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WEIERSTRASS GAP SEQUENCES AT POINTS

OF CURVES ON SOME RATIONAL SURFACES

By

Jiryo Komeda* and Akira Ohbuchi**

Abstract. Let ~CC be a non-singular plane curve of degree df 8 with

an involution s over an algebraically closed field of characteristic 0

and ~PP a point of ~CC fixed by s. Let p : ~CC ! C ¼ ~CC=hsi be the

double covering. We set P ¼ pð ~PPÞ. When the intersection multiplicity

at ~PP of the curve ~CC and the tangent line at ~PP is equal to d � 3 or

d � 4, we determine the Weierstrass gap sequence at P on C using

blowing-ups and blowing-downs of some rational surfaces.

1. Introduction

Let C be a complete non-singular irreducible curve of genus g over an

algebraically closed field k of charcteristic 0, which is called a curve in this paper.

For a pointed curve ðC;PÞ we define

HðPÞ ¼ fa A N0 j there exists f A kðCÞ with ð f Þy ¼ aPg;

which is called the Weierstrass semigroup of P where N0, kðCÞ and ð f Þy denote

the additive monoid of non-negative integers, the field of rational functions on

C and the divisor of poles of f respectively. Let fl1 < l2 < � � � < lgg be the

complement N0nHðPÞ of HðPÞ in N0 where g is the genus of C. The sequence

l1; l2; . . . ; lg is called the Weierstrass gap sequence at P.

Let ~CC be a plane curve of degree d. Here, we note again that a plane curve is

non-singular in this paper. For a point ~PP of ~CC we denote by T ~PP the tangent line

*The author is partially supported by Grant-in-Aid for Scientific Research (21540052), Japan Society

for the Promotion Science.

**The author is partially supported by Grant-in-Aid for Scientific Research (21540043), Japan Society

for the Promotion Science.

2010 Mathematics Subject Classification: 14H55, 14H50, 14H30, 14J26.

Key words and phrases: Weierstrass gap sequence, Weierstrass semigroup, Smooth plane curve, Double

covering of a curve, Blowing-up of a rational surface.

Received November 7, 2011.

Revised February 20, 2012.



at ~PP on ~CC. Let I ~PPðT ~PP;
~CCÞ be the intersection multiplicity of T ~PP and ~CC at ~PP. It is

not di‰cult to determine the Weierstrass semigroup Hð ~PPÞ if I ~PPðT ~PP;
~CCÞ ¼ d or

d � 1 or d � 2. In these cases each semigroup Hð ~PPÞ is uniquely determined. In

the case where I ~PPðT ~PP;
~CCÞ ¼ d � 3 Coppens and Kato [1] determined the Weir-

strass semigroups Hð ~PPÞ. But when I ~PPðT ~PP;
~CCÞ ¼ d � 4 they only gave the can-

didates of the Weierstrass semigroups Hð ~PPÞ. In fact, it is an open problem to

determine the above Weierstrass semigroups in this case. In this paper we are

interested in the following probelm:

Let ~CC be a plane curve of degree d with an involution s and ~PP its point fixed

by s. Determine the Weierstrass semigroup of pð ~PPÞ where p : ~CC ! ~CC=hsi is the

double covering.

This problem is solved for de 7 in [5]. In this paper we will show the

following:

Main Theorem. Let ~CC be a plane curve of degree df 8 with an involu-

tion s and ~PP its point fixed by s. When I ~PPðT ~PP;
~CCÞ ¼ d � 3 or d � 4, we can

determine the Weierstrass semigroup of pð ~PPÞ where p : ~CC ! ~CC=hsi is the double

covering.

In the case I ~PPðT ~PP;
~CCÞ ¼ d � 3 we calculate the order sequence of a canonical

divisor at pð ~PPÞ, i.e., the complement N0nHðpð ~PPÞÞ, using divisors consisting of

fibers and minimal sections on the Hirzeburch surface S ¼ PðOP1 lOP1ð�2ÞÞ
with index two, regarding C ¼ ~CC=hsi as a curve on the surface S. In this case

the semigroup Hðpð ~PPÞÞ is also uniquely determined even though there are more

than one kind of the semigroups Hð ~PPÞ. We note that this method works well for

the cases I ~PPðT ~PP;
~CCÞ ¼ d; d � 1; d � 2. Moreover, using the same method we get

the complement N0nHðpð ~PPÞÞ except only one element in the case I ~PPðT ~PP;
~CCÞ ¼

d � 4 in Section 2. So, solving our problem is to get the remaining one element.

In Section 3, to get the element we blow up rational surfaces whose first one is

the Hirzebruch surface S, and construct divisors on some rational surfaces, which

we blow down. The unknown order of a canonical divisor at the point pð ~PPÞ is

calculated using the blowing-down of some divisor to S.

2. Curves on the Hirzebruch Surface with Index Two

We use the following notation throughout this section: Let ~CCHP2 be a plane

curve of degree df 4 with an involution s. Then s is extended to the auto-
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morphism of P2 ¼ Proj k½x; y; z� corresponding to the matrix

1 0 0

0 1 0

0 0 �1

0
B@

1
CA by

some coordinate transformation of P2. We also denote this automorphism by

s. The automorphism s fixes the line defined by the equation z ¼ 0 and the

point ð0 : 0 : 1Þ. Consider the quotient map ~pp : P2 ! P2=hsiGPð1; 1; 2Þ where

Pð1; 1; 2Þ is the weighted projective space as follows: the coordinates ðx; y; zÞ0
ð0; 0; 0Þ and ðlx; ly; l2zÞ with l A knf0g define the same point on Pð1; 1; 2Þ. Using

blowing-up of the morphism ~pp at the points ð0 : 0 : 1Þ A P2 and ~ppðð0 : 0 : 1ÞÞ A
Pð1; 1; 2Þ we get the commutative diagram

PðOlOð�1ÞÞ ���!~hh P2 I ~CC

~pp

???y ~pp

???y
???yp

S ¼ PðOlOð�2ÞÞ ���!h Pð1 : 1 : 2Þ I C ¼ ~CC=hsi

Then we regard ~CC=hsi (resp. ~CC) as a subscheme of PðOlOð�2ÞÞ (resp.

