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WEIERSTRASS GAP SEQUENCES AT POINTS
OF CURVES ON SOME RATIONAL SURFACES

By

Jiryo KomeDA* and Akira OHBUCHI**

Abstract. Let C be a non-singular plane curve of degree d > 8 with
an involution ¢ over an algebraically closed field of characteristic 0
and P a point of C fixed by ¢. Let n: C — C = é‘/<a> be the
double covering. We set P = n(P). When the intersection multiplicity
at P of the curve C and the tangent line at P is equal to d — 3 or
d — 4, we determine the Weierstrass gap sequence at P on C using

blowing-ups and blowing-downs of some rational surfaces.

1. Introduction

Let C be a complete non-singular irreducible curve of genus g over an
algebraically closed field k of charcteristic 0, which is called a curve in this paper.
For a pointed curve (C,P) we define

H(P) = {a e Ng|there exists f € k(C) with (f),, = «P},

which is called the Weierstrass semigroup of P where Ny, k(C) and (f),, denote
the additive monoid of non-negative integers, the field of rational functions on
C and the divisor of poles of f respectively. Let {/j <h <---<I,} be the
complement No\H(P) of H(P) in Ny where g is the genus of C. The sequence
li,h,... 1, is called the Weierstrass gap sequence at P.

Let C be a plane curve of degree d. Here, we note again that a plane curve is
non-singular in this paper. For a point P of C we denote by Ts the tangent line
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at P on C. Let I5(Tp, C) be the intersection multiplicity of 7 and C at P. It is
not difficult to determine the Weierstrass semigroup H(P) if I5(Tp, C) =d or
d—1 or d —2. In these cases each semigroup H(P) is uniquely determined. In
the case where I5(Ts,C) =d —3 Coppens and Kato [1] determined the Weir-
strass semigroups H(P). But when I3(Ts,C) =d —4 they only gave the can-
didates of the Weierstrass semigroups H(P). In fact, it is an open problem to
determine the above Weierstrass semigroups in this case. In this paper we are

interested in the following probelm:

Let C be a plane curve of degree d with an involution ¢ and P its point fixed
by o. Determine the Weierstrass semigroup of n(P) where m : C—C /Loy is the
double covering.

This problem is solved for d <7 in [5]. In this paper we will show the
following:

MAIN THEOREM. Let C be a plane curve of degree d =8 with an involu-
tion o and P its point fixed by o. When II;(TP,C’) =d—3 or d—4, we can
determine the Weierstrass semigroup of n(P) where n: C — C/{c) is the double
covering.

In the case I5(Tp, C) = d — 3 we calculate the order sequence of a canonical
divisor at 7(P), i.e., the complement No\H (n(P)), using divisors consisting of
fibers and minimal sections on the Hirzeburch surface S =P(Op1 @ Opi(-2))
with index two, regarding C = (:’/ {o) as a curve on the surface S. In this case
the semigroup H(n(P)) is also uniquely determined even though there are more
than one kind of the semigroups H(P). We note that this method works well for
the cases I5(T5, C‘) =d,d —1,d —2. Moreover, using the same method we get
the complement No\H(r(P)) except only one element in the case I5(7Tp,C) =
d — 4 in Section 2. So, solving our problem is to get the remaining one element.
In Section 3, to get the element we blow up rational surfaces whose first one is
the Hirzebruch surface S, and construct divisors on some rational surfaces, which

we blow down. The unknown order of a canonical divisor at the point n(P) is
calculated using the blowing-down of some divisor to S.

2. Curves on the Hirzebruch Surface with Index Two

We use the following notation throughout this section: Let C = P? be a plane
curve of degree d =4 with an involution ¢. Then ¢ is extended to the auto-
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1 0 O
morphism of P? = Proj k[x, y, z] corresponding to the matrix | 0 1 0 by

0 0 -1
some coordinate transformation of P?. We also denote this automorphism by
o. The automorphism o fixes the line defined by the equation z=0 and the
point (0:0:1). Consider the quotient map 7 : P> — P?/{g) = P(1,1,2) where
P(1,1,2) is the weighted projective space as follows: the coordinates (x, y,z) #
(0,0,0) and (Ax, Ay, 2%z) with / € k\{0} define the same point on P(1,1,2). Using
blowing-up of the morphism 7 at the points (0:0:1)eP? and #((0:0:1)) e
P(1,1,2) we get the commutative diagram

PO®O(-1) - P 5 ¢

] )

S=PO®0(=2) —1— P(1:1:2) > C=C/{ao)

