INTERACTIVE INFINITE MARKOV PARTICLE SYSTEMS WITH JUMPS

By

Seiji HIRABA

Abstract. In [2] we investigated independent infinite Markov particle systems as measure-valued Markov processes with jumps, and we gave sample path properties and martingale characterizations. In particular, we investigated the exponent of Hölder-right continuity in case that the motion process is *absorbing* α -stable motion on $(0, \infty)$ with $0 < \alpha < 2$, that is, time-changed absorbing Brownian motions on $(0, \infty)$ by the increasing $\alpha/2$ -stable Lévy processes.

In the present paper we shall extend the results to the case of simple interactive infinite Markov particle systems. We also consider the absorbing stable motion on a half space $H = \mathbf{R}^{d-1} \times (0, \infty)$ as a motion process.

1. Settings and Previous Results

In this section we give the general settings and the known results which are given in [2] in order to describe the main results in §3 and §4.

Let S be a domain of \mathbf{R}^d . Let $(w(t), P_x)_{t \geq 0, x \in S}$ be a S-valued Markov process having life time $\zeta(w) \in (0, \infty]$ such that $w \in \mathbf{D}([0, \zeta(w)) \to S)$, i.e., $w : [0, \zeta(w)) \to S$ is right continuous and has left-hand limits. For convenience, we fix an extra point $\Delta \notin S$ and set $w(t) = \Delta$ if $t \geq \zeta(w)$. Moreover we shall extend functions f on S to on $\{\Delta\}$ by $f(\Delta) = 0$, if necessary.

We use the following notations: Let $S \subset \mathbf{R}^d$ be a domain.

• If $x = (x_1, \dots, x_d) \in \mathbf{R}^d$, then $\partial_{i_1 \dots i_k}^k = \partial^k / (\partial x_{i_1} \dots \partial x_{i_k})$, $\partial_i^k = \partial^k / (\partial x_i^k)$ and $\partial_i = \partial_i^1$ for each $k = 0, 1, \dots, i = 1, \dots, d$. Moreover $\partial_t = \partial / \partial t$ for time $t \ge 0$.

²⁰⁰⁰ Mathematics Subject Classification: Primary 60G57; Secondary 60G75.

Key words and phrases: particle systems, measure-valued processes, jump processes.

Received April 12, 2012.

Revised March 25, 2013.

- $f \in C_c \equiv C_c(S) \stackrel{\text{def}}{\iff} f$ is a continuous function on S with compact support in S, and $C_c^{\infty} \equiv C_c^{\infty}(S) := C_c(S) \cap C^{\infty}(S)$.
- For each integer $k \ge 0$, $C_b^k := C_b^k(\mathbf{R}^d)|_S$, that is, $f \in C_b^k \stackrel{\text{def}}{\Longleftrightarrow} f$ is a restriction to S of k-times continuously differentiable function on \mathbf{R}^d with bounded derivatives of order between 0 and k. Moreover $f \in C_0 \stackrel{\text{def}}{\Longleftrightarrow} f$ is continuous on S and $f(x) \to 0$ whenever $x \to \partial S$ or $|x| \to \infty$. Furthermore $C_b := C_b^0, \ C_b^{\infty} := \bigcap_k C_b^k, \ C_0^k := C_0 \cap C_b^k \text{ and } C_0^{\infty} := \bigcap_k C_0^k.$ • For a function space D on S, $f \in D^+ \iff f \in D$; $f \ge 0$.
- $\langle \mu, f \rangle := \int_S f(x) \mu(dx)$ for a function f on S and a measure μ on S.

The following two assumptions are the same as in [2].

Assumption 1. Let $(P_t)_{t>0}$ be the transition semigroup of $(w(t), P_x)$, i.e., $P_t f(x) = E_x[f(w(t)) : t < \zeta].$

- (i) (P_t) is a strongly continuous nonnegative contraction semigroup on $(C_0, \|\cdot\|_{\infty})$ with generator $(A, \mathcal{D}(A))$, where $\|f\|_{\infty} = \sup_{x \in S} |f(x)|$.
- (ii) $C_c^{\infty} \subset \mathcal{D}(A)$ and there is a strictly positive function $g_0 \in C_0^{\infty}$ such that $g_0 \in \mathcal{D}(A)$ and that $g_0^{-1}Af \in C_b$ with $g_0^{-1} = 1/g_0$ for every $f \in C_c^{\infty}$ and
- (iii) $\sup_{t < T} ||g_0^{-1} P_t g_0||_{\infty} < \infty$ for every T > 0.

Under this assumption we introduce a function space $D_{g_0} \subset \mathcal{D}(A)$ as follows:

$$f \in D_{g_0} \stackrel{\mathrm{def}}{\Longleftrightarrow} f \in \mathscr{D}(A) \quad \text{such that } \|g_0^{-1}f\|_{\infty} < \infty \ \ \text{and} \ \ \|g_0^{-1}Af\|_{\infty} < \infty.$$

Clearly $g_0 \in D_{g_0}$ and $C_c^{\infty} \subset D_{g_0}$. Moreover since C_c^{∞} is dense in C_0 and $P_tC_c^{\infty} \subset D_{g_0}$ for every $t \geq 0$, D_{g_0} is a core for A. However, D_{g_0} may be too large, so we further need the following assumption:

Assumption 2. There exist a bounded function $g_1 \in C^{\infty}$; $g_1 \geq g_0(>0)$ and a core $D \subset D_{q_0}$ (we denote $D = D_q$ with $g = (g_0, g_1)$) satisfying the following:

- (i) If $f \in D_q$, then $\lim_{t \downarrow 0} \frac{1}{t} (P_t f^2(x) f(x)^2)$ exists for each $x \in S$ (we also denote the limit as $Af^2(x)$, $\partial_t P_t f^2(x) = A P_t f^2(x) = P_t A f^2(x)$ $(\rightarrow Af^2(x) \text{ as } t \downarrow 0 \text{ for each } x \in S), Af^2 \in C_b \text{ and } \|g_1^{-1}Af^2\|_{\infty} < \infty.$
- (ii) For each T > 0, $\sup_{t \in [0,T]} ||g_1^{-1}P_tg_1||_{\infty} < \infty$.
- (iii) For each 0 < s < T, $\sup_{t \in [s, T]} ||g_0^{-1} P_t g_1||_{\infty} < \infty$.
- (iv) There exist constants $0 \le \gamma < 1$, $\delta > 0$ such that $\sup_{0 \le t < \delta} t^{\gamma} ||g_0^{-1} P_t g_1||_{\infty}$ $< \infty$.
- (v) $g_0 \in D_q$.

All through the present paper we suppose that Assumption 1 and 2 are fulfilled. We shall sometime use the notation $\|\cdot\|_{q_0} = \|\cdot/g_0\|_{\infty}$.

Let $\mathscr{M}_{g_0} \equiv \mathscr{M}_{g_0}(S)$ be a space of counting measures on S defined as $\mu \in \mathscr{M}_{g_0} \stackrel{\mathrm{def}}{\Longleftrightarrow} \mu = \sum_n \delta_{x_n}$ such that $\langle \mu, g_0 \rangle < \infty$ and

$$\mu_n \to \mu$$
 in $\mathcal{M}_{g_0} \stackrel{\text{def}}{\Longleftrightarrow} \sup \langle \mu_n, g_0 \rangle < \infty$,
 $\langle \mu_n, f \rangle \to \langle \mu, f \rangle$ for all $f \in C_c$ and $f = g_0$,

where $C_c \equiv C_c(S)$ denotes the space of all continuous functions with compact supports on S. Then \mathcal{M}_{g_0} is metrizable and separable.

We mainly consider the case that the generator has the form

$$(1.1) A = A^c + A^d,$$

with

$$A^{c}f(x) = \frac{1}{2} \sum_{i,j=1}^{d} a^{ij}(x) \partial_{ij}^{2} f(x) + \sum_{i=1}^{d} b^{i}(x) \partial_{i} f(x),$$

$$A^{d}f(x) = \int_{S \setminus \{x\}} [f(y) - f(x) - \nabla f(x) \cdot (y - x) I(|y - x| < 1)] v(x, dy)$$

$$- k(x) f(x) + \sum_{i=1}^{d} c^{i}(x) \partial_{i} f(x)$$

for $f \in D_g$, where $a^{ij}, b^i \in C_b(S)$, (a^{ij}) is positive definite, $k(x) \ge 0$ denotes the killing rate by jumps, $(c^i(x))$ depends on jumps, and v(x, dy) is the Lévy kernel on $S \times (S \setminus \{x\})$ satisfying that

$$\sup_{x \in S} \int_{S \setminus \{x\}} (1 \wedge |y - x|^2) \nu(x, dy) < \infty.$$

Independent IMPS; Results in [2]

Let (X_t, \mathbf{P}_{μ}) be an (indistinguishable) independent Markov particle system (IMP) associated with the motion process $(w(t), P_x)$, i.e., for many independent motions $(w_n(t), P_{x_n}) \stackrel{\text{(d)}}{=} (w(t), P_{x_n})$,

$$X_t = \sum_n \delta_{w_n(t)}|_S$$
 if $\mu = \sum_n \delta_{x_n}$ on S , and $\mathbf{P}_{\mu} = \prod_n P_{x_n}$.

