

Akivi ¼ e

for all i; k A ½r�, thus in particular Akjvj ¼ e and then Akj ¼ e for all k A ½r� which
is impossible.

Let us now assume vk ¼ e for some k A ½r� and pick n A N>0 such that

ðAnÞkj 0 e. Then we are lead to the contradiction

e < ðAnÞkjvj a lnvk ¼ e: r

Lemma 4.4. Let M A Dr�r, l A Dnfeg and n;m A N such that m > n > 0,

Mn 0 e and

Mm ¼ lm�nMn:

Then l is an eigenvalue of M.

Proof. Our proof is taken from [6, proof of Teorema 1]. For the con-

venience of the reader we give the details here. Let z A Dr such that y :¼
Mnz0 e. Then we have

Mm�ny ¼ Mmz ¼ lm�nMnz ¼ lm�ny:ð9Þ

Therefore, the vector

x :¼ 0
m�n�1

i¼0

l iMm�n�1�iy
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is not the zero vector because otherwise we have l iMm�n�1�iy ¼ e for all

i ¼ 0; . . . ;m� n� 1 which implies

l iMm�1�iz ¼ e ði ¼ 0; . . . ;m� n� 1Þ

yielding the contradiction

lm�n�1y ¼ lm�n�1Mm�1�ðm�n�1Þz ¼ e:

Thus x is an eigenvector of M with eigenvalue l because by (9) we have

Mx ¼ 0
m�n�1

i¼0

l iMm�n�iy ¼ Mm�nyl 0
m�n�1

i¼1

l iMm�n�iy

¼ lm�nyl 0
m�n�1

i¼1

l iMm�n�iy ¼ 0
m�n

i¼1

l iMm�n�iy ¼ lx: r

Theorem 4.5. Let D be a commutative entire dioid and M A Dr�r be not

nilpotent. Further, let l A Dnfeg and n;m A N such that m > n > 0 and

Mm ¼ lm�nMn:

Then l is an eigenvalue of M.

Proof. We use induction on r and closely follow the proof of [6, proof of

Teorema 1]. If M is irreducible then Mn 0 e and we are done by Lemma 4.4.

Now, let M be reducible, hence r > 1 and by Theorem 4.2 we find a permutation

matrix P A Dr�r such that we can write

PMPT ¼ A B

0 C

� �

with square matrices A, B of smaller size than M. At least one of these matrices

is not nilpotent because otherwise M is nilpotent. W.l.o.g. we assume that

A A Dk�k is not nilpotent. Then we find

Am ¼ lm�nAn;

hence by induction hypothesis there is an eigenvector a A Dk of A with eigenvalue

l. Now, the vector PTvT with v :¼ ða; e; . . . ; eÞ A Dr is an eigenvector of M with

eigenvalue l. r

We formally state some results which were implicitly used in [10].
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Lemma 4.6. Let D be a max-plus algebra and A A Dr�r be almost linear

periodic. Then A has a unique linear factor.

Proof. Clear by Proposition 2.2 and Lemma 4.1. r

Lemma 4.7. Let D be a max-plus algebra, a A Dnfeg, A A Dr�r and B ¼ aA.

(i) We have GðAÞ ¼ GðBÞ ¼: G and pA ¼ pB.

(ii) For every path q of positive length in G we have wBðqÞ ¼ awAðqÞ:
(iii) The set of critical cycles w.r.t. wA coincides with the set of critical cycles

w.r.t. wB.

(iv) If K A SCC� G and a ¼ �lAðKÞ then lBðKÞ ¼ e:

(v) A is almost linear periodic if and only if B is almost linear periodic. In

this case we have lperðAÞ ¼ lperðBÞ, ldefðAÞ ¼ ldefðBÞ and lfacðBÞ ¼
a lfacðAÞ.

Proof. (i) Obvious.

(ii) We have

wBðqÞ ¼
wBðqÞ
jqj ¼ wAðqÞajqj

jqj ¼ wAðqÞa:

(iii) Clear by (i) and (ii).

(iv) This can easily be checked.

(v) Let A be almost linear periodic with p ¼ lperðAÞ and l ¼ lfacðAÞ,
hence

Bnþp ¼ anþpAnþp ¼ anAnlpap ¼ BnðlaÞp:

for n > ldefðAÞ. Thus B is almost linear periodic with lperðBÞa p. However,

strict inequality is impossible, hence lperðBÞ ¼ p. Similarly, we find ldefðBÞ ¼
ldefðAÞ, and finally lfacðBÞ ¼ la in view of Lemma 4.6.

Conversely, let B be almost linear periodic with q ¼ lperðBÞ and m ¼ lfacðBÞ,
hence

anþqAnþq ¼ Bnþq ¼ Bnmq ¼ anAnmq

for n > ldefðBÞ. As D is cancellative we have

Anþq ¼ ð�aÞqaqAnþq ¼ Anð�aÞqmq ¼ Anð�amÞq;

and the proof can be completed analogously as above. r
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