Then we regard C/{c) (resp. C) as a subscheme of P(0 @ 0(-2)) (resp.
P(0 @ 0(—1))) by identifying C/{c)> (resp. C) with its strict transform of the
blowing-up of P(1:1:2) (resp. P?) at #((0:0:1)) (resp. (0:0:1)). Hence,
the double covering 7 : C — C becomes the restriction of the morphim from
P(O® O(-1)) to P(O® O(-2)), which is also denoted by 7. Let p:P(0 @
0(-1)) - P' and p: P(0 ® O(-2)) — P! be structure morphisms. Let F and F
be fibers of p and j respectiely. For any point P e P(0 @ 0(-2)) (resp. Pe
P(0 ® 0(—1)) we denote by Fp (resp. F3) the fiber containing P (resp. P).
Moreover, we denote by E, and E, minimal sections of P(¢ @ ((—1)) and
P(0 @ 0(-2)) respectively. Then we have 7#*(F) = F and 7*Ey = 2E,. Let H be
the divisor on P(1:1:2) defined by the set {x: y:0}. We identify the inverse
image of H to P(0 @ 0(-2)) with H, because H does not contain (0:0: 1).
Then the branched locus of 7#:P(0® O(-1)) - P(O® O(-2)) is H+ Ey,
which is linearly equivalent to 2(Ey + F). Hence, we may describe P(0 ® 0(—1))
as P(Opoeo(-2) @ Opwwo(-2)(—Eo — F)). If we regard C as a subscheme of
P(O ® 0(-2)), then by [3] we get C ~eEy+2eF if d=2e and C ~ eEy+
(2e + 1)F if d =2e+ 1 where the symbol ~ means a linear equivalence.

Let P be a point of C with g(P) = P, Tj the tangent line at P on C and
I5(T3, C) the intersection multiplicity between 7 and C at P. We set 1=
I5(T5,C) and assume that ¢ = 4. Moreover, we set P = n(P). Let L be the line
defined by the set {x: y:0}. Then we have o(T) = Tp and o(L) = L. We will
show that ¢(7T'3) # L. In fact, the divisor (H + Ej)|- on C = P(0 @ 0(-2)) is the
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branch locus of the morphism 7 : C—C=C /<{o>, so it must be reduced. But, if
Ts = L held, then (H + Ey)|o = (¢/2)P + --- = 2P, which implies that the branch
locus is not reduced. This is a contradiction. Hence, 7 should be the line
through the point (0:0: 1) and a point 4 € L. Let Ky be a canonical divisor on
S =P(0® 0O(-2)). Then Ks ~ —2E, — 4F. Hence, a canonical divisor K¢ on C
is linearly equivalent to ((e —2)Ey + (2e —4)F)|- and ((e —2)Ey + (2e — 3)F)|¢
if d=2e¢ and d =2e+ 1 respectively.

LEMMA 2.1. If the degree d of the plane curve C is even, then so is the
intersection multiplicity t between Tp and C at P.

ProoF. Since we have T # L, the tangent line 7 is the line through the
point (0:0: 1) and a point 4 € L. Let Tj be the total transform 7~'(7;) of T,
Then we have T 5= Ey + F, where F, is the fiber containing 4. Here, we also
denote the point 7'(4) by 4. Moreover, we get

(Eo, 777 (C)) = (Ey,2¢E, + dF) =0 (resp. 1) if d =2e (resp. 2e+1).

Now we have

t=15(Tp,C) = 1p(F, 71" (C)) + Ip(En, 71 (C)).
Hence, if P ¢ Eo, i.e, P# (0:0:1), then we get I5(F4,77'(C)) = t. If Pe Ey,
then we have (Eo,77~'(C)) >0, which implies that d =2e+ 1. This is not
our case. Therefore, if d = 2e, then I3¢Eo. We note that ﬁoﬁ(FA) = Tp and
#ofjoi (C) = C. Hence, we get Ip(Tp, C) =t/2. Thus, if d is even, then the
multiplicity ¢ between T and C at P should be even. O

First, we treat the case where ¢ is even. In this case, we have P ¢ Ey. In fact,
let Pe Ey. Then we get (Ey, 7~ '(C)) = 1, which implies that I3(F4, 7 '(C)) =
t—1 where F, is as in the proof of Lemma 2.1. Hence, we have Ip(Tp,C) =
(t—1)/2. Thus, t should be odd.

We will calculate the order sequence of K¢ at P when ¢ = I5(T3,C) =d — 3
which is even.

PROPOSITION 2.2. Let d be odd, i.e., d =2e+ 1. Let t =d — 3. Then the gap
sequence at P is 2ile—1)+1,...,2i(e—1)+e—i—1,2i+1)(e—1)+1,...,
i+ e—1)+e—i—1 (0=Zi<e—2).

PROOF. Since ¢ is even, we have P ¢ E,. Thus, we get Ip(Tp,C) =1/2, ie.,
there exists a fiber Fp of p such that Ip(Fp,C) = t/2. Let F be a fiber of p such
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that Ip(F,C) = 0. H is an irreducible curve containing P because of P ¢ Ey. Now
we have Ip(H,F) = Ip(Ey+ 2F,F) = 1. Hence, H and F intersect transversally.
Let Fp be the fiber of p. We note that
Ke ~ (Kpoo-2) + Ole ~ ((e = 2)Ey + (2¢ = 3)F) | ~ ((e = 2)H + F)c:
Moreover, since we have
deg Kc = ((e —2)Ey + (2e — 3)F).(eEy + (2e + 1)F) = 2e(e — 1) — 2,

the genus of C is e(e —1).

