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PERIODICITY AND EIGENVALUES OF MATRICES OVER
QUASI-MAX-PLUS ALGEBRAS

By

Horst BRUNOTTE

Abstract. We extend the notion of a max-plus algebra and study
periodicity and eigenvalues of matrices over this new structure
thereby generalizing some well-known results on matrices over a
max-plus algebra.

1. Introduction

The concept of the standard max-plus algebra over the real numbers has
turned out to be a useful tool in applications (discrete event systems, optimal
control, game theory) and several other fields of mathematics (matrix theory,
combinatorics, asymptotic analysis, geometry). The reader is referred to [4, 9, 12]
for details. M. Gavalec [10] introduced the notion of a max-plus algebra in a
broader framework (see Section 2 for details) and proved among other things that
every irreducible matrix over a max-plus algebra in this new setting is almost
linear periodic. We establish a generalization of this result (see Theorem 3.5
below).

Our main concern is an extension of the notion ‘max-plus algebra’ by
introducing a quasi-max-plus algebra (see the Definition 2.3). This concept is
inspired by a certain dioid over the integers which was introduced in [1] for the
description of primitive matrices over polynomial rings. We study periodicity
properties and eigenvalues of matrices over a quasi-max-plus algebra (see
Theorems 3.7, 3.8 and 3.10). In an appendix we mainly collect some results which
are well-known under stronger prerequisites, but which are needed here in a more
general setting.
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2. Definition and Examples of Quasi-Max-Plus Algebras

In this paper we always let (Z,®,©) be a commutative dioid with neutral
elements ¢ and e, respectively, i.e., & is a commutative unital semiring with
idempotent addition (see [2, Definition 4.1])." As customary we often omit the
multiplication sign © if there is no fear of confusion. In particular, we write

a"=a@®---0Oa (aeP,neNsg)
—————

n factors

and a° =e. If not stated otherwise we always use the natural (partial) order
on 2, ie., a<bif and only if a ® b = b (see [2, Section 4.3.2]). In particular, the
natural order is compatible with addition and ¢ is the minimal element of & (see
[2, Theorem 4.28]).
For the sake of completeness we recall several definitions. The dioid 2 is
called
+ entire if for all «,f € 2 the equation off =& implies « =¢ or f=c¢ (see
[2, Definition 4.11]),
+ cancellative if for o,f,ye€ 2 with off = ay and o # ¢ we have f =y,
+ archimedean if for all o,feZ there is some ye€ % such that yf >«
provided S # ¢ (see [2, Definition 4.33]),
+ algebraically closed? if for every o€ & and ne Ny the equation x" = «
admits a solution in Z.
Finally we say that & satisfies the weak stabilization condition (see [8,
Definition 1.1.5]) if for all o, f, A, u € & there exist y,ve 2 and N € N such that
for all n > N we have

A" @ﬁﬂn _ yV”.

A particular class of dioids was introduced under the name ‘extremal algebra’
by J. Nedoma [14] in 1974 and under the name ‘max-plus algebra’ by M. Gavalec
[10] in 2000. Here we prefer the more suggestive latter notion. Let (G, +, <) be
an abelian linearly ordered divisible group with neutral element 0 and ¢¢ G a
new element. We call the dioid (GU {e},®,®) the max-plus algebra generated
by G where the operations are given by @ = max and © = + and ¢ enjoys the

!By abuse of notation we use the same symbols ¢ and e for the neutral elements of all dioids which
occur in the subsequent text.

2In [4] this property is called radicable. In the translation [7] this property is inadvertently named
‘algebraic completeness’.
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properties
e<g (9€G),
and
e+g=g+e=¢ (ge GU{e}).

Correspondingly, the dioid Z is called a max-plus algebra if there exists a
commutative linearly ordered divisible group G such that & is the max-plus
algebra generated by G.

ExamMpLE 2.1. Let G be an additive divisible subgroup of the real
numbers R. Then (GU{—o0}, max,+) is a max-plus algebra.® In par-
ticular, the standard max-plus algebra (or simply max-algebra) fits into
these settings. For details and applications we refer the reader to [4].

The following elementary properties of max-plus algebras can be verified in a
straightforward manner.

PROPOSITION 2.2. Let 9 be a max-plus algebra.

() 2 is a commutative linearly ordered idempotent semifield* of characteristic
zero and with neutral elements ¢ and e, respectively. Moreover, ¢ is the
minimal element of 9.

(i) 2 is cancellative.

(ili) For every o€ 9 and n € Nsg the equation x" = a has a unique solution in
9, namely

o
a/n =

In particular, 9 is algebraically closed, and we have e/n = e.
(iv) Let o € 2 and n,m € Nsg. Then

o o
nm n’
3In connection with the set RU{—oc0, 0} we always use the conventions (—o0) 4+ (—c0) = —oo and

—o0 < x, |—-oo| > x for all xeR. Furthermore, every positive real divides +o0.
*See [2, Definition 3.1].
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(v) Let a,f €2 and n,m e Nsy. Then

a<a+ﬁ

n n+m

implies a/n < f/m.