The generator \mathcal{L}_0 of this particle system is given by the following: for $f \in C_c^{\infty}$,

$$\mathcal{L}_0 e^{-\langle \cdot, f \rangle}(\mu) = -\langle \mu, e^f A(1 - e^{-f}) \rangle e^{-\langle \mu, f \rangle}$$
$$= -\langle \mu, Af - \Gamma f \rangle e^{-\langle \mu, f \rangle},$$

where $\Gamma f := Af - e^f A(1 - e^{-f})$. In fact, let $\{\mathcal{F}_t\}$ be the filtration generated by $\{X_t\}$ and set

$$V_t f(x) = -\log P_x[\exp -f(w(t))] = -\log\{1 - P_t(1 - e^{-f})(x)\}.$$

We have that if $0 \le s < t$, then

$$\mathbf{E}_{u}[e^{-\langle X_{t},f\rangle}|\mathscr{F}_{s}] = \exp[-\langle X_{s}, V_{t-s}f\rangle].$$

It is easy to see that $(V_t)_{t\geq 0}$ is a nonnegative contraction semigroup on C_0 and that by (ii) of Assumption 1 if $f \in C_c^{\infty}$, then $1 - e^{-f} \in C_c^{\infty} \subset D_g$, hence we have

$$\partial_t V_t f = \frac{P_t A (1 - e^{-f})}{1 - P_t (1 - e^{-f})} = \frac{A P_t (1 - e^{-f})}{1 - P_t (1 - e^{-f})} = e^{V_t f} A (1 - e^{-V_t f})$$

$$\to e^f A (1 - e^{-f}) = A f - \Gamma f \quad (t \downarrow 0).$$

Note that since $V_t f \leq P_t f$ (by Jensen's inequality), Γ is nonnegative;

$$\Gamma f = Af - \partial_t V_t f|_{t=0+} = \lim_{t \downarrow 0} \frac{1}{t} [(P_t f - f) - (V_t f - f)] \ge 0$$

and that for each $f \in C_c^{\infty}$, $v_t = V_t f$ is the unique solution to the following equation:

$$\partial_t v_t = e^{v_t} A (1 - e^{-v_t}), \quad v_0 = f$$

(because $u_t := 1 - e^{-v_t}$ satisfies $\partial_t u_t = Au_t$, $u_0 = 1 - e^{-f}$ and the unique solution is given as $u_t = P_t(1 - e^{-f})$). Moreover if $Av_t(x)$ is well-defined for t > 0, $x \in S$, then

$$\partial_t v_t = A v_t - \Gamma v_t, \quad v_0 = f.$$

By using the Markov property and by induction we have

PROPOSITION 1 (Prop. 1 in [1]). For every $0 \le t_1 \le \cdots \le t_n$ and $f_i \in D_g^+$, $i = 1, 2, \dots, n$,

$$\begin{split} \mathbf{E}_{\mu}[\langle X_{t_{1}}, f_{1} \rangle \cdots \langle X_{t_{n}}, f_{n} \rangle] \\ &\leq \prod_{i=1}^{n} \langle \mu, P_{t_{i}} f_{i} \rangle + C_{1}^{(n)} \sum_{i=1}^{n} \prod_{j \neq i} \langle \mu, P_{t_{j}} f_{j} \rangle \\ &+ C_{2}^{(n)} \sum_{j_{1} \neq j_{2}} \prod_{j \neq i_{1}, j_{2}} \langle \mu, P_{t_{j}} f_{j} \rangle + \cdots + C_{n-1}^{(n)} \sum_{j=1}^{n} \langle \mu, P_{t_{j}} f_{j} \rangle + C_{n}^{(n)}, \end{split}$$

where $C_k^{(n)}$, k = 1, ..., n are positive constants, depending on $(n, \{\|f_i\|_{\infty}\}_{i \le n})$.

We introduce a non-negative operator Q as $Qf = Af^2 - 2fAf$ for $f \in D_g$, which is well-defined by (i) of Assumption 2 and plays an important role to investigate the exponents of Hölder (right) continuity. The non-negativity follows from $(P_t f^2 - f^2) - 2f(P_t f - f) \ge (P_t f)^2 - 2fP_t f + f^2 = (P_t f - f)^2 \ge 0$.

THEOREM 1 (Th. 2.3 and Cor. 2.1 in [2]). Let $(w(t), P_x)$ be a discontinuous Markov process in $\mathbf{D}([0, \zeta(w)) \to S)$ with transition semigroup (P_t) satisfying Assumption 1 and 2. Let $\mu \in \mathcal{M}_{g_0}$. The following holds with \mathbf{P}_{μ} -probability one.

- (i) $\{\langle X_t, g_0 \rangle\}$ is $((1 \gamma)/2 \varepsilon)$ -Hölder right continuous at t = 0 for sufficiently small $\varepsilon > 0$, where the constant $0 \le \gamma < 1$ is in (iv) of Assumption 2.
- (ii) If $\langle \mu, g_1 \rangle < \infty$, in particular, if $g_1(x) = g_0(x)$ then $\{\langle X_t, g_0 \rangle\}$ is $(1/2 \varepsilon)$ -Hölder right continuous at t = 0 for sufficiently small $\varepsilon > 0$.
- (iii) For each fixed $t_0 > 0$, $\{\langle X_t, g_0 \rangle\}$ is $(1/2 \varepsilon)$ -Hölder right continuous at $t = t_0$ for sufficiently small $\varepsilon > 0$.

2. Sampling Replacement Markov Particle Systems

Let $\mu = \sum_n \delta_{x_n} \in \mathcal{M}_{g_0}$. Let $(Y_t, \mathbf{P}_{\mu}^Y)$ be a sampling replacement Markov particle system associated with the motion process $(w(t), P_x)$, sampling replacement rate $\lambda > 0$ and sampling replacement probability $q(d(m,n)) = \sum_{k,l} p_{k,l} \delta_{(k,l)}(d(m,n))$ on \mathbf{N}^2 , where $p_{k,l} \geq 0$, $p_{k,k} = 0$ and $\sum p_{k,l} = 1$. Each particle first moves independently each other. After a λ -exponential random time, two particles are selected randomly, for example, m-th and m-th particles are selected with probability $p_{m,n}$, and at that time the m-th particle jumps to the place of the m-th particle. Then the m-th particle moves independently. And these operations are continued. We denote each particle by $w_n^*(t)$ such that $w_n^*(0) = x_n$, and hence $Y_t = \sum_n \delta_{w_n^*(t)}$. Note that if (P_t) is non-conservative, then it is possible that the dead particles come life again.

Recall (X_t, \mathbf{P}_{μ}) is the independent Markov particle system with the motion process $(w(t), P_x)$. For $f \in D_g$, set $L_t^Y(\mu) = \mathbf{E}_{\mu}^Y[\exp{-\langle Y_t, f \rangle}]$ and $L_t(\mu) = \mathbf{E}_{\mu}[\exp{-\langle X_t, f \rangle}]$. Then

$$L_t(\mu) = e^{-\langle \mu, V_t f \rangle}$$
 with $V_t f(x) = -\log E_x [e^{-f(w(t))}] = -\log(1 - P_t(1 - e^{-f}))$.

It is easy to see that $L_t^Y(\mu)$ satisfies the following equation:

$$L_t^Y(\mu) = e^{-\lambda t} L_t(\mu) + \lambda \int_0^t ds e^{-\lambda s} \int_{\mathbf{N}^2} q(d(m,n)) \mathbf{P}_s(\Theta_{m,n} L_{t-s})(\mu),$$

where (\mathbf{P}_t) is the transition semigroup of (X_t, \mathbf{P}_{μ}) and $\Theta_{m,n}$ is an operator such that it makes the m-th particle jump to the place of n-th particle of $\mu = \sum \delta_k \in \mathcal{M}_{g_0}$ on a class of all functions $F(\mu)$ and it is defined by $\Theta_{m,n}F(\mu) = F(\mu^{m,n})$ with $\mu^{m,n} = \mu - \delta_{x_m} + \delta_{x_n}$. Note that $\mathbf{P}_s\Theta_{m,n} = \Theta_{m,n}\mathbf{P}_s$ holds. The solution is given as

$$(2.1) \quad L_t^Y(\mu) = \mathbf{T}_t e^{-\langle \cdot, V_t f \rangle}(\mu) \quad \text{with } \mathbf{T}_t = \sum_k e^{-\lambda t} \frac{(\lambda t)^k}{k!} \left(\int_{\mathbf{N}^2} q(d(m, n)) \Theta_{m, n} \right)^k,$$

where \mathbf{T}_t is an operator on a class of functions $F(\mu)$ with polynomial growth of $\langle \mu, f_1 \rangle, \langle \mu, f_2 \rangle, \dots, \langle \mu, f_n \rangle$ $(f_i \in D_g)$ and

$$\left(\int_{\mathbf{N}^2} q(d(m,n))\Theta_{m,n}\right)^k F(\mu) = \left(\int_{\mathbf{N}^2} q(d(m,n))\Theta_{m,n}\right)^{k-1} \sum_{m,n \in \mathbf{N}} p_{m,n} F(\mu^{m,n}).$$

The generator \mathscr{L}^Y of this particle system is given by the following: for $f \in C_c^{\infty}$,

$$\mathcal{L}^{Y}e^{-\langle \cdot, f \rangle}(\mu) = \mathcal{L}_{0}e^{-\langle \cdot, f \rangle}(\mu) + \lambda \int (e^{-\langle \mu^{m,n}, f \rangle} - e^{-\langle \mu, f \rangle})q(d(m,n))$$

$$= -\left\{ \langle \mu, Af - \Gamma f \rangle + \lambda \int \langle \delta_{x_{n}} - \delta_{x_{m}}, f \rangle q(d(m,n)) - \lambda \int [e^{-\langle \delta_{x_{n}} - \delta_{x_{m}}, f \rangle} - 1 + \langle \delta_{x_{n}} - \delta_{x_{m}}, f \rangle]q(d(m,n)) \right\} e^{-\langle \mu, f \rangle}$$

(more general formula of $\mathcal{L}^Y F(\mu)$ is given in §5). We have the following result. Recall that we denote the particles of Y_t by $w_n^*(t)$, i.e., $Y_t = \sum \delta_{w_n^*(t)}$. Note that $w_n^*(t)$ moves like as $w_n(t)$ during the jump times.