We will see H(P) using the divisors F, H ~ Ey+2F and Fp on
P(0 @ 0(-2)). We note that Ip(H,C) =1, because H> P and H is not the
tangent line at P on C.

We consider the following divisors which are linearly equivalent to
KP(@@(&‘&Z)) +C~(e— 2)E() + (26’ - 3)F

2iFp + jH + (e — 2 — j)Eo + (2¢ — 3 — 2i — 2))F,
(2i+ 1)Fp+ jH + (e — 2 — j)Eo + (2e — 4 — 2i — 2j)F

for0<i<e—2and 0= j<e—i—1. Lett=d—-3=2e—-2,1e,t/2=¢—1.
Then we have Ip(Fp, C) = e — 1. Hence, it is shown that the gap sequence at P is
2ile—1)+1,....2e—1)+e—i—1,2i+)(e—1)+ 1,...,2i+ 1)(e— 1)+
e—i—1 (0Zige—-2). O

We give the known results on the gap sequence at P when ¢ = d, which is
also proved by our method, because these results will be used in the next section.
REMARK 2.3. Let d =2e be even and 7 = d. Then the gap sequence at P is

2ie+1,...,2e+e—i—1 (0=ZiZe—2)
and
Qi+ De+1,...,2i+1l)e+e—i—2 (0=i=Z<e-3).

Hence, the Weierstrass semigroup H(P) is generated by e and 2e — 1.
REMARK 2.4. Let d =2e+ 1 be odd and ¢ = d. Then the gap sequence at P
is
2ie+i+1,2ie+i+2,....2e+e—1 (0=5iZe—2),
Qi+ De+i+1,2i+e+i+2,...,2i+1)e+e—1 (0ZiZe—-2).

Hence, the Weierstrass semigroup H(P) is generated by e¢ and 2e + 1.
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In the case where t = I3(T5,C) = d —4 we can determine the gaps at P except
one gap.

LEMMA 2.5. Let d = 2e be even and t = d — 4. The set of gaps at P contains
the set

G={1,2,...,e = 23U {Qi+1)(e=2)+1,...,Q2i + 1)(e—2) +e—i—2})
U H2i(e—2) +1,...,2i(e = 2) +e—i— 1}).

Hence, only one gap at P is not determined.

PrOOF. Let F be a fiber of p such that Ip(F,C) = 0. In view of P ¢ E, we
get Ip(H,C) = 1. Moreover, we have the fiber Fp of p such that Ip(Fp,C) =
e —2. We consider the following divisors which are linearly equivalent to
Kpwgo-2) +C~ (e —2)Ey+ (2¢e — 4)F:

2iFp+ jH+ (e —2— j)Eo + (2e — 4 — 2i — 2j)F
for0<i<e—2and 0<j<e—i—2 and
i+ 1)Fp+ jH+ (e —2— j)Ey+ (2¢ — 5 —2i — 2j)F

for 0<i<e—3 and 0= j=<e—i—3. Using the above divisors we can get
the gaps at P except one gap, because the orders of (e —2)H and (e —2)Ep +
(2¢ — 5)F + Fp at P are the same, which is e — 2. O

LEMMA 2.6. Let d=2e and t=d —4. Let a<e—2 and | 2 0. The order
sequence of |aEy+ (2a+[)F| at P is constructed by a fiber F 3 P, Ey3 P,
H ~ Ey+ 2F and the fiber Fp with Pe H, Ip(H,E) =1 and Ip(E,Fp) =e—2.

Proor. We consider the following divisors which are linearly equivalent to
aEy+ (2a+ ) F:
JH+ (a— )Ey+(I+2a—j)—F+iFp (0<i<[,0<j<aq)
and
(a—HEy+jH+2a—-2i+1-2)F+(+2i—-1)Fp (12i<a,0Zj=<a—i)
(a—HEy+jH+ (2a—-2i—=2))F+(I+2))Fp (1=i<a,0=j=<a—i).