It is well-known that new dioids can be formed on cartesian products of Z:
Either we equip 2" with componentwise sum and product or we form the free
symmetrized dioid on Z (see [8, Sections 1.1 and 2.2]). Based on ideas of [1] we
now introduce a different construction thereby extending the notion of a max-plus
algebra.

DEerFINITION 2.3.  The dioid (2,@®,©) is called a quasi-max-plus algebra if it
satisfies the following properties:

(i) There exist a max-plus algebra F and a totally ordered set S with at
most two elements such that ¥ = F x S.

(i) The projection on the first component 7: % — F is a dioid homomor-
phism which enjoys the following properties:
(a) n7'({er}) =& and 7 '({er}) =e.
(b) For all o, € 2 the following implication holds.>

(%) = () = (@@ f), = max{em, fr} (%[ € 7).

(iif) The second components of the neutral elements of & equal the minimal
element of S, i.e., we have ¢ = ¢, = min S.

(iv) For all « € 2 we have (o, min S) € 2.

(v) For all o,pe Z\{e} we have

(), = max{az, B>}

(vi) 2 is algebraically closed.

ExampLE 2.4. Plainly, every max-plus algebra can be regarded as a
quasi-max-plus algebra: Just take S to be a singleton.

SWe write x; for the i-th component of the element x of the cartesian product of a family of sets
(X3)

iel*



Periodicity and eigenvalues of matrices over quasi-max-plus algebras 55

In addition to the natural order we impose the lexicographical order on a
quasi-max-plus algebra by

a<ex fe o <f; or (u=p and o < f,).

The following basic properties of a quasi-max-plus algebra will be used in the
sequel.

PROPOSITION 2.5. Let & the quasi-max-plus algebra contained in F x S where
F is a max-plus algebra and S a totally ordered set with at most two elements.
(1) 2 is a commutative unital entire semiring of characteristic zero with
idempotent addition, and its neutral elements are (¢,minS) and
(e,min S), respectively.
(i) 2 is totally ordered by the lexicographical order, and (¢, min S) is its
minimal element.
i) Let a,f €2 with a <. Then we have o <i f.
iv) Let a,f €D with o <ix . If y€ 2\{e} then ay <ix fy.
v) For all a,f €2 and ne N the equation o" = " implies o= J3.
vi) For every o€ 9 and ne Ny the equation x" = o admits a unique so-
lution in 9, namely (o1/n,a), and we also write this solution as

o/n.

(vil) 7(2) is an algebraically closed max-plus algebra.
(viil) Let & be a subdioid of a 9. Then & is quasi-max-plus algebra if and only
if & is algebraically closed and (o, min S) € & for all o€ é.

Proor. (i), (vii) This can easily be checked.

(i) Let o,fe 2. By Proposition 2.2 we may assume o <f5;, hence

o <iex ﬁ

(i) By assumption we have a @ f = f, thus o) @ p; = f;, hence o < f,.
Thus we are done provided o; < f; or S = . Therefore, let us assume o; = f3,
and S # J. Then we have ay < f, by definition.

(iv) Assume oy >iex fy. Then we have

oy = () = (By); = Bin

which implies o; > ;. But then we have « > f: Contradiction.
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(v) If a = ¢ then clearly f = ¢. Therefore we let o, f # ¢ and assume o <jex f5.
From (iv) we infer

(x2 <lex O‘ﬁ <lex ﬁz

and analogously a” <jex f": Contradiction. Similarly we show the impossibility of
o >1ex f and then deduce our assertion.

(vi) The existence of a solution is clear by divisibility. In case o = ¢ the only
solution is e. Otherwise, uniqueness follows from the fact that (2\{e}), is
contained in a group.

(vii), (viii) Clear by the above. L]

We now construct our principal example, namely a quasi-max-plus algebra
over the nonnegative real numbers. On the set

# = (RzoU{=00}) x {0, 1})\{(=0,1), (0, 1)}

endowed with the usual order relation we introduce two binary operations:

(rya) @ (s,b) = (max{r,s},0.((r,a),(s,b))), and
(V’ a) © (S, b) = (r+ Sv&x((r’ a)v (Sa b)))a

where the functions J;,0« : # x # — {0,1} are defined as follows. First,
0+((r,a),(s,b)) =1 if one of the following four conditions is satisfied:

(i) max{|r—sl,a,b} =1,

(i) r>s+1 and a=1,

(iti) s >r+1 and b =1,

(iv) 0<|r—s <1,
otherwise o ((r,a), (s,b)) = 0. Second, 5« ((r,a), (s,b)) = max{a, b} if r,s € R, and
dx((r,a),(s,b)) = 0, otherwise. Obviously, these definitions extend the one given
in [1, Section 6.3].

