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INTERACTIVE INFINITE MARKOV PARTICLE SYSTEMS
WITH JUMPS

By

Seiji HIRABA

Abstract. In [2] we investigated independent infinite Markov par-
ticle systems as measure-valued Markov processes with jumps, and
we gave sample path properties and martingale characterizations. In
particular, we investigated the exponent of Hoélder-right continuity in
case that the motion process is absorbing o-stable motion on (0, o0)
with 0 < a < 2, that is, time-changed absorbing Brownian motions on
(0, 00) by the increasing o/2-stable Lévy processes.

In the present paper we shall extend the results to the case of
simple interactive infinite Markov particle systems. We also consider
the absorbing stable motion on a half space H = R?"! x (0, ) as a
motion process.

1. Settings and Previous Results

In this section we give the general settings and the known results which are
given in [2] in order to describe the main results in §3 and §4.

Let S be a domain of RY. Let (w(f),Px),~¢ cs be a S-valued Markov
process having life time ((w)e (0,00] such that we D([0,{(w)) — S), ie.,
w: [0,{(w)) — S is right continuous and has left-hand limits. For convenience, we
fix an extra point A ¢ S and set w(¢) = A if ¢ > {(w). Moreover we shall extend
functions f on S to on {A} by f(A) =0, if necessary.

We use the following notations: Let S = R? be a domain.

< If x=(x1,...,xs) €RY, then 8}, =0"/(0x; - 0x;), 0f =0"/(0xF) and

6i:6,1 for each k=0,1,..., i=1,...,d. Moreover 0, =0/0t for time
t>0.
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c feC.=C.S) g f is a continuous function on S with compact support
in S, and C” = C*(S) := C.(S)NC*(S).

- For each integer k >0, Cf:= CF(RY)|s, that is, f e Cf gf is a re-
striction to S of k-times continuously differentiable function on l}e‘; with
bounded derivatives of order between 0 and k. Moreover f € Cy <= f is
continuous on S and f(x) — 0 whenever x — 0S or |x| — co. Furthermore
Cy:=Cp, CF =), CF, C§¥:=CyNCf dzgfnd Cy =, C¥.

+ For a function space D on S, fe D" < feD; f>0.

* {u, Y= [¢ f(x)u(dx) for a function f on S and a measure x on S.

The following two assumptions are the same as in [2].

ASSUMPTION 1. Let (P;),. be the transition semigroup of (w(t),Py), ie.,

P.f(x)=E[f(w(): t <.

(i) (P,) is a strongly continuous nomnnegative contraction semigroup on
(Co, || - |l,) with generator (A,2(A)), where | f]., = sup cslf(X)].

(ii) C¥ <= Z(A) and there is a strictly positive function gy e Cy° such that
go € Z(A) and that gy'Af € Cy with g;' =1/go for every fe CF and
/=40

(i) sup,<7llgg ' Pigoll., < oo for every T > 0.

Under this assumption we introduce a function space D,, = Z(4) as follows:
_ def , :
f €Dy, S f € 7(A) such that ||g;'f]|,, < o and ||g,'4f],, < .

Clearly goe Dy, and C < D,. Moreover since C” is dense in C; and
P,C* < Dy, for every t = 0, Dy, is a core for A. However, D,  may be too large,
so we further need the following assumption:

ASSUMPTION 2. There exist a bounded function g; € C*; g1 > go(> 0) and a
core D c Dy, (we denote D = D, with g = (go,g1)) satisfying the following:

() If feDy, then limy (P, f2(x)— f(x)?) exists for each xeS (we
also denote the limit as Af*(x)), 0,P.f*(x) = AP, f?(x) = P,Af*(x)
(— Af?(x) as t | 0 for each xeS), Af* e Cy and ||g;'Af?]|,, < .

(ii) For each T >0, sup,co illg; " Pigill,, < .

(iii) For each 0 <s< T, sup,.i, 7ll90 " Pigil., < oo

(iv) There exist constants 0 <y <1, § >0 such that supy_,_5 t"|lgs ' Pig1|l.,
< 00.

(v) go €D,
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All through the present paper we suppose that Assumption 1 and 2 are
fulfilled. We shall sometime use the notation || - ||,

Let ﬂ = My (S) be a space of counting measures on S defined as
ne My, = u=7>,0x such that {u,go) < oo and

. def
U, — 1IN My, <= supl,, goy < o0,

s 7 — p [ for all feCand f = go,

where C. = C.(S) denotes the space of all continuous functions with compact
supports on S. Then .#,, is metrizable and separable.
We mainly consider the case that the generator has the form

(1.1) A=A+ 49,

with

d

A"f(x)zéz (x)07f (x +Zb

i,j=1

A7f(x) = j () = £(x) = V() - (3 — )1y — x| < D]v(x, dy)
S\{x}

d

— k()£ (x) + Y ' (x)af (x)
=1
for f e Dy, where a’,b" € Cy(S), (a”) is positive definite, k(x) >0 denotes the
killing rate by jumps, (c¢’(x)) depends on jumps, and v(x,dy) is the Lévy kernel
on S x (S\{x}) satisfying that

supJ (IAly = x[P)v(x,dy) < o
xeS JS\{x}

Independent IMPS; Results in [2]