The above divisors determine (a + 1)(/+ 1) +a(a+ 1) distinct orders at P. On
the other hand we have
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h°(aEy + 2a +1)F) = h°(S“(0 ® 0(=2)) ® O(2a + 1))
=D O(-2)® - ® O(—2a)) ® O2a+1))
=1°0QRa+1)®0Q2a+1-2)@ - @ OQa+1—-2a))

=(a+1)(I+1)+ala+1). O

LemMa 2.7. Let d =2e+1 and t =d — 4. The set of gaps at P contains
(1,2,..,e = 2U (U {QRi+ (e =2) +i+1,..., 2+ 1)(e—2) + e — 1})
U 2ile—2) +i+1,...,2i(e—2) + e —1}).
Hence, only one gap at P is not determined.
Proor. Let F be a fiber of p such that Ip(F,C) = 0. We have Ip(H,C) =0
because of P e E;. Moreover, we get Ip(C,Ey) = 1 because of (C,Ey) =1 and
PecEy. Hence we have the fiber Fp of p satisfying Ip(Fp,C) = (t—1)/2=

(d—-5)/2=e—2. We consider the following divisors which are linearly
equivalent to Kpgo(-2)) + C ~ (e —2)Ey + (2¢ — 3)F:

2iFp + jEy+ (e —2 — j)H + (2j — 2i + 1)F,
(2i4+ 1)Fp+ jEy+ (e —2 — j)H + (2j — 2i))F

for 0<i<e—2 and i £ j<e—2. Using the above divisors we can get the
gaps at P except one gap, because the orders of (e —2)Ey+ (2¢ — 3)F and
(e —2)H + Fp at P are the same, which is e — 2. O

LEMmA 2.8, Letd=2e+1andt=d —4 Leta<e—2,1=200ra=e—2,
[ = 0. The order sequence of |aEy + (2a + [)F| at P is constructed by a fiber F 3 P,
Ey> P, H~ Ey+2F and the fiber Fp with Ip(Ey,E) =1, P¢ H and Ip(E, Fp) =
e—2.

Proor. By the same method as in the proof of Lemma 2.6 we get the result.
U
3. Blowing-Up and Blowing-Down of Divisors on Rational Surfaces

In this section we will treat the case where C is a plane curve of degree d > 8
with an involution ¢ and a fixed point P by o with I5(T5, C) =d — 4.
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LEMMA 3.1. Let n: C — C be a double covering with a ramification point P
where C is a plane curve of degree d = 8. We regard C as a closed subscheme of
P(O® 0(-2)). We assume that t = I5(Tp,C) = d — 4.

i) Let d =2e be even. Then the one more order of the intersection at P
between Kpogo(-2)) + C and C belongs to the following set:

Zi = (U Qi+ )(e—2)+e—i—2,...,2i+1)(e—=2)+e—3})
Ui {2ite—2) +e—i—1,...,2i(e—2) +e—3})
U{(2e—=1)(e—2),2e—1)(e=2)+1,...,2¢e(e —2)}.

il) Let d =2e+1 be odd. Then the one more order of the intersection at P
between Kpwgo(-2)) + C and C belongs to the following set:

Z = (U 2ie—2) + 1,...,2i(e = 2) +i — 1})
U(U;:;{(Zi—kl)(e—2)+17._.’(21-_'_1)(6_2)_'_1._ 1})

U{2(e—1)(e=2)+1,2(e—1)(e—2)+2,...,2(e+ 1)(e — 2) + 2}.

Proor. 1) The genus of the curve C is (e — 1)%. Hence the order at P is less

than or equal to 2(e — 1)2 —2=2¢(e—2). By Lemma 2.5 we get the result.
ii) The genus of the curve C is e(e — 1). Hence the order at P is less than or
equal to 2e(e—1)—2=2(e+1)(e—2)+2. By Lemma 2.7 we get the result.
U

PrOPOSITION 3.2. Let P be any point of S =P(0 @® O(-2)). Let Fp be the
fiber containing P. For any non-negative integers n =1, m = 2n and j < n there
exists a non-singular curve A on S =P(O0 @ O(-2)) such that A ~ nEy + mFp and
Ip(A,Fp) =n—j (resp. 2n—j) if P¢ Ey (resp. P e Ep).

PrROOF. Let e; be the exceptional divisor of the blowing-up of 7 : S} — S
at P and Fp — e the proper transform of Fp for m;. Let P; be the intersection
between e; and Fp —e;. Let e, be the exceptional divisor of the blowing-up of
7 : Sy — 81 at Py and Fp — e; — e; the proper transform of Fp — ey for m,. Let
P, be the intersection between e; and Fp —e; —ey. Forany 3<i<n—j let ¢
be the exceptional divisor of the blowing-up of x;:S; — S;_; at P,; and
Fp—ey —ey —--- —¢; the proper transform of Fp —e; —--- —e¢;_; for m;. Let P;
be the intersection between ¢; and Fp—e; —--- —¢;.
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We will show that there exists a non-singular curve A,_; which is linearly
equivalent to nEy+mF —e; —---—e,_;. First, in view of m =2n we see
that

(nEy + mF — ¢; —-~—€n—j>2:—2n2+2nm—(n—j)§2n2—n+j

=n2n—1)+j>0.