PðOlOð�1ÞÞ) by identifying ~CC=hsi (resp. C) with its strict transform of the

blowing-up of Pð1 : 1 : 2Þ (resp. P2) at ~ppðð0 : 0 : 1ÞÞ (resp. ð0 : 0 : 1Þ). Hence,

the double covering p : ~CC ! C becomes the restriction of the morphim from

PðOlOð�1ÞÞ to PðOlOð�2ÞÞ, which is also denoted by ~pp. Let ~rr : PðOl

Oð�1ÞÞ ! P1 and r : PðOlOð�2ÞÞ ! P1 be structure morphisms. Let F and ~FF

be fibers of r and ~rr respectiely. For any point P A PðOlOð�2ÞÞ (resp. ~PP A

PðOlOð�1ÞÞ we denote by FP (resp. ~FF ~PP) the fiber containing P (resp. ~PP).

Moreover, we denote by ~EE0 and E0 minimal sections of PðOlOð�1ÞÞ and

PðOlOð�2ÞÞ respectively. Then we have ~pp�ðF Þ ¼ ~FF and ~pp�E0 ¼ 2 ~EE0. Let H be

the divisor on Pð1 : 1 : 2Þ defined by the set fx : y : 0g. We identify the inverse

image of H to PðOlOð�2ÞÞ with H, because H does not contain ð0 : 0 : 1Þ.
Then the branched locus of ~pp : PðOlOð�1ÞÞ ! PðOlOð�2ÞÞ is H þ E0,

which is linearly equivalent to 2ðE0 þ FÞ. Hence, we may describe PðOlOð�1ÞÞ
as PðOPðOlOð�2ÞÞ lOPðOlOð�2ÞÞð�E0 � F ÞÞ. If we regard C as a subscheme of

PðOlOð�2ÞÞ, then by [3] we get C@ eE0 þ 2eF if d ¼ 2e and C@ eE0 þ
ð2eþ 1ÞF if d ¼ 2eþ 1 where the symbol @ means a linear equivalence.

Let ~PP be a point of ~CC with sð ~PPÞ ¼ ~PP, T ~PP the tangent line at ~PP on ~CC and

I ~PPðT ~PP;
~CCÞ the intersection multiplicity between T ~PP and ~CC at ~PP. We set t ¼

I ~PPðT ~PP;
~CCÞ and assume that tf 4. Moreover, we set P ¼ pð ~PPÞ. Let L be the line

defined by the set fx : y : 0g. Then we have sðT ~PPÞ ¼ T ~PP and sðLÞ ¼ L. We will

show that sðT ~PPÞ0L. In fact, the divisor ðH þ E0ÞjC on CHPðOlOð�2ÞÞ is the
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branch locus of the morphism p : ~CC ! C ¼ ~CC=hsi, so it must be reduced. But, if

T ~PP ¼ L held, then ðH þ E0ÞjC ¼ ðt=2ÞPþ � � � f 2P, which implies that the branch

locus is not reduced. This is a contradiction. Hence, T ~PP should be the line

through the point ð0 : 0 : 1Þ and a point A A L. Let KS be a canonical divisor on

S ¼ PðOlOð�2ÞÞ. Then KS @�2E0 � 4F . Hence, a canonical divisor KC on C

is linearly equivalent to ððe� 2ÞE0 þ ð2e� 4ÞF ÞjC and ððe� 2ÞE0 þ ð2e� 3ÞF ÞjC
if d ¼ 2e and d ¼ 2eþ 1 respectively.

Lemma 2.1. If the degree d of the plane curve ~CC is even, then so is the

intersection multiplicity t between T ~PP and ~CC at ~PP.

Proof. Since we have T ~PP 0L, the tangent line T ~PP is the line through the

point ð0 : 0 : 1Þ and a point A A L. Let ~TT ~PP be the total transform ~hh�1ðT ~PPÞ of T ~PP,

Then we have ~TT ~PP ¼ ~EE0 þ ~FFA where ~FFA is the fiber containing A. Here, we also

denote the point ~hh�1ðAÞ by A. Moreover, we get

ð ~EE0; ~hh
�1ð ~CCÞÞ ¼ ð ~EE0; 2e ~EEo þ d ~FFÞ ¼ 0 ðresp: 1Þ if d ¼ 2e ðresp: 2eþ 1Þ:

Now we have

t ¼ I ~PPðT ~PP;
~CCÞ ¼ I ~PPð ~FFA; ~hh

�1ð ~CCÞÞ þ I ~PPð ~EE0; ~hh
�1ð ~CCÞÞ:

Hence, if ~PP B ~EE0, i.e., ~PP0 ð0 : 0 : 1Þ, then we get I ~PPð ~FFA; ~hh
�1ð ~CCÞÞ ¼ t. If ~PP A ~EE0,

then we have ð ~EE0; ~hh
�1ð ~CCÞÞ > 0, which implies that d ¼ 2eþ 1. This is not

our case. Therefore, if d ¼ 2e, then ~PP B ~EE0. We note that ~pp � ~hhð ~FFAÞ ¼ TP and

~pp � ~hh � ~hh�1ð ~CCÞ ¼ C. Hence, we get IPðTP;CÞ ¼ t=2. Thus, if d is even, then the

multiplicity t between T ~PP and ~CC at ~PP should be even. r

First, we treat the case where t is even. In this case, we have ~PP B ~EE0. In fact,

let ~PP A ~EE0. Then we get ð ~EE0; ~hh
�1ð ~CCÞÞ ¼ 1, which implies that I ~PPð ~FFA; ~hh

�1ð ~CCÞÞ ¼
t� 1 where ~FFA is as in the proof of Lemma 2.1. Hence, we have IPðTP;CÞ ¼
ðt� 1Þ=2. Thus, t should be odd.

We will calculate the order sequence of KC at P when t ¼ I ~PPðT ~PP;
~CCÞ ¼ d � 3

which is even.

