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FRACTIONAL POWERS AND INTERPOLATION

THEORY FOR MULTIVALUED LINEAR OPERATORS

AND APPLICATIONS TO DEGENERATE

DIFFERENTIAL EQUATIONS

By

Alberto Favaron and Angelo Favini

Abstract. We provide intermediate properties for the domains of

the fractional powers of an abstract multivalued linear operator A of

weak parabolic type. In particular, our results exhibit the special role

played by the linear subspace A0, which reduces to f0g if and only

if A is single-valued. The behaviour of the singular semigroup

generated by A with respect to the domains of the fractional powers

is then studied, and applications of this behaviour to questions of

maximal time and space regularity for abstract multivalued evolu-

tion equations are given. As a concrete case we consider a class of

degenerate partial di¤erential evolution equations which may be

rewritten in a multivalued evolution form.

1. Introduction

The aim of this paper is to establish some intermediate properties for the

domains of the fractional powers of abstract multivalued linear operators. The

class of operators we shall deal with consists of those multivalued linear operators

A from a complex Banach space X to itself, which have a single-valued resolvent

satisfying the following estimate:

kðlI � AÞ�1
xkX aCðjlj þ 1Þ�bkxkX ; El A Sa; Ex A X : ð1:1Þ

Here, I is the identity operator, C is a positive constant, b A ð0; 1� and Sa is the

complex region fz A C : <e zb�cðj=m zj þ 1Þag, c > 0, a A ½b; 1�.
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To elucidate the motivation of our research, we make a brief digression

in the ambit of single-valued operators. To this purpose, recall that if A is a

single-valued densely defined linear operator satisfying (1.1) with b ¼ 1, then the

domains Dðð�AÞyÞ of its fractional powers ð�AÞy enjoy the following inter-

mediate property (cf. [24], [25] and [35]):

ðX ;DðAÞÞ<e y;1 ,! Dðð�AÞyÞ ,! ðX ;DðAÞÞ<e y;y; <e y A ð0; 1Þ; ð1:2Þ

ðX ;DðAÞÞg;p, g A ð0; 1Þ, p A ½1;y�, being real interpolation spaces between X and

the domain DðAÞ of A. Relation (1.2) is decisive in a lot of abstract results whose

proofs employ interpolation theory’s techniques. For instance, it is the starting

point in the abstract theory of semilinear parabolic equations (cf. [20] and [27]).

On the contrary, if ða; bÞ0 ð1; 1Þ and/or DðAÞ is not dense, it is not known

whether embedding (1.2), or at least a similar one, continues to hold. Since

estimate (1.1) with b A ð0; 1Þ occurs in many concrete cases (cf. [29], [32], [36], [37]

and [38]), it is clear how much the question of generalizing (1.2) necessitates to be

answered, even if only for the single-valued case.

Although a single-valued approach would certainly have been easier, we have

preferred to treat the problem in the more general context of multivalued linear

operators. This choice depends on two reasons. The first is that any single-valued

linear operator A is by itself a trivial multivalued one, in which the linear

subspace A0 reduces to f0g. Consequently, the generalization of (1.2) for the

single-valued case will be obtained simply by taking A0 ¼ f0g in the result that

we are going to describe. The second reason is that the applications we have in

mind concern degenerate di¤erential equations of the type considered in [8]–[13],

[28] and [40]. The standard procedure for solving such equations is to rewrite

them in a non degenerate multivalued form, where the basic multivalued linear

operator A satisfies (1.1) and the case b A ð0; 1Þ appears in many concrete cir-

cumstances. As shown in [12], the belonging of some data to Dðð�AÞyÞ for

opportune values of y is in general su‰cient to get existence, uniqueness and

regularity results for this kind of equations. On the other hand, when dealing

with questions of maximal regularity in both time and space, the absence of

any known intermediate property for the domains of the fractional powers of

multivalued linear operators yields to assume that the data belong to some

unnatural intersections as those in [8]; intersections which could be easily char-

acterized if we were in possess of a relation of type (1.2).

To highlight the novelty of our results we remind that, contrarily to the

single-valued case with b ¼ 1 for which the theory goes back to [4], [19] and

[23]–[25], the study of fractional powers of multivalued linear operators satisfying
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(1.1) is still a quite unexplored field. To our knowledge, fractional powers of

multivalued linear operators were first introduced in [1] for the case b ¼ 1, and

subsequently in [11] and [12] for the general case. We quote also [32], but only

for the single-valued sub-case with a ¼ 1. However, in none of these papers

intermediate properties of type (1.2) were investigated. In the monograph [6],

fractional powers are not even mentioned.

We now provide the detailed contents of this paper. Section 2 contains all

the needed preliminary material of the theory of multivalued linear operators. At

first, we introduce the basic concepts of inversion, sum, product, extensions and

sections of multivalued linear operators. For a multivalued linear operator A

from X to itself, we then pay particular attention to its resolvent set rðAÞ and to

the bounded section zðzI � AÞ�1 � I of AðzI � AÞ�1, z A rðAÞ. It is here that the

linear subspace A0 begins to reveal its crucial role (cf. Lemma 2.1). Finally, to

those multivalued linear operators A satisfying (1.1), we associate the corre-

sponding infinitely di¤erentiable semigroup fe tAgtb0 on X .

In Section 3 we introduce the fractional powers ð�AÞGy, <e y > 1� b, of a

multivalued linear operator A satisfying (1.1). We first define the negative frac-

tional powers ð�AÞ�y, <e y > 1� b, by explicit complex integrals converging in

the LðX Þ-norm and we briefly recall their main properties. The positive frac-

tional powers ð�AÞy, <e y > 1� b, are then defined as the inverse of ð�AÞ�y.

Therefore, since in the really multivalued case the negative fractional powers are

not injective, the positive fractional powers turn out to be a class of multivalued

linear operators. Some relations between the domains Dðð�AÞyÞ of ð�AÞy are

provided for di¤erent values of <e y > 1� b, and the semigroup property is

investigated. In Remarks 3.5–3.8 we compare the single- and the multivalued

cases. In particular, we show that the method of the closed extension, used in [4]

and [23] to define ð�AÞy, <e y > 0, for single-valued densely defined linear

operators satisfying (1.1) with b ¼ 1, fails in the really multivalued case. It is for

this failure that in the multivalued case the definition of ð�AÞy as multivalued

inverse of ð�AÞ�y is the only possible, with the remarkable consequence that an

explicit formula for ð�AÞy is not at our disposal anymore. As a result of this

lack, it is not clear, not even in the case of b ¼ 1, how to define the purely

imaginary powers ð�AÞ it, t A R, of a really multivalued linear operator A. We

conclude the section introducing the bounded operators ½ð�AÞy��e tA, t > 0,

<e yb 0, and the relative estimates for their LðXÞ-norm.

For a multivalued linear operator A satisfying (1.1), in Section 4 we in-

troduce the Banach spaces ðX ;DðAÞÞg;p and X
g;p
A , g A ð0; 1Þ, p A ½1;y�. The main

result of the section is Proposition 4.3, where we extend to p A ½1;y� some
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embedding relations among such spaces shown in [12] only for p ¼ y. From

Proposition 4.3 it follows that, with the exception of b ¼ 1 when ðX ;DðAÞÞg;p
and X

g;p
A coincide with equivalent norms, the spaces X

g;p
A are intermediate

between X and DðAÞ only for g A ð0; bÞ, whereas they may be smaller than DðAÞ
for g A ½b; 1Þ. Our interest on spaces X

g;p
A for values of p other than p ¼ y is

motivated by the key role that spaces X g;1
A play in the theory of fractional powers

of single-valued linear operators satisfying (1.1) with b ¼ 1. Of course, in this

case they coincide with the interpolation spaces ðX ;DðAÞÞg;1, but their definition

makes them suitable for the construction of a closable operator having domain

X <e y;1
A , <e y A ð0; 1Þ, and whose closure is just ð�AÞy (cf. Remark 4.1). Even

though in the really multivalued case we can not proceed at the same way, in a

sense that we clarify soon below the basic idea still remains valid. An interesting

property of spaces X
g;p
A is that they have in common with A0 the solely zero

element of X (cf. Remark 4.2). It thus su‰ces to investigate only a relation of

type

X
g1; p1
A ,! f0gU ½Dðð�AÞyÞnA0� ,! X

g2; p2
A ; ð1:3Þ

for opportune <e y, gj and pj, j ¼ 1; 2. Clearly, if A is single-valued and b ¼ 1,

then we should obtain g1 ¼ g2 ¼ <e y A ð0; 1Þ and ðp1; p2Þ ¼ ð1;yÞ.
As byproduct of Proposition 4.3, in Section 5 we characterize the regularity of

fe tAgtb0 with respect to the space Y p
g A fðX ;DðAÞÞg;p;X

g;p
A g, g A ð0; 1Þ, p A ½1;y�.

First, in Lemma 5.1 we prove that the uniform norm k½ð�AÞ1��e tAkLðY p
g ;XÞ may

blow-up as t goes to zero, but not faster than tðbþg�2Þ=a. Then, in Proposition 5.2

we show that fe tAgtb0 is strongly continuous in the X -norm on the space Y p
g ,

g A ð1� b; 1Þ. Finally, in Corollary 5.4 we derive that the map t ! e tA is Hölder

continuous from ½0;yÞ to LðY p
g ;X Þ, g A ð2� a� b; 1Þ, with Hölder exponent

s ¼ ðaþ b þ g� 2Þ=a.
Section 6 contains the proof of (1.3). We first introduce the Banach spaces

DAðg; pÞ, g A ð0; 1Þ, p A ½1;y�, and in Proposition 6.3 we prove some embedding

relations among the spaces X
g;p
A , ðX ;DðAÞÞg;p and DAðg; pÞ. In particular, we

obtain f0gU ½DAðg;yÞnA0� ,! X
s;y
A , where g A ð2� a� b; 1Þ and s is as above.

Since Dðð�AÞyÞ ,! DAð<e y;yÞ, <e y A ð2� a� b; 1Þ, this yields (cf. Theorem

6.9):

f0gU ½Dðð�AÞyÞnA0� ,! X
ðaþbþ<e y�2Þ=a;y
A ; <e y A ð2� a� b; 1Þ: ð1:4Þ

In Theorem 6.6 we focus on the embedding on the left of (1.3). In a certain sense,

we generalize to the multivalued case the idea of the method of the closed

extension. More precisely, we define a single-valued linear operator with domain
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X
<e y;1
A , <e y A ð1� b; bÞ, and we prove that it is a section of the restriction of

ð�AÞy to X
<e y;1
A . Due to the mentioned property of the spaces X g;p

A , this leads to

X
<e y;1
A ,! f0gU ½Dðð�AÞyÞnA0�; <e y A ð1� b; bÞ: ð1:5Þ

Finally, provided that <e y A ð2� a� b; bÞ, in Theorem 6.10 we combine

(1.4) and (1.5) and we get (1.3) with ðp1; p2Þ ¼ ð1;yÞ, g1 ¼ <e y and g2 ¼
ðaþ b þ <e y� 2Þ=a.

In Section 7 we investigate the behaviour of the bounded operators

½ð�AÞy��e tA, t > 0, <e yb 0, with respect to the domains Dðð�AÞgÞ, <e g > 1� b.

In Proposition 7.3 we show that the uniform norm kð½�A�yÞ�e tAkLðX ;Dðð�AÞ gÞÞ
may goes to infinity as t goes to zero, but not faster than tðb�<e g�<e y�1Þ=a. This

enables us to characterize the time and space regularity of some basic operator

functions which appear naturally in the study of multivalued evolution equations

(cf. Lemmas 7.6, 7.7, 7.10 and 7.11).

Section 8 contains applications of our results to questions of maximal

regularity for multivalued and degenerate evolution equations. First, for a

multivalued linear operator A satisfying (1.1) we consider the problem

DtuðtÞ A AuðtÞ þ f ðtÞ; t A ð0;T �; uð0Þ ¼ u0; ð1:6Þ

and in Theorem 8.2 we show that it has a unique solution u A C1þsð½0;T �;
Dðð�AÞgÞ, provided that s and <e g are opportunely chosen and the data pair

ð f ; u0Þ is regular enough. We then consider the class of degenerate evolution

equations

DtðMvðtÞÞ ¼ LvðtÞ þ f ðtÞ; t A ð0;T �; Mvð0Þ ¼ u0; ð1:7Þ

where M and L are single-valued linear operators in X such that DðLÞJDðMÞ
and M may have no bounded inverse. Hence, M�1 being generally defined only

as a multivalued linear operator, problem (1.7) is completely equivalent to (1.6)

with ðu;AÞ ¼ ðMv;LM�1Þ. Of course, A is wanted to satisfy (1.1), and this is

done by requiring kMðlM � LÞ�1kLðX Þ aCðjlj þ 1Þ�b, l A Sa. It thus follows

from Theorem 8.2 that problem (1.7) has a unique solution v such that Mv A

C1þsð½0;T �;Dðð�AÞgÞ. Applications of this result are then given to two concrete

situations. We conclude the section suggesting possible applications of our results

to the semilinear and non autonomous versions of problem (1.6).

Finally, in Section 9, for a multivalued linear operator A satisfying (1.1) and

under an additional hypothesis on the ranges of ð�AÞ�y, <e y A ½b; 1�H ð1� b; 1�,
b > 1=2, we provide a possible definition of the fractional powers ð�AÞGy,

<e y A ½0; 1� b�, as a class of multivalued linear operators. In particular, if A is
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single-valued, densely defined and satisfies (1.1) with b ¼ 1, then we restore the

definition of ð�AÞ it, t A R, given in [24].

2. Basic Notions on Multivalued Linear Operators

Let X be a complex Banach space endowed with norm k � kX and let 2X

be the collection of all the subsets of X . For a number l A C and three subsets

Fi of 2Xnq, i ¼ 1; 2; 3, lF1 and F2 þ F3 denote the subsets of X defined by

flf1 : f1 A F1g and f f2 þ f3 : fi A Fi; i ¼ 2; 3g, respectively. Then, a mapping A

from X into 2X is called a multivalued linear operator in X , shortened to m. l.

operator, if its domain DðAÞ ¼ fx A X : Ax0qg is a linear subspace of X and

A satisfies:

i) Axþ AyHAðxþ yÞ, Ex, y A DðAÞ;
ii) lAxHAðlxÞ, El A C, Ex A DðAÞ.

Given U A 2X we write AðUÞ ¼ 6
u ADðAÞVU Au and the set RðAÞ ¼ AðX Þ ¼

AðDðAÞÞ is called the range of A. If RðAÞ ¼ X , then A is said to be surjective.

The subset GðAÞ of X � X defined by fðx; yÞ : x A DðAÞ; y A Axg is called the

graph of A. If U A 2X is such that U VDðAÞ0q, then the restiriction AjU of

A to U is the m. l. operator having domain DðAjUÞ ¼ U VDðAÞ and such that

ðAjUÞx ¼ Ax, x A DðAjUÞ. The following properties of a m. l. operator A are

immediate consequences of its definition (cf. [12]):

iii) Axþ Ay ¼ Aðxþ yÞ, Ex, y A DðAÞ;
iv) lAx ¼ AðlxÞ, El A Cnf0g, Ex A DðAÞ;
v) A0 is a linear subspace of X and Ax ¼ yþ A0 for any y A Ax, x A DðAÞ.

Thus, A is single-valued if and only if A0 ¼ f0g.