Let (X,,P,) be an (indistinguishable) independent Markov particle system
(IMP) associated with the motion process (w(¢), Py), i.e., for many independent
motions (wa(2), Py,) < (w(1), Py,),

X, = Zéwn(tﬂs if u= Znéx” on S, and P, = HPX"'
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The generator %, of this particle system is given by the following: for
feCr,

goe_<"f>(ﬂ) =y, efA(l —e ) ye S
=~ Af = Tf e P,

where T'f := Af —e/ A(1 —e™/). In fact, let {#]} be the filtration generated by
{X;} and set

Vif(x) = —log P.lexp —f (w(1))] = —log{1 — P,(1 — e )(x)}.
We have that if 0 < s < ¢, then
E o™X 7] = exp[— (X, Vies /)

It is easy to see that (V;),., is a nonnegative contraction semigroup on Cp and
that by (ii) of Assumption 1 if /'€ C*, then 1 — e/ € C < D,, hence we have

PA(l—e”)  AP(1—e7)

oV =1z P(l—e/) 1—P(1-e7)

=e"A(l - e ")

—elAl—eY=4f —Tf (1]0).

Note that since V,f < P,f (by Jensen’s inequality), I' is nonnegative;

. 1
Of =Af —0,Vif|,—o, :ltlﬂ?;[(})tf_f) -Vf=Nl=0
and that for each f e C”, v,=V,f is the unique solution to the following
equation:
(3,1)[:6”’/1(1 _6701)7 Vo :f

(because u, := 1 — e™" satisfies d,u; = Au;, up =1 — e~/ and the unique solution
is given as u, = P,(1 — e™/)). Moreover if 4v,(x) is well-defined for ¢ >0, x € S,
then

5,1), = AU[ - rv,, Uy = f

By using the Markov property and by induction we have

ProposITION 1 (Prop. 1 in [1]). For every 0 <t <---<t, and fie D/,
i=1,2,...,n,
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E, [{Xy, /i) {Xo,, f)]

< TT<wPus> + > TT<w Pusi>
i=1

i=1 j#i

+ ST T P+ + €S Py gy + €,
j=1

h#h J#I,D

where C,E”), k=1,...,n are positive constants, depending on (n,{| fill .. }:<,)-

We introduce a non-negative operator Q as Qf = Af> — 2fAf for f eDy,
which is well-defined by (i) of Assumption 2 and plays an important role to
investigate the exponents of Hoélder (right) continuity. The non-negativity follows

from (Pif? = f2) = 2f(Pif = f) = (Pf)* = 2YP.f + [2 = (Pif = f)* 2 0.

THEOREM 1 (Th. 2.3 and Cor. 2.1 in [2]). Let (w(t),Py) be a discontinuous
Markov process in D([0,{(w)) — S) with transition semigroup (P;) satisfying
Assumption 1 and 2. Let pe My. The following holds with P,-probability one.

(1) {<Xig0>} is (1 —y)/2 —¢)-Hdolder right continuous at t =0 for suffi-
ciently small ¢ > 0, where the constant 0 <y <1 is in (iv) of Assump-
tion 2.

(i) If gy < oo, in particular, if gi(x) = go(x) then {<Xigod} is
(1/2 —&)-Holder right continuous at t =0 for sufficiently small ¢ > 0.

(iii) For each fixed ty > 0, {{X;, 90>} is (1/2 —&)-Holder right continuous at
t =ty for sufficiently small ¢ > 0.

2. Sampling Replacement Markov Particle Systems

Let pu=>",0x €My, Let (Y,,PZ ) be a sampling replacement Markov
particle system associated with the motion process (w(¢),Py), sampling re-
placement rate 4 >0 and sampling replacement probability ¢(d(m,n)) =
Zk’,pk_rlé(k_,,)(d(m,n)) on N2, where Prki =0, prx=0 and > pr;=1. Each
particle first moves independently each other. After a A-exponential random time,
two particles are selected randomly, for example, m-th and n-th particles are
selected with probability p,, ,, and at that time the m-th particle jumps to the
place of the n-th particle. Then the m-th particle moves independently. And these
operations are continued. We denote each particle by w/(¢) such that w(0) = x,,
and hence Y, =}, J,.(. Note that if (P;) is non-conservative, then it is possible
that the dead particles come life again.
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Recall (X;,P,) is the independent Markov particle system with the motion
process (w(t),Py). For feD, set LY(u) = Eﬂy[exp — Yy, f>] and L,(u) =
E.lexp —<{X;, f)]. Then

L) = e #"2 with V,f(x) = —log Ex[e "] = —log(1 — P,(1 —e™)).