Proposition 2.2. Let d be odd, i.e., d ¼ 2eþ 1. Let t ¼ d � 3. Then the gap

sequence at P is 2iðe� 1Þ þ 1; . . . ; 2iðe� 1Þ þ e� i � 1; ð2i þ 1Þðe� 1Þ þ 1; . . . ;

ð2i þ 1Þðe� 1Þ þ e� i � 1 ð0e ie e� 2Þ:

Proof. Since t is even, we have ~PP B ~EE0. Thus, we get IPðTP;CÞ ¼ t=2, i.e.,

there exists a fiber FP of r such that IPðFP;CÞ ¼ t=2. Let F be a fiber of r such
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that IPðF ;CÞ ¼ 0. H is an irreducible curve containing P because of ~PP B ~EE0. Now

we have IPðH;FÞ ¼ IPðE0 þ 2F ;F Þ ¼ 1. Hence, H and F intersect transversally.

Let FP be the fiber of r. We note that

KC @ ðKPðOlOð�2ÞÞ þ CÞjC @ ððe� 2ÞE0 þ ð2e� 3ÞFÞjC @ ððe� 2ÞH þ FÞjC :

Moreover, since we have

deg KC ¼ ððe� 2ÞE0 þ ð2e� 3ÞF Þ:ðeE0 þ ð2eþ 1ÞF Þ ¼ 2eðe� 1Þ � 2;

the genus of C is eðe� 1Þ.
We will see HðPÞ using the divisors F , H@E0 þ 2F and FP on

PðOlOð�2ÞÞ. We note that IPðH;CÞ ¼ 1, because H C P and H is not the

tangent line at P on C.

We consider the following divisors which are linearly equivalent to

KPðOlOð�2ÞÞ þ C@ ðe� 2ÞE0 þ ð2e� 3ÞF :

2iFP þ jH þ ðe� 2� jÞE0 þ ð2e� 3� 2i � 2jÞF ;

ð2i þ 1ÞFP þ jH þ ðe� 2� jÞE0 þ ð2e� 4� 2i � 2jÞF

for 0e ie e� 2 and 0e je e� i � 1. Let t ¼ d � 3 ¼ 2e� 2, i.e., t=2 ¼ e� 1.

Then we have IPðFP;CÞ ¼ e� 1. Hence, it is shown that the gap sequence at P is

2iðe� 1Þ þ 1; . . . ; 2iðe� 1Þ þ e � i � 1; ð2i þ 1Þðe� 1Þ þ 1; . . . ; ð2i þ 1Þðe� 1Þ þ
e� i � 1 ð0e ie e� 2Þ: r

We give the known results on the gap sequence at P when t ¼ d, which is

also proved by our method, because these results will be used in the next section.

Remark 2.3. Let d ¼ 2e be even and t ¼ d. Then the gap sequence at P is

2ieþ 1; . . . ; 2ieþ e� i � 1 ð0e ie e� 2Þ
and

ð2i þ 1Þeþ 1; . . . ; ð2i þ 1Þeþ e� i � 2 ð0e ie e� 3Þ:

Hence, the Weierstrass semigroup HðPÞ is generated by e and 2e� 1.

Remark 2.4. Let d ¼ 2eþ 1 be odd and t ¼ d. Then the gap sequence at P

is

2ieþ i þ 1; 2ieþ i þ 2; . . . ; 2ieþ e� 1 ð0e ie e� 2Þ;

ð2i þ 1Þeþ i þ 1; ð2i þ 1Þeþ i þ 2; . . . ; ð2i þ 1Þeþ e� 1 ð0e ie e� 2Þ:

Hence, the Weierstrass semigroup HðPÞ is generated by e and 2eþ 1.
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In the case where t ¼ I ~PPðT ~PP;
~CCÞ ¼ d � 4 we can determine the gaps at P except

one gap.

Lemma 2.5. Let d ¼ 2e be even and t ¼ d � 4. The set of gaps at P contains

the set

G ¼ f1; 2; . . . ; e� 2gU ð6e�3

i¼0
fð2i þ 1Þðe� 2Þ þ 1; . . . ; ð2i þ 1Þðe� 2Þ þ e� i � 2gÞ

U ð6e�2

i¼1
f2iðe� 2Þ þ 1; . . . ; 2iðe� 2Þ þ e� i � 1gÞ:

Hence, only one gap at P is not determined.

Proof. Let F be a fiber of r such that IPðF ;CÞ ¼ 0. In view of ~PP B ~EE0 we

get IPðH;CÞ ¼ 1. Moreover, we have the fiber FP of r such that IPðFP;CÞ ¼
e� 2. We consider the following divisors which are linearly equivalent to

KPðOlOð�2ÞÞ þ C@ ðe� 2ÞE0 þ ð2e� 4ÞF :

2iFP þ jH þ ðe� 2� jÞE0 þ ð2e� 4� 2i � 2jÞF

for 0e ie e� 2 and 0e je e� i � 2 and

ð2i þ 1ÞFP þ jH þ ðe� 2� jÞE0 þ ð2e� 5� 2i � 2jÞF

for 0e ie e� 3 and 0e je e� i � 3. Using the above divisors we can get

the gaps at P except one gap, because the orders of ðe� 2ÞH and ðe� 2ÞE0 þ
ð2e� 5ÞF þ FP at P are the same, which is e� 2. r

Lemma 2.6. Let d ¼ 2e and t ¼ d � 4. Let a < e� 2 and lf 0. The order

sequence of jaE0 þ ð2aþ lÞF j at P is constructed by a fiber F d P, E0 d P,

H@E0 þ 2F and the fiber FP with P A H, IPðH;EÞ ¼ 1 and IPðE;FPÞ ¼ e� 2.