The inverse A�1 of a m. l. operator A is the m. l. operator having domain

DðA�1Þ ¼ RðAÞ and such that A�1y ¼ fx A DðAÞ : y A Axg, y A DðA�1Þ. In par-

ticular, ðA�1Þ�1 ¼ A (cf. [12, Theorem 1.3]). The set A�10 ¼ fx A DðAÞ : 0 A Axg
is called the kernel of A and it is denoted by NðAÞ. Thus, NðA�1Þ ¼ A0. If

NðAÞ ¼ f0g, i.e. if A�1 is single-valued, then A is said to be injective. From v) it

thus follows that Ax ¼ A0 if and only if x A NðAÞ. Notice that, in general, from

v) it follows that Ax ¼ Ay, x; y A DðAÞ, if and only if AxVAy0q, but, if A is

injective, Ax ¼ Ay if and only if x ¼ y.

If A1 and A2 are m. l. operators in X and z A C, then the scalar multi-

plication zA1, the sum A1 þ A2, and the product A1A2 are the m. l. operators

in X defined as follows:
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DðzA1Þ ¼ DðA1Þ; ðzA1Þx ¼ zA1x; x A DðzA1Þ;
DðA1 þ A2Þ ¼ DðA1ÞVDðA2Þ; ðA1 þ A2Þx ¼ A1xþ A2x; x A DðA1 þ A2Þ;
DðA1A2Þ ¼ fx A DðA2Þ : A1ðA2xÞ0qg; ðA1A2Þx ¼ A1ðA2xÞ; x A DðA1A2Þ:

8><
>:

ð2:1Þ

It is verified that ðzzÞA1 ¼ zðzA1Þ, z; z A C, and (cf. [12, Section 1.2]) ðA1A2Þ�1 ¼
A�1

2 A�1
1 . Moreover, denoting by I the identity operator in X , from (2.1) we see

that a m. l. operator A is injective (respectively, single-valued) if and only if

A�1A ¼ I jDðAÞ (respectively, AA�1 ¼ I jRðAÞ).

Defining A0 and DðA0Þ to be I and X , respectively, from the third relation in

(2.1) we have that the integer powers An, n A N ¼ f1; 2; . . .g, of a m. l. operator A

are defined by induction in the following way:

DðAnÞ ¼ fx A DðAn�1Þ : DðAÞVAn�1x0qg;
Anx ¼ ðAAn�1Þx ¼ 6

y ADðAÞVAn�1x
Ay; x A DðAnÞ:

(
ð2:2Þ

Hence, an induction argument leads to ðAnÞ�1 ¼ ðAn�1Þ�1
A�1 ¼ ðA�1Þn, n A N.

Clearly, if A is single-valued, (2.2) coincides with the usual definition for

integer powers of single-valued operators, since DðAÞVAn�1x0q reduces to

An�1x A DðAÞ.
If A and B are m. l. operators in X we write AHB if DðAÞJDðBÞ and

AxJBx for every x A DðAÞ, where ‘‘J’’ must be understood in the set-theoretical

meaning. If AHB and Ax ¼ Bx for every x A DðAÞ, i.e. if A ¼ BjDðAÞ, then B

is said to be an extension of A. Clearly, AHBHA is equivalent to A ¼ B.

Observe that AHB if and only if zAH zB, z A Cnf0g. Indeed, if AHB, then

DðzAÞ ¼ DðAÞJDðBÞ ¼ DðzBÞ and ðzAÞx ¼ zAxJ zBx ¼ ðzBÞx, x A DðzAÞ, i.e.
zAH zB. Vice versa, if zAH zB, z A Cnf0g, then from the first part it follows

that A ¼ z�1ðzAÞH z�1ðzBÞ ¼ B. If a linear single-valued operator S has domain

DðSÞ ¼ DðAÞ and SHA, then S is called a section of A. With an arbitrary

section S, it holds that Ax ¼ Sxþ A0, x A DðAÞ, and RðAÞ ¼ RðSÞ þ A0, but

this latter sum may or may not be direct (cf. [6, p. 14]). A method for con-

structing sections is provided by [6, Proposition I.5.2].

If ðXj; k � kXj
Þ, j ¼ 1; 2, are two complex Banach spaces, the linear space of

all bounded single-valued linear operators L from X1 to X2 is denoted by

LðX1;X2Þ and it is equipped with the uniform operator norm kLkLðX1;X2Þ ¼
infKb0fkLxkX2

aKkxkX1
for all x A X1g, L A LðX1;X2Þ. For brevity, LðX1;X1Þ

¼ LðX1Þ. Then, if A is a m. l. operator in X , the resolvent set rðAÞ of A is

defined to be the set of all z A C such that DððzI � AÞ�1Þ ¼ X and ðzI � AÞ�1 A

LðXÞ. The basic properties of the resolvent set of single-valued operators hold
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the same for m. l. operators. First, if rðAÞ0q, then the m. l. operator A is

closed, that is its graph GðAÞ is closed in X � X (cf. [6, p. 43]). Further (cf. [12,

Theorem 1.6]), rðAÞ is an open set of C and the operator function z A rðAÞ !
ðzI � AÞ�1 A LðX Þ is holomorphic. Finally (cf. [12, Theorem 1.8]), the resolvent

equation ðlI � AÞ�1 � ðmI � AÞ�1 ¼ ðm� lÞðlI � AÞ�1ðmI � AÞ�1, l; m A rðAÞ, is

satisfied, too. Unlike the single-valued case, instead, it holds that (cf. [12, Theo-

rem 1.7]):

ðzI � AÞ�1
AH zðzI � AÞ�1 � I HAðzI � AÞ�1; z A rðAÞ: ð2:3Þ

Then, in general, zðzI � AÞ�1 � I , z A rðAÞ, is only a bounded section of the m. l.

operator AðzI � AÞ�1. Throughout the paper this bounded section is denoted by

A�ðzI � AÞ�1, but here A� is only a symbol and does not necessarily denote a

section of A itself. Of course, if 0 A rðAÞ, then A�ð0I � AÞ ¼ �I by definition

and, if A is single-valued, A�ðzI � AÞ�1 reduces to AðzI � AÞ�1. Notice that the

first inclusion in (2.3) implies that ðzI � AÞ�1
A, z A rðAÞ, is single-valued on DðAÞ

and ðzI � AÞ�1
Ax ¼ ðzI � AÞ�1

y for every y A Ax, x A DðAÞ. Another di¤erence

with the single-valued case is that for every z A rðAÞ it holds NððzI � AÞ�1Þ ¼
ðzI � AÞ0 ¼ A0. Therefore, in the really multivalued case, f0gWNððzI � AÞ�1Þ
for every z A rðAÞ.

We recall that, if 0 A rðAÞ, then from [11, Lemma 5.1 with T ¼ A�1] we have

ðzI � AÞ�1 ¼ A�1ðzA�1 � IÞ�1 ¼ ðzA�1 � IÞ�1
A�1; Ez A C; ð2:4Þ

in the sense of m. l. operator. As a consequence, when 0 A rðAÞ, we have also the

following useful characterization of A�ðzI � AÞ�1 (cf. [11, p. 375]):

A�ðzI � AÞ�1 ¼ ðzA�1 � IÞ�1; Ez A rðAÞ: ð2:5Þ

Thus, if 0 A rðAÞ, combining (2.4) and (2.5) we get

A�1A�ðzI � AÞ�1 ¼ A�1ðzA�1 � IÞ�1 ¼ ðzI � AÞ�1; Ez A rðAÞ: ð2:6Þ

Lemma 2.1. Let 0 A rðAÞ. Then NðA�ðzI � AÞ�1Þ ¼ f0g for every z A rðAÞ.
In addition, x B A0 if and only if A�ðzI � AÞ�1

x B A0, z A rðAÞ.

Proof. Let z A rðAÞ and assume x A NðA�ðzI � AÞ�1Þ. Then 0 ¼
A�ðzI � AÞ�1

x ¼ zðzI � AÞ�1
x� x, so that zðzI � AÞ�1

x ¼ x. This implies

x A DðAÞ, for ðzI � AÞ�1
x A DðAÞ and DðAÞ is a linear subspace of X . Therefore,

zx A ðzI � AÞx ¼ fzx� y : y A Axg which leads to 0 A Ax, i.e. x A NðAÞ. Since A

is injective, we thus find x ¼ 0, completing the proof of NðA�ðzI � AÞ�1Þ ¼ f0g.
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Let us now prove that x B A0 if and only if A�ðzI � AÞ�1
x B A0, z A rðAÞ.

Assume first x B A0. If for some z A rðAÞ it holds that A�ðzI � AÞ�1
x A A0,

then from (2.6) it follows that 0 ¼ A�1A�ðzI � AÞ�1
x ¼ ðzI � AÞ�1

x, i.e. x A

NððzI � AÞ�1Þ ¼ A0, a contradiction. Vice versa, if x A A0, then A�ðzI � AÞ�1
x

¼ zðzI � AÞ�1
x� x ¼ �x A A0. r

Lemma 2.2. For every l, m A rðAÞ it holds that

ðm� lÞðlI � AÞ�1
A�ðmI � AÞ�1 ¼ A�ðlI � AÞ�1 � A�ðmI � AÞ�1; ð2:7Þ

ðm� lÞA�ðlI � AÞ�1ðmI � AÞ�1 ¼ A�ðlI � AÞ�1 � A�ðmI � AÞ�1; ð2:8Þ

Proof. First, since A�ðmI � AÞ�1 ¼ mðmI � AÞ�1 � I , we have

ðm� lÞðlI � AÞ�1
A�ðmI � AÞ�1

¼ mðm� lÞðlI � AÞ�1ðmI � AÞ�1 � ðm� lÞðlI � AÞ�1: ð2:9Þ

Then, applying the resolvent equation to the right-hand side of (2.9), we get

ðm� lÞðlI � AÞ�1
A�ðmI � AÞ�1

¼ mðlI � AÞ�1 � mðmI � AÞ�1 � ðm� lÞðlI � AÞ�1

¼ ½lðlI � AÞ�1 � I � � ½mðmI � AÞ�1 � I �:

This completes the proof of (2.7). To prove (2.8) it su‰ces to write A�ðlI � AÞ�1

¼ lðlI � AÞ�1 � I and to proceed as in the proof of (2.7). r

Let A be a m. l. operator in X satisfying the following resolvent condition:

(H1) rðAÞ contains a region Sa ¼ fz A C : <e zb�cðj=m zj þ 1Þa;=m z A Rg,
a A ð0; 1�, c > 0, and for some exponent b A ð0; a� and constant C > 0 it

holds:

kðlI � AÞ�1kLðXÞ aCðjlj þ 1Þ�b; El A Sa:

Assumption (H1), said of abstract weak parabolicity, implies that A generates

an infinitely strongly di¤erentiable semigroup of bounded linear operators on X .

Precisely, introduce the family fe tAgtb0 HLðX Þ defined by e0A ¼ I and

e tA ¼ 1

2pi

ð
G

e tlðlI � AÞ�1 dl; t > 0; ð2:10Þ
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GHSanfz A C : <e zb 0g being the contour parametrized by l ¼ �cðjhj þ 1Þa þ
ih, h A ð�y;yÞ. We shall denote by GG the infinite branches fl A G :G=m z > 0g
of G such that G ¼ Gþ UG� U f�cg. Then, according to [11, Section 3] for the

multivalued case and to [32, Theorem 5.1] for the single-valued one, fe tAgtb0 is a

semigroup on X , infinitely many times strongly di¤erentiable for t > 0 with

Dk
t e

tA ¼ 1

2pi

ð
G

lke tlðlI � AÞ�1 dl; t > 0; k A N: Dk
t ¼ dk

dtk

 !
ð2:11Þ

In general, no analiticity should be expected for e tA. For, if a < 1 in (H1), then

Sa does not contain any sector Loþp=2 ¼ fz A Cnf0g : jarg zj < oþ p=2g, o A

ð0; p=2Þ, and [32, Theorem 5.3], which extends e tA to an analytic semigroup in the

sector Lo containing the positive real axis, is not applicable.

We stress that (2.10) and NððzI � AÞ�1Þ ¼ A0, z A rðAÞ, imply A0HNðe tAÞ
for every t > 0, whereas Nðe0AÞ ¼ NðIÞ ¼ f0g. Hence, if A is really a m. l.

operator, then e tA has definitely nonzero kernel for t > 0 and the following

inclusion holds:

A0J7
t>0

Nðe tAÞ: ð2:12Þ

From the semigroup property it also follows Nðe t0AÞJNðe t1AÞ for t1 b t0 b 0.

We shall come back in Section 3 to the semigroup e tA, after having intro-

duced the operators ½ð�AÞy��e tA A LðXÞ, yb 0, t > 0. Here, instead, we want

only to recall that under assumption (H1) we can specify a topology on DðAÞ
equipping it with the norm

kxkDðAÞ ¼ infy AAxkykX ; x A DðAÞ: ð2:13Þ

Since A�1 belongs to LðX Þ this norm is equivalent to the graph norm and makes

DðAÞ a complex Banach space (cf. [12, Proposition 1.11]). From now on, X1 and

X2 being given normed complex linear spaces, we shall say that X1 is con-

tinuously embedded in X2, and we shall write X1 ,! X2, if X1 JX2 and there

exists a positive constant C1 such that kxkX2
aC1kxkX1

for every x A X1. Then,

DðAÞ endowed with the norm (2.13) satisfies DðAÞ ,! X . In fact, if x A DðAÞ,
then x ¼ A�1y for every y A Ax so that kxkX a kA�1kLðX ÞkykX aCkykX for

every y A Ax. Taking the infimum with respect to y A Ax in the latter inequality,

we thus find kxkX aCkxkDðAÞ for every x A DðAÞ.

3. The Fractional Powers ð�AÞGy
for <e y > 1� b

Let A be a m. l. operator in X satisfying assumption (H1) for some b A ð0; a�,
a A ð0; 1�. Then, according to [12, Section 1.4] which generalizes [32, Section 6]
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to m. l. operators, we define the fractional powers ð�AÞ�y of �A by the

integrals

ð�AÞ�y ¼ 1

2pi

ð
G

ð�lÞ�yðlI � AÞ�1 dl; y A C; <e y > 1� b: ð3:1Þ

Here the contour G avoiding the origin and the positive real axis is the same

occurring in formula (2.10), and for the function ð�lÞ�y ¼ e�y logð�lÞ we choose

the principal branch holomorphic in the region Cnfz A C : <e zb 0g, where

for principal branch we mean that the principal determination lnjzj þ i argðzÞ,
argðzÞ A ð�p; pÞ, of logðzÞ is considered. We like to mention that in the case

A A LðX Þ definition (3.1) coincide with that given in [19, Section 17.7], where the

theory of fractional powers in the framework of operational calculus originated.

Now, for every l A G and every z A C it holds that

jð�lÞzj ¼ jez logð�lÞj ¼ jlj<e ze�=m z argð�lÞ
a jlj<e zeðp=2Þj=m zj: ð3:2Þ

Then, since jljb c for l A G, for <e y > 1� b from (3.1) and (3.2) we have:

kð�AÞ�y
xkX aCeðp=2Þj=m yj

ð
G

jlj�<e yðjlj þ 1Þ�bjdlj
� �

kxkX

a 2Ceðp=2Þj=m yj
ðy
c

h�<e y�b dh

� �
kxkX

¼ 2Ceðp=2Þj=m yjð<e yþ b � 1Þ�1
c�<e y�bþ1kxkX Ex A X :

It thus follows that ð�AÞ�y A LðXÞ for every y A C such that <e y > 1� b.