Next, we will show that [nEy +mF —e; — --- — e,_j| is base-point-free. In view of
m = 2n it suffices to show that |nEy+2nF —e; —--- —e,_;| is base-point-free.
Since we have

nEy+2nF —ej —---—e,_j~n—1DEy+2n—1)F+ (Eg+F —ej — -+ —ey_)
and |(n—1)Ey+ (2n — 1)F| is base-point-free, the base locus of |nEy+ 2nF —
ej—---—e,;| is contained in Ey+ (F—e —---—e,_;). We will show that
F—e —---—e¢,jisnot a base locus of |nEy +2nF —e; —--- —¢,_;|. We have a

long exact sequence
0— OmEy+ 2n— 1)F) — O(nEy +2nF — ey — -+ — e,_))
— OF ¢—e, ;(NEy +2nF —e; — -~ — ¢, ;) — 0.
Since we have
(nEg+2nF —e; —---—e,_j,F—ej —---—e,_j) =n— (n—j) = J,
we get
0— OmEy+ 2n— 1)F) — O(nEy+2nF —e; — -+ — ey—j) — Opi(j) — 0.

Since (n+1)Ey+ (2n+3)F is ample, by Kodaira’s Vanishing Theorem, we
get

H'(0((n—1)Ey+ (2n — 1)F)) = H' (O(Kp(o@o(-2) + (n+ 1)Eg + (2n+ 3)F)) = 0.
Moreover, using the exact sequence
0— O((n—1)Ey+ (2n—1)F) - O(nEy+ 2n— 1)F) — Og(—1) = Op:(—1) = 0
we get H'(O(nEy+ (2n — 1)F)) = 0. Thus, the map

HO(O(nEy+2nF — ey — - —e,_;)) — H(Op1(}))

is surjective. Since for any xeF —e; —---—¢,_; = P! there is some se
H°(0p1(j)) with s(x) #0, we get some §e H'(O(nEy+2nF —ej — -+ — e,;))
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such that §(x) # 0. Hence, F —e; —--- —e,_; is not contained in the base locus
of the linear system |nEy + 2nF —e; — --- — e,—;|. We will show that Ej is not a
base locus of |nEy+ 2nF —e; —--- —e,—;j|. We have an exact sequence
0—O((n—1)Ey+2nF —ey —---—ey_j) = O(nEy+2nF —e; —--- —e,_))
— Op,(nEy +2nF —ey — - —e,_j) = Op1 — 0,
because of
(nEy+2nF —e; —--- —e,—j, Eg) = —2n+2n = 0.

Since (n+ 1)Ey+ (2n+ 3)F is ample, by Kodaira’s Vanishing Theorem we
get

HY(O((n = 1)Ey + (2n = 1)F)) = H' (Kp(o@e(-2)) + (n+ 1)Ey + (2n + 3)F) = 0.

Moreover, we have an exact sequence

0— O((n—1)Ey+ (2n—1)F) = O((n—1)Ey +2nF — ey — - -- — e,_;)

— O ¢y—e, (n=1)Eg +2nF —e; — - — e, j) = Opi(j— 1) — 0.
Hence, we obtain
H'((n—1)Ey+2nF —e; — -+ —e, ;) =0,
which implies that the map
H(O(Ey+2nF —ey — -+ — e, ;) — H*(Op1)

is surjective. Hence, for any xe E, we have §e€ H'(O(nEy+2nF —e; — - - —
es—j)) such that §(x) # 0. Therefore, Ey is not contained in the base locus of
|nEo + 2nF —e; — --- —e,—j|. Thus, the linear system |nEy+2nF —ej —---—
e,—j| is base-point-free. Hence, the linear system |[nEy+mF —ej —--- —e,_j| is
base-point-free, because of nEy+mF —e; — - —e,j =nEy+2nF —ey —--- —
e j+ (m—2n)F. Let ¢:8, ; — pimrbotmf-a=-—a | pe the rational map
defined by the base-point-free linear system |nEy+ mF —e; —--- —e,_;|. Since
(nEy +mF —e; — -+ — e,q_j)2 >0, we have dim ¢(S,_;) =2. In fact, we as-
sume dim¢(S,—;) <1. Let H and H' be two general hyperplanes in
pdimnEotmP-ei—-—erjl Then we would have o(S,—;))NHNH' = . By the way
we have ¢*H ~nEy+mF —e; —---—e,_;. Since (nEg+mF —ej —--- — en,j)2
>0, we get ¢(S,_;))NHNH' # . This is a contradiction. By Theorems of
Bertini (for example see Theorems 7.18 and 7.19 in [4]) there exists a non-
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singular irreducible curve A,_; which is linearly equivalent to nEy+ mF —

e; —---—e,—j. Let A be the non-singular curve which we get by the succession
of the blowing-downs of the above non-singular irreducible curve 4,_; to S. We
get
IP(A,FP) = Ip(l’lE() +mF —e —--- — €y,_j,Fp)
n—j

= Ip(nEq +mF,Fp) = > Ip(e;, Fp)

i=1

—J
= IP(I’IE(),FP) — Z[p(é’j, (FP — €,‘) + e,—).
i=1

If P ¢ Ey, then we have Ip(A4,Fp) = — Zl”;l] Ip(ej,e;) =n— j. If Pe Ey, then we
have Ip(A,Fp) =n—>.""] Ip(ei,e;) =2n — j. O

PrOPOSITION 3.3.  Let C be a non-singular curve on P(0 @ 0(-2)) with C ~
eEy +2eF and Ip(C,Fp) =e—2. Let A be an effective divisor which is linearly
equivalent to

Kpwoo-2) + C~ (e —2)Ey+2(e — 2)F.