Now we collect some properties of subsets of Z.

THEOREM 2.6. Let T # {0} be an additively closed subset of Ry and set
T = ((T x{0,1}1\{(0,1)}) U{e,¢},®,0)

with ¢ = (—00,0) and e = (0,0).
(i) 7 is a commutative entire archimedian dioid with neutral elements ¢

and e, respectively.
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(i) For all a,pe T with p # ¢, e there exists N € N such that for all n > N
we have

a®pt=p".

(i) J satisfies the weak stabilization condition.
(iv) If t/neT for all te T and neNsy then T is an algebraically closed
quasi-max-plus algebra.

Proor. We leave the rather lengthy, but straightforward verification to the
reader. O

REMARK 2.7. In general, 7 cannot be embedded into the standard max-plus
algebra. Otherwise, for 1€ TN (0,1] we would have

(tv 1) = ([7 O) S (070) € {(t7 0)7 (070)}

which is impossible.

3. Matrices Over Quasi-Max-Plus Algebras

In this section we let 2 < F x S be a quasi-max-plus algebra where F is a
max-plus algebra and S a linearly ordered set with at most two elements. For
r € N5 the set of matrices 2™ is a dioid and a Z-semimodule where the matrix
operations are defined as usual.

Let A€ 2™, The digraph® %(A) is the weighted digraph ([r], E,w) with
vertex set [r], edge set

E={(i.)) el 4 # ¢}
and weight function w: E — 2\{e} with
w(i, j) = Ay

for all (i, ) € E; here we use the abbreviation [r] = {l,...,r}. We write ¢’ =.¢
if the path ¢ is a cycle extension of the path ¢’, and we denote by |g| the length
of ¢q. We let PL")(i, J) (Pa.ali, ), respectively) be the set of all paths of length n
(all elementary paths, respectively) from 7 to j.

If not stated otherwise we use the terminology of [11].
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Let ¢ = (i, i1,...,iy) be a path of positive length n in %(A4). We call
supp(q) = {io, i1, --,in} the support,

W(Q) = Aio,l'l OO Aiu—lvin
the weight and

) @
@)=

the mean weight of ¢ (see Proposition 2.5).
Let " be a subgraph of %(A4). 4" is said to be nontrivial if it contains at
least one cycle of positive length. The high period of # is defined by

hper(#") = ged{|c| : ¢ cycle of positive length in " and Ww(c) = 9(A4)},
if the set on the right hand side is nonvoid, and hper(#") = 0, otherwise; here’
A(A) = max{w(c) : ¢ cycle of positive length in 4}

is the maximal cycle mean weight of # (cf. [10, p. 169]). Every cycle ¢ in #" with
w(c) = A(A") is called a critical cycle in %', and a cycle in %(A4) is critical if it
takes the maximal mean weight A(A4) := A(%9(A4)). Further, we use the abbre-
viation SCC %(A4) (SCC* 9(A), respectively) for the set of strongly connected
components (nontrivial strongly connected components, respectively) of %(A).

Following [10, p. 169] we say that the vertices i and j are highly connected
if i and j are contained in a critical cycle; in this case we write i =, j. The
subgraphs of %(A4) induced by the classes of =, are called highly connected
components of %(A). A highly connected component is called trivial if it does
not possess a cycle of positive length with cycle mean weight equal to A(A).
Analogously as above, we denote by HCC ¥(4) (HCC* 4(A), respectively) the
set of highly connected components (nontrivial highly connected components,
respectively) of %(A4).

LemMa 3.1.  Assume A(A) = A for all # € SCC* 4(A).

(i) We have A(A) = A.

(ii) Let A =e. Then we have w(c), <e for all cycles ¢ of 9(A), and for all
H' € SCC* 4(A) there exists a # e HCC* 4(A) with A < A”'. Fur-
thermore, if ¢ is a cycle in 9(A) which consists of vertices belonging to
critical cycles then c is critical.

"Throughout we use the convention max ¢ =min S if (S,<) is an ordered set with a minimal
element.
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Proor. (i) Let ¢ be a critical cycle in %(A). It is easy to see that there is
a A €SCC* 4(A) with supp(c) < . Thus ¢ is a cycle of 2 and therefore
MA) =1ex W(c). Now the proof can easily be completed.

(i) Clearly, we have

w(e),
|c]

=w(c), <e,

thus w(c); <e"=e. Let #' eSCC* %(A) and choose a cycle ¢ in #” with
w(c) =e. Then all vertices of ¢ are highly connected, thus there is # €
HCC* G(A) with supp(c) = #". Let ke A#. Then k is highly connected to a
vertex of ¢, thus k e 4, and this shows " = 2#"'. The last assertion is clear by
[2, Theorem 3.96]. O

The following two technical lemmas provide an essential step in the proof of
Theorem 3.5. For convenience we introduce

pa = lem{hper(#") : # € HCC* 4(A4)}.