THEOREM 2 (Semi-martingale Representation of Y_t). Under Assumption 1 and 2 for (P_t) , if $\mu \in \mathcal{M}_{g_0}$, then $(Y_t, \mathbf{P}^Y_{\mu})$ is an \mathcal{M}_{g_0} -valued Markov process with sample paths in $\mathbf{D}([0, \infty) \to \mathcal{M}_{g_0})$ satisfying the following:

- (i) $\{\langle Y_t, g_0 \rangle\}$ has the same exponent of Hölder right continuity as in Theorem 1.
- (ii) If the motion process $(w(t), P_x)$ has generator A of the form as in (1.1), then for $f \in D_a$,

$$\langle Y_t, f \rangle = \langle Y_0, f \rangle + \int_0^t \left\{ \langle Y_s, Af \rangle + \lambda \int \langle \delta_{w_n^*(s)} - \delta_{w_m^*(s)}, f \rangle q(d(m, n)) \right\} ds$$
$$+ M_t^c(f) + M_t^d(f),$$

where

$$M_t^c(f)$$
 is a continuous L^2 -martingale

with quadratic variation $\langle\langle M^c(f)\rangle\rangle_t = \int_0^t \langle Y_s, Q^c f \rangle ds = 2 \int_0^t \langle Y_s, \Gamma^c f \rangle ds$ and

$$M_t^d(f) = \int_0^t \int_{\mathcal{M}_{q_0}^{\pm}} \langle \mu, f \rangle \tilde{N}(ds, d\mu)$$
 is a purely discontinuous martingale

where $\tilde{N}=N-\hat{N}$ is the martingale measure with

$$N(ds,d\mu) = \sum_{u; \Delta Y_u \neq 0} \delta_{(u,\Delta Y_u)}(ds,d\mu)$$
: the jump measure of $\{Y_t\}$,

$$\begin{split} \hat{N}(ds,d\mu) &= ds \bigg\{ \int Y_s(dx) \bigg(\int v(x,dy) \delta_{(\delta_y - \delta_x)} + k(x) \delta_{-\delta_x} \bigg) \\ &+ \lambda \int q(d(m,n)) \delta_{(\delta_{w_n^*(s)} - \delta_{w_m^*(s)})} \bigg\} (d\mu) \colon \ \ \text{the compensator of } \ N. \end{split}$$

PROOF. The proof is the same as the independent case (Proof of Theorem 2.4 in [2]). However, we need some computations. First the Markov property can be shown by mathematical induction. For $t_1 < t_2$, $f_1, f_2 \in C_c^{\infty}$, let $L_{t_1,t_2}^{f_1,f_2}(\mu) = \mathbf{E}_{\mu}^{Y}[\exp(-\langle Y_{t_1}, f_1 \rangle - \langle Y_{t_2}, f_2 \rangle)]$. Recall that $L_t^{Y}(\mu) = L_t^{f}(\mu) = \mathbf{E}_{\mu}^{Y}[\exp(-\langle Y_{t_1}, f_1 \rangle - \langle Y_{t_2}, f_2 \rangle)]$ satisfies (2.1) and the solution is given as $L_t^{f}(\mu) = \mathbf{T}_t \mathbf{P}_t[\exp(-\langle Y_{t_1}, f_1 \rangle - \langle Y_{t_2}, f_2 \rangle)]$. Hence it is easy to see that $L_{t_1,t_2}^{f_1,f_2}(\mu)$ satisfies the following equation:

$$\begin{split} L_{t_{1},t_{2}}^{f_{1},f_{2}}(\mu) &= e^{-\lambda t_{1}} \mathbf{P}_{t_{1}}(e^{-\langle \cdot, f_{1} \rangle} L_{t_{2}-t_{1}}^{f_{2}})(\mu) \\ &+ \lambda \int_{0}^{t_{1}} ds e^{-\lambda s} \int q(d(m,n)) \mathbf{P}_{s}(\Theta_{m,n} L_{t_{1}-s,t_{2}-s}^{f_{1},f_{2}})(\mu). \end{split}$$

The solution is given as

$$\begin{split} L_{t_1,t_2}^{f_1,f_2}(\mu) &= \mathbf{T}_{t_1} \mathbf{P}_{t_1}(e^{-\langle \cdot, f_1 \rangle} L_{t_2-t_1}^{f_2})(\mu) \\ &= \mathbf{E}_{\mu}^{Y}[e^{-\langle Y_{t_1}, f_1 \rangle} \mathbf{E}_{Y_{t_1}}^{Y}[e^{-\langle Y_{t_2-t_1}, f_2 \rangle}]]. \end{split}$$

Therefore by induction, for every $n \in \mathbb{N}$, if $t_1 < t_2 < \cdots < t_n$, $f_1, \ldots, f_n \in C_c^{\infty}$, then it holds that

$$\begin{split} \mathbf{E}_{\mu}^{Y}[\exp(-\langle Y_{t_{1}}, f_{1} \rangle - \cdots - \langle Y_{t_{n}}, f_{n} \rangle)] \\ &= \mathbf{E}_{\mu}^{Y}[e^{-\langle Y_{t_{1}}, f_{1} \rangle} \mathbf{E}_{Y_{t_{1}}}^{Y}[e^{-\langle Y_{t_{2}-t_{1}}, f_{2} \rangle} \cdots \mathbf{E}_{Y_{t_{n-1}}}^{Y}[e^{-\langle Y_{t_{n}-t_{n-1}}, f_{n} \rangle}] \cdots]]. \end{split}$$

Next we shall show that $(Y_t, \mathbf{P}_{\mu}^Y)$ satisfies a moment inequality of the same type as in Proposition 1.

PROPOSITION 2. Let T > 0 and $n \in \mathbb{N}$. For every $0 \le t_1 \le \cdots \le t_n \le T$ and $f_i \in D_q^+$, $i = 1, 2, \dots, n$,

$$\begin{split} \mathbf{E}_{\mu}^{Y}[\langle Y_{t_{1}}, f_{1} \rangle \cdots \langle Y_{t_{n}}, f_{n} \rangle] \\ &\leq \prod_{i=1}^{n} \langle \mu, P_{t_{i}} f_{i} \rangle + C_{1,T}^{(n)} \sum_{i=1}^{n} \prod_{j \neq i} \langle \mu, P_{t_{j}} f_{j} \rangle \\ &+ C_{2,T}^{(n)} \sum_{i_{1} \neq i_{2}} \prod_{j \neq i_{1}, i_{2}} \langle \mu, P_{t_{j}} f_{j} \rangle + \cdots + C_{n-1,T}^{(n)} \sum_{j=1}^{n} \langle \mu, P_{t_{j}} f_{j} \rangle + C_{n,T}^{(n)}, \end{split}$$

where $C_{k,T}^{(n)}$, k = 1, ..., n are positive constants depending on $(n, T, \{\|f_i\|_{\infty}\}_{i \le n})$.

PROOF. For simplicity, we use notations $f_m = f(x_m)$ and $\|\cdot\| = \|\cdot\|_{\infty}$. Since $\Theta_{m,\ell}\langle\mu,f\rangle = \langle\mu,f\rangle + f_\ell - f_m \leq \langle\mu,f\rangle + \|f\|$, we have for every $k \in \mathbb{N}$,

$$\left(\int_{\mathbf{N}^2} q(d(m,\ell))\Theta_{m,\ell}\right)^k (\langle \mu, f_1 \rangle \cdots \langle \mu, f_n \rangle) \leq (\langle \mu, f_1 \rangle + k \|f_1\|) \cdots (\langle \mu, f_n \rangle + k \|f_n\|).$$

Moreover if we denote by $M(j; \lambda t)$ the j-th moment of λt -Poisson distribution, then

$$\begin{split} \mathbf{T}_{t}(\langle\cdot,f_{1}\rangle\cdots\langle\cdot,f_{n}\rangle)(\mu) \\ &=\sum_{k\geq0}e^{-\lambda t}\frac{(\lambda t)^{k}}{k!}\left(\int_{\mathbf{N}^{2}}q(d(m,\ell))\Theta_{m,\ell}\right)^{k}(\langle\cdot,f_{1}\rangle\cdots\langle\cdot,f_{n}\rangle)(\mu) \\ &\leq\sum_{j=0}^{n}M(n-j;\lambda t)\sum_{\{i_{1},\ldots,i_{j}\}\subset\{1,\ldots,n\}}\langle\mu,f_{i_{1}}\rangle\cdots\langle\mu,f_{i_{j}}\rangle\|f_{i_{j+1}}\|\cdots\|f_{i_{n}}\|. \end{split}$$

Therefore by applying Proposition 1 and the above inequality to

$$\mathbf{E}_{\mu}^{Y}[\langle Y_{t_1}, f_1 \rangle \cdots \langle Y_{t_n}, f_n \rangle] = \mathbf{T}_{t}(\mathbf{E}_{\cdot}[\langle X_{t_1}, f_1 \rangle \cdots \langle X_{t_n}, f_n \rangle])(\mu),$$

we can get the desired inequality.

Thus the proof can be proceeded by the same way as in the independent case (see §4 in [2]). In that way we can get the following result. For $\mu = \sum_n \delta_{x_n} \in \mathcal{M}_{g_0}$, $f \in C_c^{\infty}$, let

$$\Psi(\mu; f) = \langle \mu, Af - \Gamma f \rangle - \lambda \int [e^{-\langle \delta_{xm} - \delta_{xn}, f \rangle} - 1] q(d(m, n)).$$

THEOREM 3. For $f \in C_c^{\infty}$,

$$e^{-\langle Y_t, f \rangle} - e^{-\langle Y_0, f \rangle} - \int_0^t \mathcal{L}^Y e^{-\langle \cdot, f \rangle}(Y_s) ds$$

is a \mathbf{P}_{u}^{Y} -martingale. Moreover

$$H_t(f) = \exp\left[-\langle Y_t, f \rangle + \int_0^t \Psi(Y_s; f) ds\right]$$

is also a \mathbf{P}_{μ}^{Y} -martingale.