Let P e C\Ey. We assume that Ip(A, C) = m for some m which belongs to the set
Z, in Lemma 3.1 1). Then A is irreducible and non-singular at P. Moreover, we
have Ip(A,Fp) =e —2.

ProorF. We assume that 4 were not irreducible. Let 4 =4, +---+ A4,
where A;’s are the irreducible components of A. Then A; ~ a;Ey+ b;F with
ai=1,b;=00raq;=0,b;=10re—2>a; >0 and b; = 2a;. We set Ip(4;,C) =
m;. By Lemma 2.6 m;’s are constructed by a fiber F $ P, Ey» P, H ~ Ey+2F
with Pe H and Ip(H,C) =1 and a fiber Fp with Ip(C,Fp) = e — 2. Hence,
for any m e Z; we could not have Ip(A4,C) =m by the proof of Lemma 2.5.
This is a contradiction. Thus, A is irreducible. Since Ip(4,C) =m > e —2, ie.,
A—e— - —e 20 with k=e—1 and Ip(Fp,C) =¢—2, we get Ip(4,Fp) =
e — 2. Hence, A4 is non-singular at P. In fact, let m; be the multiplicity of 4 at
Py = P. Let P, be the intersection between 4 —e; —--- —¢; and ¢; for 1 £ j <
e—3 and mj;; the multiplicity of 4 at Pj ;. Then we have mj +my+---+
Me—n < Ip(A, Fp) = e — 2, which implies that m; =my =--- =m,_, = 1 because
of mj =z 1 for all j. |
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THEOREM 3.4. Let d = 2e be even. Let m be in the set Z) in Lemma 3.1 1). If
2e(e — 2) —m belongs to the numerical semigroup {e —2,2(e —2) — 1) generated
by e —2 and 2(e —2) — 1, then there exists a double covering n: C — C with a
ramification point P where C is a plane curve of degree d with I5(T5, C') =d—-4

such that m is an order at P =n(P), ie., m+1 is a gap at P.

Proor. Let Pe S =P(0@ 0O(-2)) with P ¢ Ey. In Proposition 3.2 we set
n=e—2, m=2(e—2)and j = 0. Then there exists a non-singular curve 4 on S
such that 4 ~ (e —2)Ey +2(e —2)F and Ip(A4,Fp) =e—2. We set P; = P. Let
71 : S1 — S be the blowing-up at P;. Let ¢; be the exceptional divisor and P, the
intersection between A — e¢; and e, which is also the intersection between Fp — ¢
and e;. Forany 2 <i<e—3letw;: S; — S;_; be the blowing-up at P;. Let ¢; be
the exceptional divisor and P;;; the intersection between 4 —e; — -+ — ¢; and ¢;,
which is also the intersection between Fp—e; —---—¢; and ¢;. Let m=>e — 1.
Forany k=e—-2=<j<m—1let m;: §; — S;_; be the blowing-up at P;. Let ¢;
be the exceptional divisor and Pj; the intersection between 4 —e; —--- —¢; and
e;. In this case we have Py 1 ¢ Fp—e; —--- —e. Let m be in the set Z;. We
want to show that there exists a non-singular curve C on P(0 @ 0(—2)) with
C ~ eEy + 2¢eF satisfying the following:

PreC, P,eC—e¢, P3;eC—e¢ —e, P,eC—e —---—ey_1,
Pui1eC—e —---—e, and Py, ¢Ad—e — - —ep,

which implies that Ip(C, 4) = m. By Bertini’s Theorem it suffices to show that the
linear system |eEy + 2eF — e; — - -+ — e, is base point free. Now, we want to find
a necessary and sufficient condition such that |eEy + 2¢F —e; — - -+ — e,/ is base
point free. We have

eEy+2eF —ey—--—epy~(A—e — - —ep) +2(Ey+ 2F).
Since Ey + 2F is base point free, the linear system |eEy + 2eF —e; — -+ — ey 1
base point free if and only if the linear system |eEy + 2¢F —e; — -+ — ¢,| has no
base point on 4 —e; —--- —e¢,,. Hence, it is sufficient to prove that the linear
system
|Os—o)—...oe, (€Eg + 2eF —e; — - - — en)]

is base point free. We have

(eEy + 2eF)|, ~ 2eFp|, = 2e(e — 2)P,
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because of (Ep,A4) = (Eo,(e—2)Ey+2(e—2)F)=0, (A4,F)=e—2 and
Ip(A,Fp) = e —2. Thus, we get
(eEy+2eF —ey — - —em)| 4, .