It is easy to see that LY (u) satisfies the following equation:

L) = L)+ 2| e [ alom )@k )0
0 N

where (P;) is the transition semigroup of (X;,P,) and ®,,, is an operator such
that it makes the m-th particle jump to the place of n-th particle of u=
>0k € My, on a class of all functions F(y) and it is defined by ©,, ,F(u) =
F(u™™) with y™" = u—9,, +Jy,. Note that P,®,, , = ©,, ,P; holds. The solu-
tion is given as

k k
2.1) LY (p) =Te <" (u) with T, = zk:e’-’% <JN q(d(myn))G)m,n) ;

where T, is an operator on a class of functions F(u) with polynomial growth of

<ﬂaﬁ>a<ﬂ7ﬁ>aa</"aﬁl> (ﬁEDC]) and

(e Q(d(’”’””@’w)kF w=([ q(d(m,n»@mﬁ,,)k_] S Do F ().

m,neN

The generator ¥ of this particle system is given by the following: for
fecr,

gye_<"’f>(,u) _ goe_<"’f>(,u) + /IJ(E_Q‘M'”’D _ e_<”’f>)q(d(m,n))
——{uar >+ 2| @~ o prataomm)

) J[ef<ax,,fax,,,,.f'> — 1+ {0y, — Oy, [lq(d(m, n))}e<u,.f'>

(more general formula of #Y F(u) is given in §5). We have the following result.
Recall that we denote the particles of Y; by w;(t), i.e., Y, =) d:(,). Note that
w(t) moves like as w,(¢) during the jump times.
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THEOREM 2 (Semi-martingale Representation of Y,). Under Assumption 1
and 2 for (P;), if ue My, then (Y,,Pl);) is an Mg -valued Markov process with
sample paths in D([0, 00) — 4y,) satisfying the following:

(1) {<Y:, 90>} has the same exponent of Holder right continuity as in
Theorem 1.

(ii) If the motion process (w(t), Py) has generator A of the form as in (1.1),
then for f € Dy,

t
m
0

Yo f> = (Yo f> + j {<n, AfS + zj«sw;(s) by, S ald(m, n))} ds

+M{(f) + M),
where
M{(f) is a continuous L*-martingale

with quadratic variation {M(f), = fot (Y5, Qf>ds =2 f(; (Y, T¢f> ds and

t

i) = |

J X L, fYN(ds,du) is a purely discontinuous martingale
0t
90

where N =N — N is the martingale measure with

N(ds,du) = Z O Ay, (ds,du):  the jump measure of {Y.},
u; AY, #0

N (ds, dy) = ds{J Y(dx) (J Vox dy)os g + k(x)é_(;v>
+ A J q(d(m,n))oG, . -5, ) }(dy): the compensator of N.

Proor. The proof is the same as the independent case (Proof of Theorem
2.4 in [2]). However, we need some computations. First the Markov property can
be shown by mathematical induction. For # < 1, fi,f>e CF, let L{?_”tfj(ﬂ) =
E)[exp(—( Yy, /i) = (Y, /2))]. Recall that LY () = L (1) = B, [exp —<¥;, /)]
satisfies (2.1) and the solution is given as L (x) = T,PJexp —(-, £>](x). Hence it

is easy to see that L{f‘,f;(,u) satisfies the following equation:

L) = e Py (e O IOLE ) ()

2—1

t ..
4 xjo dse*ﬂ“‘jq<d<m,n>>P‘v<®m,nL,f::§% ) (10):
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The solution is given as
L () = TPy (e ML) (w)
— Eluy[€7<Y[1 1fl>E¥t] [67<Y’2”l 1ﬁ>]]

Therefore by induction, for every ne N, if t; <tr < --- < t,, fi,..., fn € CF, then
it holds that

E) [exp(—<Yy, i) — - = Yy, )]
— E5[€7<Y’l 1fI>E)};] [€7<Y’2”| J) EI}C [e7<Y1n*’n71' ,7>] . ]]

n—1

Next we shall show that (Y,,PﬂY ) satisfies a moment inequality of the same
type as in Proposition 1.

ProroSITION 2. Let T >0 and neN. For every 0 <t; <---<t,<T and
f,-eD;r, i=1,2,...,n,

E Yy, fiye Yo fo)]

H (G, P fiy + ") Z [T<w Pt

i=1 j#i

n
+ Cz(n)T Z H s Pyfi>+-+ C;Ei)l,TZQ" Py + C’%’
=

i\ #i j#i,i
where Ck  k=1,...,n are positive constants depending on (n,T,{|fill .. }i<n)-
Proor. For simplicity, we use notations f,, = f(x,,) and || - || = - || . Since

O, oSt /7 =Lt /7 + Jr = fn < <, /5 + | f]I, we have for every k €N,

(szqw(m,f)) ) (Gt i+ <ot i) < (o /i3 + KA - (s o> + KA

Moreover if we denote by M (j;Af) the j-th moment of As-Poisson distribution,
then

T (i ) ()

—y e (" (J _q(d(m,0)) m/)k« S5 i) ()

k>0

< ZM(n—j;/lt) | Yo i L il A
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Therefore by applying Proposition 1 and the above inequality to

E};[< Ytlafi> e <Ytnafl.1>} = TZ(E[<XZ17J(1> e <A/I,,7fn>])(:u)7

we can get the desired inequality. |

Thus the proof can be proceeded by the same way as in the independent case
(see §4 in [2]). In that way we can get the following result. For u= )", 0., € My,
fecCr, let

(i f) = e Af =T = 2 [fe O 0l ~ g m,m).