Proof. We consider the following divisors which are linearly equivalent to

aE0 þ ð2aþ lÞF :

jH þ ða� jÞE0 þ ðl þ 2ða� jÞ � iÞF þ iFP ð0e ie l; 0e je aÞ

and

ða� jÞE0 þ jH þ ð2a� 2i þ 1� 2jÞF þ ðl þ 2i � 1ÞFP ð1e ie a; 0e je a� iÞ

ða� jÞE0 þ jH þ ð2a� 2i � 2jÞF þ ðl þ 2iÞFP ð1e ie a; 0e je a� iÞ:

The above divisors determine ðaþ 1Þðl þ 1Þ þ aðaþ 1Þ distinct orders at P. On

the other hand we have
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h0ðaE0 þ ð2aþ lÞF Þ ¼ h0ðSaðOlOð�2ÞÞnOð2aþ lÞÞ

¼ h0ððOlOð�2Þl � � �lOð�2aÞÞnOð2aþ lÞÞ

¼ h0ðOð2aþ lÞlOð2aþ l � 2Þl � � �lOð2aþ l � 2aÞÞ

¼ ðaþ 1Þðl þ 1Þ þ aðaþ 1Þ: r

Lemma 2.7. Let d ¼ 2eþ 1 and t ¼ d � 4. The set of gaps at P contains

f1; 2; . . . ; e� 2gU ð6e�2

i¼0
fð2i þ 1Þðe� 2Þ þ i þ 1; . . . ; ð2i þ 1Þðe� 2Þ þ e� 1gÞ

U ð6e�2

i¼1
f2iðe� 2Þ þ i þ 1; . . . ; 2iðe� 2Þ þ e� 1gÞ:

Hence, only one gap at P is not determined.

Proof. Let F be a fiber of r such that IPðF ;CÞ ¼ 0. We have IPðH;CÞ ¼ 0

because of ~PP A ~EE0. Moreover, we get IPðC;E0Þ ¼ 1 because of ðC;E0Þ ¼ 1 and
~PP A ~EE0. Hence we have the fiber FP of r satisfying IPðFP;CÞ ¼ ðt� 1Þ=2 ¼
ðd � 5Þ=2 ¼ e� 2. We consider the following divisors which are linearly

equivalent to KPðOlOð�2ÞÞ þ C@ ðe� 2ÞE0 þ ð2e� 3ÞF :

2iFP þ jE0 þ ðe� 2� jÞH þ ð2j � 2i þ 1ÞF ;

ð2i þ 1ÞFP þ jE0 þ ðe� 2� jÞH þ ð2j � 2iÞF

for 0e ie e� 2 and ie je e� 2. Using the above divisors we can get the

gaps at P except one gap, because the orders of ðe� 2ÞE0 þ ð2e� 3ÞF and

ðe� 2ÞH þ FP at P are the same, which is e� 2. r

Lemma 2.8. Let d ¼ 2eþ 1 and t ¼ d � 4. Let a < e� 2, lf 0 or a ¼ e� 2,

l ¼ 0. The order sequence of jaE0 þ ð2aþ lÞF j at P is constructed by a fiber F d P,

E0 C P, H@E0 þ 2F and the fiber FP with IPðE0;EÞ ¼ 1, P B H and IPðE;FPÞ ¼
e� 2.

Proof. By the same method as in the proof of Lemma 2.6 we get the result.

r

3. Blowing-Up and Blowing-Down of Divisors on Rational Surfaces

In this section we will treat the case where ~CC is a plane curve of degree df 8

with an involution s and a fixed point ~PP by s with I ~PPðT ~PP;
~CCÞ ¼ d � 4.
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Lemma 3.1. Let p : ~CC ! C be a double covering with a ramification point ~PP

where ~CC is a plane curve of degree df 8. We regard C as a closed subscheme of

PðOlOð�2ÞÞ. We assume that t ¼ I ~PPðT ~PP;
~CCÞ ¼ d � 4.

i) Let d ¼ 2e be even. Then the one more order of the intersection at P

between KPðOlOð�2ÞÞ þ C and C belongs to the following set:

Z1 ¼ ð6e�2

i¼1
fð2i þ 1Þðe� 2Þ þ e� i � 2; . . . ; ð2i þ 1Þðe� 2Þ þ e� 3gÞ

U ð6e�1

i¼2
f2iðe� 2Þ þ e� i � 1; . . . ; 2iðe� 2Þ þ e� 3gÞ

U fð2e� 1Þðe� 2Þ; ð2e� 1Þðe� 2Þ þ 1; . . . ; 2eðe� 2Þg:

ii) Let d ¼ 2eþ 1 be odd. Then the one more order of the intersection at P

between KPðOlOð�2ÞÞ þ C and C belongs to the following set:

Z2 ¼ ð6e�2

i¼2
f2iðe� 2Þ þ 1; . . . ; 2iðe� 2Þ þ i � 1gÞ

U ð6e�2

i¼2
fð2i þ 1Þðe� 2Þ þ 1; . . . ; ð2i þ 1Þðe� 2Þ þ i � 1gÞ

U f2ðe� 1Þðe� 2Þ þ 1; 2ðe� 1Þðe� 2Þ þ 2; . . . ; 2ðeþ 1Þðe� 2Þ þ 2g:

Proof. i) The genus of the curve C is ðe� 1Þ2. Hence the order at P is less

than or equal to 2ðe� 1Þ2 � 2 ¼ 2eðe� 2Þ. By Lemma 2.5 we get the result.

ii) The genus of the curve C is eðe� 1Þ. Hence the order at P is less than or

equal to 2eðe� 1Þ � 2 ¼ 2ðeþ 1Þðe� 2Þ þ 2. By Lemma 2.7 we get the result.

r

Proposition 3.2. Let P be any point of S ¼ PðOlOð�2ÞÞ. Let FP be the

fiber containing P. For any non-negative integers nf 1, mf 2n and je n there

exists a non-singular curve A on S ¼ PðOlOð�2ÞÞ such that A@ nE0 þmFP and

IPðA;FPÞ ¼ n� j (resp. 2n� j) if P B E0 (resp. P A E0).