LeEmMMmA 3.2, There exists some M €N such that for all n > M and every
H e HCC* 4(A) there is a critical cycle ¢ in A with the following properties.

(i) el =npa

(i) Every elementary critical cycle in A" occurs in ¢ at least once.

Proor. This is a straightforward application of a well-known result of
elementary number theory (e.g., see [15, Lemma A.3]). O

LemMA 3.3, Let A(A") = e for all # € SCC* G(A). There exists N € N such
that for all n> N, i,j€[r] and qo € P4.a(i,]) the following statements hold:
(i) Either there does not exist a cycle extension q € P4(i, j) of qo with |q| =n
or every cycle extension qe€ P4(i,j) of qo with |g| =n (mod py) and

w(q) = max{w(q") : ¢" € Pﬂqn(i, )sqo0 Scq"}

is of the form
q =dqoC1--Cry

where cy, ..., ¢ are critical cycles of 9(A), and we have w(q) = w(qo) and

9| = lgo| (mod p).
(i) If g€ PEZ) (i, j) is a cycle extension of qo, m € Nsg and §:= qoc1---¢, €

P£1'1+'11PA)(1', J) with critical cycles c,...,c; then § € PS’:mpA)(i7 J). Here we
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set
PY (i) = {qe PO, j) : wlq) = w(g') for all q' P{ (i, ))}
ﬂ)}’ t € N.o.

Proor. This can be proved analogously to [13, Lemma 3.2] using
Lemma 3.2. O

In order to mitigate the condition A(#") = e for all # € SCC* 4(A) we need
some preparation. The reader is referred to the appendix for the periodicity

notions we are using in the sequel.

LemMMA 3.4. Let 9 be a quasi-max-plus algebra, A€ 2™ and B := n(A).

(i)
(i)
(iii)

(viii)

YG(A) =9 (n(A)), in particular the cycles of G9(A) and 9 (n(A)) coincide.
A € SCC* 9(A) if and only if # € SCC* 4(n(A4)).

Every critical cycle of 9(A) is a critical cycle of 9(n(A)), and we have
A(A), = Mr(A4)).

For each # e HCC* %(A) there is a #' e HCC* %(n(A)) with
H A,

A is irreducible if and only if n(A) is irreducible.

Assume that A has at least one cycle and A(A), =min S. Then the
critical cycles in 49(A) and %(n(A)) coincide.

If A is almost linear periodic then n(A) is almost linear periodic,
Idef (n(A)) < 1def(A) and lper(n(A)) divides lper(A), and n(Qy) are the
entries of a linear factor matrix of n(A) where Q is a linear factor matrix
of A.

If W)= UA") for all #, 4" € SCC* 4(A) then W(A) = MA") for
all 4", 4" e SCC* 4(B).

Proor. (i), (ii) This can easily be checked.

(iif) We only show A(4), = A(n(4)) using (i). Assume A(4), > A(n(4)) =: A.
Then there exists a cycle ¢ in %(A4) with #w(c); > 4, but ¢ is a cycle in %(n(4)):
Contradiction. Thus we have A(4), < 4. The assumption of strict inequality leads
to a cycle ¢’ in %(n(4)) with w(c'), > A(4),, hence #w(c) > A(4): Contradiction.

(iv) Let i,je# and c¢ a critical cycle with vertices 7, j. Then Ww(c), =
A(rn(A)) by (iii), thus there is a #' € HCC* %(n(A)) which contains every vertex
of ¢. We easily check # < .#"'.
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(v) Clear by (i).

(vi) In view of (iii) it suffices to show that every critical cycle ¢ in %(n(A4))
is a critical cycle in %(A). Suppose to the contrary that there is a cycle ¢’ in
9(A) with w(c) < w(c’). The same relation then holds for the first components
because

w(c)y = A(A), = w(c'),,
and we deduce the contradiction

Wr(E) (e (e _we) Lo

el el 'l 'l

w(n(c)) =

(vii) By assumption the sequence 4* := (4"), . 1s almost linear periodic. Let
i,j€r], pj:=Ilper(4*); e N>y and 4; € 7 with

(A"HP), = (A7), 20 (n > 1def(47),).

In particular, this holds for the first components, hence 7(A4) is almost linear
periodic, and ldef(n(A4)) < ldef(4). Furthermore, using Proposition 2.5 we check
that lper(n(47)); divides p;, hence

Iper(n(4)) = lem{lper(n(47)); : i, j € [r]} [ lem{p; : i, j € [r]} = Iper(A4).
The proof can now easily be concluded.
(viii) Let #", #"' € SCC* 94(B). Then 4, 4" eSCC*%(A4) by (ii) and

W(A), = A(A"), by assumption. This shows that there cannot be a cycle ¢ in A
with w(n(c)); > A(#”"), which implies our assertion. O

Now we can state our first main result which slightly extends the structural
part of [10, Theorem 3.1] and generalizes a classical theorem on matrices over the
standard max-plus algebra [2, Section 3.7].