THEOREM 3. For fe CF,

t
e~<Ynl> _ o=ty _ J LYe I (Yy) ds
0

is a P/):-marlingale. Moreover

t

H(f) =exp {—<Yz,f> +J V(Y f) ds}

0

is also a PZ -martingale.

Proor. By the same way as in the proof of Theorem 4.1 in [2] we have if
s < t, then

QB[ | F) = 0T VD) (X))
= Ou=04 Trgpule™ V) (Yy)
= Ou-0- B, [Tue™"2(Y)) | 7]
= E: [Ou—os Tue™ (1) | 7]
—E} (27 (X)) | 7. n
By using the above results it is not difficult to prove the semi-martingale

representation of Y, as of X, in [2]. In fact, for f € C*, (Y}, f) is a special semi-
martingale, thus,

Yoy f> = Yo, 5+ Clf) + ME(f) + Ni(f) + Nil(f),
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where C;(f) is a continuous process of locally bounded variation, M (f) is a
continuous Z’-martingale with quadratic variation M¢(f)»,, and

t
R = | it < iGas.d
t
N = [ | ot = )t dn
with the jump measure N of {Y;}, its compensator N and N=N —N.

If we set

t

B(f) = C(f) +j

J iy 5N (ds, dps)
0 J{[Jull =1}

t
+ 4 JO dSJ <5w,,(s) - 5w,,, (5)s f>q(d(m7 I’l)),
then by applying Ito’s formula for Z,(f) we can get

~dBL(f) + 5 A+ [0 = 1+ G I e d)

=-W(Yy; [)di

= {—< Yo, Ay + <Y, Tf > + 2 J(e*<‘5"'~*<’>*‘5"ﬁ%<”’f > — 1)g(d(m, n))} dt
- {— [< Yo ALY 4+ j st — S S >0(d(m, n))} YT

+ <Y,, Fdf> + ;“J\[ei@w';(”i&“';(’)’f> -1+ <5wn*(t) - 5ltr,f,(t)>f>]q(d(m>n))} dt

Thus we have

t

B(f) = L (Yo A ds+ 7 J sty — Bus 0 S >a(d(m, ),
AME(f)Dp, =2 L (Yo, T¥F> ds = jo (Yo, O°F ds

and
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N(ds,du) = ds{J Y,(dx) (J v(x, dy)ds,—s,) + k(x)égx>

+ 4 J q(d(m, n))é(a,v;(” ~Byx(5) } (dp).
Therefore the proof is completed. -

3. Martingale Problems for &7

The following assumption is needed to prove the well-posedness of martingale
problems.

ASSUMPTION 3. For each fe(CX)", AV,f=—Alog(l —P,(1—e7)) is
well-defined and AV,f is continuous in t under the norm | - /gi1|l.,, ie.,

1(AVf = AV ) all,, =0 (1= t0).

In the following we suppose that the generator 4 of the motion process has
the form of (1.1). ot

For n e My, let F() =Dy, f1),...,<n,fu)) € Do <= P(x) e C*(R") is a
polynomial growth function with polynomial growth derivatives of all orders and
fieDy,i=1,...,n. For this F(y), the generator %, of X; will be extended to the
following form:

LoF(n) =D 0@, i), -5 <, Ju)) <, AfY
i=1

1 n
+§Zl 3D, [ < Ju)) <, Qs 1)
L=

" Js{L\{x} Vo6 dy)

(I)(<77,f1>+f1(y) _fl<x)7“~»<777fn>

+fn(y) - fn(X)) - (D(<777f1>7 ERER <’77fn>)

a0 i3, SN — fi()
i=1
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+ k(x) | (Kn, /i) = f1(x), - < fud = fu(X))
SRSUN DI /)
DRLTVIS <f77fn>)fz-(X)] }nwx),
where
0°(f,9)(x) = z]: a’(x)0;f (x)0ig (x).
For F(n) € %, the generator #Y of Y, will be extended to

PYF(y) = SF(n) + xj@m,nF(n) — F(n)q(d(m,n)).

THEOREM 4 (Martingale Problem for (%Y, %, ). Under Assumption 1, 2
and 3, suppose that the generator A is given as in (1.1). Let ue My,
(i) PY(Yo=u) =1 holds and for each F(u)=®(p, f1),...,{u, fn)) € Zo,
t
MF =F(Y) - F(Yp) - J LYF(Y,)ds is P)-martingale.
0
(i) If there is a probability measure Q, on D = D([0,0) — .4,,) such that
the canonical process Y;(w)=w(t) (weD) satisfies the same conditions as
(Y,,P:) in (i) and

t
J (Y, 1> ds < o0 Q -a.s. for all t=0,
0

then Q, = P: oY1 on D, that is, martingale problem for (£Y,%¢, 1) on D is
well-posed.

Proor. The proof is essentially the same as the independent case (see §5
in [2]). However, the computations are more complicated, so we give the outline
of the proof. (i) is easily obtained. We show (ii). We always fix f e C*, T > 0,
and set W1 () = Tr_(exp =<, Ve fD)(n) (0<t<T,ne.d,). It is no diffi-
cult to show that {¥/(Y,)},_; is a Q,-martingale. In fact, by using Ito’s
formula
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d(exp —( ¥, f>) = —( ¥, Af = Tf Y=/ dy
+2 J q(d(m,n))(®,, , — I)e~*/?(Y,) dt + d(Q,-martingale).