Notice that, b being positive, the value <e y ¼ 1 is admitted. In particular, (3.1)

with y ¼ 1 leads to ð�AÞ�1 ¼ ð2piÞ�1 Ð
G
ð�lÞ�1ðlI � AÞ�1 dl which is precisely

the Cauchy’s formula for the holomorphic function m A rðAÞ ! ðmI � AÞ�1 A

LðXÞ. We recall briefly the main properties of ð�AÞ�y, <e y > 1� b. First (cf.

[8, p. 252]), using the resolvent equation and the residue theorem we can easily

verify the semigroup property ð�AÞ�yð�AÞ�y 0
¼ ð�AÞ�ðyþy 0Þ, <e y, <e y 0 > 1� b.

Then, the same proof as in [32, Proposition 6.1(ii)], shows that ð�AÞ�n ¼
ðð�AÞ�1Þn, n A N. Finally, applying the Cauchy theorem to deform the infinite

branches Gþ and G� of G into the upper and lower sides of the positive real axis,

respectively, in [32, Theorem 6.2] it is shown that

ð�AÞ�y ¼ sinðypÞ
p

ðy
0

s�yðsI � AÞ�1 ds; <e y A ð1� b; 1Þ: ð3:3Þ
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Remark 3.1. Let assume here b ¼ 1. Then, reasoning as in [26, p. 281], it is

possible to assign a meaning to (3.3) for all y in the half-plane fz A C : <e z > 0g.
Indeed, integrating by parts the right-hand side of (3.3) and using the formula
dk

dlk ðlI � AÞ�1 ¼ ð�1Þkk!½ðlI � AÞ�1�kþ1, k A N, l A rðAÞ, for <e y A ð0; 1Þ we

obtain

ð�AÞ�y ¼ sinðypÞ
pð1� yÞ s1�yðsI � AÞ�1jy0 þ

ðy
0

s1�y½ðsI � AÞ�1�2 ds
� �

¼ sinðypÞ
pð1� yÞ

ðy
0

s1�y½ðsI � AÞ�1�2 ds: ð3:4Þ

The latter integral actually converges in the LðX Þ-norm for <e y A ð0; 2Þ and the

coe‰cients in this integral are entire functions. Hence (3.4) gives an analytic

continuation of (3.3) to the infinite vertical open strip fz A C : <e z A ð0; 2Þg.
Repeating the previous argument, by m successive integration by parts, m A N, we

obtain

ð�AÞ�y ¼ m! sinðypÞ
pPm

k¼1ðk � yÞ

ðy
0

sm�y½ðsI � AÞ�1�mþ1 ds; <e y A ð0;mþ 1Þ: ð3:5Þ

Each formula in (3.5) defines an analytic continuation of (3.4) to the strip

fz A C : <e z A ð0;mþ 1Þg, m A N, and we may consider (3.3) to be defined for all

y A fz A C : <e z > 0g.

Remark 3.2. If b A ð0; 1Þ, then it is not possible to repeat the argument in

Remark 3.1. Indeed, if b A ð0; 1Þ, then the integral on the right-hand side of (3.4)

requires <e y A ð2ð1� bÞ; 2Þ to converge in the norm of LðXÞ. This means that

(3.3) and (3.4) may both take sense, but for possibly non overlapping intervals.

Thus, we can not consider (3.4) as an analytic continuation of (3.3). Similarly, the

integral in (3.5) needs <e y A ððmþ 1Þð1� bÞ;mþ 1Þ for converging in the norm

of LðX Þ. For this reason, in the case b A ð0; 1Þ, the representation (3.1) of

ð�AÞ�y is more convenient than ð3:3Þ.

Observe that (3.1) is meaningless in the closed strip D1�b ¼ fz A C : <e z A
½0; 1� b�g, for the integral on the right-hand side becomes singular at infinity for

y A D1�b. In particular, when b ¼ 1, D0 coincides with the imaginary axis and,

according to the results in [23, Section 5], [25, Section 1] and [35, Section 1.15]

for the single-valued case, (3.1) provides the fractional powers ð�AÞ�y A LðXÞ of

�A only for <e y > 0.
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The case b ¼ 1 is explicit and we assume it for a moment. Contrarily to the

single-valued case and as we shall make clearer in Remark 3.8 below, here the

multivalued character of A prevents us to proceed as in [23, p. 305] for defining

the pure imaginary powers of �A. This fact highlights the peculiar feature of

m. l. operators and, at the same time, suggests that all the abstract and concrete

results which contain assumptions on the behavior of the pure imaginary powers

of single-valued linear operators may fail in the multivalued case. We refer

in particular to [2, Lemma 3.2, Theorem 3.3, Proposition 4.2 and Section 7],

[7, Theorems 2.1, 3.1–3.3 and Corollary 2.9], [16, Section 6], [30, 31, Section 3],

[24, Proposition 2.9] and [35, Theorem 1.15.3]).

Later on, in Section 9, we shall provide a possible approach for defining

ð�AÞ�y also for y A D1�b. If A is a single-valued densely defined linear closed

operator and b ¼ 1, then our attempt will be in accordance with [24, Proposition

2.9], but in our general case it will furnish the fractional powers ð�AÞ�y, y A D1�b,

only as a class of m. l. operators.

Now, for <e y > 1� b, we define ð�AÞy as the inverse ðð�AÞ�yÞ�1 of

ð�AÞ�y. Thus

Dðð�AÞyÞ ¼ Rðð�AÞ�yÞ ¼ fx A X : x ¼ ð�AÞ�y
y; y A Xg;

ð�AÞyx ¼ fy A X : x ¼ ð�AÞ�y
yg; x A Dðð�AÞyÞ:

(
ð3:6Þ

Clearly, from ðð�AÞyÞ�1 ¼ ððð�AÞ�yÞ�1Þ�1 ¼ ð�AÞ�y A LðXÞ we have 0 A

rðð�AÞyÞ, and ð�AÞy turns out to be a closed m. l. operator. Also, in both the

single- and multivalued cases, if b A ð1=2; a�, a A ð1=2; 1�, it holds that (cf. [32,

Theorem 6.5] and [8, p. 252]):

DðAÞJDðð�AÞyÞ; <e y A ð1� b; bÞ: ð3:7Þ

Indeed, if x A DðAÞ and <e y A ð1� b; bÞ, then x ¼ A�1y for every y A Ax and

we can define both ð�AÞ�y and ð�AÞ�ð1�yÞ. The assertion now follows from x ¼
A�1y ¼ ð�AÞ�yðð�AÞ�ð1�yÞ

yÞ, y A Ax, which proves x A Rðð�AÞ�yÞ ¼ Dðð�AÞyÞ.
Similarly,

Dðð�AÞy1ÞJDðð�AÞy2Þ; 1� b < <e y2 < <e y1 þ b � 1: ð3:8Þ

In fact, in this case ð�AÞ�y2 and ð�AÞ�ðy1�y2Þ are both well-defined and the

semigroup property leads to ð�AÞ�y1 ¼ ð�AÞ�y2ð�AÞ�ðy1�y2Þ, that is Dðð�AÞy1Þ ¼
Rðð�AÞ�y1ÞJRðð�AÞ�y2Þ ¼ Dðð�AÞy2Þ. Notice that (3.8) with ðy1; y2Þ ¼ ð1; yÞ is
precisely (3.7).
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For <e y > 1� b, from (2.1) and (3.6) it follows that:

Dðð�AÞ�yð�AÞyÞ ¼ fx A Dðð�AÞyÞ : X V ð�AÞyx0qg ¼ Dðð�AÞyÞ;
ðð�AÞ�yð�AÞyÞx ¼ 6

y A ð�AÞ yxð�AÞ�y
y ¼ x; Ex A Dðð�AÞyÞ;

(

whereas

Dðð�AÞyð�AÞ�yÞ ¼ fy A X : ð�AÞ�y
y A Dðð�AÞyÞg ¼ X ;

ðð�AÞyð�AÞ�yÞy ¼ 6
x¼ð�AÞ�yy

ð�AÞyxK fyg; Ey A X :

(

Therefore, for <e y > 1� b, we have:

I ¼ ð�AÞ�yð�AÞy; on Dðð�AÞyÞ;
I H ð�AÞyð�AÞ�y; on X :

(
ð3:9Þ

We stress that, if A is single-valued, then [32, Proposition 6.(iii)] applies and

ð�AÞ�y is injective for <e y > 1� b. Thus ð�AÞy is single-valued and the second

of (3.9) becomes an equality. This is a remarkable fact, since, as we shall see in

Remark 3.7 for the case b ¼ 1, the usual definition of ð�AÞy, <e y > 0, for single-

valued linear operators leads to ð�AÞyð�AÞ�y ¼ I only on DðAÞ, closure of

DðAÞ in X . On the contrary, since (3.1) implies A0JNðð�AÞ�yÞ, the injectivity

of ð�AÞ�y, or, equivalently, the single-valuedness of ð�AÞy, is far from being

true in the really multivalued case. Further, observe that Dðð�AÞyÞVA0 may

properly contain f0g and that, if x A Dðð�AÞyÞVA0, then x ¼ ð�AÞ�y
y with

y A Nðð�AÞ�ð1þyÞÞ. For, 0 ¼ �A�1x ¼ ð�AÞ�1ð�AÞ�y
y ¼ ð�AÞ�ð1þyÞ

y.

The semigroup property does not hold in general, since the operators

ð�AÞy1ð�AÞy2 and ð�AÞy1þy2 may be very di¤erent. In fact, for <e yj > 1� b,

j ¼ 1; 2, we have:

Dðð�AÞy1ð�AÞy2Þ ¼ fx A Dðð�AÞy2Þ : Dðð�AÞy1ÞV ð�AÞy2x0qg
¼ fx A Rðð�AÞ�y2Þ : Rðð�AÞ�y1ÞV ð�AÞy2x0qg;

ðð�AÞy1ð�AÞy2Þx ¼ 6
y ARðð�AÞ�y1 ÞVð�AÞy2xð�AÞy1y; Ex A Dðð�AÞy1ð�AÞy2Þ;

8><
>:

but

Dðð�AÞy1þy2Þ ¼ Rðð�AÞ�ðy1þy2ÞÞ;
ð�AÞy1þy2x ¼ fy A X : x ¼ ð�AÞ�ðy1þy2Þyg; Ex A Dðð�AÞy1þy2Þ:

(

Notice that from (3.8) we have Dðð�AÞy1þy2ÞJ72

j¼1
Dðð�AÞyj Þ, <e yj > 1� b,

j ¼ 1; 2. In fact <eðy1 þ y2Þ þ b � 1 ¼ <e y1 þ <e y2 þ b � 1 > <e yj > 1� b, j ¼
1; 2. We are then able to exhibit a special situation in which the semigroup

property holds. This is when x A Dðð�AÞy1þy2Þ, <e yj > 1� b, j ¼ 1; 2, is such

that ð�AÞy2x, which is well defined due to the previous argument, is contained in
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Dðð�AÞy1Þ. In this case, using (3.6) and the semigroup property for the negative

fractional powers we obtain

ðð�AÞy1ð�AÞy2Þx ¼ 6
y ADðð�AÞ y1 ÞVð�AÞ y2xð�AÞy1y ¼ 6

y A ð�AÞ y2xð�AÞy1y

¼ 6
y A ð�AÞ y2xfw A X : y ¼ ð�AÞ�y1wg

¼ fw A X : y ¼ ð�AÞ�y1w; y A ð�AÞy2xg

¼ fw A X : y ¼ ð�AÞ�y1w; x ¼ ð�AÞ�y2yg

¼ fw A X : x ¼ ð�AÞ�y2ð�AÞ�y1wg

¼ fw A X : x ¼ ð�AÞ�ðy2þy1Þwg ¼ ð�AÞy2þy1x:

If A is a single-valued densely defined linear operator satisfying (H1) with b ¼ 1,

then the semigroup property ð�AÞyþy 0
x ¼ ð�AÞyð�AÞy

0
x holds assuming only

that both side are well defined, and this is precisely when x A Dðð�AÞyþy 0
Þ or

when x A Dðð�AÞy
0
Þ is such that ð�AÞy

0
x A Dðð�AÞyÞ. This is shown in [23,

Proposition 5.2] and [35, Theorem 1.15.2], but using arguments and formulae

that can not be employed in the really multivalued case (see the following

Remark 3.5).

Similarly to what done for DðAÞ in (2.13), a topology can be specified on the

domain Dðð�AÞyÞ of ð�AÞy, <e y > 1� b, by equipping it with the norm

kxk
Dðð�AÞ yÞ ¼ inf

y A ð�AÞyxkykX ; x A Dðð�AÞyÞ: ð3:10Þ

Since ðð�AÞyÞ�1 ¼ ð�AÞ�y A LðX Þ, then, replacing A with ð�AÞy in [12, Prop-

osition 1.11], we see that (3.10) is equivalent to the graph norm and makes

Dðð�AÞyÞ a complex Banach space. Also, Dðð�AÞyÞ ,! X . Indeed, kxkX ¼
kð�AÞ�y

ykX a kð�AÞ�ykLðXÞkykX for every y A ð�AÞyx, x A Dðð�AÞyÞ, so that,

passing to the infimum with respect to y A ð�AÞyx, it follows

kxkX a kð�AÞ�ykLðX ÞkxkDðð�AÞyÞ; x A Dðð�AÞyÞ: ð3:11Þ

When Dðð�AÞyÞ is endowed with the norm (3.10) inclusions (3.8) become

embeddings.

Proposition 3.3. Let A be a m. l. operator in X satisfying (H1). Then

Dðð�AÞy1Þ ,! Dðð�AÞy2Þ; 1� b < <e y2 < <e y1 þ b � 1: ð3:12Þ

In particular, if b > 1=2, then DðAÞ ,! Dðð�AÞyÞ, <e y A ð1� b; bÞ.
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Proof. Let x A Dðð�AÞy1Þ. Then, x ¼ ð�AÞ�y1y ¼ ð�AÞ�y2ðð�AÞ�ðy1�y2ÞyÞ,
for every y A ð�AÞy1x and for every y1; y2 A C such that 1� b < <e y2 <
<e y1 þ b � 1. Hence (cf. the second in (3.9)), ð�AÞ�ðy1�y2Þy A ð�AÞy2x, for every

y A ð�AÞy1x, so that

kxk
Dðð�AÞy2 Þ ¼ inf

w A ð�AÞy2xkwkX a kð�AÞ�ðy1�y2ÞkLðX ÞkykX ; Ey A ð�AÞy1x:

Passing to the infimum with respect to y A ð�AÞy1x in the latter inequality, we get

kxk
Dðð�AÞy2 Þ a kð�AÞ�ðy1�y2ÞkLðX ÞkxkDðð�AÞ y1 Þ, x A Dðð�AÞy1Þ, which proves (3.12).