R
€m

——ey —

~ (eEO + 26F)‘A7€1 . - (e] + e + em)|A*e] ey

which is linearly equivalent to (2e(e —2) —m)P on A. Hence, |eEy+ 2eF —
€| — -+ — ey is base point free if and only if so on A4 is (2e(e —2) —m)P, ie.,
2¢(e —2) —m is a non-gap of P on A. Since we have 4 ~ (e —2)Ey + 2(e — 2)F
and Ip(4, Fp) = ¢ — 2, by Remark 2.3 we get the desired non-singular curve C on
P(0 @ 0(—-2)), which we regards as a closed subscheme of P(1:1:2). Let C be
the fiber product P? xp(1:12) C of P2 and C over P(1:1:2). Then the projection
p>: C — C is the desired double covering with a ramification point P over P.
Since Ip(Fp,C) =e—2, we have I(T5, C’) =d—4. O

CorOLLARY 3.5. (1) Let C be a non-singular curve on P(O @ O(—-2)) with
C ~ ¢eEy+2¢F and Ip(C,Fp) =e—2 with e=23. Let Pe C\Ey. Let A be an
effective divisor which is linearly equivalent to

Kpwgo-2) + C ~ (e —2)Ey+2(e — 2)F.

We assume that Ip(A,C)=m for some m which belongs to the set Z, in
Lemma 3.1 1). Then 2e(e —2) —m belongs to the numerical semigroup <{e — 2,
2(e —2) —1).

(2) Assume that m belongs to the set Zy in Lemma 3.1 i). The following are
equivalent:

i) There exists a double covering n:C — C with a ramification point P
where C is a plane curve of degree d such that m~+1 is a gap at P = n(P)
on C

ii) 2e(e —2) —me<e—2,2¢e —5).

Proor. (1) By Proposition 3.3 A is irreducible and non-singular at P.
Moreover, we have Ip(A4,Fp)=e—2. Since C ~ eEy+ 2¢F is base-point-
free, so is (eEy+2eF)|,. Hence, (eEp+2eF—e —---—ey)
(2e(e — 2) — m)P is base-point-free on 4. By Remark 2.3 we get 2e(e —2) —me
(e —2,2(e—2)—1).

(2) ii) follows from i) by (1). Moreover, ii) implies i) by Theorem 3.4.

O

~
|A7e17~-7em
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ExampLE 3.1. Let d =8, hence e =4, and t =d — 4 =4, i.e., there exists a
double covering 7: C — C with a branch point P where C is a plane curve of
degree 8. Then the genus of C is (e — 1)2 =9. By Lemma 2.5 the set of gaps
at P contains {1,2,3,4,5,6,7,9}. By Lemma 3.1 i) the remaining gap m + 1 at
P belongs to the set {8,10,11,12,13,14,15,16,17}. By Corollary 3.5 (2) 16
is deleted, because <{e —2,2¢ — 5> =1<2,3>% 16 —15. That is to say, the gap
sequence at P is 1, 2, 3, 4, 5 6, 7, 9, y where y=m+1 is in the set
{8,10,11,12,13,14,15,17}. Conversely, there exists a double covering 7 : E—E
with a branch point Q whose gaps form the above set.

Using Lemmas 2.7 and 2.8 we get the following in a similar way to the proof
of Proposition 3.3:

PrROPOSITION 3.6. Let C be a non-singular curve on P(O @ O(-2)) with
C~¢eEy+ (2e + 1)F and Ip(C,Fp) = e — 2. Let A be an effective divisor which is
linearly equivalent to

Kp(g‘@(r/v(,z)) + C ~ (e — 2)E() + (26 — 3)F

Let Pe CNEy. We assume that Ip(A, C) = m for some m which belongs to the set
Z, in Lemma 3.1 ii). Then A is irreducible and non-singular at P. Moreover, we
have Ip(A,Fp) =e —2.

THEOREM 3.7. Let d be odd We set d =2e+ 1. Let m be in the set Z,
in Lemma 3.1 ii). If 2(e? —e—1)—m belongs to the numerical semigroup
(e —2,2e —3) generated by e — 2 and 2e — 3, then there exists a double covering
n: C — C with a ramification point P where C is a plane curve of degree d with
I5(T5,C) =d —4 such that m is an order at P=n(P), ie, m+1 is a gap
at P.