Since T, is a bounded operator, we have (set v, = v,T = Vr_.f again)

d(¥/(Y)) = TT—z(—qu(d(m,n))(G)mm _De 0 — (- be

— (- Av —Toye 0 + ;LJQ(d(m, 1)) (Om.n — I)e<‘~,b‘1>> (Y,) dr

+ d(Q,-martingale)
=Tr_ (=<, 0w + Av, — sz>e_<"'”’>)(l7,) + d(Q,-martingale)
= d(Q,-martingale)
Hence for 0 <s<t¢< T, we have
Q.¥/(Y))| 7] =¥/ (Y,)

and set 7 =, then

Q#[e—<Yr-,f> | 7] = T,_e V(7).

Therefore P, = Q, on D. |

4. Multi-Dimensional Absorbing Stable Motions on a Half Space

In §3 of [2] as a motion process we considered absorbing Brownian motion
and absorbing stable motion on (0,c0) and discussed the Holder (right) con-
tinuities of {X,}. It is possible to consider absorbing motions on H = RY™! x
(0, 00) and we can get the same results as in Theorem 3.1 and in Corollary 3.1
of [2]. For the absorbing Brownian motion, it is not so difficult and es-
sentially done in [1]. So in this section we only discuss the absorbing stable
motion on H.

For a function f on H, let f be an extension of f to on R? defined
as
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where x = (%,x4) € H. Note that if xe H, then f(x)= f(x). The generator
A~ = A~" of absorbing o-stable motion (w~(¢),P,) = (w—*(¢),P,>*) on H is
given as A7 % (x) = A%*f(x); (4~ is the same as L~ in §4 of [1], however, in
which we have some miss-prints)

(1) A (x) = chd\{o} Fx+9) = F(x) = VI () - yI(1y] < D) |yd5ﬂ

= CJR'H dj;de [fix+y)— f(x)=Vf(x)-yI(|y| <1)] dya

—Xd |yl e

vel dyr[fm ¥) = £ &+ 5y = xa) = 2 ()] 2
Ri-1 |yl

Xd
with some positive constant ¢, where in the last term the integral corresponding to
Vf(x) - y is equal to zero by the symmetric property (of course, it is integrable).
We can also write that if 0 < o < 1, then

A (x) = cJ [f(y) = f(x)] LM
R\ {x} ly — x|

0

=], ~{Jw[ﬂy) ~ SR, ) dva
.

o0

_ dya
7 JO |(y — %, ya + Xd)VM}’

“ef [ 100 01k ) = ko)

0

and that if 1 <a <2, then
_ _ dy

A (x) = j F0) = 70 = V() - (3 — ) (y— x| < 1)) —2
R\ {x} |y — x|

=c JRH dﬂ{r [f(3) = F(x) = Vf(x) - (y = )I(|y = x| < DIK(x, y) dya

0

n Jw ~2/(x) — V/(x) - (v — )I(y — x| < 1)

0

—Vf(x) - (§ =X, —ya — x)I(|(y = X, ya + xa)| < 1)]

dyq
X = ~ d+o
(¥ = X, ya + xaq)
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“cf @ | 1) =760 = W) (3= 01 = 5] < DK ) v

0

— S(0k(x) + V/(x) - e(x),

where
I(y #x) 1
K( 7}/) = - - )
= x| |(5 = %, ya+ xa)]
o0
d
o) = k() =26 ay | B
R x|V
and

¢(x) =cj 7 dﬁr[—(?—fc, —ya = xa)I(|(5 = %, ya + x4)| < 1)
R¢! 0

dya
—(y— X <1
(=90l = < D) o
=c| @[ 1o+ xo sl < 1)
R 0
— oya = )Gy a3 < )P
G a+ 50)

Let 7iy(v) be a C*-function on (0,00) such that 0 <’y <1 on (0,00),
ho(v) = v for ve (0,1/2] and ho(v) =1 for v > 1. Let d < p <d + . Set g,(x) =
(1+|x)*)7/* and gpﬁo(x)d:? gp(x)ho(xq) for xe H. Let f € C, & f e CRY)|y:
f/9pll, < 0. feCho S fe CRY| s 11f/9p.oll < 0. Moreover set

def
feCly= fe Ry
for i,j #d, f,01f,0:f,0;f € Cpo and 04f,0,f € Cp.

Then we can take D, = C; .

Moreover for each 0 < a <2, O f = Q% = Af? — fAf is given by the
following formula:

Xd

S I NS R

C |y|d+ot

+CJR[H dj;JOOHf(X—Fy)—f()?+)~c7yd_xd)}

Xd
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dya
d+o
|y

{4 0) + (4% va = xa) =21 ()} + 2/ (x)7]

—e JR dy Jm [£(3) = FOIK(x, p) dya + f(x)*K(x).

0

THEOREM 5. Let d >1,d < p<d+o, ue .y, and let the motion process
be absorbing o-stable motion on H with 0 < o < 2. Let ¢ > 0 denote an arbitrary
small number.

(i) For (X;,P,) the following holds.