PROOF. By the same way as in the proof of Theorem 4.1 in [2] we have if s < t, then

$$\partial_{t} \mathbf{E}_{\mu}^{Y} [e^{-\langle Y_{t}, f \rangle} \mid \mathscr{F}_{s}] = \partial_{t} \mathbf{T}_{t-s} (e^{-\langle \cdot, V_{t-s} f \rangle}) (Y_{s})
= \partial_{u=0+} \mathbf{T}_{t-s+u} (e^{-\langle \cdot, V_{t-s+u} f \rangle}) (Y_{s})
= \partial_{u=0+} \mathbf{E}_{\mu}^{Y} [\mathbf{T}_{u} e^{-\langle \cdot, V_{u} f \rangle} (Y_{t}) \mid \mathscr{F}_{s}]
= \mathbf{E}_{\mu}^{Y} [\partial_{u=0+} \mathbf{T}_{u} e^{-\langle \cdot, V_{u} f \rangle} (Y_{t}) \mid \mathscr{F}_{s}]
= \mathbf{E}_{\mu}^{Y} [\mathscr{L}^{Y} e^{-\langle \cdot, f \rangle} (Y_{t}) \mid \mathscr{F}_{s}]. \qquad \blacksquare$$

By using the above results it is not difficult to prove the semi-martingale representation of Y_t as of X_t in [2]. In fact, for $f \in C_c^{\infty}$, $\langle Y_t, f \rangle$ is a special semi-martingale, thus,

$$\langle Y_t, f \rangle = \langle Y_0, f \rangle + C_t(f) + M_t^c(f) + \tilde{N}_t(f) + N_t(f),$$

where $C_t(f)$ is a continuous process of locally bounded variation, $M_t^c(f)$ is a continuous L^2 -martingale with quadratic variation $\langle\langle M^c(f)\rangle\rangle_t$, and

$$\begin{split} \tilde{N}_t(f) &= \int_0^t \int_{\mathcal{M}^{\pm}} \langle \mu, f \rangle I(\|\mu\| < 1) \tilde{N}(ds, d\mu), \\ N_t(f) &= \int_0^t \int_{\mathcal{M}^{\pm}} \langle \mu, f \rangle I(\|\mu\| \ge 1) N(ds, d\mu) \end{split}$$

with the jump measure N of $\{Y_t\}$, its compensator \hat{N} and $\tilde{N} = N - \hat{N}$. If we set

$$B_{t}(f) = C_{t}(f) + \int_{0}^{t} \int_{\{\|\mu\| \ge 1\}} \langle \mu, f \rangle \hat{N}(ds, d\mu)$$
$$+ \lambda \int_{0}^{t} ds \int_{0}^{t} \langle \delta_{w_{n}(s)} - \delta_{w_{m}(s)}, f \rangle q(d(m, n)),$$

then by applying Ito's formula for $Z_t(f)$ we can get

$$\begin{split} -dB_{t}(f) + \frac{1}{2}d\langle\langle M^{c}(f)\rangle\rangle_{t} + \int [e^{-\langle\mu,f\rangle} - 1 + \langle\mu,f\rangle]\hat{N}(dt,d\mu) \\ &= -\Psi(Y_{t};f) dt \\ &= \left\{ -\langle Y_{t},Af\rangle + \langle Y_{t},\Gamma f\rangle + \lambda \int (e^{-\langle\delta_{w_{n}^{*}(t)} - \delta_{w_{m}^{*}(t)},f\rangle} - 1)q(d(m,n)) \right\} dt \\ &= \left\{ -\left[\langle Y_{t},Af\rangle + \lambda \int \langle\delta_{w_{n}^{*}(t)} - \delta_{w_{m}^{*}(t)},f\rangle q(d(m,n)) \right] + \langle Y_{t},\Gamma^{c}f\rangle \right. \\ &+ \langle Y_{t},\Gamma^{d}f\rangle + \lambda \int [e^{-\langle\delta_{w_{n}^{*}(t)} - \delta_{w_{m}^{*}(t)},f\rangle} - 1 + \langle\delta_{w_{n}^{*}(t)} - \delta_{w_{m}^{*}(t)},f\rangle]q(d(m,n)) \right\} dt \end{split}$$

Thus we have

$$B_{t}(f) = \int_{0}^{t} \langle Y_{s}, Af \rangle \, ds + \lambda \int \langle \delta_{w_{n}^{*}(t)} - \delta_{w_{m}^{*}(t)}, f \rangle q(d(m, n)),$$
$$\langle \langle M^{c}(f) \rangle \rangle_{t} = 2 \int_{0}^{t} \langle Y_{s}, \Gamma^{c} f \rangle \, ds = \int_{0}^{t} \langle Y_{s}, Q^{c} f \rangle \, ds$$

and

$$\begin{split} \hat{N}(ds, d\mu) &= ds \bigg\{ \int Y_s(dx) \bigg(\int v(x, dy) \delta_{(\delta_y - \delta_x)} + k(x) \delta_{-\delta_x} \bigg) \\ &+ \lambda \int q(d(m, n)) \delta_{(\delta_{w_n^*(s)} - \delta_{w_m^*(s)})} \bigg\} (d\mu). \end{split}$$

Therefore the proof is completed.

3. Martingale Problems for \mathcal{L}^Y

The following assumption is needed to prove the well-posedness of martingale problems.

Assumption 3. For each $f \in (C_c^{\infty})^+$, $AV_t f = -A \log(1 - P_t(1 - e^{-f}))$ is well-defined and $AV_t f$ is continuous in t under the norm $\|\cdot/g_1\|_{\infty}$, i.e.,

$$||(AV_t f - AV_{t_0} f)/g_1||_{\infty} \to 0 \quad (t \to t_0).$$

In the following we suppose that the generator A of the motion process has the form of (1.1).

For $\eta \in \mathcal{M}_{g_0}$, let $F(\eta) = \Phi(\langle \eta, f_1 \rangle, \dots, \langle \eta, f_n \rangle) \in \mathcal{D}_0 \stackrel{\text{def}}{\iff} \Phi(x) \in C^{\infty}(\mathbf{R}^n)$ is a polynomial growth function with polynomial growth derivatives of all orders and $f_i \in D_g$, $i = 1, \dots, n$. For this $F(\eta)$, the generator \mathcal{L}_0 of X_t will be extended to the following form:

$$\mathcal{L}_{0}F(\eta) = \sum_{i=1}^{n} \partial_{i}\Phi(\langle \eta, f_{1} \rangle, \dots, \langle \eta, f_{n} \rangle) \langle \eta, Af_{i} \rangle$$

$$+ \frac{1}{2} \sum_{i,j=1}^{n} \partial_{ij}^{2}\Phi(\langle \eta, f_{1} \rangle, \dots, \langle \eta, f_{n} \rangle) \langle \eta, Q^{c}(f_{i}, f_{j}) \rangle$$

$$+ \int_{S} \left\{ \int_{S \setminus \{x\}} v(x, dy) \left[\Phi(\langle \eta, f_{1} \rangle + f_{1}(y) - f_{1}(x), \dots, \langle \eta, f_{n} \rangle + f_{n}(y) - f_{n}(x)) - \Phi(\langle \eta, f_{1} \rangle, \dots, \langle \eta, f_{n} \rangle) \right] \right\}$$

$$- \sum_{i=1}^{n} \partial_{i}\Phi(\langle \eta, f_{1} \rangle, \dots, \langle \eta, f_{n} \rangle) \langle f_{i}(y) - f_{i}(x) \rangle \right]$$

$$+ k(x) \left[\Phi(\langle \eta, f_1 \rangle - f_1(x), \dots, \langle \eta, f_n \rangle - f_n(x)) \right.$$

$$\left. - \Phi(\langle \eta, f_1 \rangle, \dots, \langle \eta, f_n \rangle) \right.$$

$$\left. + \sum_{i=1}^n \partial_i \Phi(\langle \eta, f_1 \rangle, \dots, \langle \eta, f_n \rangle) f_i(x) \right] \right\} \eta(dx),$$

where

$$Q^{c}(f,g)(x) = \sum_{i,j} a^{ij}(x)\partial_{i}f(x)\partial_{i}g(x).$$

For $F(\eta) \in \mathcal{D}_0$, the generator \mathcal{L}^Y of Y_t will be extended to

$$\mathscr{L}^{Y}F(\eta) = \mathscr{L}_{0}F(\eta) + \lambda \int (\Theta_{m,n}F(\eta) - F(\eta))q(d(m,n)).$$

THEOREM 4 (Martingale Problem for $(\mathcal{L}^Y, \mathcal{D}_0, \mu)$). Under Assumption 1, 2 and 3, suppose that the generator A is given as in (1.1). Let $\mu \in \mathcal{M}_{g_0}$.

(i)
$$\mathbf{P}_{\mu}^{Y}(Y_0 = \mu) = 1$$
 holds and for each $F(\mu) = \Phi(\langle \mu, f_1 \rangle, \dots, \langle \mu, f_n \rangle) \in \mathcal{D}_0$,

$$M_t^F = F(Y_t) - F(Y_0) - \int_0^t \mathcal{L}^Y F(Y_s) ds$$
 is \mathbf{P}_{μ}^Y -martingale.

(ii) If there is a probability measure \mathbf{Q}_{μ} on $\mathbf{D} = \mathbf{D}([0, \infty) \to \mathcal{M}_{g_0})$ such that the canonical process $\tilde{\mathbf{Y}}_t(\omega) = \omega(t)$ ($\omega \in \mathbf{D}$) satisfies the same conditions as $(Y_t, \mathbf{P}_{\mu}^Y)$ in (i) and

$$\int_{0}^{t} \langle \tilde{Y}_{s}, g_{1} \rangle ds < \infty \quad \mathbf{Q}_{\mu}\text{-a.s. for all } t \geq 0,$$

then $\mathbf{Q}_{\mu} = \mathbf{P}_{\mu}^{Y} \circ Y^{-1}$ on \mathbf{D} , that is, martingale problem for $(\mathcal{L}^{Y}, \mathcal{D}_{0}, \mu)$ on \mathbf{D} is well-posed.