ProoF. Let Pe S =P(0® O(-2)) with Pe Ey. In Proposition 3.2 we set
n=e—2, m=2e—3 and j=e—2. Then there exists a non-singular curve A4
on S such that 4 ~ (e — 2)Ey + (2¢e — 3)F and Ip(A4,Fp) = e — 2. We set P; = P.
Let 7y : S — S be the blowing-up at P;. Let e; be the exceptional divisor and
P, the intersection between 4 — e; and e, i.e., the intersection between Fp — ¢;
and e;. Forany 2 <i<e—3let n; : S; — S;_| be the blowing-up at P;. Let ¢; be
the exceptional divisor and P;,; the intersection between 4 —e; — -+ —¢; and e;,
i.e., the intersection between Fp—e¢; —---—e¢; and ¢;. Let m = e — 1. For any
k=e—-2=j=m-1let n;:S; — Sj_1 be the blowing-up at P;. Let ¢; be the
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exceptional divisor and P;,; the intersection between 4 —e; —--- —¢; and ¢;. In
this case we have Py ¢ Fp —e; —--- — er. Let m be in the set Z,. We want to
show that there exists a non-singular curve C with C ~ eEy + (2¢ + 1)F satistying
the following:

P]EC,PzEC—@],Pg,GC—E]—82,...,PmEC—€]—'“—em_],
PerIEC_el_"'_em and Pm+1¢A_el_"'_ema

which implies that Ip(C, 4) = m. By Bertini’s Theorem it suffices to show that the
linear system |eEp+ (2e+ 1)F —e; —--- — ep| is base point free. Then there is
C ~¢eEy+ (2¢e+ 1)F such that P, 1 ¢ C—e; —---—ep, because |C —ej — -+ —
en| is base point free. Now, we want to find a necessary and sufficient condition
such that |eEy+ (2e + 1)F —e; — -+ - —ey| i1s base point free. We have

eEy+ Qe+ 1)F—ej— - —epy~(A—e — - —ey) +2(Ey + 2F).

Since Ej + 2F is base point free, the linear system |eEy+ (2e + 1)F —ep — -+ —
en| is base point free if and only if the linear system |eEy + (2e + 1)F —e; — -+ —
en| has no base point on 4 —e; — --- — ¢,,. Hence, it is sufficient to prove that
the linear system

|Og—e—ee, (€Eg + e+ 1)F —ey — -+ —¢,,)|
is base point free. We have
(eEy+ e+ 1)F)|, ~ e(Ey, A) + (2e + 1)Fp|, = (2e + 1)(e — 2) +e)P
=2(e* —e—1)P,

because of Ey> P, (Ey,A) = (Ep,(e —2)Ey+ (2¢e —3)F) =1, (4,F) =e—2 and
Ip(A,Fp) = e —2. Thus, we get

(eEo+ (2e+ 1)F —e; — - —ep)

‘Afelfmfem

~ (eEO + (23 + l)FP)‘A—Q—"'—Em - (61 +ot e’”)|A—t’1—'

c—em?

which is linearly equivalent to (2(e> —e—1)—m)P on A. Hence, |eEy+
(2e+ 1)F —e; —-+-—ey| is base point free if and only if so on 4 is
(2(e* —e—1) —m)P, ie., 2(e> —e—1) —m is a non-gap of P on A. Since we
have 4 ~ (e —2)Ey+ (2¢e — 3)F and Ip(A,Fp) =e—2, by Remark 2.4 we get
the desired non-singular curve C. We can get a double cover C of C with a
ramification point P over P such that I;(T5 C)=d —4 as in the proof of
Theorem 3.4 because of P € K. |
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By Proposition 3.6 and Theorem 3.7 we get the following:

CoroOLLARY 3.8. (1) Let C be a non-singular curve on P(O ® O(-2)) with
C~¢eEy+ (2e+ 1)F and Ip(C,Fp) =e—2. Let Pe CNE,.
Let A be an effective divisor which is linearly equivalent to

Kpogo(-2) + C ~ (e —2)Ey + (2¢ — 3)F.

We assume that Ip(A,C)=m for some m which belongs to the set Z, in
Lemma 3.1 ii). Then 2(e* —e—1)—m belongs to the numerical semigroup
e —2,2¢e —3>.

(2) Assume that m belongs to the set Z, in Lemma 3.1 ii). The following are
equivalent:

i) There exists a double covering n: C — C with a ramification point P
where C is a plane curve of degree d such that m+1 is a gap at P = n(P)
on C

i) 2(e2 —e—1) —mee—2,2¢—3).

ExaMpPLE 3.2. Let d =9, hence e=4 and t=d —4, ie., there exists a
double covering 7: C — C with a branch point P where C is a plane curve of
degree 9. Then the genus of C is e(e — 1) = 12. By Lemma 2.7 the set of gaps
at P contains {1,2,3,4,5,6,7,8,9,11,13}. By Lemma 3.1 ii) the remaining gap
m+1 at P belongs to the set {10,12,14,15,/16,17,18,19,20,21,22,23}. By
Corollary 3.8 (2) 20 and 22 are deleted, because <{e—2,2¢ —3>=<2,5)%
22 — 19,22 — 21. That is to say, the gap sequence at P is 1, 2, 3,4, 5, 6, 7, 8,
9, 11, 13, y where y=m+1 is in the set {10,12,14,15,16,17,18,19,21,23}.
Conversely, there exists a double covering 5 : E — E with a branch point Q
whose gaps form the above set.
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