THEOREM 3.5. Let 9 be a max-plus algebra, i€ 9\{¢} and A€ 27" with
MA) =2 for all # € SCC* 4(A). Then A is almost linear periodic, lper(4) = p4
and (Ifac(A)); = 4 for all i, j € [r]. More explicitly, we have

(AHPA)g/ = A (An)y (i,jelr])

for all sufficiently large n.

Proor. By Lemma 3.1 we have A(4) =/, and for B:=(—1)4 we have
A(B) = e by Lemma 4.7.
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Let p:=p4 and N be a constant given by Lemma 3.3, n> N and
i,j € [r]. Assume that there is some g € P4 o(i, j). By [10, Lemma 2.1] we have

(B"); = al, and by Lemma 3.3 we have (B™Pn),; = al" hence

(1) (B"77); = (B");.

On the other hand, if P, (i, j) = & then both sides of (1) equal ¢ by Lemma
3.3.

Thus B is almost linear periodic with Ifac(B) = e¢ by Lemma 4.6 and lper(B)
divides pp by Proposition 2.2. Arguing as in the proof of [10, Lemma 3.3] we see
that lper(B) cannot be smaller than pp, thus lper(B) = pp.

An application of Lemma 4.7 concludes the proof. O

We can certainly recover the first part of [10, Theorem 3.1].

COROLLARY 3.6. Let 9 be a max-plus algebra and A € ™" be irreducible.
Then A is almost linear periodic, and we have lper(A) = p4 and fac(A) =
AA) #e

ProoF. As SCC* %(A4) is a singleton the assertion drops out of the
Theorem. O

Now we establish the analog of [5, Theorem 2.4].

THEOREM 3.7. Let & be a quasi-max-plus algebra with weak stabilization
condition. Let & be a subdioid of % and A e &™" be irreducible. Then A and
n(A) are almost linear periodic and A(A) # e. Furthermore, we have ldef(A4) >
Idef(n(A)), pr(ay divides p :=Ilper(4), (A(4),,min Z,)" € & and

A™P = (J(A),,min Z2)P A" (n > Idef(A4)).

Proor. (i) Using Lemma 3.4 (v), (iii) and Corollary 3.6 we find that the
matrix B :=n(A4) is irreducible and almost linear periodic, and Iper(B) = pg and
Ifac(B) = 4; with A := A(A).

(ii) Let i,j € [r]. By the above we have

R - ;thpB(An)

i (n > 1def(B), t € N5o).

(2)  (4"Pr)y = (B™Pr); = (B") i
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Furthermore, from [8, Proposition 1.2.2] we infer the existence of 1; € 4 and
Njj, pij € N5 such that

(3) (A™1P7); = 25(A");  (n= Ny, t € Nso).

(iii) Let N = max{ldef(B),N; :i,je[r]} and p=lem{pp,p;:i,je[r]}. By
(2) and (3) we have for all z,]e []

(A7) = (A" = AP (A") (0> N).

Now, Proposition 2.2 (ii) yields

/pi
i[l;]l’/ — iﬂ

hence by (3) and the properties of a quasi-max-plus algebra
(A"P); = (27, 2p)(A"); = (A1, )" (A");  (n > N).

Thus A is almost linear periodic, and from Lemma 3.4 (vii) we know that pg
divides Iper(4) and ldef(A4) > ldef(B)).

(iv) In case Card 9, = | we are done. Otherwise we write &, = {0,1} and
show that there is some M > N such that

4) (A”*”)ij = (Al,O)p(A”)ij (i,jelrl,n>M).

Note that by the definition of p we have (4;,0)” € &. We distinguish two
cases.

Case 1. For all i,je(r] and n> N we have (4");, =0.

In this case we set M = N.

Case 2. There is some i,j € [r] and n; > N such that (4");, = 1.

For all 7, j with this property we fix some n;;. Now we choose M to be the
maximal n; and check that (4) is satisfied. This completes the proof. |

Now we study eigenvalues of certain matrices over quasi-max-plus algebras.

THEOREM 3.8. Let 9 be a quasi-max-plus algebra and A e 2™

(1) If A is nilpotent then ¢ is the unique eigenvalue of A.

(i) Let 2 satisfy the weak stabilization condition and A be irreducible.
Then ¢ is not an eigenvalue of A, but (A(A),,min @) is an eigenvalue

of A.
(iii) Suppose Z, ={0,1}, (AM(4),1) € D and (v11,1),...,(vn,1) € D for some
eigenvector (vi,...,v,) € 2" of A with eigenvalue (A(A),,0). Then

(A(A4),,1) is an eigenvalue of A with eigenvector ((vi1,1),..., (vs1,1)).
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Proor. (i) This is a well-known classical result.