The last assertion follows by taking ðy1; y2Þ ¼ ð1; yÞ in (3.12). r

Remark 3.4. If y ¼ n A N, then the definition of ð�AÞn through (3.6)

coincides with that in (2.2), with A being replaced by �A. In fact, letting

ðð�AÞ0;Dðð�AÞ0ÞÞ ¼ ðI ;X Þ, from (3.6) and the semigroup property of the

negative integer powers of �A we find:

Dðð�AÞnÞ ¼ Rðð�AÞ�nÞ ¼ fx A X : x ¼ ð�AÞ�ðn�1Þð�AÞ�1
y; y A Xg

¼ fx A X : x ¼ ð�AÞ�ðn�1Þ
f ; for some f A Dð�AÞg;

¼ fx A Dðð�AÞn�1Þ : bf A Dð�AÞ such that f A ð�AÞn�1
xg

¼ fx A Dðð�AÞn�1Þ : Dð�AÞV ð�AÞn�1
x0qg;

ð�AÞnx ¼ fy A X : x ¼ ð�AÞ�ðn�1Þð�AÞ�1
yg

¼ fy A X : y A ð�AÞðð�AÞðn�1Þ
xÞg

¼ ð�AÞðð�AÞn�1
xÞ ¼ ðð�AÞð�AÞn�1Þx; x A Dðð�AÞnÞ:

8>>>>>>>>>>>><
>>>>>>>>>>>>:
Remarks 3.5–3.8 below explain why, in defining fractional powers for m. l.

operators, we are prevented to proceed as in the known literature for single-

valued operators.

Remark 3.5. The main problem of definition (3.6) is that does not provide

us of any explicit representation of the fractional powers ð�AÞy, <e y > 1� b.

On the other hand, when a A is really a m. l. operators, the choice of definition

(3.6) is motivated by a substantial di¤erence existing between the single- and the

multivalued case. That is, the so-called ‘‘method of closed extension’’ used for

defining fractional powers of single-valued linear operators, does not work for

m. l. operators. Precisely, let A be a single-valued linear operator and denote by

Rþ
n ðlÞ, n A NU f0g, l A rðAÞ, the operator ð�1Þnl�n�1AðlI � AÞ�1ð�AÞn having

domain Dðð�AÞnÞ. According to [23, p. 291], for s ¼ nþ n, n A NU f0g, n A ½0; 1Þ,
define the space Ds as follows:

Ds ¼ fx A Dðð�AÞnÞ : ð�AÞnx A DðAÞg; if n ¼ 0;

fx A Dðð�AÞnÞ : Rþ
n ðlÞx ¼ Oðl�s�1Þ as l ! yg; if n > 0:

(
ð3:13Þ
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Then, in [23], the fractional powers ð�AÞz, <e z > 0, of a single-valued linear

operator A satisfying (H1) with b ¼ 1 are defined by:

ð�AÞz ¼ closure of ð�AÞzs; Dðð�AÞzsÞ ¼ Ds; if <e z A ð0; sÞ; s > 0; ð3:14Þ

and, for given z, it is shown that the closure is independent on s > <e z. Here:

ð�AÞzsx ¼

ð�AÞzx; if z A N;

� sinðzpÞ
p

� ðN
0

szðsI � AÞ�1
x dsþ

Xn
k¼0

ð�1Þkþ1 N
z�k

z� k
ð�AÞkx

þ
ðy
N

szRþ
n ðsÞx ds

�
; if z B N;

8>>>>>>><
>>>>>>>:

ð3:15Þ

where N > 0 is an arbitrary fixed number. If <e z A ðn; sÞ, we may let N ! 0 and

obtain

ð�AÞzsx ¼ ð�1Þnþ1 sinðzpÞ
p

ðy
0

sz�n�1AðsI � AÞ�1ð�AÞnx ds; ð3:16Þ

which is the expression used in [4] to define ð�AÞz for <e z A ðn; nþ 1Þ, n A

NU f0g, by taking Dðð�AÞnþ1Þ instead of Ds as the domain of ð�AÞzs. As usual,

the proof that the operators ð�AÞzs are closable consists in showing that, if

fxkgk AN HDs is a sequence converging to zero, then the sequence fð�AÞzsxkgk AN,
if convergent, has zero limit, too. Letting y ¼ limk!yð�AÞzsxk, in [4, Lemma 2.1]

and [23, Proposition 4.1] the assertion y ¼ 0 follows from y A NððlI � AÞ�1Þ,
l A rðAÞ. This is just the argument which fails in the multivalued case. For, if A

is a m. l. operator, then NððlI � AÞ�1Þ ¼ A0X f0g, preventing us to conclude

the proof as in [4] and [23].

Remark 3.6. In [22] the fractional powers of single-valued densely defined

linear closed operators satisfying (H1) with b ¼ 1 are defined by

ð�AÞyx ¼ � sinðypÞ
p

s- lim
N!y

ðN
0

sy�1AðsI � AÞ�1
x ds; y A ð0; 1Þ;

Dðð�AÞyÞ ¼ fx A X : ð�AÞyx A Xg;

8>><
>>: ð3:17Þ

where ‘s-lim’’ denote the strong limit. This method does not require any closure,

but it is with di‰culty applicable for defining fractional powers of m. l. operators,

due to the presence of the strong limit in (3.17). Moreover, even only for single-

valued operators, it seems a hard task to remove the assumption b ¼ 1 in this

approach, due to the large numbers of technical details in which such assumption

plays role in [22].
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Remark 3.7. Let A be single-valued and let b ¼ 1 in (H1). After having

defined via (3.14) the fractional powers ð�AÞz, <e z > 0 of �A, in [23, Sections 4

and 5] the cases <e z < 0 and <e z ¼ 0 are considered. Let first <e z < 0. In [23,

Section 5] it is shown that for every z A C such that <e z A ð�ðmþ 1Þ; 0Þ, m A N,

the fractional power ð�AÞz is the operator defined by (3.5) with y ¼ �z. The

definition is then completed by setting

ð�AÞz ¼ ð�A�1Þn; Dðð�AÞzÞ ¼ X ; if z ¼ �n; n A N; ð3:18Þ

which is just what follows from (3.1) with y ¼ n. Hence, due to Remark 3.1, for

single-valued linear operators satisfying (H1) with b ¼ 1, our definition (3.1) of

the negative fractional powers is equivalent to that in [23]. Let now <e z ¼ 0. The

original idea in [23] for this case is to give another definition of fractional powers,

by means of the closure of a family of operators defined in a vertical open strip

Ds; t ¼ fz A C : <e z A ð�t; sÞg, s; t > 0, containing the imaginary axis. For the

clarity’s sake, we remind the definition in [23]. Let Rþ
n ðlÞ be as in Remark 3.5

and let R�
mðlÞ be the operator ð�1ÞmlmðlI � AÞ�1ð�AÞ�m, m A NU f0g, l A rðAÞ,

having domain the whole of X . Now, let s ¼ nþ n1 and t ¼ mþ n2 be positive

numbers, where n;m A NU f0g and nj A ½0; 1Þ, j ¼ 1; 2. According to [23, formula

(4.11)], define the operator ð�AÞzst with domain Ds by

ð�AÞzs; tx ¼

x; if z ¼ 0;

ð�AÞzx; if z A Ds; t VZ;

� sinðzpÞ
p

� ðN
0

szR�
mðsÞx dsþ

Xn
k¼�m

ð�1Þkþ1 N
z�k

z� k
ð�AjD1Þkx

þ
ðy
N

szRþ
n ðsÞx ds

�
; if z A Ds; tnðZU f0gÞ;

8>>>>>>>>><
>>>>>>>>>:

where N > 0 is an arbitrary fixed number. It is show in [23, Proposition 4.11]

that ð�AÞzs; t is closable and its closure is independent of s and t such that

z A Ds; t. This closure is denoted by ð�AÞz0. When <e z A ð0; sÞ, we may take

m ¼ 0 and ð�AÞzs; t coincides with ð�AÞzs defined by (3.15). Correspondingly, for

<e z A ð�t; 0Þ, we may take n ¼ 0 and ð�AÞzs; t coincides with the restriction to

Ds of ð�AÞz defined by (3.5) with y ¼ �z and (3.18). Passing to the closure, we

get (cf. [23, pp. 305, 306]) ð�AÞz0 ¼ ð�AÞz for <e z > 0 and ð�AÞz0 ¼ ð�AÞzj
DðAÞ

for <e z < 0. In particular (cf. [23, Corollary 5.3]), ð�AÞz, <e z > 0, defined

through (3.14) coincides with ðð�AÞ�zj
DðAÞÞ

�1, so that ð�AÞzð�AÞ�z ¼ I only on

DðAÞ. Recalling the observation after formula (3.9), this is less than what we
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obtain by defining ð�AÞz, <e z > 0, through (3.6) taking advantage from the

injectivity of ð�AÞ�z, which, in the single-valued case, comes from [26, p. 285].

Remark 3.8. Let now b A ð0; 1Þ in (H1). In this case, even restricting our

interest to single-valued operators, we can not repeat the construction in [23] in

order to provide a definition of ð�AÞGz for every z A C which coincides with

(3.1) and (3.6) for z B D1�b ¼ fz A C : <e z A ½0; 1� b�g. Indeed, if we try to define

ð�AÞz0 as in Remark 3.7, the first problem we encounter is that the spaces Ds

defined by (3.13) are no longer the suitable ones for the case b A ð0; 1Þ in

(H1). Maybe, since Rþ
0 ðlÞx ¼ l�1AðlI � AÞ�1

x ¼ ðlI � AÞ�1
x� l�1x ¼ Oðjlj�bÞ

as jlj ! y, a possible di¤erent choice could be that of replacing Oðl�s�1Þ with

Oðl�s�bÞ in the second of (3.13). On the other side, the proof of [23, Theorem

2.1], from which the first characterization in (3.13) comes out, is not adaptable

to the case b A ð0; 1Þ, since in that proof the value b ¼ 1 is necessary to ensure

that the operator lRþ
0 ðlÞ is uniformly bounded allowing to apply the Banach-

Steinhaus theorem. Another problem is that we have to take s and t greater than

1� b for comparing the eventual definition of ð�AÞGz
0 with that we already know

from (3.1) and (3.6) for <e z > 1� b. Also, contrarily to the case b ¼ 1, in which

one may take help from formula (3.5) for the construction of ð�AÞz0 for <e z < 0,

when b A ð0; 1Þ one has only formula (3.5) for <e z A ð�1; b � 1Þ. Of course, still

worst is the case in which b A ð0; 1� and A is really a m. l. operator. In fact, in

this case we have to define ð�AÞGz
0 so that, when <e z > 1� b, ð�AÞ�z

0 and

ð�AÞz0 coincide, respectively, with the single-valued bounded linear operator (3.1)

and with the closed m. l. operator (3.6), but we do not know if ð�AÞGz
0 has to be

single-valued, multivalued, or of both types in the strip D1�b.

Now, let fe tAgtb0 HLðX Þ be the semigroup generated by A and defined by

e0A ¼ I and the Dunford integrals (2.10). We set

½ð�AÞy��e tA ¼ 1

2pi

ð
G

ð�lÞye tlðlI � AÞ�1 dl; <e yb 0; t > 0; ð3:19Þ

but here ½ð�AÞy�� does not denote a section of ð�AÞy itself. Clearly,

A0J7
t>0

Nð½ð�AÞy��e tAÞ; <e yb 0: ð3:20Þ

We recall that operators (3.19) were introduced first in [11] and [12] only for

real nonnegative values of y. However, due to (3.2), it is clear that all the

estimates obtained in that papers for yb 0 hold the same for complex y such that

<e yb 0, provided that all the constants depending by y in [11] and [12] are

rescaled by a factor eðp=2Þj=m yj.
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Of course, from (2.10) we have ½ð�AÞ0��e tA ¼ e tA, t > 0. Moreover, from

(3.1) and (3.19), using the resolvent equation and the residue theorem, we easily

derive

½ð�AÞ1��e tAð�AÞ�y ¼ ½ð�AÞ1�y��e tA; <e y A ð1� b; 1�; t > 0: ð3:21Þ

As remarked in [13, p. 426], if <e y > 1� b, the operator ½ð�AÞy��e tA is really a

section of the m. l. operator ð�AÞye tA, so that from (2.11) we get

ð�1ÞkDk
t e

tA ¼ ½ð�AÞk��e tA H ð�AÞke tA; t > 0; k A N: ð3:22Þ

Finally, (H1) implies the following estimates (see [11, Section 3]):

k½ð�AÞy��e tAkLðX Þ a ~cca;b;yt
ðb�<e y�1Þ=a; <e yb 0; t > 0; ð3:23Þ

where the ~cca;b;y’s are positive constants depending on a, b and y. Thus, letting

y ¼ 0 in (3.23), we see that, if b A ð0; 1Þ, the function t ! e tA is not bounded as

t ! 0þ and e tA is not necessarily strongly continuous in the norm of X on the

linear subspace DðAÞ. Indeed, as established in [12, Theorem 3.3], if <e z > 1� b

and g A ð1� b; 1Þ, then, when t ! 0þ, e tA converges to I in the norm of X on

the domains Dðð�AÞzÞ of the fractional powers ð�AÞz and on the spaces X
g;y
A

defined in the next Section 4, whereas the convergence on the whole X holds only

with respect to the seminorm pAð�Þ ¼ kA�1 � kX . We stress that later, in Section 5,

we shall extend [12, Theorem 3.3] showing that, if g A ð1� b; 1Þ, then e tA is

strongly continuous in the norm of X not only on X
g;y
A , but in fact on the spaces

ðX ;DðAÞÞg;p and X
g;p
A for every p A ½1;y� (cf. definitions (4.1) and (4.4)).

The following Lemma 3.9 extends [27, Lemma 2.1.6] to m. l. operators.

Lemma 3.9. Let a and b in assumption ðH1Þ be such that aþ b > 1. Thenðy
0

e�zte tAx dt ¼ ðzI � AÞ�1
x; E <e z > 0; Ex A X : ð3:24Þ

In addition, 7
t>0

Nðe tAÞ ¼ A0. Further, if a ¼ 1, then Nðe tAÞ ¼ A0 for every

t > 0.