PROOF. The proof is essentially the same as the independent case (see § 5 in [2]). However, the computations are more complicated, so we give the outline of the proof. (i) is easily obtained. We show (ii). We always fix $f \in C_c^{\infty}$, T > 0, and set $\Psi_t^T(\eta) = \mathbf{T}_{T-t}(\exp{-\langle \cdot, V_{T-t}f \rangle})(\eta)$ $(0 \le t \le T, \eta \in \mathcal{M}_{g_0})$. It is no difficult to show that $\{\Psi_t^T(\tilde{Y}_t)\}_{t \le T}$ is a \mathbf{Q}_{μ} -martingale. In fact, by using Ito's formula

$$d(\exp{-\langle \tilde{Y}_t, f \rangle}) = -\langle \tilde{Y}_t, Af - \Gamma f \rangle e^{-\langle \tilde{Y}_t, f \rangle} dt$$
$$+ \lambda \int q(d(m, n))(\Theta_{m, n} - I)e^{-\langle \cdot, f \rangle}(\tilde{Y}_t) dt + d(\mathbf{Q}_{\mu}\text{-martingale}).$$

Since \mathbf{T}_t is a bounded operator, we have (set $v_t = v_t^T = V_{T-t}f$ again)

$$d(\mathbf{\Psi}_{t}^{T}(\tilde{\mathbf{Y}}_{t})) = \mathbf{T}_{T-t} \left(-\lambda \int q(d(m,n))(\mathbf{\Theta}_{m,n} - I)e^{-\langle \cdot, v_{t} \rangle} - \langle \cdot, \partial_{t}v_{t} \rangle e^{-\langle \cdot, v_{t} \rangle} \right)$$

$$- \langle \cdot, Av_{t} - \Gamma v_{t} \rangle e^{-\langle \cdot, v_{t} \rangle} + \lambda \int q(d(m,n))(\mathbf{\Theta}_{m,n} - I)e^{-\langle \cdot, v_{t} \rangle} \right) (\tilde{\mathbf{Y}}_{t}) dt$$

$$+ d(\mathbf{Q}_{\mu}\text{-martingale})$$

$$= \mathbf{T}_{T-t}(-\langle \cdot, \partial_{t}v_{t} + Av_{t} - \Gamma v_{t} \rangle e^{-\langle \cdot, v_{t} \rangle}) (\tilde{\mathbf{Y}}_{t}) + d(\mathbf{Q}_{\mu}\text{-martingale})$$

$$= d(\mathbf{Q}_{\mu}\text{-martingale})$$

Hence for $0 \le s < t \le T$, we have

$$\mathbf{Q}_{\mu}[\mathbf{\Psi}_{t}^{T}(\tilde{\mathbf{Y}}_{t}) \,|\, \mathscr{F}_{s}] = \mathbf{\Psi}_{s}^{T}(\tilde{\mathbf{Y}}_{s})$$

and set T = t, then

$$\mathbf{Q}_{\mu}[e^{-\langle \tilde{Y}_{t},f\rangle} \,|\, \mathscr{F}_{s}] = \mathbf{T}_{t-s}e^{-\langle \cdot,\, V_{t-s}f\rangle}(\, \tilde{Y}_{s}).$$

Therefore $\mathbf{P}_{\mu} = \mathbf{Q}_{\mu}$ on \mathbf{D} .

4. Multi-Dimensional Absorbing Stable Motions on a Half Space

In §3 of [2] as a motion process we considered absorbing Brownian motion and absorbing stable motion on $(0, \infty)$ and discussed the Hölder (right) continuities of $\{X_t\}$. It is possible to consider absorbing motions on $H = \mathbf{R}^{d-1} \times (0, \infty)$ and we can get the same results as in Theorem 3.1 and in Corollary 3.1 of [2]. For the absorbing Brownian motion, it is not so difficult and essentially done in [1]. So in this section we only discuss the absorbing stable motion on H.

For a function f on H, let \overline{f} be an extension of f to on \mathbf{R}^d defined as

$$\bar{f}(x) = \begin{cases} f(x) & (x_d > 0), \\ f(\tilde{x}, 0+) = 0 & (x_d = 0), \\ -f(\tilde{x}, -x_d) & (x_d < 0), \end{cases}$$

where $x = (\tilde{x}, x_d) \in H$. Note that if $x \in H$, then $\bar{f}(x) = f(x)$. The generator $A^- \equiv A^{-,\alpha}$ of absorbing α -stable motion $(w^-(t), P_x^-) \equiv (w^{-,\alpha}(t), P_x^{-,\alpha})$ on H is given as $A^{-,\alpha}f(x) = A^{\alpha}\bar{f}(x)$; $(A^-$ is the same as L^- in §4 of [1], however, in which we have some miss-prints)

$$(4.1) A^{-,\alpha}f(x) = c \int_{\mathbf{R}^{d}\setminus\{0\}} [\bar{f}(x+y) - \bar{f}(x) - \nabla \bar{f}(x) \cdot yI(|y| < 1)] \frac{dy}{|y|^{d+\alpha}}$$

$$= c \int_{\mathbf{R}^{d-1}} d\tilde{y} \int_{-x_d}^{x_d} [f(x+y) - f(x) - \nabla f(x) \cdot yI(|y| < 1)] \frac{dy_d}{|y|^{d+\alpha}}$$

$$+ c \int_{\mathbf{R}^{d-1}} d\tilde{y} \int_{x_d}^{\infty} [f(x+y) - f(\tilde{x} + \tilde{y}, y_d - x_d) - 2f(x)] \frac{dy_d}{|y|^{d+\alpha}}$$

with some positive constant c, where in the last term the integral corresponding to $\nabla f(x) \cdot y$ is equal to zero by the symmetric property (of course, it is integrable). We can also write that if $0 < \alpha < 1$, then

$$A^{-,\alpha}f(x) = c \int_{\mathbf{R}^{d}\setminus\{x\}} [\bar{f}(y) - \bar{f}(x)] \frac{dy}{|y - x|^{d + \alpha}}$$

$$= c \int_{\mathbf{R}^{d - 1}} d\tilde{y} \left\{ \int_{0}^{\infty} [f(y) - f(x)] K(x, y) \, dy_{d} - 2f(x) \int_{0}^{\infty} \frac{dy_{d}}{|(\tilde{y} - \tilde{x}, y_{d} + x_{d})|^{d + \alpha}} \right\},$$

$$= c \int_{\mathbf{R}^{d - 1}} d\tilde{y} \int_{0}^{\infty} [f(y) - f(x)] K(x, y) \, dy_{d} - f(x) k(x),$$

and that if $1 \le \alpha < 2$, then

$$\begin{split} A^{-,\alpha}f(x) &= c \int_{\mathbf{R}^d \backslash \{x\}} [\bar{f}(y) - \bar{f}(x) - \nabla \bar{f}(x) \cdot (y-x)I(|y-x| < 1)] \frac{dy}{|y-x|^{d+\alpha}} \\ &= c \int_{\mathbf{R}^{d-1}} d\tilde{y} \Biggl\{ \int_0^\infty [f(y) - f(x) - \nabla f(x) \cdot (y-x)I(|y-x| < 1)] K(x,y) \ dy_d \\ &+ \int_0^\infty [-2f(x) - \nabla f(x) \cdot (y-x)I(|y-x| < 1) \\ &- \nabla f(x) \cdot (\tilde{y} - \tilde{x}, -y_d - x_d)I(|(\tilde{y} - \tilde{x}, y_d + x_d)| < 1)] \\ &\times \frac{dy_d}{|(\tilde{y} - \tilde{x}, y_d + x_d)|^{d+\alpha}} \Biggr\} \end{split}$$

$$= c \int_{\mathbf{R}^{d-1}} d\tilde{y} \int_{0}^{\infty} [f(y) - f(x) - \nabla f(x) \cdot (y - x)I(|y - x| < 1)]K(x, y) dy_{d} - f(x)k(x) + \nabla f(x) \cdot c(x),$$

where

$$K(x, y) = \frac{I(y \neq x)}{|y - x|^{d + \alpha}} - \frac{1}{|(\tilde{y} - \tilde{x}, y_d + x_d)|^{d + \alpha}},$$
$$k(x) = k(x_d) = 2c \int_{\mathbf{R}^{d - 1}} d\tilde{y} \int_{x_d}^{\infty} \frac{dy_d}{|y|^{d + \alpha}}$$

and

$$\begin{split} c(x) &= c \int_{\mathbf{R}^{d-1}} d\tilde{y} \int_{0}^{\infty} \left[-(\tilde{y} - \tilde{x}, -y_{d} - x_{d}) I(|(\tilde{y} - \tilde{x}, y_{d} + x_{d})| < 1) \right. \\ & \left. - (y - x) I(|y - x| < 1) \right] \frac{dy_{d}}{|(\tilde{y} - \tilde{x}, y_{d} + x_{d})|^{d+\alpha}} \\ &= c \int_{\mathbf{R}^{d-1}} d\tilde{y} \int_{0}^{\infty} \left[(\tilde{y}, y_{d} + x_{d}) I(|(\tilde{y}, y_{d} + x_{d})| < 1) \right. \\ & \left. - (\tilde{y}, y_{d} - x_{d}) I(|(\tilde{y}, y_{d} - x_{d})| < 1) \right] \frac{dy_{d}}{|(\tilde{y}, y_{d} + x_{d})|^{d+\alpha}}. \end{split}$$

Let $h_0(v)$ be a C^{∞} -function on $(0, \infty)$ such that $0 < h_0 \le 1$ on $(0, \infty)$, $h_0(v) = v$ for $v \in (0, 1/2]$ and $h_0(v) = 1$ for $v \ge 1$. Let $d . Set <math>g_p(x) = (1 + |x|^2)^{-p/2}$ and $g_{p,0}(x) := g_p(x)h_0(x_d)$ for $x \in H$. Let $f \in C_p \stackrel{\text{def}}{\Longleftrightarrow} f \in C(\mathbf{R}^d)|_H$; $||f/g_p||_{\infty} < \infty$. $f \in C_{p,0} \stackrel{\text{def}}{\Longleftrightarrow} f \in C(\mathbf{R}^d)|_H$; $||f/g_{p,0}|| < \infty$. Moreover set

$$\begin{split} f \in C^3_{p,0} & \stackrel{\text{def}}{\Longleftrightarrow} f \in C^3_b(\mathbf{R}^d)|_H; \\ & \text{for } i,j \neq d,\, f, \, \partial^2_d f, \, \partial_i f, \, \partial^2_{ij} f \in C_{p,0} \ \text{ and } \ \partial_d f, \, \partial^2_{id} f \in C_p. \end{split}$$

Then we can take $D_g = C_{p,0}^3$.

Moreover for each $0 < \alpha < 2$, $Q^- f \equiv Q^{-,\alpha} f = Af^2 - fAf$ is given by the following formula:

$$(4.2) Q^{-,\alpha}f(x) = c \int_{\mathbf{R}^{d-1}} d\tilde{y} \int_{-x_d}^{x_d} [f(x+y) - f(x)]^2 \frac{dy_d}{|y|^{d+\alpha}}$$
$$+ c \int_{\mathbf{R}^{d-1}} d\tilde{y} \int_{x_d}^{\infty} [\{f(x+y) - f(\tilde{y} + \tilde{x}, y_d - x_d)\}$$

$$\{f(x+y) + f(\tilde{y} + \tilde{x}, y_d - x_d) - 2f(x)\} + 2f(x)^2 \frac{dy_d}{|y|^{d+\alpha}}$$

$$= c \int_{\mathbf{P}^{d-1}} d\tilde{y} \int_0^\infty [f(y) - f(x)] K(x, y) dy_d + f(x)^2 k(x).$$

Theorem 5. Let $d \ge 1$, $d , <math>\mu \in \mathcal{M}_{g_{p,0}}$ and let the motion process be absorbing α -stable motion on H with $0 < \alpha < 2$. Let $\varepsilon > 0$ denote an arbitrary small number.