Proof. Let e1 be the exceptional divisor of the blowing-up of p1 : S1 ! S

at P and FP � e1 the proper transform of FP for p1. Let P1 be the intersection

between e1 and FP � e1. Let e2 be the exceptional divisor of the blowing-up of

p2 : S2 ! S1 at P1 and FP � e1 � e2 the proper transform of FP � e1 for p2. Let

P2 be the intersection between e2 and FP � e1 � e2. For any 3e ie n� j let ei

be the exceptional divisor of the blowing-up of pi : Si ! Si�1 at Pi�1 and

FP � e1 � e2 � � � � � ei the proper transform of FP � e1 � � � � � ei�1 for pi. Let Pi

be the intersection between ei and FP � e1 � � � � � ei.
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We will show that there exists a non-singular curve An�j which is linearly

equivalent to nE0 þmF � e1 � � � � � en�j. First, in view of mf 2n we see

that

ðnE0 þmF � e1 � � � � � en�jÞ2 ¼ �2n2 þ 2nm� ðn� jÞf 2n2 � nþ j

¼ nð2n� 1Þ þ j > 0:

Next, we will show that jnE0 þmF � e1 � � � � � en�jj is base-point-free. In view of

mf 2n it su‰ces to show that jnE0 þ 2nF � e1 � � � � � en�jj is base-point-free.

Since we have

nE0 þ 2nF � e1 � � � � � en�j @ ðn� 1ÞE0 þ ð2n� 1ÞF þ ðE0 þ F � e1 � � � � � en�jÞ

and jðn� 1ÞE0 þ ð2n� 1ÞF j is base-point-free, the base locus of jnE0 þ 2nF �
e1 � � � � � en�jj is contained in E0 þ ðF � e1 � � � � � en�jÞ. We will show that

F � e1 � � � � � en�j is not a base locus of jnE0 þ 2nF � e1 � � � � � en�jj. We have a

long exact sequence

0 ! OðnE0 þ ð2n� 1ÞFÞ ! OðnE0 þ 2nF � e1 � � � � � en�jÞ

! OF�e1�����en� j
ðnE0 þ 2nF � e1 � � � � � en�jÞ ! 0:

Since we have

ðnE0 þ 2nF � e1 � � � � � en�j ;F � e1 � � � � � en�jÞ ¼ n� ðn� jÞ ¼ j;

we get

0 ! OðnE0 þ ð2n� 1ÞFÞ ! OðnE0 þ 2nF � e1 � � � � � en�jÞ ! OP1ð jÞ ! 0:

Since ðnþ 1ÞE0 þ ð2nþ 3ÞF is ample, by Kodaira’s Vanishing Theorem, we

get

H 1ðOððn� 1ÞE0 þ ð2n� 1ÞF ÞÞ ¼ H 1ðOðKPðOlOð�2ÞÞ þ ðnþ 1ÞE0 þ ð2nþ 3ÞF ÞÞ ¼ 0:

Moreover, using the exact sequence

0 ! Oððn� 1ÞE0 þ ð2n� 1ÞFÞ ! OðnE0 þ ð2n� 1ÞF Þ ! OE0
ð�1ÞGOP1ð�1Þ ! 0

we get H 1ðOðnE0 þ ð2n� 1ÞF ÞÞ ¼ 0. Thus, the map

H 0ðOðnE0 þ 2nF � e1 � � � � � en�jÞÞ ! H 0ðOP1ð jÞÞ

is surjective. Since for any x A F � e1 � � � � � en�j GP1 there is some s A

H 0ðOP1ð jÞÞ with sðxÞ0 0, we get some s A H 0ðOðnE0 þ 2nF � e1 � � � � � en�jÞÞ
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such that sðxÞ0 0. Hence, F � e1 � � � � � en�j is not contained in the base locus

of the linear system jnE0 þ 2nF � e1 � � � � � en�jj. We will show that E0 is not a

base locus of jnE0 þ 2nF � e1 � � � � � en�jj. We have an exact sequence

0 ! Oððn� 1ÞE0 þ 2nF � e1 � � � � � en�jÞ ! OðnE0 þ 2nF � e1 � � � � � en�jÞ

! OE0
ðnE0 þ 2nF � e1 � � � � � en�jÞGOP1 ! 0;

because of

ðnE0 þ 2nF � e1 � � � � � en�j;E0Þ ¼ �2nþ 2n ¼ 0:

Since ðnþ 1ÞE0 þ ð2nþ 3ÞF is ample, by Kodaira’s Vanishing Theorem we

get

H 1ðOððn� 1ÞE0 þ ð2n� 1ÞFÞÞ ¼ H 1ðKPðOlOð�2ÞÞ þ ðnþ 1ÞE0 þ ð2nþ 3ÞF Þ ¼ 0:

Moreover, we have an exact sequence

0 ! Oððn� 1ÞE0 þ ð2n� 1ÞF Þ ! Oððn� 1ÞE0 þ 2nF � e1 � � � � � en�jÞ

! OF�e1�����en� j
ððn� 1ÞE0 þ 2nF � e1 � � � � � en�jÞGOP1ð j � 1Þ ! 0:

Hence, we obtain

H 1ððn� 1ÞE0 þ 2nF � e1 � � � � � en�jÞ ¼ 0;

which implies that the map

H 0ðOðnE0 þ 2nF � e1 � � � � � en�jÞÞ ! H 0ðOP1Þ

is surjective. Hence, for any x A E0 we have s A H 0ðOðnE0 þ 2nF � e1 � � � � �
en�jÞÞ such that sðxÞ0 0. Therefore, E0 is not contained in the base locus of

jnE0 þ 2nF � e1 � � � � � en�jj. Thus, the linear system jnE0 þ 2nF � e1 � � � � �
en�jj is base-point-free. Hence, the linear system jnE0 þmF � e1 � � � � � en�jj is

base-point-free, because of nE0 þmF � e1 � � � � � en�j ¼ nE0 þ 2nF � e1 � � � � �
en�j þ ðm� 2nÞF . Let j : Sn�j ! PdimjnE0þmF�e1�����en� j j be the rational map

defined by the base-point-free linear system jnE0 þmF � e1 � � � � � en�jj. Since