Proof. First, if aþ b > 1 and <e z > 0, then the integral on the left-hand

side of (3.24) is convergent on X . In fact, for every x A X , from (3.23) with y ¼ 0

we have ðy
0

e�zte tAx dt

����
����
X

a ~cca;b;0

ðy
0

tðb�1Þ=ae�t <e z dt

� �
kxkX ;

278 Alberto Favaron and Angelo Favini



and the transformation t <e z ¼ s in the latter integral leads to

ðy
0

e�zte tAx dt

����
����
X

a ~cca;b;0ð<e zÞð1�a�bÞ=a
Eððaþ b � 1Þ=aÞkxkX < y;

where EðwÞ, w > 0, denotes the Euler’s gamma function
Ðy
0 sw�1e�s ds. Hence,

using (2.10), or, equivalently, (3.19) with y ¼ 0, Fubini’s theorem yields

ðy
0

e�zte tAx dt ¼ 1

2pi

ð
G

ðy
0

eðl�zÞt dt

� �
ðlI � AÞ�1

x dl

¼ � 1

2pi

ð
G

ðl� zÞ�1ðlI � AÞ�1
x dl ¼ ðzI � AÞ�1

x: ð3:25Þ

Here we have used
Ð
Gðl� zÞ�1ðlI � AÞ�1

x dl ¼ �2piðzI � AÞ�1
x which can be

verified using the Cauchy’s formula for the holomorphic function m A rðAÞ !
ðmI � AÞ�1 A LðXÞ and by closing G on the right by circles of diameter con-

verging to infinity. Clearly, due to (2.12) and NððmI � AÞ�1Þ ¼ A0, m A rðAÞ, if
x A A0, then all the terms in (3.25) are equal to the zero element of X . This

completes the proof of (3.24). From (3.24) it follows that, if x A 7
t>0

Nðe tAÞ,
then x A NððzI � AÞ�1Þ ¼ A0 for every <e z > 0. Therefore 7

t>0
Nðe tAÞJA0

which, together with (2.12), leads to 7
t>0

Nðe tAÞ ¼ A0. Finally, if a ¼ 1, then

from [32, Theorem 5.3] it follows that e tA can be extended to an analytic

semigroup in some sector containing the positive real axis. Now, let x A Nðet0AÞ,
t0 > 0. First, the semigroup property implies e tAx ¼ 0 for every tb t0. Then,

the map t A ð0;yÞ ! e tA A LðX Þ being analytic, we have e tAx ¼ 0 for every

t A ð0;yÞ and from (3.24) we derive x A NððzI � AÞ�1Þ ¼ A0. This shows that, if

a ¼ 1, then Nðe t0AÞJA0 for every t0 > 0. Combining this inclusion with (2.12)

we obtain the assertion Nðe t0AÞ ¼ A0 for every t0 > 0. r

4. The Spaces ðX ;DðAÞÞg;p and X
g;p
A

Let A be a m. l. operator satisfying assumption (H1). We introduce here the

spaces ðX ;DðAÞÞg;p and X
g;p
A , and we recall the basic relations existing among

such spaces. From now on, Y being a Banach space, we denote by Cðð0;yÞ;YÞ
the set of all continuos functions from ð0;yÞ to Y , and for a Y -valued strongly

measurable function gðxÞ, x A ð0;yÞ, we set kgðxÞkL �
q ðYÞ ¼

�Ðy
0 kgðxÞkq

Y
dx
x

�1=q
,

q A ½1;yÞ, and kgðxÞkL �
yðYÞ ¼ supx A ð0;yÞkgðxÞkY . Let either p0; p1 A ½1;yÞ or

p0 ¼ p1 ¼ y, and for g A ð0; 1Þ define p�1 ¼ ð1� gÞp�1
0 þ gp�1

1 if p0; p1 A ½1;yÞ
and p ¼ y if p0 ¼ p1 ¼ y. We set
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ðX ;DðAÞÞg;p ¼ fx A X : x ¼ v0ðxÞ þ v1ðxÞ; x A ð0;yÞ;
v0 A Cðð0;yÞ;XÞ; v1 A Cðð0;yÞ;DðAÞÞ;
kxgv0ðxÞkL�

p0
ðX Þ þ kxg�1v1ðxÞkL�

p1
ðDðAÞÞ < yg;

kxkðX ;DðAÞÞg; p ¼ inf v0; v1fkxgv0ðxÞkL�
p0
ðX Þ þ kxg�1v1ðxÞkL �

p1
ðDðAÞÞg;

8>>>><
>>>>:

ð4:1Þ

where the infimum is taken over all possible representations of x having the

specified form and DðAÞ is endowed with the norm (2.13). This characterization

of the spaces ðX ;DðAÞÞg;p is that obtained by the so called ‘‘mean-methods’’, and

it is equivalent to that performed by the usual ‘‘K-method’’ (cf. [35, Theorem

1.5.2 and Remark 1.5.2/2]). Then, due to [35, Theorem 1.3.3], for every g A ð0; 1Þ
and p A ½1;y� the space ðX ;DðAÞÞg;p is an exact interpolation space of exponent

g with respect to the pair ðX ;DðAÞÞ. Since both the ‘‘mean-methods’’ and the

‘‘K-method’’ belong to the class of real methods for constructing interpolation

spaces (cf. [35]), we shall call the spaces ðX ;DðAÞÞg;p, g A ð0; 1Þ, p A ½1;y�, the

real interpolation spaces between X and DðAÞ.
Let us list the main properties of the spaces ðX ;DðAÞÞg;p. First, if DðAÞ ¼ X ,

then ðX ;X Þg;p ¼ X , g A ð0; 1Þ, p A ½1;y�, with equivalence of the respective

norms. Then, for every x A DðAÞ there exists a positive constant c1ðg; pÞ,
g A ð0; 1Þ, p A ½1;y�, such that the interpolation inequality kxkðX ;DðAÞÞg; p a

c1ðg; pÞkxk1�g
X kxkg

DðAÞ holds. Further, the spaces ðX ;DðAÞÞg;p being intermediate

spaces between X and DðAÞ, i.e. DðAÞ ,! ðX ;DðAÞÞg;p ,! X , for every g A ð0; 1Þ
and p A ½1;y� there exists a positive constant c2ðg; pÞ such that kxkX a

c2ðg; pÞkxkðX ;DðAÞÞg; p for every x A ðX ;DðAÞÞg;p. Finally, for g A ð0; 1Þ and 1a

p1 a pa p2 ay we have

DðAÞ ,! ðX ;DðAÞÞg; p1 ,! ðX ;DðAÞÞg;p ,! ðX ;DðAÞÞg; p2 ,! X ; ð4:2Þ

whereas, for 0 < g2 < g1 < 1,

ðX ;DðAÞÞg1;y ,! ðX ;DðAÞÞg2;1: ð4:3Þ

In addition, the inclusion ðX ;DðAÞÞg;p JDðAÞ holds for every g A ð0; 1Þ and

p A ½1;y�. Then, if DðAÞ is closed in X , DðAÞ and ðX ;DðAÞÞg;p coincide as linear

subspaces of X for every g A ð0; 1Þ and p A ½1;y�, but the norms k � kDðAÞ and

k � kðX ;DðAÞÞg; p may be not equivalent, unless that the embedding ðX ;DðAÞÞg;p ,!
DðAÞ is shown to hold, too.

For g A ð0; 1Þ and p A ½1;y� we now define the Banach spaces X
g;p
A by

X
g;p
A ¼ fx A X : ½x�X g; p

A
:¼ kxgA�ðxI � AÞ�1

xkL�
p ðX Þ < yg;

kxkX g; p
A

¼ kxkX þ ½x�X g; p
A
:

(
ð4:4Þ
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We recall that, if A is single-valued and b ¼ 1 in (H1), then the classes

ðX ;DðAÞÞg;p and X
g;p
A coincide with equivalence of the respective norms (cf.

[18, Theorem 3.1], [24, Theorem 3.1] and [35, Theorem 1.14.2]). On the contrary,

if b A ð0; 1Þ, such an equivalence is no longer true, as first observed in [38,

Theorem 2] for single-valued operators and, in the case p ¼ y, in [12, Theorem

1.12] for multivalued ones. Thus, in general, the spaces X
g;p
A are neither in-

termediate nor interpolation spaces between X and DðAÞ.

Remark 4.1. When A is a single-valued densely defined linear operator

satisfying (H1) with b ¼ 1, the spaces X
g;1
A , or, equivalently, ðX ;DðAÞÞg;1, play a

key role in the definition of the fractional powers of �A. To see this, we first

observe that, if s A ð0; 1Þ, then Ds defined by the second of (3.13) is contained

in X
g;1
A for every g A ð0; sÞ. In fact, if x A Ds, then Rþ

0 ðlÞx ¼ l�1AðlI � AÞ�1
x ¼

Oðl�s�1Þ as l ! y. Moreover, since AðlI � AÞ�1 ¼ lðlI � AÞ�1 þ I , from (H1)

with b ¼ 1 we deduce kAðlI � AÞ�1kLðX Þ aC þ 1. Therefore

½x�
X

g; 1
A

¼
ðy
0

xg�1kAðxI � AÞ�1
xkX dx < y; Ex A Ds; g A ð0; sÞ;

for the integrand goes as xg�1 at the origin and as xg�s�1 at infinity. In par-

ticular, Ds coincides with X s;y
A . For, if x A Ds, then ½x�X s;y

A
< y, whereas, if

x A X s;y
A , then Rþ

0 ðlÞx ¼ Oðl�s�1Þ. Hence, according to (4.3) in the case b ¼ 1,

we have Ds ¼ X
s;y
A ,! X

g;1
A for every g A ð0; sÞ. We then replace (3.14) with the

following

ð�AÞz ¼ closure of ð�AÞzs; Dðð�AÞzsÞ ¼ X
s;y
A ; <e z A ð0; sÞ; s A ð0; 1Þ;

where, letting N to 0 in (3.15), ð�AÞzs is defined by (3.16) with n ¼ 0, that is

ð�AÞzsx ¼ � sinðzpÞ
p

ðy
0

sz�1AðsI � AÞ�1
x ds; <e z A ð0; sÞ: ð4:5Þ

Clearly, when <e z A ð0; sÞ the integral on the right-hand side of (4.5) is con-

vergent even for x belonging to the larger space X
<e z;1
A . The value <e z ¼ s may

be considered as well, provided to define Dðð�AÞzsÞ ¼ X
s;1
A for <e z ¼ s. These

observations lead to the following definition of the fractional powers which is the

one employed in [24] and [35]:

ð�AÞz ¼ closure of ð�AÞzs; Dðð�AÞzsÞ ¼ X
s;1
A ; <e z A ð0; s�; s A ð0; 1Þ; ð4:6Þ

where ð�AÞzs is defined by (4.5) and Dðð�AÞzsÞ it is endowed with the graph

norm. It is shown in [24, Section 2] that definition (4.6) coincides with that given
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in [23] through (3.14). Observe also that, since D1 ¼ DðAÞ due to DðAÞ ¼ X ,

taking s ¼ 1 in (3.14) we obtain the definition of ð�AÞz, <e z A ð0; 1Þ, in the sense

of [4]:

ð�AÞz ¼ closure of ð�AÞz1 ; Dðð�AÞz1Þ ¼ DðAÞ; <e z A ð0; 1Þ; ð4:7Þ

ð�AÞz1 being defined by (4.5). It is clear that (4.7) is equivalent to (4.6), since for

every fixed z such that <e z A ð0; 1Þ the domain DðAÞ of ð�AÞz1 may be extended

to X
<e z;1
A .

Remark 4.2. We stress that ½X g;p
A VA0� ¼ f0g for every g A ð0; 1Þ and

p A ½1;y�. Indeed, assume there exists x0 0 such that x A ½X g;p
A VA0� for

some g A ð0; 1Þ and p A ½1;y�. Then, since x A A0, we have A�ðxI � AÞ�1
x ¼

xðxI � AÞ�1
x� x ¼ �x for every x A rðAÞ and, consequently, ½x�X g; p

A
¼

kxgkL �
p ðXÞkxkX ¼ y, contradicting x A X

g;p
A .

The following Proposition 4.3 provides a proof of the embeddings announced

in [8, p. 254], and extends [38] to m. l. operators and [12] to p A ½1;y�.

Proposition 4.3. Let A be a m. l. operator satisfying assumption ðH1Þ.
Then

X
g;p
A ,! ðX ;DðAÞÞg;p; g A ð0; 1Þ; p A ½1;y�; ð4:8Þ

ðX ;DðAÞÞg;p ,! X
gþb�1;p
A ; g A ð1� b; 1Þ; p A ½1;y�: ð4:9Þ

Proof. We begin by showing (4.8). Let x A X
g;p
A , g A ð0; 1Þ, p A ½1;y�, and,

using A�ðxI � AÞ�1 ¼ xðxI � AÞ�1 � I , x A ð0;yÞHSa, rewrite x in the following

form

x ¼ v0ðxÞ þ v1ðxÞ; x A ð0;yÞ; ð4:10Þ

where v0ðxÞ ¼ �A�ðxI � AÞ�1
x and v1ðxÞ ¼ xðxI � AÞ�1

x. We have v0 A

Cðð0;yÞ;X Þ and v1 A Cðð0;yÞ;DðAÞÞ. Indeed, let xj A ð0;yÞ, j ¼ 1; 2. Then,

using the resolvent equation and (H1), it follows that

kv0ðx1Þ � v0ðx2ÞkX

¼ k�x1ðx1I � AÞ�1
xþ x2ðx2I � AÞ�1

xkX

¼ kðx2 � x1Þðx1I � AÞ�1
xþ x2½ðx2I � AÞ�1 � ðx1I � AÞ�1�xkX
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¼ kðx2 � x1Þðx1I � AÞ�1
xþ x2ðx1 � x2Þðx2I � AÞ�1ðx1I � AÞ�1

xkX

aCjx1 � x2jðx1 þ 1Þ�bkxkX þ Cx2jx1 � x2jðx2 þ 1Þ�bðx1 þ 1Þ�bkxkX

aCjx1 � x2jðx1 þ 1Þ�b½1þ Cx2ðx2 þ 1Þ�b�kxkX g; p
A
:

This shows v0 A Cðð0;yÞ;XÞ. Concerning v1, instead, we first observe that, since

(2.3) implies A�ðzI � AÞ�1 HAðzI � AÞ�1, z A rðAÞ, the definition of k � kDðAÞ
leads to

kðzI � AÞ�1
ykDðAÞ a kA�ðzI � AÞ�1

ykX ; Ey A X ; Ez A rðAÞ: ð4:11Þ

But, for every z A Sa, we have

kA�ðzI � AÞ�1
ykX ¼ k½zðzI � AÞ�1 � I �ykX

a ½Cjzjðjzj þ 1Þ�b þ 1�kykX

a ðC þ 1Þðjzj þ 1Þ1�bkykX ; Ey A X ; ð4:12Þ

so that from (4.11) it follows that

kðzI � AÞ�1
ykDðAÞ a ðC þ 1Þðjzj þ 1Þ1�bkykX ; Ey A X ; Ez A Sa: ð4:13Þ

Now, using the resolvent equation,

kv1ðx1Þ � v1ðx2ÞkDðAÞ

¼ kx1ðx1I � AÞ�1
x� x2ðx2I � AÞ�1

xkDðAÞ

¼ kðx1 � x2Þðx1I � AÞ�1
xþ x2½ðx1I � AÞ�1 � ðx2I � AÞ�1�xkDðAÞ

¼ kðx1 � x2Þðx1I � AÞ�1
xþ x2ðx2 � x1Þðx1I � AÞ�1ðx2I � AÞ�1

xkDðAÞ

a jx1 � x2j½kðx1I � AÞ�1
xkDðAÞ þ x2kðx1I � AÞ�1ðx2I � AÞ�1

xkDðAÞ�: ð4:14Þ

Hence, applying (4.13) once with ðz; yÞ ¼ ðx1; xÞ and once with ðz; yÞ ¼
ðx1; ðx2I � AÞ�1

xÞ, from (4.14) we deduce

kv1ðx1Þ � v1ðx2ÞkDðAÞ a ðC þ 1Þjx1 � x2jðx1 þ 1Þ1�b½kxkX þ x2kðx2I � AÞ�1
xkX �

a ðC þ 1Þjx1 � x2jðx1 þ 1Þ1�b½1þ Cx2ðx2 þ 1Þ�b�kxkX g; p
A
;
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completing the proof of v1 A Cðð0;yÞ;DðAÞÞ. Therefore, recalling the definition

(4.1) of the norm k � kðX ;DðAÞÞg; p with p0 ¼ p1 ¼ p, p A ½1;y�, from (4.10) and