- (i) For (X_t, \mathbf{P}_{μ}) the following holds.
 - (a) Under \mathbf{P}_{μ} , $\{\langle X_t, g_{p,0} \rangle\}$ is $(1/(2(\alpha \vee 1)) \varepsilon)$ -Hölder right continuous at t = 0. Moreover in case of $1 < \alpha < 2$, if $\langle \mu, g_1 \rangle < \infty$ with $g_1(x) = g_p(x)h_0(x_d)^{2-\alpha}$, then $\{\langle X_t, g_{p,0} \rangle\}$ is $(1/2 \varepsilon)$ -Hölder right continuous at t = 0.
 - (b) If $t_0 > 0$, then under \mathbf{P}_{μ} , $\{\langle X_t, g_{p,0} \rangle\}$ is $(1/2 \varepsilon)$ -Hölder right continuous at $t = t_0$ for every $0 < \alpha < 2$.
- (ii) For $(Y_t, \mathbf{P}_{\mu}^Y)$ the same results hold as above.

PROOF. Let $d \ge 2$. The proof is proceeded in the same way as the case of d=1. It suffices to check that the conditions in Assumption 1 and 2 are fulfilled with $g_0=g_{p,0}$ and with suitable $g_1 \in C^{\infty}$, $0 \le \gamma < 1$ as follows. Let $h_1 \in C^{\infty}$; $0 < h_1 \le 1$, $h_1(v) = v \log(1/v)$ for $v \in (0, 1/e]$ and $h_1(v) = 1$ for $v \ge 1$.

- (i) If $0 < \alpha < 1$, then $g_1(x) = g_{p,0}(x)$, $\gamma = 0$.
- (ii) If $\alpha = 1$, then $g_1(x) = g_n(x)h_1(x_d)$, $\gamma = \delta$ for any small $0 < \delta < 1$.
- (iii) If $1 < \alpha < 2$, then $g_1(x) = g_p(x)h_0(x_d)^{2-\alpha}$, $\gamma = 1 1/\alpha$.

Note that as $x_d \downarrow 0$,

$$g_1(x) \sim x_d \ (0 < \alpha < 1), \quad \sim x_d \log(1/x_d) \ (\alpha = 1), \quad \sim x_d^{2-\alpha} \ (1 < \alpha < 2).$$

For simplicity of the notations we omit the superscript " α " as $P_t^{-,\alpha} = P_t^-$, $A^{-,\alpha} = A^-$. We shall show the following. Since they imply $\|g_{p,0}P_t^-g_1\|_{\infty} \leq Ct^{-\gamma}$, we can get the $((1-\gamma)/2-\epsilon)$ -Hölder right continuity.

(C1) $C_{p,0}^3 \subset \mathcal{D}(A^-)$, $P_t^- C_c^\infty \subset C_{p,0}^3$ for every $t \ge 0$, $\sup_{t \ge 0, 0 < x_d \le 1} |x_d^{-1} P_t^- g_{p,0}(x)| < \infty$ and $A^- C_{p,0}^3 \subset C_{p,0}$ (these imply Assumption 1 and that $C_{p,0}^3$ is a core).

- (C2) For every $f \in C_{p,0}^3$, $\partial_t P_t^- f^2(x) = A^- P_t^- f^2(x) = P_t^- A^- f^2(x)$ $(x \in H)$, $A^- f^2 \in C_b$ and $\|g_1^{-1} Q^- f\|_{\infty} < \infty$ (these imply (i) of Assumption 2).
- (C3) For each $0 < \beta \le 1$, $\sup_{t \ge 0} P_t^-(y_d^\beta)(x) \le 2(1+\beta)x_d^\beta$ for all $x \in H$ (this implies (ii) of Assumption 2).
- (C4) For each $0 < \beta \le 1$, $\sup_{0 < x_d \le 1} x_d^{-1} P_t^-(y_d^\beta)(x) \le C_\beta t^{-(1-\beta)/\alpha}$ with a constant $C_\beta > 0$ depending only on β (this implies (iii), (iv) of Assumption 2).

Note that we take $\gamma=(1-\beta)/\alpha$ in Assumption 2. More exactly, if $0<\alpha<1$, then $\beta=1$, i.e., $\gamma=0$. If $\alpha=1$, then $\beta=1-\delta$ for any small $0<\delta<1$, i.e., $\gamma=\delta$. If $1<\alpha<2$, then $\beta=2-\alpha$, i.e., $\gamma=1-1/\alpha$. (C3) and (C4) can be shown in a way similar to the case of d=1; (B3) and (B4) in [2] by using the following. For the density $p^{\alpha}(x)$ of the rotation invariant α -stable motion on \mathbf{R}^d starting from 0, $p_t^{\alpha}(x)=t^{-d/\alpha}p_1^{\alpha}(t^{-1/\alpha}x)$ and $p_1^{\alpha}(x)\leq C(1\wedge|x|^{-d-\alpha})$. The transition density $p_t^{-}(x,y)\equiv p_t^{-,\alpha}(x,y)$ of absorbing α -stable motion on H is given as

$$p_t^-(x,y) = p_t^{\alpha}(y-x) - p_t^{\alpha}(\tilde{y}-\tilde{x},y_d+x_d) = -\int_{-x_d}^{x_d} \partial_d p_t^{\alpha}(\tilde{y}-\tilde{x},y_d+v) \ dv.$$

We also use the following result.

$$\int_{H} z_{d}^{\beta-1} p_{1}^{\alpha}(\tilde{z}, z_{d} + u) dz \text{ is bounded in } u \in \mathbf{R}.$$

From these results we can get (C3), (C4).

In each (C1), (C2), the claims except the last one can be shown by the same way as in d=1. In order to show the last claims of (C1), (C2), it is enough to prove that for each $f \in C_{p,0}^3$, there is a constant C>0 such that

$$|A^-f(x)| \le Cx_d$$
 for $0 < x_d \le 1/2$ and $Q^-f(x) \le Cg_1(x)$ for all $x \in H$.

Let $0 < x_d \le 1/2$. For A^- we use the formula (4.1). In the following we decompose as $A^-f = (J_{1,1} + J_{1,2}) + (J_2 + J_3)$ and we shall show each term has order of x_d^2 , x_d , x_d , respectively. The main calculus is of $J_{1,2}$ ($1 < \alpha < 2$) and J_3 . In the first term of (4.1) we divide the integral area to $\{|y| \ge 1\}$, $\{|y| < 1\}$ and denote the corresponding terms by $J_{1,1}(x)$, $J_{1,2}(x)$ respectively. In the following we use the same symbols C', C'' as any positive finite constants which are independent of x. First note that if $|y| \ge 1$ and $|y_d| \le x_d \le 1/2$, then $|\tilde{y}|^2 \ge 1 - x_d^2 \ge 3/4 =: b$. By $|f(x)| \le Cx_d$,

$$|J_{1,1}(x)| = \left| c \int_{\mathbf{R}^{d-1}} d\tilde{y} \int_{-x_d}^{x_d} [f(x+y) - f(x)] I(|y| \ge 1) \frac{dy_d}{|y|^{d+\alpha}} \right|$$

$$\le 2c \int_{|\tilde{y}| \ge b} d\tilde{y} \int_{0}^{x_d} C(2x_d + y_d) \frac{dy_d}{|y|^{d+\alpha}}$$

$$\le 2cC \int_{|\tilde{y}| \ge b} \frac{d\tilde{y}}{|\tilde{y}|^{d+\alpha}} \int_{0}^{x_d} (2x_d + y_d) dy_d$$

$$\le 2cC \int_{b}^{\infty} \frac{dr}{r^{2+\alpha}} \int_{0}^{x_d} (2x_d + y_d) dy_d$$

$$= \frac{5cC}{1+\alpha} b^{-1-\alpha} x_d^2 = C' x_d^2.$$

Next note that if |y| < 1, then $|\tilde{y}| < 1$ and that for some $\theta \in (0, 1)$,

$$|f(x+y) - f(x) - \nabla f(x) \cdot y| = \frac{1}{2} |f^{(2)}(x+\theta y) \cdot y^2| \le \frac{1}{2} ||f^{(2)}||_{\infty} |y|^2.$$

If $0 < \alpha < 1$, then $|y|^{d-2+\alpha} \ge |\tilde{y}|^{d-2+\alpha}$ by $d-2+\alpha > 0$, and

$$|J_{1,2}(x)| = \left| c \int_{\mathbf{R}^{d-1}} d\tilde{y} \int_{-x_d}^{x_d} [f(x+y) - f(x) - \nabla f(x) \cdot y] I(|y| < 1) \frac{dy_d}{|y|^{d+\alpha}} \right|$$

$$\leq c \int_{|\tilde{y}| < 1} d\tilde{y} \int_{-x_d}^{x_d} |f(x+y) - f(x) - \nabla f(x) \cdot y| \frac{dy_d}{|y|^{d+\alpha}}$$

$$\leq c \int_{|\tilde{y}| < 1} d\tilde{y} \int_{0}^{x_d} ||f^{(2)}||_{\infty} |y|^2 \frac{dy_d}{|y|^{d+\alpha}}$$

$$\leq c \int_{|\tilde{y}| < 1} \frac{d\tilde{y}}{|\tilde{y}|^{d+\alpha-2}} ||f^{(2)}||_{\infty} x_d$$

$$\leq c \int_{0}^{1} r^{-\alpha} dr ||f^{(2)}||_{\infty} x_d$$

$$= \frac{c ||f^{(2)}||_{\infty}}{1-\alpha} x_d. = C' x_d.$$

On the other hand if $1 \le \alpha < 2$, then by using

$$f(x+y) - f(x) - \nabla f(x) \cdot y = \frac{1}{2}f^{(2)}(x) \cdot y^2 + \frac{1}{6}f^{(3)}(x+\theta y) \cdot y^3$$

with some $\theta \in (0, 1)$, and the corresponding integral to $\sum_{i=1}^{d-1} \hat{\sigma}_{id}^2 f(x) y_i y_d$ is equal to zero by symmetric property in y_d , we have

$$|J_{1,2}(x)| \le c \int_{|\tilde{y}| < 1} d\tilde{y} \int_0^{x_d} \left\{ \sum_{i,j=1}^{d-1} |\partial_{ij}^2 f(x)| |y_i| |y_j| + |\partial_d^2 f(x)| y_d^2 + \frac{1}{3} ||f^{(3)}|| |y|^3 \right\} \frac{dy_d}{|y|^{d+\alpha}}.$$