ðnE0 þmF � e1 � � � � � en�jÞ2 > 0, we have dim jðSn�jÞ ¼ 2. In fact, we as-

sume dim jðSn�jÞe 1. Let H and H 0 be two general hyperplanes in

PdimjnE0þmF�e1�����en� j j. Then we would have jðSn�jÞVH VH 0 ¼ q. By the way

we have j�H@ nE0 þmF � e1 � � � � � en�j . Since ðnE0 þmF � e1 � � � � � en�jÞ2

> 0, we get jðSn�jÞVH VH 0 0q. This is a contradiction. By Theorems of

Bertini (for example see Theorems 7.18 and 7.19 in [4]) there exists a non-
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singular irreducible curve An�j which is linearly equivalent to nE0 þmF �
e1 � � � � � en�j. Let A be the non-singular curve which we get by the succession

of the blowing-downs of the above non-singular irreducible curve An�j to S. We

get

IPðA;FPÞ ¼ IPðnE0 þmF � e1 � � � � � en�j;FPÞ

¼ IPðnE0 þmF ;FPÞ �
Xn�j

i¼1

IPðei;FPÞ

¼ IPðnE0;FPÞ �
Xn�j

i¼1

IPðei; ðFP � eiÞ þ eiÞ:

If P B E0, then we have IPðA;FPÞ ¼ �
Pn�j

i¼1 IPðei; eiÞ ¼ n� j. If P A E0, then we

have IPðA;FPÞ ¼ n�
Pn�j

i¼1 IPðei; eiÞ ¼ 2n� j. r

Proposition 3.3. Let C be a non-singular curve on PðOlOð�2ÞÞ with C@
eE0 þ 2eF and IPðC;FPÞ ¼ e� 2. Let A be an e¤ective divisor which is linearly

equivalent to

KPðOlOð�2ÞÞ þ C@ ðe� 2ÞE0 þ 2ðe� 2ÞF :

Let P A CnE0. We assume that IPðA;CÞ ¼ m for some m which belongs to the set

Z1 in Lemma 3.1 i). Then A is irreducible and non-singular at P. Moreover, we

have IPðA;FPÞ ¼ e� 2.

Proof. We assume that A were not irreducible. Let A ¼ A1 þ � � � þ Ar

where Ai’s are the irreducible components of A. Then Ai @ aiE0 þ biF with

ai ¼ 1, bi ¼ 0 or ai ¼ 0, bi ¼ 1 or e� 2 > ai > 0 and bi f 2ai. We set IPðAi;CÞ ¼
mi. By Lemma 2.6 mi’s are constructed by a fiber F d P, E0 d P, H@E0 þ 2F

with P A H and IPðH;CÞ ¼ 1 and a fiber FP with IPðC;FPÞ ¼ e� 2. Hence,

for any m A Z1 we could not have IPðA;CÞ ¼ m by the proof of Lemma 2.5.

This is a contradiction. Thus, A is irreducible. Since IPðA;CÞ ¼ m > e� 2, i.e.,

A� e1 � � � � � ek f 0 with k ¼ e� 1 and IPðFP;CÞ ¼ e� 2, we get IPðA;FPÞ ¼
e� 2. Hence, A is non-singular at P. In fact, let m1 be the multiplicity of A at

P1 ¼ P. Let Pjþ1 be the intersection between A� e1 � � � � � ej and ej for 1e je

e� 3 and mjþ1 the multiplicity of A at Pjþ1. Then we have m1 þm2 þ � � � þ
me�2 e IPðA;FPÞ ¼ e� 2, which implies that m1 ¼ m2 ¼ � � � ¼ me�2 ¼ 1 because

of mj f 1 for all j. r
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Theorem 3.4. Let d ¼ 2e be even. Let m be in the set Z1 in Lemma 3.1 i). If

2eðe� 2Þ �m belongs to the numerical semigroup he� 2; 2ðe� 2Þ � 1i generated

by e� 2 and 2ðe� 2Þ � 1, then there exists a double covering p : ~CC ! C with a

ramification point ~PP where ~CC is a plane curve of degree d with I ~PPðT ~PP;
~CCÞ ¼ d � 4

such that m is an order at P ¼ pð ~PPÞ, i.e., mþ 1 is a gap at P.

Proof. Let P A S ¼ PðOlOð�2ÞÞ with P B E0. In Proposition 3.2 we set

n ¼ e� 2, m ¼ 2ðe� 2Þ and j ¼ 0. Then there exists a non-singular curve A on S

such that A@ ðe� 2ÞE0 þ 2ðe� 2ÞF and IPðA;FPÞ ¼ e� 2. We set P1 ¼ P. Let

p1 : S1 ! S be the blowing-up at P1. Let e1 be the exceptional divisor and P2 the

intersection between A� e1 and e1, which is also the intersection between FP � e1

and e1. For any 2e ie e� 3 let pi : Si ! Si�1 be the blowing-up at Pi. Let ei be

the exceptional divisor and Piþ1 the intersection between A� e1 � � � � � ei and ei,

which is also the intersection between FP � e1 � � � � � ei and ei. Let mf e� 1.

For any k ¼ e� 2e jem� 1 let pj : Sj ! Sj�1 be the blowing-up at Pj. Let ej

be the exceptional divisor and Pjþ1 the intersection between A� e1 � � � � � ej and

ej. In this case we have Pkþ1 B FP � e1 � � � � � ek. Let m be in the set Z1. We

want to show that there exists a non-singular curve C on PðOlOð�2ÞÞ with

C@ eE0 þ 2eF satisfying the following:

P1 A C; P2 A C � e1; P3 A C � e1 � e2; Pm A C � e1 � � � � � em�1;

Pmþ1 A C � e1 � � � � � em and Pmþ1 B A� e1 � � � � � em;

which implies that IPðC;AÞ ¼ m. By Bertini’s Theorem it su‰ces to show that the

linear system jeE0 þ 2eF � e1 � � � � � emj is base point free. Now, we want to find

a necessary and su‰cient condition such that jeE0 þ 2eF � e1 � � � � � emj is base

point free. We have

eE0 þ 2eF � e1 � � � � � em @ ðA� e1 � � � � � emÞ þ 2ðE0 þ 2F Þ:

Since E0 þ 2F is base point free, the linear system jeE0 þ 2eF � e1 � � � � � emj is
base point free if and only if the linear system jeE0 þ 2eF � e1 � � � � � emj has no

base point on A� e1 � � � � � em. Hence, it is su‰cient to prove that the linear

system

jOA�e1�����emðeE0 þ 2eF � e1 � � � � � emÞj

is base point free. We have

ðeE0 þ 2eFÞjA @ 2eFPjA ¼ 2eðe� 2ÞP;
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because of ðE0;AÞ ¼ ðE0; ðe� 2ÞE0 þ 2ðe� 2ÞF Þ ¼ 0, ðA;F Þ ¼ e� 2 and

IPðA;FPÞ ¼ e� 2. Thus, we get

ðeE0 þ 2eF � e1 � � � � � emÞjA�e1�����em

@ ðeE0 þ 2eFÞjA�e1�����em
� ðe1 þ � � � þ emÞjA�e1�����em

;

which is linearly equivalent to ð2eðe� 2Þ �mÞP on A. Hence, jeE0 þ 2eF �
e1 � � � � � emj is base point free if and only if so on A is ð2eðe� 2Þ �mÞP, i.e.,
2eðe� 2Þ �m is a non-gap of P on A. Since we have A@ ðe� 2ÞE0 þ 2ðe� 2ÞF
and IPðA;FPÞ ¼ e� 2, by Remark 2.3 we get the desired non-singular curve C on

PðOlOð�2ÞÞ, which we regards as a closed subscheme of Pð1 : 1 : 2Þ. Let ~CC be

the fiber product P2 �Pð1:1:2Þ C of P2 and C over Pð1 : 1 : 2Þ. Then the projection

p2 : ~CC ! C is the desired double covering with a ramification point ~PP over P.

Since IPðFP;CÞ ¼ e� 2, we have I ~PPðT ~PP;
~CCÞ ¼ d � 4. r

Corollary 3.5. (1) Let C be a non-singular curve on PðOlOð�2ÞÞ with

C@ eE0 þ 2eF and IPðC;FPÞ ¼ e� 2 with ef 3. Let P A CnE0. Let A be an

e¤ective divisor which is linearly equivalent to

KPðOlOð�2ÞÞ þ C@ ðe� 2ÞE0 þ 2ðe� 2ÞF :

We assume that IPðA;CÞ ¼ m for some m which belongs to the set Z1 in

Lemma 3.1 i). Then 2eðe� 2Þ �m belongs to the numerical semigroup he� 2;

2ðe� 2Þ � 1i.

(2) Assume that m belongs to the set Z1 in Lemma 3.1 i). The following are

equivalent:

i) There exists a double covering p : ~CC ! C with a ramification point ~PP

where ~CC is a plane curve of degree d such that mþ 1 is a gap at P ¼ pð ~PPÞ
on C

ii) 2eðe� 2Þ �m A he� 2; 2e� 5i.

Proof. (1) By Proposition 3.3 A is irreducible and non-singular at P.

Moreover, we have IPðA;FPÞ ¼ e� 2. Since C@ eE0 þ 2eF is base-point-

free, so is ðeE0 þ 2eFÞjA. Hence, ðeE0 þ 2eF � e1 � � � � � emÞjA�e1�����em
@

ð2eðe� 2Þ �mÞP is base-point-free on A. By Remark 2.3 we get 2eðe� 2Þ �m A

he� 2; 2ðe� 2Þ � 1i.

(2) ii) follows from i) by (1). Moreover, ii) implies i) by Theorem 3.4.

r
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Example 3.1. Let d ¼ 8, hence e ¼ 4, and t ¼ d � 4 ¼ 4, i.e., there exists a

double covering p : ~CC ! C with a branch point P where ~CC is a plane curve of

degree 8. Then the genus of C is ðe� 1Þ2 ¼ 9. By Lemma 2.5 the set of gaps

at P contains f1; 2; 3; 4; 5; 6; 7; 9g. By Lemma 3.1 i) the remaining gap mþ 1 at

P belongs to the set f8; 10; 11; 12; 13; 14; 15; 16; 17g. By Corollary 3.5 (2) 16

is deleted, because he� 2; 2e� 5i ¼ h2; 3i d 16� 15. That is to say, the gap

sequence at P is 1, 2, 3, 4, 5, 6, 7, 9, g where g ¼ mþ 1 is in the set

f8; 10; 11; 12; 13; 14; 15; 17g. Conversely, there exists a double covering h : ~EE ! E

with a branch point Q whose gaps form the above set.

Using Lemmas 2.7 and 2.8 we get the following in a similar way to the proof

of Proposition 3.3:

Proposition 3.6. Let C be a non-singular curve on PðOlOð�2ÞÞ with

C@ eE0 þ ð2eþ 1ÞF and IPðC;FPÞ ¼ e� 2. Let A be an e¤ective divisor which is

linearly equivalent to

KPðOlOð�2ÞÞ þ C@ ðe� 2ÞE0 þ ð2e� 3ÞF :

Let P A C VE0. We assume that IPðA;CÞ ¼ m for some m which belongs to the set

Z2 in Lemma 3.1 ii). Then A is irreducible and non-singular at P. Moreover, we

have IPðA;FPÞ ¼ e� 2.

Theorem 3.7. Let d be odd. We set d ¼ 2eþ 1. Let m be in the set Z2

in Lemma 3.1 ii). If 2ðe2 � e� 1Þ �m belongs to the numerical semigroup

he� 2; 2e� 3i generated by e� 2 and 2e� 3, then there exists a double covering

p : ~CC ! C with a ramification point ~PP where ~CC is a plane curve of degree d with

I ~PPðT ~PP;
~CCÞ ¼ d � 4 such that m is an order at P ¼ pð ~PPÞ, i.e., mþ 1 is a gap

at P.

Proof. Let P A S ¼ PðOlOð�2ÞÞ with P A E0. In Proposition 3.2 we set

n ¼ e� 2, m ¼ 2e� 3 and j ¼ e� 2. Then there exists a non-singular curve A

on S such that A@ ðe� 2ÞE0 þ ð2e� 3ÞF and IPðA;FPÞ ¼ e� 2. We set P1 ¼ P.