(4.11) we get

kxkðX ;DðAÞÞg; p a kxgv0ðxÞkL�
p ðXÞ þ kxg�1v1ðxÞkL�

p ðDðAÞÞ

a kxgA�ðxI � AÞ�1
xkL�

p ðX Þ þ kxgðxI � AÞ�1
xkL�

p ðDðAÞÞ

a 2kxgA�ðxI � AÞ�1
xkL�

p ðX Þ

a 2kxkX g; p
A
; g A ð0; 1Þ; p A ½1;y�: ð4:15Þ

This completes the proof of (4.8). Let us now prove (4.9). To this purpose, we

first notice that when y A DðAÞ from (2.3) we have A�ðzI � AÞ�1
y ¼ ðzI � AÞ�1

f ,

z A rðAÞ, with any f A Ay. Then, for z A Sa, from (H1) it follows that

kA�ðzI � AÞ�1
ykX aCðjzj þ 1Þ�bk f kX with any f A Ay. Taking the infimum

with respect to f A Ay, we thus find kA�ðzI � AÞ�1
ykX aCðjzj þ 1Þ�bkykDðAÞ for

every y A DðAÞ, or, equivalently,

kA�ðzI � AÞ�1kLðDðAÞ;XÞ aCðjzj þ 1Þ�b; Ez A Sa: ð4:16Þ

On the other side, (4.12) implies

kA�ðzI � AÞ�1kLðXÞ a ðC þ 1Þðjzj þ 1Þ1�b; Ez A Sa: ð4:17Þ

So, using the interpolation inequality in [27, Proposition 1.2.6] with

ðX1;Y1;X2;Y2Þ ¼ ðX ;DðAÞ;X ;XÞ, from (4.16) and (4.17) we obtain, for every

g A ð0; 1Þ and p A ½1;y�:

kA�ðzI � AÞ�1kLððX ;DðAÞÞg; p;XÞ a c3ðg; pÞðjzj þ 1Þ1�b�g; Ez A Sa: ð4:18Þ

Let now x A ðX ;DðAÞÞg;p, g A ð1� b; 1Þ, p A ½1;y�. If p ¼ y, then from (4.18)

we get

½x�
X

gþb�1;y
A

¼ kxgþb�1A�ðxI � AÞ�1
xkL�

yðX Þ

a supx A ð0;yÞ½xðxþ 1Þ�1�gþb�1
c3ðg;yÞkxkðX ;DðAÞÞg;y :

Hence, using kxkX a c2ðg; pÞkxkðX ;DðAÞÞg; p , p A ½1;y�, from the latter inequality

we derive

kxk
X

gþb�1;y
A

a c4ðg;yÞkxkðX ;DðAÞÞg;y ; g A ð1� b; 1Þ;
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where c4ðg;yÞ ¼
P3

j¼2 cjðg;yÞ. This proves (4.9) with p ¼ y. If p A ½1;yÞ, then

½x�p
X

gþb�1; p
A

¼ kxgþb�1A�ðxI � AÞ�1
xkp

L�
p ðX Þ ¼ I1 þ I2 ð4:19Þ

where

I1 ¼
ð1
0

xðgþb�1ÞpkA�ðxI � AÞ�1
xkp

X

dx

x
; I2 ¼

ðy
1

xðgþb�1ÞpkA�ðxI � AÞ�1
xkp

X

dx

x
:

Of course, since 1� b � g < 0 for g A ð1� b; 1Þ, (4.18) leads us to

I1 a ½c3ðg; pÞ�p
ð1
0

xðgþb�1Þp�1 dx

� �
kxkp

ðX ;DðAÞÞg; p
¼ ½c5ðb; g; pÞ�pkxkp

ðX ;DðAÞÞg; p
; ð4:20Þ

where c5ðb; g; pÞ ¼ ½ðgþ b � 1Þp��1=p
c3ðg; pÞ. As far as I2 is concerned, we write

x ¼ v0ðxÞ þ v1ðxÞ, x A ð0;yÞ, the functions vj, j ¼ 0; 1, having the properties in

definition (4.1). Then, using ðaþ bÞp a 2p�1ðap þ bpÞ, a; bb 0, p A ½1;yÞ, we

have

I2 a 2p�1½I2;0 þ I2;1�; ð4:21Þ

where we have set

I2; j ¼
ðy
1

xðgþb�1ÞpkA�ðxI � AÞ�1
vjðxÞkp

X

dx

x
; j ¼ 0; 1:

From (4.17) applied to I2;0 and x�1ðxþ 1Þa 2, x A ½1;yÞ, it thus follows

I2;0 a ðC þ 1Þp
ðy
1

xgp½x�1ðxþ 1Þ�ð1�bÞpkv0ðxÞkp
X

dx

x

a ½c6ðbÞ�pkxgv0ðxÞkp

L �
p ðXÞ; ð4:22Þ

with c6ðbÞ ¼ 2ð1�bÞðC þ 1Þ. Instead, from (4.16) applied to I2;1, it follows that

I2;1 aCp

ðy
1

xðg�1Þp½xðxþ 1Þ�1�bpkv1ðxÞkp

DðAÞ
dx

x
aCpkxg�1v1ðxÞkp

L�
p ðDðAÞÞ: ð4:23Þ

Then, taking the infimum over all possible representations of the form x ¼
v0ðxÞ þ v1ðxÞ, from (4.21)–(4.23) we obtain

I2 a ½c7ðb; pÞ�pkxkp

ðX ;DðAÞÞg; p
; ð4:24Þ

where c7ðb; pÞ ¼ 2ðp�1Þ=pc6ðbÞ. Finally, summing up (4.19), (4.20) and (4.24), we

have

½x�p
X

gþb�1; p
A

a ½c8ðb; g; pÞ�pkxkp

ðX ;DðAÞÞg; p
;
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with c8ðb; g; pÞ ¼ f½c5ðb; g; pÞ�p þ ½c7ðb; pÞ�pg1=p. Therefore,

kxk
X

gþb�1; p
A

a c9ðb; g; pÞkxkðX ;DðAÞÞg; p ; g A ð1� b; 1Þ; p A ½1;yÞ;

where c9ðb; g; pÞ ¼ c2ðg; pÞ þ c8ðb; g; pÞ. The proof is complete. r

Remark 4.4. If A is single-valued and b ¼ 1, then the proof of (4.9) may be

performed in a easier way. We refer to [18, p. 158–160] for the details, but the

basic fact is that in the single-valued case one may take advantage from the

inequality kAðzI � AÞ�1
ykX a kðzI � AÞ�1

ykDðAÞ, z A rðAÞ, y A X , which fails in

the multivalued case (cf. (4.11)).

Remark 4.5. By setting j ¼ gþ b � 1, g A ð1� b; 1Þ, from (4.2) and (4.9) it

follows that DðAÞ ,! ðX ;DðAÞÞ1þj�b;p ,! X
j;p
A ,! X , j A ð0; bÞ, p A ½1;y�. Then,

according to what we have noticed before Remark 4.1, if b A ð0; 1Þ, the spaces

X
j;p
A are intermediate spaces between X and DðAÞ only for j A ð0; bÞ, whereas

when j A ½b; 1Þ they may be smaller than DðAÞ. We mention that the embedding

DðAÞ ,! X
j;p
A , j A ð0; bÞ, p A ½1;y�, can be shown even using only the definitions

of the norms k � kDðAÞ and k � k
X

d; p
A

and avoiding any argument of interpolation

theory (cf. [9, Section 2]).

Remark 4.6. We can now refine Remark 4.2. Indeed, (4.9) implies f0gJ
½ðX ;DðAÞÞg;p VA0�J ½X gþb�1;p

A VA0� ¼ f0g, g A ð1� b; 1Þ, p A ½1;y�, whereas,

when b < 1, f0g may be a proper subset of ½ðX ;DðAÞÞg;p VA0�, g A ð0; 1� b�. In
any case ½DðAÞVA0� ¼ f0g, since Remark 4.5 implies DðAÞVA0JX

j;p
A VA0

for every j A ð0; bÞ and p A ½1;y�. On the contrary, due to the inclusion

ðX ;DðAÞÞg;p JDðAÞ for every g A ð0; 1Þ and p A ½1;y�, in general it is not true

that ½DðAÞVA0� ¼ f0g. This is true, instead, if b ¼ 1. In this case the topological

direct sum DðAÞlA0 is a closed subspace of X , and, if X is reflexive, it

coincides with the whole X (cf. [40, Theorems 2.4 and 2.6]). We refer to [28],

for an equivalence between the identity X ¼ DðAÞlA0 and the well-posedness

on DðAÞ of the abstract multivalued Cauchy problem DtwðtÞ A AwðtÞ, t A ð0;T �,
wð0Þ ¼ x.

Remark 4.7. In particular, if A is a m. l. operator satisfying (H1) and

DðAÞ ¼ X , then from ½DðAÞVA0� ¼ f0g it follows that A0 ¼ f0g and A is

necessarily single-valued.

Observe that, with the exception of the case b ¼ 1 when ðX ;DðAÞÞg;p and

X
g;p
A coincide with equivalence of the respective norms, in general it is not clear if
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embeddings analogous to (4.2) and (4.3) hold even for the spaces X
g;p
A . In fact,

using (4.2), (4.3), (4.8) and (4.9) we can only prove that, if g A ð1� b; 1Þ and

1a p1 a p2 ay, then

X
g; p1
A ,! ðX ;DðAÞÞg; p1 ,! ðX ;DðAÞÞg; p2 ,! X

gþb�1; p2
A ; ð4:25Þ

whereas, if 1� b < g2 < g1 < 1, then X
g1;y
A ,! ðX ;DðAÞÞg1;y ,! ðX ;DðAÞÞg2;1 ,!

X
g2þb�1;1
A . We also recall that, if A is single-valued, densely defined, and satisfies

assumption (H1) with b ¼ 1, then the spaces X
g;p
A , or, equivalently, ðX ;DðAÞÞg;p,

are linked to the domains Dðð�AÞyÞ of the fractional powers of �A by the

following continuous embedding (cf. [24, Proposition 2.8], [25, p. 12] and [35,

Theorem 1.15.2(d) with m ¼ 1]):

X
<e y;1
A ,! Dðð�AÞyÞ ,! X

<e y;y
A ; <e y A ð0; 1Þ: ð4:26Þ

Combining (4.3) with (4.26) we find also Dðð�AÞy1Þ ,! Dðð�AÞy2Þ, 0 < <e y2 <
<e y1 < 1, which agrees with (3.12) with b ¼ 1. Later on, in Section 6, we shall

generalize (4.26) to multivalued (and hence, possibly single-valued) linear oper-

ators satisfying (H1) with b A ð0; a�, a A ð0; 1�, and having not necessarily dense

domain DðAÞ.
We conclude this section with two open problems which may constitute the

subject of future investigations. Indeed, although our result, that is a version of

(4.26) for m. l. operators satisfying (H1), is enough satisfactory from the point

of view of applications, especially those dealing with optimal regularity for

degenerate di¤erential equations, sometimes it may be useful to have a precise

characterization of the domains Dðð�AÞyÞ. When A is a closed single-valued

linear operator having dense domain and satisfying (H1) with b ¼ 1, a remark-

able result in this direction is the following (cf. [24, Proposition 2.9]): if there

exists y1 A C such that <e y1 A ð0; 1Þ and Dðð�AÞy1Þ coincides, in the sense of

equivalence of the norms, with X
<e y1;p
A for some p A ½1;y�, then Dðð�AÞy2Þ ¼

X
<e y2;p
A for every y2 A C such that <e y2 A ð0; 1Þ. In particular, Dðð�AÞy1Þ ¼

Dðð�AÞy2Þ if <e y1 ¼ <e y2. Also, in [24], an example and a counterexample

of this fact are given. At the moment, even assuming b ¼ 1 in (H1), we do not

know if this result can be extended to m. l. operators. For, in the proof of [24,

Proposition 2.9], a basic role is played by the definition of ð�AÞy as the closure

of the operator ð�AÞys defined in (3.15) (cf. [24, Theorems 2.6 and 2.7]), which is

just the argument failing in the multivalued case. Further, it is not even known

if, and if how, the result in [24] changes for single-valued linear operators when

b ¼ 1 in (H1) is replaced by b A ð0; a�, a A ð0; 1�.
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In the single-valued case with b ¼ 1 another interesting relation is that

provided in [35, Theorem 1.15.3]: assume there exist e, C 00 > 0 such that

kð�AÞ itkLðX Þ aC 00 for every t A ½�e; e�. Then, for every <e y1 > <e y2 b 0 and

g A ð0; 1Þ it holds that

½Dðð�AÞy2Þ;Dðð�AÞy1Þ�g ¼ Dðð�AÞð1�gÞy2þgy1Þ: ð4:27Þ

Here, ½X1;X2�d, d A ð0; 1Þ, denote the complex interpolation space of exponent d

between two Banach spaces X1 and X2 (cf. [35, Sections 1.9]). This result has

been successfully applied by several authors in many concrete cases. We quote,

for instance, [2, Section 7], [14, Section 1], [15, Section 3], [16, Section 6], and

[30, Section 4]. It is therefore clear how much e‰cient it would be to have an

analogous characterization for the domains of fractional powers of m. l. operators

(possibly single-valued) satisfying (H1) with b A ð0; 1�. According to Remark 3.8,

the main problem in generalizing this result is the condition on the pure imagi-

nary powers of �A, whose meaning, if any, is lacking when b A ð0; 1� in the

multivalued case and when b A ð0; 1Þ in the single-valued one. It is in this spirit

that should be regarded our attempt of giving, in Section 9, a definition of the

fractional powers ð�AÞGz for <e z A ½0; 1� b�.

5. Strong Continuity of e tA on ðX ;DðAÞÞg;p and X
g;p
A

Let A be a m. l. operator A satisfying assumption (H1). Then the linear

operator ½ð�AÞ1��e tA (cf. (3.19)) satisfies the following estimates (cf. [12, Prop-

osition 3.4]):

k½ð�AÞ1��e tAkLðX g;y
A

;XÞ a c10t
ðbþg�2Þ=a; t > 0; g A ð1� b; 1Þ; ð5:1Þ

c10 being a positive constant depending on a, b and g. Due to the strong

continuity of fe tAgtb0 in the norm of X on the space X
g;y
A , g A ð1� b; 1Þ, proved

in [12, Theorem 3.3], for every x A X
g;y
A , g A ð1� b; 1Þ, using (3.22) we can write

e tAx� x ¼ �
Ð t
0½ð�AÞ1��esAx ds. Therefore (cf. [12, Theorem 3.5]), if aþ b > 1,

estimate (5.1) easily yields:

ke tA � IkLðX g;y
A

;X Þ a c11t
ðaþbþg�2Þ=a; t > 0; g A ð2� a� b; 1Þ; ð5:2Þ

c11 being a positive constant depending on a, b and g. We now improve (5.1)

and (5.2) showing that in those estimates X
g;y
A can in fact be replaced by

ðX ;DðAÞÞg;p and X
g;p
A , p A ½1;y�. We begin with the following Lemma 5.1 which

refines (5.1).
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Lemma 5.1. Let A be a m. l. operator satisfying ðH1Þ and let Y p
g A

fðX ;DðAÞÞg;p;X
g;p
A g, g A ð0; 1Þ, p A ½1;y�. Then, there exists a positive constant

c12 ¼ c12ða; b; g; pÞ such that:

k½ð�AÞ1��e tAkLðY p
g ;X Þ a c12t

ðbþg�2Þ=a; t > 0; g A ð0; 1Þ; p A ½1;y�: ð5:3Þ

Proof. We first prove (5.3) with Y p
g ¼ ðX ;DðAÞÞg;p by interpolation. Let

x A DðAÞ and y A Ax. Then x ¼ A�1y ¼ ð�AÞ�1ð�yÞ and from (3.21) with y ¼ 1

we deduce

½ð�AÞ1��e tAx ¼ ½ð�AÞ1��e tAð�AÞ�1ð�yÞ ¼ ½ð�AÞ0��e tAð�yÞ ¼ �e tAy:

Hence, (3.23) with y ¼ 0 yields:

k½ð�AÞ1��e tAxkX a ke tAykX a ~cca;b;0t
ðb�1Þ=akykX ; t > 0; y A Ax:

Passing to the infimum with respect to y A Ax in the latter inequality we thus get

k½ð�AÞ1��e tAxkX a ~cca;b;0t
ðb�1Þ=akxkDðAÞ, x A DðAÞ, or, equivalently,

k½ð�AÞ1��e tAkLðDðAÞ;X Þ a ~cca;b;0t
ðb�1Þ=a; t > 0: ð5:4Þ

Furthermore, from (3.23) with y ¼ 1 we have:

k½ð�AÞ1��e tAkLðX Þ a ~cca;b;1t
ðb�2Þ=a; t > 0: ð5:5Þ

Now, using the interpolation inequality [27, Proposition 1.2.6] with

ðX1;Y1;X2;Y2Þ ¼ ðX ;DðAÞ;X ;XÞ, from (5.4) and (5.5) we finally find, for every

g A ð0; 1Þ and p A ½1;y�:

k½ð�AÞ1��e tAkLððX ;DðAÞÞg; p;X Þ a c13t
ðbþg�2Þ=a; t > 0: ð5:6Þ

This proves (5.3) with Y p
g ¼ ðX ;DðAÞÞg;p and c12 ¼ c13. To prove (5.3) with

Y p
g ¼ X

g;p
A it su‰ces to recall that, if Xj, j ¼ 1; 2; 3, are three Banach spaces

with X1 ,! X2 and L A LðX2;X3Þ, then L A LðX1;X3Þ and kLkLðX1;X3Þ a

c0kLkLðX2;X3Þ, where c0 > 0 is such that kxkX2
a c0kxkX1

for every x A X1. Then,

the assertion follows from (5.6) and embedding (4.8). In particular (cf. (4.15)),

c12 ¼ c0c13 ¼ 2c13. r

The following Proposition 5.2 extends [12, Theorem 3.3].