(@) Under P, {{Xi,gpoy} is (1/(2(v 1)) —e)-Holder right continuous
at t =0. Moreover in case of 1 <o <2, if {u,g1) < o0 with g1(x) =
gp(x)ho(xd)zfa, then {{X;,gp.0>} is (1/2 —¢)-Holder right continuous
at t=0.

(b) If to >0, then under P,, {{X:,gp0>} is (1/2 —¢)-Holder right con-
tinuous at t =ty for every 0 <o < 2.

(i) For (Y,,P/f ) the same results hold as above.

Proor. Let d >2. The proof is proceeded in the same way as the
case of d = 1. It suffices to check that the conditions in Assumption 1 and 2
are fulfilled with go =g, 0 and with suitable g e C*, 0 <y <1 as follows.
Let i e C*®; 0<h <1, hi(v) =vlog(l/v) for ve(0,1/e] and h(v) =1 for
v=>1.

(i) If 0<a<1, then gi(x) =
(i) If =1, then gi(x) =g,(x
(iii) If 1 <o <2, then g;(x)

g]).O(x): Y= 0.
Yhi(x4), y =0 for any small 0 <J < 1.
9p(Vho(xa)>™", y=1—1/a

Note that as x; | O,
gi(x)~xs 0<a<l), ~xglog(l/xg) (x=1), ~x3* (I<a<?2).

For simplicity of the notations we omit the superscript “a” as P;" =P,
A—* = A~. We shall show the following. Since they imply ||g, oP; g1, < Ct77,
we can get the ((1 —y)/2 —€)-Holder right continuity.

(C1) C;,o c9(A7), Py CF < C;O for every ¢ >0, Sup,~¢ gy, <1 1% P; gp,0(x)]
< oo and A_C;?,o c Cpo (these imply Assumption 1 and that C;,o is a
core).
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(C2) For every feC,,, 0P f*(x)=A P, f*(x)=P A f*(x) (xeH),
A f?e Cy and |lg7' O f]|,, < o (these imply (i) of Assumption 2).

(C3) For each 0 < f <1, sup,5q P;(yg)(x) <2(1 +ﬁ)x§ for all x € H (this
implies (ii) of Assumption 2).

(C4) For each 0 < f <1, supy_y, <1 x;'P; (¥})(x) < Cpr~("P/* with a con-
stant Cz > 0 depending only on f (this implies (iii), (iv) of Assump-
tion 2).

Note that we take y = (1 — )/ in Assumption 2. More exactly, if 0 < o < 1,
then f=1, ie., y=0. If « =1, then f=1—-0 for any small 0 <d < 1, ie.,
y=0. If 1 <a<2, then f=2—0, e, y=1—1/a. (C3) and (C4) can be
shown in a way similar to the case of d = 1; (B3) and (B4) in [2] by using the
following. For the density p*(x) of the rotation invariant o-stable motion on
R? starting from 0, p*(x) =% p*(r7"/%x) and p¥(x) < C(1 A|x|™*"*). The
transition density p, (x, ) = p, *(x,y) of absorbing u-stable motion on H is
given as

Xd

Pt_(xd’)ZPf(y—X)—Pf(f/—i,yd-l-Xd)Z—J 0api (¥ — X, ya +v) dv.

—Xg

We also use the following result.
J zgflpf‘(f, zg+u) dz is bounded in ueR.
H

From these results we can get (C3), (C4).

In each (Cl), (C2), the claims except the last one can be shown by the
same way as in d =1. In order to show the last claims of (Cl), (C2), it is
enough to prove that for each f e C[io, there is a constant C >0 such
that

[A7f(x)] < Cxy for 0<x;<1/2 and QO f(x) < Cgi(x) for all xe H.

Let 0 < x4y <1/2. For A~ we use the formula (4.1). In the following we de-
compose as A f = (Ji,1 +J12) + (J2 +J3) and we shall show each term has
order of xﬁ, Xd, X4, X4, respectively. The main calculus is of J; » (1 < o < 2) and
Js. In the first term of (4.1) we divide the integral area to {|y| > 1}, {|y| < 1}
and denote the corresponding terms by Ji i(x), Ji2(x) respectively. In the
following we use the same symbols C’, C” as any positive finite constants which
are independent of x. First note that if |y|>1 and |y < x4 <1/2, then
171> 1—x2>3/4=h. By |f(x)| < Cxy,
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i1(x)] =

e[ [ s - s = 0
R |y

—Xg

Xd d
< ZCJ dj/J C(2x4 + ya) —J;ia
17> b 0 |yl

dy [¥
< ZCCJ dﬂj (2xq + ya) dya
5120 | 7|

o0

I
< ZCCJ J (2x4 + ya) dya
0

b y2to

_5cC
T l4a

b~17x3 = C'x3.
Next note that if |y| < 1, then |y| <1 and that for some 60 € (0,1),
1 1
|/ (x+p) = f(x) = Vf(x) -] = Elf(z)(er 0y) - ¥’ < 1PNl 1o