(i) The first part is clear by Lemma 4.3, and for the second part we closely
follow [6, proof of Teorema 1]. By Theorem 3.7 there exist n,m € N such that
m>n>0 and

Am — AIH—I’IA}’I

where we set A:= (A(4),,min Z,) € Z\{e}. Then Theorem 4.5 yields our
assertion.
(iii) For each i€ [r] the equation

@ Ay = (A(A),,0)v;
jel]
implies
D 4yt 1) = () Do, ), 0
Jelr

We illustrate Theorem 3.8 by two easy examples.

ExaMpLE 3.9. (i) The only eigenvalue of the matrix (0,0) € Z is (0,0), and
every element in #\{(—00,0)} is an eigenvector.

(i) The matrix (1,0) € # has exactly two eigenvalues, namely (1,0) and
(1,1). In both cases (x,1) is an eigenvector provided x > 0.

Finally, we extend Theorem 3.7 and [1, Proposition 6.19] for the particular
dioid £.

THEOREM 3.10. Let T # {0} be an additively closed subset of Ry and T
be defined as in Theorem 2.6. Further, let A€ T ™" be a non-nilpotent matrix
and assume A(A) = I(A"") for all A, 4" € SCC* 4(A). Then A and n(A) are
almost linear periodic. Furthermore, we have ldef(A4) > 1def(n(A4)), (A(4),,0)" € 7
and p := lper(A) divides pr4

A"P = (J(A),,0)’ A" (n > 1def(A)).
Thus

(MA),.0), ;o € A

ijel

defines a linear factor matrix of A.
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PrOOF. As A is non-nilpotent the digraph %(A4) has at least one cycle
of positive length. In view of Lemma 3.4 (viii) and Lemma 3.1 (i) we have
M) =MA) = (A" for all A", 4" € SCC* 4(B) where we set B:=n(A4). We
infer from Theorem 3.5 that B is almost linear periodic, A := A(</), defines the
linear factor of B, and lper(B) = pp. Thus (1,0)”* € 7 and there exists N e N
such that

(5)  ((A™7)y)y = (B"77); = (B");A" = ((A");), 47" = ((4");; (4,0),)"".

Now, Lemma 3.4 shows that (5) also holds for the second components provided
i,jelr] de-
fines a linear factor matrix of 4 and the relation between the linear defects of A
and B is clear by Lemma 3.4. Finally, Lemma 4.1 yields that Iper(4) divides pg.

U

n is large enough. This means that A4 is almost linear periodic, (4,0)

A central result of [13, Theorem 3.1] can now easily be generalized.

COROLLARY 3.11. Let A € R™" and assume that 4(A) has at least one cycle
of positive length. The matrix A is eventually periodic if and only if A(A") = e for
all # € SCC* 9(A). In this case per A divides py.

Proor. We first observe that [13, Theorem 3.1] holds for any matrix over a
max-plus algebra whose graph has at least one cycle of positive length.

Let 4 be eventually periodic. Then B := n(A) is eventually periodic, hence for
any 4 € SCC* 4(n(A4)) we have A(A), = e by [13, Theorem 3.1]. Then Lemma
3.4 (ii) yields A(A") = e for all # € SCC* 9(4).

Conversely, if 1(#) =e for all # € SCC* 4(A) then Theorem 3.10 yields

(A™P) . = (A™);

g j (=N, i jelr)

with some N €N, and an application of Lemma 4.1 completes the proof. []

4. Appendix

Let (S,:) be an abelian semigroup and a* = (a,),.n be a sequence of
elements of S. Following [10, Definition 2.3, 2.4] we say that a* is almost linear
periodic® if there are NeN, peN.g and b e S such that

(6) nyp =b? -a, (n>N).
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In this case the smallest p € N such that there are N € N and b € S with (6) is
called the linear period of a*, and we write p = Iper a*. The minimal N € N such
that there is some b e .S which satisfies (6) for p =lper a* is called the linear
defect of «*, and we write N =ldef a*. Finally, an element b with (6) for
p =lper a* and N = ldef a* is called a linear factor of a¢*. In case b is unique we
write b = lfac a*.

LemMa 4.1.  Let (S,-) be an abelian cancellative semigroup and assume that
for all x,ye S and neNsy the equation x" = y" implies x = y. Further, let
a* = (ar),.n be an almost linear periodic sequence in S, ie., there exist be S,
N e N and m e Ny with

_ m
Apym = anb

for every n > N.
(i) We have

tm
Aptm = dp b

for every teNxg and n > N.
(i) lfac(a*) =b.
(iii) lper(a*) divides m.

Proor. (i) Clear by induction.
(i) Assume that there are ce S, M € N and k € N,y with

for all » > M. For large enough n we then have by (i)

anckm = dntkm = anbkm,
which yields ¢ = p*¥" and then ¢ = b.
(ili) Clearly, we have p:=Ilper(a*) <m. Write m=gqgp+r with ¢,reN,
g>0and r < p. If r=0 we are done. Otherwise, applying (i) again we find for
large enough n

+r __ m __ — —
aanp - anb = dptm = a(n+r)+qp - an+rbqpa

8Qur definition slightly differs from the one given in [I, Definition 6.1].