Proposition 5.2. Let A be a m. l. operator satisfying ðH1Þ. If g A ð1� b; 1Þ,
then e tA is strongly continuous in the norm of X on ðX ;DðAÞÞg;p and X

g;p
A for

every p A ½1;y�.
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Proof. First, let x A ðX ;DðAÞÞg;p, g A ð1� b; 1Þ, p A ½1;y�, and set

w ¼ 1

2pi

ð
G

l�1A�ðlI � AÞ�1
x dl; ð5:7Þ

where G is the contour in (2.10). We shall prove that limt!0þ e tAx ¼ w and

w� x A ½X gþb�1;y
A VA0�, so that from Remark 4.2 it will follows w ¼ x. We begin

by proving that w is a well defined element of X . To see this we observe that,

using estimate (4.18), jljb c > 0 for every l A G, and g A ð1� b; 1Þ, from (5.7) we

get

kwkX a ð2pÞ�1
c3ðg; pÞ

ð
G

jlj�1ðjlj þ 1Þ1�b�gjdlj
� �

kxkðX ;DðAÞÞg; p

a p�1c3ðg; pÞ
ðy
c

h�1ðhþ 1Þ1�b�g dh

� �
kxkðX ;DðAÞÞg; p

a p�1c3ðg; pÞ
ðy
c

h�b�g dh

� �
kxkðX ;DðAÞÞg; p

¼ ½pðgþ b � 1Þ��1
c1�b�gc3ðg; pÞkxkðX ;DðAÞÞg; p : ð5:8Þ

Hence kwkX < y, i.e. w A X . Now, we show that limt!0þ e tAx ¼ w. Due to

ðlI � AÞ�1 ¼ l�1½A�ðlI � AÞ�1 þ I � and
Ð
G l

�1etl dl ¼ 0, t > 0, we rewrite (2.10)

as

e tAx ¼ 1

2pi

ð
G

l�1e tlA�ðlI � AÞ�1
x dl; t > 0:

Therefore, exploiting (5.8) and Lebesgue’s dominated convergence theorem we

derive

lim
t!0þ

e tAx ¼ 1

2pi

ð
G

lim
t!0þ

l�1e tlA�ðlI � AÞ�1
x dl ¼ w: ð5:9Þ

Finally, let us prove w� x A ½X gþb�1;y
A VA0� ¼ f0g. Using A�1 A LðX Þ to com-

mute A�1 with the integral sign, from (2.6) and (3.1) with y ¼ 1 we find

A�1w ¼ 1

2pi

ð
G

l�1A�1A�ðlI � AÞ�1
x dl ¼ 1

2pi

ð
G

l�1ðlI � AÞ�1
x dl ¼ A�1x;

that is w� x A NðA�1Þ ¼ A0. Moreover, (2.7) and
Ð
G l

�1ðl� xÞ�1 dl ¼ 0, x > 0,

yield
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ðxI � AÞ�1
w ¼ 1

2pi

ð
G

l�1ðxI � AÞ�1
A�ðlI � AÞ�1

x dl

¼ 1

2pi

ð
G

l�1ðl� xÞ�1½A�ðxI � AÞ�1 � A�ðlI � AÞ�1�x dl

¼ � 1

2pi

ð
G

l�1ðl� xÞ�1
A�ðlI � AÞ�1

x dl; x > 0:

Then

A�ðxI � AÞ�1
w ¼ xðxI � AÞ�1

w� w

¼ � 1

2pi

ð
G

l�1½xðl� xÞ�1 þ 1�A�ðlI � AÞ�1
x dl

¼ � 1

2pi

ð
G

ðl� xÞ�1
A�ðlI � AÞ�1

x dl; x > 0: ð5:10Þ

Observe now that for every l A G and x > 0 it holds that

jl� xj ¼ f½cðjhj þ 1Þa þ x�2 þ h2g1=2

b ðx2 þ h2Þ1=2 b 2�1=2ðxþ jhjÞ; h A R: ð5:11Þ

Using (4.18) and (5.11), from (5.10) it thus follows, for every x > 0 and

g A ð1� b; 1Þ:

kA�ðxI � AÞ�1
wkX a ð2pÞ�1

c3ðg; pÞ
ð
G

jl� xj�1ðjlj þ 1Þ1�b�gjdlj
� �

kxkðX ;DðAÞÞg; p

a 21=2p�1c3ðg; pÞ
ðy
0

ðxþ hÞ�1
h1�b�g dh

� �
kxkðX ;DðAÞÞg; p

Hence, setting c14 ¼ 21=2p�1c3ðg; pÞ and changing the variable from h to xm, we

get

kA�ðxI � AÞ�1
wkX a c14x

1�b�g

ðy
0

ð1þ mÞ�1
m1�b�g dm

� �
kxkðX ;DðAÞÞg; p : ð5:12Þ

Then w A X
gþb�1;y
A , for the integral on the right-hand side of (5.12) is conver-

gent for g A ð1� b; 1Þ. In conclusion, since (4.25) with ðp1; p2Þ ¼ ðp;yÞ implies

x A ðX ;DðAÞÞg;p ,! X
gþb�1;y
A , we have w� x A ½X gþb�1;y

A VA0� ¼ f0g. Recalling

(5.9), this completes the proof of the strong continuity of e tA in the norm of X on
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ðX ;DðAÞÞg;p, g A ð1� b; 1Þ, p A ½1;y�. Finally, due to (4.8), the strong continuity

of e tA in the norm of X on X
g;p
A , g A ð1� b; 1Þ, p A ½1;y�, follows from that on

ðX ;DðAÞÞg;p. The proof is complete. r

We are now ready to improve (5.2).

Corollary 5.3. Let A be a m. l. operator satisfying ðH1Þ with aþ b > 1

and let Y p
g be as in Lemma 5.1. Then, there exists a positive constant c15 ¼

c15ða; b; g; pÞ such that:

ke tA � IkLðY p
g ;XÞ a c15t

ðaþbþg�2Þ=a; t > 0; g A ð2� a� b; 1Þ; p A ½1;y�: ð5:13Þ

Proof. Let x A Y p
g , g A ð2� a� b; 1Þ, p A ½1;y�, where Y p

g A fðX ;DðAÞÞg;p;
X

g;p
A g. Since ð2� a� b; 1ÞJ ð1� b; 1Þ, Proposition 5.2 allows us to write

e tAx� x ¼
ð t
0

½Dte
tA�t¼tx dt ¼ �

ð t
0

½ð�AÞ1��etAx dt; t > 0: ð5:14Þ

From (5.3) it thus follows

ke tAx� xkX a c12

ð t
0

tðbþg�2Þ=a dt

� �
kxkY p

g
a c15t

ðaþbþg�2Þ=akxkY p
g
; ð5:15Þ

where c15 ¼ aðaþ b þ g� 2Þ�1
c12. This completes the proof. r

Corollary 5.4. Let A and Y p
g be as in Corollary 5.3. If g A ð2� a� b; 1Þ,

then

ke tA � e sAkLðY p
g ;X Þ a c15ðt� sÞðaþbþg�2Þ=a; t > sb 0; p A ½1;y�: ð5:16Þ

Proof. The case s ¼ 0 following from Corollary 5.3 and the definition

e0A ¼ I , it su‰ces to consider the case t > s > 0. To this purpose, we replace

(5.14) with e tAx� esAx ¼ �
Ð t
s
½ð�AÞ1��etAx dt, t > s > 0. Then, taking into ac-

count the inequality tn � sn a ðt� sÞn, n A ½0; 1�, the assertion follows reasoning as

in the derivation of (5.15). r

Remark 5.5. To show that estimate (5.3), and, consequently, (5.13) and

(5.16), does not depend on the interpolation method used in the proof of Lemma

5.1, here we provide a di¤erent proof of (5.3), in which we make use only of

definition (3.19) and estimate (4.18). First, using zðzI � AÞ�1 ¼ A�ðzI � AÞ�1 þ I ,
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z A rðAÞ, and
Ð
G e

tl dl ¼ 0, we rewrite ½ð�AÞ1��e tAx, t > 0, x A ðX ;DðAÞÞg;p,
g A ð0; 1Þ, p A ½1;y�, as follows

½ð�AÞ1��e tAx ¼ � 1

2pi

ð
G

e tlA�ðlI � AÞ�1
x dl: ð5:17Þ

Due to (4.18), from (5.17) we thus obtain

k½ð�AÞ1��e tAxkX a ð2pÞ�1
c3ðg; pÞ

ð
G

e t <e lðjlj þ 1Þ1�b�gjdlj
� �

kxkðX ;DðAÞÞg; p : ð5:18Þ

Now, recalling that jljb c > 0 for every l A G, we have jlja jlj þ 1a

ð1þ c�1Þjlj, l A G. As a consequence, the following inequality holds

ðjlj þ 1Þ1�b�g
a cb; gjlj1�b�g; El A G; ð5:19Þ

where cb; g ¼ ð1þ c�1Þ1�b�g or cb; g ¼ 1 according that g A ð0; 1� bÞ or g A

½1� b; 1Þ. Moreover, <e l ¼ �cðj=m lj þ 1Þa b�cð1þ c�1Þajlja, l A G. Then,

replacing (5.19) in (5.18) and setting c16 ¼ p�1cb; gc3ðg; pÞ, we get

k½ð�AÞ1��e tAxkX a c16

ðy
0

e�cath
a

h1�b�g dh

� �
kxkðX ;DðAÞÞg; p ;

where ca ¼ cð1þ c�1Þa. Finally, the transformation cath
a ¼ s in the latter integral

yields

k½ð�AÞ1��e tAxkX a c16a
�1Eðð2� b � gÞ=aÞðcatÞðbþg�2Þ=akxkðX ;DðAÞÞg; p ;

EðwÞ, w > 0, being the Euler’s gamma function.

6. Intermediate Properties of the Domains Dðð�AÞyÞ

Let A be a m. l. operator satisfying assumption (H1). On the basis of (5.3),

for every g A ð0; 1Þ and p A ½1;y� we now introduce the Banach spaces DAðg; pÞ
defined by:

DAðg; pÞ ¼ fx A X : ½x�DAðg; pÞ :¼ kxð2�b�gÞ=a½ð�AÞ1��exAxkL�
p ðX Þ < yg;

kxkDAðg; pÞ ¼ kxkX þ ½x�DAðg; pÞ:

(

As we have noticed in Section 2, if A is single-valued and b ¼ 1 in (H1), then the

semigroup e tA is analytic in some sector containing the positive real axis. In this

case it is well-known that the spaces DAðg; pÞ coincide, in the sense of equivalence

of the norms, with the real interpolation spaces ðX ;DðAÞÞg;p (cf. [5, Theorem 3,
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with a being replaced by 1� g� 1=p], [27, Proposition 2.2.2] and [35, Theorem

1.14.5]). If A is really a m. l. operator, i.e. f0gWA0, the things become con-

siderably worse. Indeed, contrarily to the identities ½X g;p
A VA0� ¼ f0g, g A ð0; 1Þ,

and ½ðX ;DðAÞÞg;p VA0� ¼ f0g, g A ð1� b; 1Þ, which we have verified in Remarks

4.2 and 4.6, the spaces DAðg; pÞ contain A0. For (cf. (3.20)), if x A A0J
7

t>0
Nð½ð�AÞ1��e tAÞ, then ½x�DAðg; pÞ ¼ 0.

Our proof of the multivalued version of (4.26) will deeply depends on the

forthcoming Proposition 6.3, which estabilishes some inclusion relations between

the spaces ðX ;DðAÞÞg;p, X
g;p
A and DAðg; pÞ and exhibits the special role played by

the linear subspace A0. We begin by proving the following Lemmas 6.1 and 6.2.