If 0<o<1, then |y ™ >[5 ™ by d —2+a>0, and

[ dy,
[J12(x)| = CLH dy | [f(x+y) = f(x)=Vf(x)-yI(]y] < 1)| |d‘ia
.
L[ . - dyq
<c dy | [fx+y) = f(x) = Vf(x) y—05
<t Jx |yl
[ dyq
<cl d@| 12—
si<t  Jo y|**
<c dﬂ 2Hf N

1
<c| r* dr||f(2> 3
0

©)
Ol e,
1 -«
On the other hand if 1 <o <2, then by using

S+ 0) = F) = V() p =3 O0) 7+ e SO+ 0y)
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with some 0 € (0, 1), and the corresponding integral to 251:711 02,1 (x)yiya is equal
to zero by symmetric property in y,;, we have

|J172(x)| < CJ

[7I<1

xg [ d=1
dy L {Z 05/ ()] il 1yl + 102/ () v
i,j=1

[ 3| dya
+3 1720y } :
3 |y|d+x

d+o—2

d—1—¢ 1+o,

Let 0 <e<2—o and set o :=a+ce(l,2), then |y > |7 |val™
By |6§f(x)|, |03 f(x)| < Cxy for i, j # d, corresponding terms to f®) are less than
or equal to

dy [ d : i C
CXdJ — i} — J };jx = CXdJ FUdr Y = xs_“‘.
l5l<t | 7| oy, 0 2—o  (2—a)e

For the last term, by d >2, a>1, ie, d+oa—3>0, we have \y|d+“ 3>

| j/\‘”“*’%. Hence the last term is less than or equal to

—X.

J 1O = [ o a0 g = 1
sl Iyl‘”“ ’ T 2-a

These estimates imply |J; 2(x)| < C'x4. In the second term of (4.1) we also divide
the integral area to {|y| > 1}, {|y| < 1} and denote the corresponding terms by
Ja(x), J3(x) respectively. For J(x), by

lf(x+p) = f(P+ X pa— xa)| <2x4l|0af .,

and |f(x)| < Cx4, we have

[ .. dy,
0 =e| v | LG ) = S Bva =) = 20 (=)
Xd
<c| Alous o+ Ol 2 )
con| B en,
y=1]y]

For J3(x) = ¢ Jp dp [ [f (x + ) = f(5+ %, ya = xa) = 2 (U (¥ < 1) 8,
Sx+y) = f(X+ P, ya — xa) = 2f (x)

=[f(x+y) =S+ P, ya = xa) = 2f (X + y, xa)] = 2[f (X + §, xa) — f(X)].
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For the first term, by the same way as in case of d =1 (in J3(x)) corresponding
to the variable y,;, we have

[f(x+ ) = f(Z+ P, ya — xa) = 2 (x))|
< 20103/ | pxa(¥3 + x3) + C(ya + Xa)xaya + 2Cxy.

For the second term, note that

d—1 d—1

S+ Foxa) — () = 3 0uf eoxa)yit 5 Y 53 (54 07, x4) iy

i=1 ij=1

and |6,§ f(X+0p,x4)] < Cxy for i,j < d. Moreover note that by the symmetric
property in y; we have

o d—1 dyq
JAR‘F1 d)jj aif()z-yxd)yl (|y| < 1)| |d+1

1 ~
. yidy
=Y o) [ du 0
- s dieyior v

d+o

Let 0 <e<2—o and set o :=a+ee(0,2), then |y|"™ > |57 |ya|"™ by

d > 2. Thus we can get the following: by x; < yg,

|

~ dyq
[J3(x)] < CJ~ 1 dJ/J 20103/ | o Xa(¥3 + X7) + C(ya + Xa)Xaya + 2Cx})] —|y|d+°‘
yI< Xd

1 d—

(1 - e dya

ve| dp| 53T NG o]
Iyl<1 Xa “ =1 Ya

dy (! dya

< C'xdj TJ (¥a +Xaya +X3) —5
i<t |yl Vi

1 1 dyd
+CJ = Cxg|3| dy J —
7i<1 2 |y

1! cC U dyy
S3C’xdfj gy 4 S J dymzj .
& 2 ) e o[y

d+ ~1d .
> |33,

1 <12 1

. dyq 7 dva 1
J dylylzj s < J %dyj F =T
17l<1 o |yl i<t |7l 0 Ya -

For the second term if 0 < o < 1, then by |y|
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d+o d+1- e oc(fl

> |y )

1 ~12 1
=15 dya || [ dva 1
Jy<1 o [y T g 31 oy e )

Therefore

or if 1 <o <2, then by |y|

3C’ C
-t —>xd 0<a<l
|J3(x)] < (6(2*%) 2(1—x) ( )

SGeG X (1<a<2)

= C”xd.

Therefore we have |4~ f(x)] < C"xy.