Periodicity and eigenvalues of matrices over quasi-max-plus algebras 67

hence

ro__
apb” = an4,

contradicting the definition of p. O

We collect some well-known results for commutative unital semirings. The
first one is stated in [3, Theorem 3.24] for matrices over the complex numbers.
However, it is easy to see that it remains true in a more general setting (cf.
[5, Theorem 2.5], [7, Assertion 7.2]).

THEOREM 4.2 [3, Theorem 3.24]. Let S be a commutative unital semiring and
M e 8™ Then there exists a permutation matrix P e S"™" such that

My My - My,
. 0 My - My,
(7) PMP' =
0 e 0 My,
Here n>1 and the blocks M,...,M,, that occur in the diagonal in (7) are
square matrices which are either 0 or irreducible.® The blocks Mi1,..., M,, are

uniquely determined to within simultaneous permutation of their rows and columns,
but their ordering in (7) is not necessarily unique. The form on the right hand side
of (7) is called the Frobenius normal form of M.

For the study of the ultimate behavior of the sequence of powers of a matrix
over S we recall the following definitions. The matrix 4 € S™" is called
- eventually periodic if the sequence 4* := (4"),.n is eventually periodic
(see for instance [13, Definition 2.4] where the notion ‘almost periodic’ was
coined for this property); in this case we write

per(A4) = per(4*).
+ almost linear periodic if for all i, j € [r] the sequence

(A*)g/ = ((An)g/)neN esN

?Observe the different notion of irreducibility in [3].
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is almost linear periodic. In this case we write
Idef(A) = 1def(4*), Iper(A4) = lper(4™).

If there is a unique linear factor we write lfac(A) = Ifac(4*).
From now on we let & be a commutative entire dioid. The following result is
well-known for the standard max-plus algebra (e.g., see [4]).

LEmMA 4.3. Let A€ 27" be irreducible and assume A # (¢). Further, let
A€ D be an eigenvalue of A with eigenvector ve 9'. Then A # ¢ and v; # ¢ for all
i€ r].

Proor. By definition we have v; # ¢ for some je [r]. For all i,k e[r] we
have
(8) Apivi < Avg.
Let us assume A =¢. Then by (8) we find
Apivi = ¢

for all i,k € [r], thus in particular Av; = ¢ and then Ay = ¢ for all k € [r] which
is impossible.

Let us now assume vy =¢ for some k e€[r] and pick ne N,y such that
(A"),; # & Then we are lead to the contradiction

e < (A")yv < A'ue=e. O

LEmMA 44. Let M e 2™, Le D\{e} and nymeN such that m >n >0,
M" # ¢ and
M ="M

Then A is an eigenvalue of M.

ProOF. Our proof is taken from [6, proof of Teorema 1]. For the con-
venience of the reader we give the details here. Let ze 2" such that y:=
M"z # ¢. Then we have

(9) Mm—ny — Mﬂ’lZ — A’WI*VIMHZ — ll‘l‘l*l‘ly.

Therefore, the vector

m—n—1

= @ }'iMm—n—l—iy
i=0

1
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is not the zero vector because otherwise we have A'M™ "~ 1=y —¢ for all
i=0,...,m—n—1 which implies

AM™ 1 z=¢ (i=0,....m—n—1)
yielding the contradiction
gmen=ly — gmen=l ppml=(men=l) ;o
Thus x is an eigenvector of M with eigenvalue 1 because by (9) we have
m—n—1 , m-n—1 ,
Mx= P AM" 7" y=M""y® P AM""y
i=0 i=1

m—n—1 m—n

="y @ @AMy = @ ATMT Ty = ax. O
i=1 i=1

THEOREM 4.5. Let 2 be a commutative entire dioid and M € ™" be not
nilpotent. Further, let L e 2\{e} and n,m e N such that m >n >0 and

M" ="M

Then A is an eigenvalue of M.

Proor. We use induction on r and closely follow the proof of [6, proof of
Teorema 1]. If M is irreducible then M" # ¢ and we are done by Lemma 4.4.
Now, let M be reducible, hence r > 1 and by Theorem 4.2 we find a permutation
matrix Pe€ 2™ such that we can write

PMPT = 4 B
0 C

with square matrices A, B of smaller size than M. At least one of these matrices
is not nilpotent because otherwise M is nilpotent. W.l.o.g. we assume that
A e 2% is not nilpotent. Then we find

m __ am—n 4n
A" =21"""A4",

hence by induction hypothesis there is an eigenvector a € Z* of A with eigenvalue
/. Now, the vector PTvT with v:= (a,e,...,&) € Z" is an eigenvector of M with
eigenvalue A. O

We formally state some results which were implicitly used in [10].
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LEMMA 4.6. Let 2 be a max-plus algebra and A € 9™ be almost linear
periodic. Then A has a unique linear factor.