Let p1 : S1 ! S be the blowing-up at P1. Let e1 be the exceptional divisor and

P2 the intersection between A� e1 and e1, i.e., the intersection between FP � e1

and e1. For any 2e ie e� 3 let pi : Si ! Si�1 be the blowing-up at Pi. Let ei be

the exceptional divisor and Piþ1 the intersection between A� e1 � � � � � ei and ei,

i.e., the intersection between FP � e1 � � � � � ei and ei. Let mf e� 1. For any

k ¼ e� 2e jem� 1 let pj : Sj ! Sj�1 be the blowing-up at Pj. Let ej be the
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exceptional divisor and Pjþ1 the intersection between A� e1 � � � � � ej and ej. In

this case we have Pkþ1 B FP � e1 � � � � � ek. Let m be in the set Z2. We want to

show that there exists a non-singular curve C with C@ eE0 þ ð2eþ 1ÞF satisfying

the following:

P1 A C;P2 A C � e1;P3 A C � e1 � e2; . . . ;Pm A C � e1 � � � � � em�1;

Pmþ1 A C � e1 � � � � � em and Pmþ1 B A� e1 � � � � � em;

which implies that IPðC;AÞ ¼ m. By Bertini’s Theorem it su‰ces to show that the

linear system jeE0 þ ð2eþ 1ÞF � e1 � � � � � emj is base point free. Then there is

C@ eE0 þ ð2eþ 1ÞF such that Pmþ1 B C � e1 � � � � � em, because jC � e1 � � � � �
emj is base point free. Now, we want to find a necessary and su‰cient condition

such that jeE0 þ ð2eþ 1ÞF � e1 � � � � � emj is base point free. We have

eE0 þ ð2eþ 1ÞF � e1 � � � � � em @ ðA� e1 � � � � � emÞ þ 2ðE0 þ 2FÞ:

Since E0 þ 2F is base point free, the linear system jeE0 þ ð2eþ 1ÞF � e1 � � � � �
emj is base point free if and only if the linear system jeE0 þ ð2eþ 1ÞF � e1 � � � � �
emj has no base point on A� e1 � � � � � em. Hence, it is su‰cient to prove that

the linear system

jOA�e1�����emðeE0 þ ð2eþ 1ÞF � e1 � � � � � emÞj

is base point free. We have

ðeE0 þ ð2eþ 1ÞF ÞjA @ eðE0;AÞ þ ð2eþ 1ÞFPjA ¼ ðð2eþ 1Þðe� 2Þ þ eÞP

¼ 2ðe2 � e� 1ÞP;

because of E0 C P, ðE0;AÞ ¼ ðE0; ðe� 2ÞE0 þ ð2e� 3ÞF Þ ¼ 1, ðA;F Þ ¼ e� 2 and

IPðA;FPÞ ¼ e� 2. Thus, we get

ðeE0 þ ð2eþ 1ÞF � e1 � � � � � emÞjA�e1�����em

@ ðeE0 þ ð2eþ 1ÞFPÞjA�e1�����em
� ðe1 þ � � � þ emÞjA�e1�����em

;

which is linearly equivalent to ð2ðe2 � e� 1Þ �mÞP on A. Hence, jeE0 þ
ð2eþ 1ÞF � e1 � � � � � emj is base point free if and only if so on A is

ð2ðe2 � e� 1Þ �mÞP, i.e., 2ðe2 � e� 1Þ �m is a non-gap of P on A. Since we

have A@ ðe� 2ÞE0 þ ð2e� 3ÞF and IPðA;FPÞ ¼ e� 2, by Remark 2.4 we get

the desired non-singular curve C. We can get a double cover ~CC of C with a

ramification point ~PP over P such that I ~PPðT ~PP;
~CCÞ ¼ d � 4 as in the proof of

Theorem 3.4 because of P A E0. r
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By Proposition 3.6 and Theorem 3.7 we get the following:

Corollary 3.8. (1) Let C be a non-singular curve on PðOlOð�2ÞÞ with

C@ eE0 þ ð2eþ 1ÞF and IPðC;FPÞ ¼ e� 2. Let P A C VE0.

Let A be an e¤ective divisor which is linearly equivalent to

KPðOlOð�2ÞÞ þ C@ ðe� 2ÞE0 þ ð2e� 3ÞF :

We assume that IPðA;CÞ ¼ m for some m which belongs to the set Z2 in

Lemma 3.1 ii). Then 2ðe2 � e� 1Þ �m belongs to the numerical semigroup

he� 2; 2e� 3i.

(2) Assume that m belongs to the set Z2 in Lemma 3.1 ii). The following are

equivalent:

i) There exists a double covering p : ~CC ! C with a ramification point ~PP

where ~CC is a plane curve of degree d such that mþ 1 is a gap at P ¼ pð ~PPÞ
on C

ii) 2ðe2 � e� 1Þ �m A he� 2; 2e� 3i.

Example 3.2. Let d ¼ 9, hence e ¼ 4 and t ¼ d � 4, i.e., there exists a

double covering p : ~CC ! C with a branch point P where ~CC is a plane curve of

degree 9. Then the genus of C is eðe� 1Þ ¼ 12. By Lemma 2.7 the set of gaps

at P contains f1; 2; 3; 4; 5; 6; 7; 8; 9; 11; 13g. By Lemma 3.1 ii) the remaining gap

mþ 1 at P belongs to the set f10; 12; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23g. By

Corollary 3.8 (2) 20 and 22 are deleted, because he� 2; 2e� 3i ¼ h2; 5i d

22� 19; 22� 21. That is to say, the gap sequence at P is 1, 2, 3, 4, 5, 6, 7, 8,

9, 11, 13, g where g ¼ mþ 1 is in the set f10; 12; 14; 15; 16; 17; 18; 19; 21; 23g.
Conversely, there exists a double covering h : ~EE ! E with a branch point Q

whose gaps form the above set.
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