Next in order to show Q7 f(x) < Cg(x), it suffices to prove that there is a
constant C > 0 such that for 0 <x; <1, if 0 <a <1, then Q f(x) < Cxy, if
o =1, then O f(x) < Cxqlog(1/x4) if 1 <o <2, then O f(x) < Cx3™*. We use
the first formula of (4.2). In the following we decompose as Q f = (R} + Ry) +
(S1 + S>) and we shall show each R;, R,, S; has order of xJ, x77% x; re-
spectively, and the main parts is S,. In the first term of the right hand side
of (4.2), we divide the integral area of R~! to {|7| > 1}, {|5| < 1} and denote
the corresponding terms by R;(x), Rp(x) respectively. By f(x) < Cxy, we
have

Xd

R =c ap[ e - P2
5121 |yl

—Xd

dy (™

chJ L%J C2(2x4 + ya)* dva
51217

= fo,

For R,, by \6,](x)| < Cxq if i #d,

j & | e - st >]2|y”’iix

*J,.4)

CJ dy J [(xF + y)I5I° +yd]‘ |d+a

2
d—1
. dya
C(xq + ya) g Vi +10af | ya 7

i=1

|/\

IA
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In the above we first consider the last term (which is the main term), i.e.,

_ Xd d d Xd d~
J dyJ ygimzj dyay? J +J Y Ry (x) + Roa ().
i<t = Jo T[] 0 Fl<va  Jya<lil<t) |y

For Ry 1, let o, = o+ ¢ < 2 be the same as before. By |y > |7~ yq| "™,
dv Y e
J ~di/]—e:J rf_l dr:&
7l<va | DI 0 €
Hence
Xd 2 € Xd
Ya  JVa IJ 1-a 1 2—4
R < L dy; =- dyg = .
For Ry, by [y =[5 and
dy Jl dr | 1
R e i S | P )
J‘yd<)7<l |y|d+o( T r2+0( 1 + o d 1 + o d
Hence
R, 2(x) < JXJ yZLy—l—oc dyd :LJM yl—a dyl — 7}62_”
T ) T e T+oafy ¢ “ (I+a)2—a) ¢

Furthermore we can show more easily that the other terms of R, are o(x7), In
fact, by [y"" = 717yl

Xd d ~12 Xd d
By _2 dyg |7 - va c
| ] e s | S| Cedd = o
<t = Jo |yl 7<1 |3 0 Va

Therefore we have Ry(x) < Cx37* for all 0 < o < 2.

In the second term of the right hand side of (4.2), we divide the integral area
to {|y| =1}, {|]y| <1} and denote the corresponding terms by S;(x), S>(x)
respectively. For Sj, by

(4.3) lf(x+ ) = f(F+ X ya— xa)| <2x4][0af ||

we have

, . d
$109 = Cxaldus 3L 209 | < o
y|=

For S, by (4.3) and by |f(x)| < Cxy,
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S (4 2) = ST+ X ya = x)) {4 3) + S (5 + % ya — xa) = 20 (%)} + 2 ()|
<2/|0af . %a - C(xXa + ya) +2Cx2
< Cxy(xq+ ya).

Hence, noting that {|y| < 1} = {|J] < 1} x {|y4| < 1},

1 1
) d . dy,
dyJ (deFyd)% SZCXdJ dyj yd%'
X Iyl 7l<1 |yl

Ipl<1 X,

1S5(x)] < deJ

By the same way as in R,, we can show the desired estimate as follows. Let

1 d_)N)
dyaya + —y = (52,1(x) + 82,2(x)).
x4 l<va  Jya<iil<t) |Vl

Then |S2(x)] < Cxq(S2,1(x) + S2,2(x)). Let 0<e<2—oa. By |yt >
d—1—ep 142
1 L yal
i - i I
dya dy dya yg _1( dya
Sz,l(X)SJ —O(J/dj J 6—=—J =
X4 y;L ‘ [Fl<ya |V |d e X4 y5+ € €l ¥a

That is, if 0 <a <1, then S (x) <C, if «=1, then $;;(x) < Clog(1/x4),
if 0<a<l1, then Si(x)<Cx}™ Moreover for S,», as in Ry, by
J]yds\y|<1‘1J~’/|J~’|d+7 v/ (1 + a),

1

S0(x) < J

Xd

dyay J D Jl Vi ' dy : Jl v dy
dyd . = d d d =77 d d-
ya<|PI<1 |y|d+ X4 1 +o 1+ X4

Thus S, satisfies the same estimates as S» 1. By [S2(x)| < Cx4(S2,1(x) + S2.2(x)),
we have if 0 <« < 1, then Sx(x) < Cxy, if o =1, then S>(x) < Cxz log(1/x,) if

1 <o <2, then Sy(x) < Cx3~*. These imply our desired result. |
By P CF < Cp3 o> the following result for martingale problem is obtained by

the same way as in d = 1.

TueOREM 6. Let ue .y, The martingale problems for (%, Zo,n),
(LY, Do, 1) associated with absorbing stable motion on H are well-posed.
Acknowledgment

The author would like to be grateful to the referee for his suggestions and
comments.



50 Seiji HIRABA

References

[1] S. Hiraba, Infinite Markov particle systems with singular immigration; Martingale problems and
limit theorems, Osaka J. Math. 33 (1996), 145-187.

[2] S. Hiraba, Independent infinite Markov particle systems with jumps, Theory Stoch. Process.
18 (34) (2012), 65-85.

Department of Mathematics

Faculty of Science and Technology
Tokyo University of Science

2641 Yamazaki, Noda City

Chiba 278-8510, Japan

E-mail: hiraba_seiji@ma.noda.tus.ac.jp