Proor. Clear by Proposition 2.2 and Lemma 4.1. O

LemMmA 4.7. Let 9 be a max-plus algebra, o.€ 9\{e}, A€ 2™ and B = aA.

(i) We have 9(A) =%(B) =:9 and p4 = ps.

(i) For every path q of positive length in G we have Wwg(q) = aw4(q).

(i) The set of critical cycles w.r.t. W4 coincides with the set of critical cycles
w.r.t. wg.

(iv) If # €eSCC* G and o= —Ii4(A") then Ap(H) =e.

(v) A is almost linear periodic if and only if B is almost linear periodic. In
this case we have lper(A) = lper(B), 1def(A4) = Idef(B) and lfac(B) =
o lfac(4).

ProoF. (i) Obvious.
(i) We have
_wi(q) _ walg)al?

e

(iii) Clear by (i) and (ii).

(iv) This can easily be checked.

(v) Let 4 be almost linear periodic with p =lper(4) and A = lfac(4),
hence

B = o" P AP = 4" A" ) ol = B"(Aa)".

for n > 1def(A4). Thus B is almost linear periodic with lper(B) < p. However,
strict inequality is impossible, hence lper(B) = p. Similarly, we find ldef(B) =
ldef(A4), and finally Ifac(B) = Ao in view of Lemma 4.6.

Conversely, let B be almost linear periodic with ¢ = Iper(B) and u = lfac(B),
hence

OanrqAnJrq — Bn+q — Bnluq — O!nAnﬂq
for n > 1def(B). As Z is cancellative we have
A = (=) I A" = AN (=)t = A" (—ap),

and the proof can be completed analogously as above. O



Periodicity and eigenvalues of matrices over quasi-max-plus algebras 71

Acknowledgement

The author warmheartedly thanks Professor Shigeki Akiyama for constant
support and fruitful discussions on the topic of this paper.

References

w

. Akiyama and H. Brunotte, Primitive matrices over polynomial semirings, Linear Algebra and
its Applications, 436 (2012), pp. 3568-3596.
. L. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, Synchronization and linearity, Wiley
Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics,
John Wiley & Sons Ltd., Chichester, 1992. An algebra for discrete event systems.
[3] R. A. Brualdi and H. J. Ryser, Combinatorial matrix theory, vol. 39 of Encyclopedia of
Mathematics and its Applications, Cambridge University Press, Cambridge, 1991.

[4] P. Butkovi¢, Max-linear systems: theory and algorithms, Springer Monographs in Mathematics,
Springer-Verlag London Ltd., London, 2010.

[5] B. De Schutter, On the ultimate behavior of the sequence of consecutive powers of a matrix in
the max-plus algebra, Linear Algebra Appl., 307 (2000), pp. 103-117.

[6] P. I Dudnikov and S. N. Samborskii, Endomorphisms of semimodules over semirings with
idempotent operation, Izv. Akad. Nauk SSSR Ser. Mat., 55 (1991), pp. 93-109.

[7] P.S. Dudnikov and S. N. Samborskii, Endomorphisms of finitely generated free semimodules,
in Idempotent Analysis, V. Maslov and S. Samborskii, eds., vol. 13 of Advances in
Soviet Mathematics, American Mathematical Society, Providence, AMS, Providence,
1992, pp. 65-85.

[8] S. Gaubert, On rational series in one variable over certain dioids. Tech. rep. 2162, INRIA, Le
Chesnay, France, 1994.

[9] ———, Max-plus algebra ... a guided tour. SIAM Conference on Control and its Applications
July 6-8, 2009, Denver, Colorado, 2009.

[10] M. Gavalec, Linear matrix period in max-plus algebra, Linear Algebra Appl., 307 (2000), pp.
167-182.

[11] D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge
University Press, Cambridge, 1995.

[12] G. L. Litvinov, The Maslov dequantization, and idempotent and tropical mathematics: a brief
introduction, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 326
(2005), pp. 145-182, 282.

[13] M. Molnarova and J. Pribi§, Matrix period in max-algebra, Discrete Appl. Math., 103 (2000),
pp. 167-175.

[14] J. Nedoma, Reieni optimalizacenich tloh na ohodnocenych orientovanych grafech pomoci
extremalni algebry. Ekonomicko-matematicka laboratof pii Ekonomickém ustavu CSAYV,
Prague, 1974.

[15] E. Seneta, Non-negative matrices and Markov chains, Springer Series in Statistics, Springer,

New York, 2006. Revised reprint of the second (1981) edition [Springer-Verlag, New

York; MR0719544].

[1]

[2]

-

Haus-Endt-Strassf 88
D-40593 Diisseldorf
Germany

E-mail: brunoth@web.de