Let $0 < \epsilon < 2 - \alpha$ and set $\alpha_{\epsilon} := \alpha + \epsilon \in (1,2)$, then $|y|^{d+\alpha-2} \ge |\tilde{y}|^{d-1-\epsilon} |y_d|^{-1+\alpha_{\epsilon}}$. By $|\partial_{ij}^2 f(x)|, |\partial_d^2 f(x)| \le Cx_d$ for $i, j \ne d$, corresponding terms to $f^{(2)}$ are less than or equal to

$$Cx_d \int_{|\tilde{y}|<1} \frac{d\tilde{y}}{|\tilde{y}|^{d-1-\epsilon}} \int_0^{x_d} \frac{dy_d}{y_d^{-1+\alpha_{\epsilon}}} = Cx_d \int_0^1 r^{\epsilon-1} dr \frac{x_d^{2-\alpha_{\epsilon}}}{2-\alpha_{\epsilon}} = \frac{C}{(2-\alpha_{\epsilon})\epsilon} x_d^{3-\alpha_{\epsilon}}.$$

For the last term, by $d \ge 2$, $\alpha \ge 1$, i.e., $d + \alpha - 3 \ge 0$, we have $|y|^{d+\alpha-3} \ge |\tilde{y}|^{d+\alpha-3}$. Hence the last term is less than or equal to

$$\int_{|\tilde{y}|<1} \frac{d\tilde{y}}{|\tilde{y}|^{d+\alpha-3}} \|f^{(3)}\|_{\infty} x_d = \int_0^1 r^{1-\alpha} dr \|f^{(3)}\|_{\infty} x_d = \frac{\|f^{(3)}\|_{\infty}}{2-\alpha} x_d.$$

These estimates imply $|J_{1,2}(x)| \le C'x_d$. In the second term of (4.1) we also divide the integral area to $\{|y| \ge 1\}$, $\{|y| < 1\}$ and denote the corresponding terms by $J_2(x)$, $J_3(x)$ respectively. For $J_2(x)$, by

$$|f(x+y)-f(\tilde{y}+\tilde{x},y_d-x_d)|\leq 2x_d\|\partial_d f\|_{\infty}$$

and $|f(x)| \le Cx_d$, we have

$$|J_{2}(x)| = \left| c \int_{\mathbf{R}^{d-1}} d\tilde{y} \int_{x_{d}}^{\infty} [f(x+y) - f(\tilde{x}+\tilde{y}, y_{d}-x_{d}) - 2f(x)] I(|y| \ge 1) \frac{dy_{d}}{|y|^{d+\alpha}} \right|$$

$$\le c \int_{H} 2(\|\hat{\partial}_{d}f\|_{\infty} + C) x_{d} I(|y| \ge 1) \frac{dy}{|y|^{d+\alpha}}$$

$$\le C' x_{d} \int_{|y| \ge 1} \frac{dy}{|y|^{d+\alpha}} = C'' x_{d}.$$

For
$$J_3(x) = c \int_{\mathbf{R}^{d-1}} d\tilde{y} \int_{x_d}^{\infty} [f(x+y) - f(\tilde{y} + \tilde{x}, y_d - x_d) - 2f(x)] I(|y| < 1) \frac{dy_d}{|y|^{d+\alpha}},$$

$$f(x+y) - f(\tilde{x} + \tilde{y}, y_d - x_d) - 2f(x)$$

$$= [f(x+y) - f(\tilde{x} + \tilde{y}, y_d - x_d) - 2f(\tilde{x} + \tilde{y}, x_d)] - 2[f(\tilde{x} + \tilde{y}, x_d) - f(x)].$$

For the first term, by the same way as in case of d = 1 (in $J_3(x)$) corresponding to the variable y_d , we have

$$|f(x+y) - f(\tilde{x} + \tilde{y}, y_d - x_d) - 2f(x)|$$

$$\leq 2\|\hat{\sigma}_d^3 f\|_{\infty} x_d (y_d^2 + x_d^2) + C(y_d + x_d) x_d y_d + 2Cx_d^3.$$

For the second term, note that

$$f(\tilde{x} + \tilde{y}, x_d) - f(x) = \sum_{i=1}^{d-1} \partial_i f(\tilde{x}, x_d) y_i + \frac{1}{2} \sum_{i,j=1}^{d-1} \partial_{ij}^2 f(\tilde{x} + \theta \tilde{y}, x_d) y_i y_j.$$

and $|\partial_{ij}^2 f(\tilde{x} + \theta \tilde{y}, x_d)| \le Cx_d$ for $i, j \le d$. Moreover note that by the symmetric property in y_i we have

$$\int_{\mathbf{R}^{d-1}} d\tilde{y} \int_{x_d}^{\infty} \sum_{i=1}^{d-1} \hat{\sigma}_i f(\tilde{x}, x_d) y_i I(|y| < 1) \frac{dy_d}{|y|^{d+\alpha}}$$

$$= \sum_{i=1}^{d-1} \hat{\sigma}_i f(\tilde{x}, x_d) \int_{x_d}^{1} dy_d \int_{|\tilde{y}| < \sqrt{1 - y_d^2}} \frac{y_i d\tilde{y}}{|y|^{d+\alpha}} = 0.$$

Let $0 < \epsilon < 2 - \alpha$ and set $\alpha_{\epsilon} := \alpha + \epsilon \in (0, 2)$, then $|y|^{d+\alpha} \ge |\tilde{y}|^{d-1-\epsilon} |y_d|^{1+\alpha_{\epsilon}}$ by $d \ge 2$. Thus we can get the following: by $x_d \le y_d$,

$$\begin{split} |J_{3}(x)| &\leq c \int_{|\tilde{y}| < 1} d\tilde{y} \int_{x_{d}}^{1} [2 \| \hat{o}_{d}^{3} f \|_{\infty} x_{d} (y_{d}^{2} + x_{d}^{2}) + C(y_{d} + x_{d}) x_{d} y_{d} + 2C x_{d}^{3}] \frac{dy_{d}}{|y|^{d + \alpha}} \\ &+ c \int_{|\tilde{y}| < 1} d\tilde{y} \int_{x_{d}}^{1} \frac{1}{2} \sum_{i,j=1}^{d-1} |\hat{o}_{ij}^{2} f(\tilde{x} + \theta \tilde{y}, x_{d}) y_{i} y_{j} | \frac{dy_{d}}{y_{d}^{d + \alpha}} \\ &\leq C' x_{d} \int_{|\tilde{y}| < 1} \frac{d\tilde{y}}{|\tilde{y}|^{d - 1 - \epsilon}} \int_{x_{d}}^{1} (y_{d}^{2} + x_{d} y_{d} + x_{d}^{2}) \frac{dy_{d}}{y_{d}^{1 + \alpha_{\epsilon}}} \\ &+ c \int_{|\tilde{y}| < 1} \frac{1}{2} C x_{d} |\tilde{y}|^{2} d\tilde{y} \int_{0}^{1} \frac{dy_{d}}{|y|^{d + \alpha}} \\ &\leq 3C' x_{d} \frac{1}{\epsilon} \int_{0}^{1} y_{d}^{1 - \alpha_{\epsilon}} dy_{d} + \frac{cC}{2} x_{d} \int_{|\tilde{y}| < 1} d\tilde{y} |\tilde{y}|^{2} \int_{0}^{1} \frac{dy_{d}}{|y|^{d + \alpha}}. \end{split}$$

For the second term if $0 < \alpha < 1$, then by $\left|y\right|^{d+\alpha} \ge \left|\tilde{y}\right|^d y_d^{\alpha}$,

$$\int_{|\tilde{y}|<1} d\tilde{y} |\tilde{y}|^2 \int_0^1 \frac{dy_d}{|y|^{d+\alpha}} \leq \int_{|\tilde{y}|<1} \frac{|\tilde{y}|^2}{|\tilde{y}|^d} d\tilde{y} \int_0^1 \frac{dy_d}{y_d^{\alpha}} = \frac{1}{1-\alpha},$$

or if $1 \le \alpha < 2$, then by $|y|^{d+\alpha} \ge |\tilde{y}|^{d+1-\epsilon} y_d^{\alpha_\epsilon - 1}$,

$$\int_{|\tilde{y}|<1} d\tilde{y} |\tilde{y}|^2 \int_0^1 \frac{dy_d}{|y|^{d+\alpha}} \leq \int_{|\tilde{y}|<1} \frac{|\tilde{y}|^2}{|\tilde{y}|^{d+1-\epsilon}} \, d\tilde{y} \int_0^1 \frac{dy_d}{y_d^{\alpha_{\epsilon}-1}} = \frac{1}{\epsilon(2-\alpha_{\epsilon})}.$$

Therefore

$$|J_3(x)| \le \begin{cases} \left(\frac{3C'}{\epsilon(2-\alpha_{\epsilon})} + \frac{cC}{2(1-\alpha)}\right) x_d & (0 < \alpha < 1) \\ \frac{6C' + cC}{2\epsilon(2-\alpha_{\epsilon})} x_d & (1 \le \alpha < 2) \end{cases}$$
$$= C'' x_d.$$

Therefore we have $|A^-f(x)| \le C''x_d$.

Next in order to show $Q^-f(x) \leq Cg_1(x)$, it suffices to prove that there is a constant C>0 such that for $0 < x_d \leq 1$, if $0 < \alpha < 1$, then $Q^-f(x) \leq Cx_d$, if $\alpha=1$, then $Q^-f(x) \leq Cx_d \log(1/x_d)$ if $1 < \alpha < 2$, then $Q^-f(x) \leq Cx_d^{2-\alpha}$. We use the first formula of (4.2). In the following we decompose as $Q^-f = (R_1 + R_2) + (S_1 + S_2)$ and we shall show each R_1 , R_2 , S_1 has order of x_d^3 , $x_d^{2-\alpha}$, x_d respectively, and the main parts is S_2 . In the first term of the right hand side of (4.2), we divide the integral area of \mathbf{R}^{d-1} to $\{|\tilde{y}| \geq 1\}$, $\{|\tilde{y}| < 1\}$ and denote the corresponding terms by $R_1(x)$, $R_2(x)$ respectively. By $f(x) \leq Cx_d$, we have

$$R_{1}(x) = c \int_{|\tilde{y}| \ge 1} d\tilde{y} \int_{-x_{d}}^{x_{d}} [f(x+y) - f(x)]^{2} \frac{dy_{d}}{|y|^{d+\alpha}}$$

$$\le 2c \int_{|\tilde{y}| \ge 1} \frac{d\tilde{y}}{|\tilde{y}|^{d+\alpha}} \int_{0}^{x_{d}} C^{2} (2x_{d} + y_{d})^{2} dy_{d}$$

$$= Cx_{d}^{3}$$

For R_2 , by $|\partial_i f(x)| \le Cx_d$ if $i \ne d$,

$$R_{2}(x) = 2c \int_{|\tilde{y}|<1} d\tilde{y} \int_{0}^{x_{d}} [f(x+y) - f(x)]^{2} \frac{dy_{d}}{|y|^{d+\alpha}}$$

$$\leq 2c \int_{|\tilde{y}|<1} d\tilde{y} \int_{0}^{x_{d}} \left[C(x_{d} + y_{d}) \sum_{i=1}^{d-1} y_{i} + \|\partial_{d} f\|_{\infty} y_{d} \right]^{2} \frac{dy_{d}}{|y|^{d+\alpha}}$$

$$\leq C \int_{|\tilde{y}|<1} d\tilde{y} \int_{0}^{x_{d}} [(x_{d}^{2} + y_{d}^{2})|\tilde{y}|^{2} + y_{d}^{2}] \frac{dy_{d}}{|y|^{d+\alpha}}$$

In the above we first consider the last term (which is the main term), i.e.,

$$\int_{|\tilde{y}|<1} d\tilde{y} \int_0^{x_d} y_d^2 \frac{dy_d}{|y|^{d+\alpha}} = \int_0^{x_d} dy_d y_d^2 \left(\int_{|\tilde{y}|$$

For $R_{2,1}$, let $\alpha_{\epsilon} = \alpha + \epsilon < 2$ be the same as before. By $|y|^{d+\alpha} \ge |\tilde{y}|^{d-1-\epsilon} |y_d|^{1+\alpha_{\epsilon}}$

$$\int_{|\tilde{y}| < y_d} \frac{d\tilde{y}}{|\tilde{y}|^{d-1-\epsilon}} = \int_0^{y_d} r^{\epsilon-1} dr = \frac{y_d^{\epsilon}}{\epsilon}.$$

Hence

$$R_{2,1}(x) \le \int_0^{x_d} \frac{y_d^2}{y_d^{1+\alpha+\epsilon}} \frac{y_d^{\epsilon}}{\epsilon} \, dy_d = \frac{1}{\epsilon} \int_0^{x_d} y_d^{1-\alpha} \, dy_d = \frac{1}{(2-\alpha)\epsilon} x_d^{2-\alpha}.$$

For $R_{2,2}$, by $|y|^{d+\alpha} \ge |\tilde{y}|^{d+\alpha}$ and

$$\int_{|y_d| \leq |\tilde{y}| < 1} \frac{d\tilde{y}}{|\tilde{y}|^{d+\alpha}} = \int_{|y_d|}^1 \frac{dr}{r^{2+\alpha}} = \frac{1}{1+\alpha} (y_d^{-1-\alpha} - 1) \leq \frac{1}{1+\alpha} y_d^{-1-\alpha}.$$

Hence

$$R_{2,2}(x) \le \int_0^{x_d} y_d^2 \frac{1}{1+\alpha} y_d^{-1-\alpha} dy_d = \frac{1}{1+\alpha} \int_0^{x_d} y_d^{1-\alpha} dy_d = \frac{1}{(1+\alpha)(2-\alpha)} x_d^{2-\alpha}.$$

Furthermore we can show more easily that the other terms of R_2 are $o(x_d^2)$, In fact, by $|y|^{d+\alpha} \ge |\tilde{y}|^{d-1+\alpha_\epsilon}|y_d|^{1-\epsilon}$,

$$\int_{|\tilde{y}|<1} d\tilde{y} \int_0^{x_d} (x_d^2 + y_d^2) |\tilde{y}|^2 \frac{dy_d}{|y|^{d+\alpha}} \le \int_{|\tilde{y}|<1} \frac{|\tilde{y}|^2}{|\tilde{y}|^{d-1+\alpha_{\epsilon}}} d\tilde{y} \int_0^{x_d} (x_d^2 + y_d^2) \frac{dy_d}{y_d^{1-\epsilon}} = Cx_d^{2+\epsilon}.$$

Therefore we have $R_2(x) \le Cx_d^{2-\alpha}$ for all $0 < \alpha < 2$.

In the second term of the right hand side of (4.2), we divide the integral area to $\{|y| \ge 1\}$, $\{|y| < 1\}$ and denote the corresponding terms by $S_1(x)$, $S_2(x)$ respectively. For S_1 , by

$$(4.3) |f(x+y) - f(\tilde{y} + \tilde{x}, y_d - x_d)| \le 2x_d ||\partial_d f||_{\infty},$$

we have

$$S_1(x) \le (2x_d \|\hat{\partial}_d f\|_{\infty} \cdot 3\|f\|_{\infty} + 2Cx_d^2) \int_{|y| \ge 1} \frac{dy_d}{|y|^{d+\alpha}} \le Cx_d.$$

For S_2 , by (4.3) and by $|f(x)| \le Cx_d$,

$$\begin{aligned} &|\{f(x+y) - f(\tilde{y} + \tilde{x}, y_d - x_d)\}\{f(x+y) + f(\tilde{y} + \tilde{x}, y_d - x_d) - 2f(x)\} + 2f(x)^2|\\ &\leq 2\|\partial_d f\|_{\infty} x_d \cdot C(x_d + y_d) + 2Cx_d^2\\ &\leq Cx_d(x_d + y_d). \end{aligned}$$

Hence, noting that $\{|y| < 1\} \subset \{|\tilde{y}| < 1\} \times \{|y_d| < 1\},\$

$$|S_2(x)| \le Cx_d \int_{|\tilde{y}| < 1} d\tilde{y} \int_{x_d}^1 (x_d + y_d) \frac{dy_d}{|y|^{d+\alpha}} \le 2Cx_d \int_{|\tilde{y}| < 1} d\tilde{y} \int_{x_d}^1 y_d \frac{dy_d}{|y|^{d+\alpha}}.$$

By the same way as in R_2 , we can show the desired estimate as follows. Let

$$\int_{x_d}^1 dy_d y_d \left(\int_{|\tilde{y}| < y_d} + \int_{y_d \le |\tilde{y}| < 1} \right) \frac{d\tilde{y}}{|y|^{d+\alpha}} =: (S_{2,1}(x) + S_{2,2}(x)).$$

Then $|S_2(x)| \le Cx_d(S_{2,1}(x) + S_{2,2}(x))$. Let $0 < \epsilon < 2 - \alpha$. By $|y|^{d+\alpha} \ge |\tilde{y}|^{d-1-\epsilon}|y_d|^{1+\alpha_\epsilon}$,

$$S_{2,1}(x) \le \int_{x_d}^1 \frac{dy_d}{y_d^{1+\alpha_{\epsilon}}} y_d \int_{|\tilde{y}| < y_d} \frac{d\tilde{y}}{|\tilde{y}|^{d-1+\epsilon}} = \int_{x_d}^1 \frac{dy_d}{y_d^{\alpha+\epsilon}} \frac{y_d^{\epsilon}}{\epsilon} = \frac{1}{\epsilon} \int_{x_d}^1 \frac{dy_d}{y_d^{\alpha}}.$$

That is, if $0 < \alpha < 1$, then $S_{2,1}(x) \le C$, if $\alpha = 1$, then $S_{2,1}(x) \le C \log(1/x_d)$, if $0 < \alpha < 1$, then $S_{2,1}(x) \le C x_d^{1-\alpha}$. Moreover for $S_{2,2}$, as in $R_{2,2}$, by $\int_{V_d < |\tilde{Y}| < 1} d\tilde{Y}/|\tilde{Y}|^{d+\alpha} \le y_d^{-1-\alpha}/(1+\alpha)$,

$$S_{2,2}(x) \le \int_{x_d}^1 dy_d y_d \int_{y_d < |\tilde{y}| < 1} \frac{d\tilde{y}}{|\tilde{y}|^{d+\alpha}} \le \int_{x_d}^1 y_d \frac{1}{1+\alpha} y_d^{-1-\alpha} dy_d = \frac{1}{1+\alpha} \int_{x_d}^1 y_d^{-\alpha} dy_d.$$

Thus $S_{2,2}$ satisfies the same estimates as $S_{2,1}$. By $|S_2(x)| \le Cx_d(S_{2,1}(x) + S_{2,2}(x))$, we have if $0 < \alpha < 1$, then $S_2(x) \le Cx_d$, if $\alpha = 1$, then $S_2(x) \le Cx_d \log(1/x_d)$ if $1 < \alpha < 2$, then $S_2(x) \le Cx_d^{2-\alpha}$. These imply our desired result.

By $P_t^- C_c^{\infty} \subset C_{p,0}^3$, the following result for martingale problem is obtained by the same way as in d = 1.

THEOREM 6. Let $\mu \in \mathcal{M}_{g_{p,0}}$. The martingale problems for $(\mathcal{L}_0, \mathcal{D}_0, \mu)$, $(\mathcal{L}^Y, \mathcal{D}_0, \mu)$ associated with absorbing stable motion on H are well-posed.

Acknowledgment

The author would like to be grateful to the referee for his suggestions and comments.

References

- [1] S. Hiraba, Infinite Markov particle systems with singular immigration; Martingale problems and limit theorems, Osaka J. Math. 33 (1996), 145–187.
- [2] S. Hiraba, Independent infinite Markov particle systems with jumps, Theory Stoch. Process. **18 (34)** (2012), 65–85.

Department of Mathematics
Faculty of Science and Technology
Tokyo University of Science
2641 Yamazaki, Noda City
Chiba 278-8510, Japan
E-mail: hiraba_seiji@ma.noda.tus.ac.jp