Lemma 6.1. For every m A rðAÞ and every x A X it holds that:

fme tA þ ½ð�AÞ1��e tAgA�ðmI � AÞ�1
x ¼ �½ð�AÞ1��e tAx; t > 0: ð6:1Þ

Proof. Using (3.19) with y ¼ 0 and y ¼ 1, we rewrite the left-hand side of

(6.1) as follows

fme tA þ ½ð�AÞ1��e tAgA�ðmI � AÞ�1
x

¼ 1

2pi

ð
G

me tlðlI � AÞ�1 dlþ 1

2pi

ð
G

ð�lÞe tlðlI � AÞ�1 dl

� �
A�ðmI � AÞ�1

x

¼ 1

2pi

ð
G

ðm� lÞe tlðlI � AÞ�1
A�ðmI � AÞ�1

x dl; t > 0; x A X :

Then, using (2.7) and
Ð
G
e tl dl ¼ 0, t > 0, and recalling (5.17), we obtain

fme tA þ ½ð�AÞ1��e tAgA�ðmI � AÞ�1
x

¼ 1

2pi

ð
G

e tl½A�ðlI � AÞ�1
x� A�ðmI � AÞ�1

x� dl

¼ 1

2pi

ð
G

e tlA�ðlI � AÞ�1
x dl ¼ �½ð�AÞ1��e tAx; t > 0; x A X :

This completes the proof of (6.1). r

Lemma 6.2. Let a and b in assumption ðH1Þ be such that aþ b > 1 and let

x A f0gU ½DAðg; pÞnA0�, g A ð2� a� b; 1Þ, p A ½1;y�. Thenðy
0

e�zt½ð�AÞ1��e tAx dt ¼ �A�ðzI � AÞ�1
x; E <e z > 0: ð6:2Þ
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Proof. First, observe that, due to (3.20), if x A A0, then the left-hand

side of (6.2) is the zero element of X whereas the right-hand side reduces to

�A�ðzI � AÞ�1
x ¼ �zðzI � AÞ�1

xþ x ¼ x. Therefore, if x A A0, then (6.2) fails,

unless x ¼ 0. This agrees with the identity NðA�ðzI � AÞ�1Þ ¼ f0g established in

Lemma 2.1 and explains why, in general, the linear subspace A0nf0g should be

removed from DAðg; pÞ. Let us now show that the integral in (6.2) converges

for x A DAðg; pÞ, g A ð2� a� b; 1Þ, p A ½1;y�. We have already noticed that, if

x A A0, then our integral is the zero element of X . If x A DAðg; pÞnA0, then,

denoting with p 0 the conjugate exponent of p, from Hölder’s inequality and the

definition of seminorm ½��DAðg; pÞ we get

ðy
0

e�zt½ð�AÞ1��e tAx dt

����
����
X

a

ðy
0

e�t <e zk½ð�AÞ1��e tAxkX dt

a

ðy
0

e�t <e zt½ðbþg�2Þ=a�þ1=pt½ð2�b�gÞ=a��1=pk½ð�AÞ1��e tAxkX dt

a

ðy
0

e�p 0t <e zt½ðbþg�2Þp 0=a�þp 0=p dt

� 	1=p 0

½x�DAðg; pÞ; ð6:3Þ

Since p 0=p ¼ p 0 � 1, the transformation p 0t <e z ¼ t leads to

ðy
0

e�p 0t <e zt½ðbþg�2Þp 0=a�þp 0=p dt

¼ ðp 0 <e zÞð2�a�b�gÞp 0=a
Eððaþ b þ g� 2Þp 0=aÞ; ð6:4Þ

where EðwÞ, w > 0, is the Euler’s gamma function. As a consequence, from (6.3)

we obtain that for every <e z > 0 and every x A DAðg; pÞnA0, g A ð2� a� b; 1Þ,
p A ½1;y�:

ðy
0

e�zt½ð�AÞ1��e tAx dt

����
����
X

a ½c17ða; b; g; p 0;<e zÞ�1=p
0
½x�DAðg; pÞ < y: ð6:5Þ

where c17ða; b; g; p 0;<e zÞ is the constant on the right-hand side of (6.4). Let

us now prove (6.2). Clearly, if x ¼ 0, then there is nothing to prove. If

x A ½DAðg; pÞnA0�, g A ð2� a� b; 1Þ, p A ½1;y�, then, substituting identity (6.1)

with m being replaced by z, the left-hand side of (6.2) can be rewritten as
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ðy
0

e�zt½ð�AÞ1��e tAx dt ¼
ðy
0

e�ztf�ze tA � ½ð�AÞ1��e tAgA�ðzI � AÞ�1
x dt

¼ �
ðy
0

ze�zte tAA�ðzI � AÞ�1
x dt

�
ðy
0

e�zt½ð�AÞ1��e tAA�ðzI � AÞ�1
x dt: ð6:6Þ

Notice that, if x A A0, then A�ðzI � AÞ�1
x ¼ �x A A0 and the first integral on the

right-hand side of (6.6) becomes zero in X . In fact, from Lemma 3.9 we have

A0 ¼ 7
t>0

Nðe tAÞ. Thus, when x A A0, (6.6) reduces to
Ðy
0 e�zt½ð�AÞ1��e tAx dt ¼

�
Ðy
0 e�zt½ð�AÞ1��e tAð�xÞ dt ¼ 0. On the contrary, if x B A0, then Lemma 2.1

implies A�ðzI � AÞ�1
x B A0 ¼ NððzI � AÞ�1Þ and from identity (3.24) it follows

that ðy
0

ze�zte tAA�ðzI � AÞ�1
x dt ¼ zðzI � AÞ�1

A�ðzI � AÞ�1
x0 0:

Hence, when x B A0, the first integral on the right-hand side of (6.6) is di¤erent

from the zero element of X and an integration by parts yields

�
ðy
0

ze�zte tAA�ðzI � AÞ�1
x dt

¼ ½e�zte tA� t¼y
t¼0 A�ðzI � AÞ�1

x�
ðy
0

e�ztDte
tAA�ðzI � AÞ�1

x dt

¼ �A�ðzI � AÞ�1
xþ

ðy
0

e�zt½ð�AÞ1��e tAA�ðzI � AÞ�1
x dt; ð6:7Þ

where we have used limt!y e�zte tA ¼ 0, <e z > 0, which follows from estimate

(3.23) with y ¼ 0. Replacing (6.7) in (6.6) we finally obtain (6.2). r

Proposition 6.3. Let A be a m. l. operator satisfying ðH1Þ. Then, for every

g A ð0; 1Þ:

X
g;p
A ,! ðX ;DðAÞÞg;p ,! DAðag; pÞ; p A ½1;yÞ;

X
g;y
A ,! ðX ;DðAÞÞg;y ,! DAðg;yÞ:

(
ð6:8Þ

Further, if aþ b > 1, then for every g A ð2� a� b; 1Þ and every d A

ð0; ðaþ b þ g� 2Þ=aÞ1:

1Here ð�þ � þ � � 2Þ=� < 1, since � < 1 � 2� �.
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f0gU ½DAðg; pÞnA0� ,! X
d;p
A ,! ðX ;DðAÞÞd;p; p A ½1;yÞ;

f0gU ½DAðg;yÞnA0� ,! X
ðaþbþg�2Þ=a;y
A ,! ðX ;DðAÞÞðaþbþg�2Þ=a;y:

(
ð6:9Þ

Here f0gU ½DAðg; pÞnA0� is a normed linear space over C endowed with the norm

k � kDAðg; pÞ.

Proof. Due to (4.8), it su‰ces to prove the embeddings on the right of (6.8)

and on the left of (6.9). First, let x A ðX ;DðAÞÞg;y, g A ð0; 1Þ. Then from (5.3) we

have

½x�DAðg;yÞ ¼ sup
t>0

ktð2�b�gÞ=a½ð�AÞ1��e tAxkX a c12kxkðX ;DðAÞÞg;y ;

proving the second in (6.8). Now, let x A ðX ;DðAÞÞg;p, g A ð0; 1Þ, p A ½1;yÞ. We

write

½x�pDAðag;pÞ ¼ I1 þ I2; ð6:10Þ

where

I1 ¼
ð 1
0

tð2�b�agÞp=ak½ð�AÞ1��etAxkp
X

dt

t
; ð6:11Þ

I2 ¼
ðy
1

tð2�b�agÞp=ak½ð�AÞ1��etAxkp
X

dt

t
: ð6:12Þ

Consider first I1. To this purpose we recall that the transformation x ¼ t�1 in

definition (4.1) leads to the following equivalent characterization of the spaces

ðX ;DðAÞÞg;p:

ðX ;DðAÞÞg;p ¼ fx A X : x ¼ u0ðtÞ þ u1ðtÞ; t A ð0;yÞ;
u0 A Cðð0;yÞ;X Þ; u1 A Cðð0;yÞ;DðAÞÞ;
kt�gu0kL �

p ðXÞ þ kt1�gu1kL �
p ðDðAÞÞ < yg;

kxkðX ;DðAÞÞg; p ¼ infu0;u1fkt�gu0kL �
p ðX Þ þ kt1�gu1kL �

p ðDðAÞÞg:

8>>>><
>>>>:

ð6:13Þ

So, with any pair of functions u0 and u1 satisfying the condition in (6.13), from

(6.11) and inequality ðaþ bÞp a 2p�1ðap þ bpÞ, a; bb 0, p A ½1;yÞ, we get:

I1 a 2p�1½I1;0 þ I1;1�; ð6:14Þ

where

I1; j ¼
ð 1
0

tð2�b�agÞp=ak½ð�AÞ1��etAujðtÞkp
X

dt

t
; j ¼ 0; 1:
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Applying (5.5) to I1;0 we obtain

I1;0 a ð~cca;b;1Þp
ð1
0

t�gpku0ðtÞkp
X

dt

t
a ð~cca;b;1Þpkt�gu0kp

L �
p ðXÞ: ð6:15Þ

Instead, (5.4) applied to I1;1 yields:

I1;1 a ð~cca;b;0Þp
ð1
0

tð1�agÞp=aku1ðtÞkp

DðAÞ
dt

t
: ð6:16Þ

Since ð1� agÞ=a ¼ ð1� gÞ þ ð1� aÞ=a and 1� ab 0, from (6.16) we thus find

I1;1 a ð~cca;b;0Þp
ð1
0

tð1�gÞptð1�aÞp=aku1ðtÞkp

DðAÞ
dt

t

a ð~cca;b;0Þp
ð1
0

tð1�gÞpku1ðtÞkp

DðAÞ
dt

t
a ð~cca;b;0Þpkt1�gu1kp

L �
p ðDðAÞÞ: ð6:17Þ

Therefore, summing up (6.14), (6.15) and (6.17) and taking the infimum over all

possible representations of the form x ¼ u0ðtÞ þ u1ðtÞ, we have

I1 a ½c18ða; b; pÞ�pkxkp

ðX ;DðAÞÞg; p
; ð6:18Þ

where c18ða; b; pÞ ¼ 2ðp�1Þ=p maxk¼0;1 ~cca;b;k. Consider now I2 defined by (6.12).

From (5.5) and kxkX a c2ðg; pÞkxkðX ;DðAÞÞg; p it follows that

I2 a ð~cca;b;1Þp
ðy
1

t�gp�1 dt

� �
kxkp

X a ½c19ða; b; g; pÞ�pkxkp

ðX ;DðAÞÞg; p
; ð6:19Þ

where c19ða; b; g; pÞ ¼ ~cca;b;1ðgpÞ�1=p
c2ðg; pÞ. From (6.10), (6.18) and (6.19) we

derive

½x�p
DAðag;pÞ a ½c20ða; b; g; pÞ�pkxkp

ðX ;DðAÞÞg; p
;

where c20ða; b; g; pÞ ¼ f½c18ða; b; pÞ�p þ ½c19ða; b; g; pÞ�pg1=p. Consequently

kxkDAðag;pÞ a c21ða; b; g; pÞkxkðX ;DðAÞÞg; p ; g A ð0; 1Þ; p A ½1;yÞ;

where c21ða; b; g; pÞ ¼ c2ðg; pÞ þ c20ða; b; g; pÞ. This completes the proof of (6.8).

We now assume aþ b > 1 and prove (6.9). Let first x A f0gU ½DAðg;yÞnA0�,
g A ð2� a� b; 1Þ. Then, from (6.2) and (6.5) with ðz; p; p 0Þ ¼ ðx;y; 1Þ it follows

that for every x > 0:

kA�ðxI � AÞ�1
xkX a xð2�a�b�gÞ=aEððaþ b þ g� 2Þ=aÞ½x�DAðg;yÞ;
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where EðwÞ, w > 0, is the Euler’s gamma function. Therefore

kxk
X

ðaþbþg�2Þ=a;y
A

¼ kxkX þ supx>0 x
ðaþbþg�2Þ=akA�ðxI � AÞ�1

xkX

amaxf1;Eððaþ b þ g� 2Þ=aÞgkxkDAðg;yÞ; ð6:20Þ

proving that x A X
ðaþbþg�2Þ=a;y
A . Let us show that f0gU ½DAðg;yÞnA0�, g A

ð2� a� b; 1Þ, is a normed linear space over C endowed with the norm

k � kDAðg;yÞ. First, let l A C and x A f0gU ½DAðg;yÞnA0�, g A ð2� a� b; 1Þ. Then
lx A f0gU ½DAðg;yÞnA0�. For, if lx ¼ y A A0nf0g, l A Cnf0g, then x ¼ l�1y A

A0nf0g, which is a contradiction. Now, let x1; x2 A f0gU ½DAðg;yÞnA0�, g A

ð2� a� b; 1Þ. Then, since x1; x2 A X
ðaþbþg�2Þ=a;y
A due to (6.20), we have

x1 þ x2 A X
ðaþbþg�2Þ=a;y
A . From ½X s;p

A VA0� ¼ f0g, s A ð0; 1Þ, p A ½1;y�, it thus

follows that x1 þ x2 A A0 only if x1 þ x2 ¼ 0, i.e. x1 ¼ �x2. Since x1 þ x2

obviously belongs to DAðg;yÞ, we conclude that x1 þ x2 A f0gU ½DAðg;yÞnA0�.
This completes the proof of the second of (6.9). Now, let x A f0gU ½DAðg; pÞnA0�,
g A ð2� a� b; 1Þ, p A ½1;yÞ. For every d A ð0; ðaþ b þ g� 2Þ=aÞ we write

½x�p
X

d; p
A

¼ I3 þ I4; ð6:21Þ

where

I3 ¼
ð1
0

xdpkA�ðxI � AÞ�1
xkp

X

dx

x
; I4 ¼

ðy
1

xdpkA�ðxI � AÞ�1
xkp

X

dx

x
:

Using (4.17) we obtain

I3 a ðC þ 1Þp
ð1
0

xdp�1ðxþ 1Þð1�bÞ p dx

� �
kxkp

X

a 2ð1�bÞpðC þ 1Þp
ð 1
0

xdp�1 dx

� �
kxkp

X ¼ ½c21ðb; d; pÞ�pkxkp
X : ð6:22Þ

where c21ðb; d; pÞ ¼ 2ð1�bÞðC þ 1ÞðdpÞ�1=p. As far as I4 is concerned, first, using

(6.2) and (6.5) we derive for every x > 0:

kA�ðxI � AÞ�1
xkX a c22ða; b; g; p 0Þxð2�a�b�gÞ=a½x�DAðg; pÞ;

where c22ða; b; g; p 0Þ ¼ ðp 0Þð2�a�b�gÞ=a½Eððaþ b þ g� 2Þp 0=aÞ�1=p
0
. Then

I4 a ½c22ða; b; g; p 0Þ�p
ðy
1

x½dþð2�a�b�gÞ=a�p�1 dx

� �
½x�p

DAðg; pÞ

a ½c23ða; b; g; d; p; p 0Þ�p½x�p
DAðg; pÞ; ð6:23Þ
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where c23ða; b; g; d; p; p 0Þ ¼ c22ða; b; g; p 0Þa1=p½ðaþ b þ g� 2� adÞp��1=p. Therefore,

summing up (6.21)–(6.23) we get

½x�p
X

d; p
A

a ½c24ða; b; g; d; p; p 0Þ�pkxkp

DAðg; pÞ

where c24ða; b; g; d; p; p 0Þ ¼ maxfc21ðb; d; pÞ; c23ða; b; g; d; p; p 0Þg. Consequently

kxk
X

d; p
A

¼ kxkX þ ½x�
X

d; p
A

a ½1þ c24ða; b; g; d; p; p 0Þ�kxkDAðg; pÞ;

proving that x A X
d;p
A , d A ð0; ðaþ b þ g� 2Þ=aÞ. The same reasonings made before

for p ¼ y now show that f0gU ½DAðg; pÞnA0�, g A ð2� a� b; 1Þ, p A ½1;yÞ, is a

normed linear space over C endowed with the norm k � kDAðg; pÞ. This completes

the proof. r

Remark 6.4. We stress that f0gU ½DAðg; pÞnA0�, g A ð2� a� b; 1Þ, p A

½1;y�, is, in general, only a normed linear space over C endowed with the

norm k � kDAðg; pÞ of DAðg; pÞ, but it may not be a Banach space. For, due to

A�1 A LðXÞ, the linear subspace A0 is closed on2 X and hence DAðg; pÞnA0 is,

in general, only an open subset of DAðg; pÞ.

Remark 6.5. Observe that from the second in (6.8) and the property

½X s;p
A VA0� ¼ f0g, s A ð0; 1Þ, p A ½1;y�, we get X

g;y
A J f0gU ½DAðg;yÞnA0�, g A

ð0; 1Þ. Therefore, in the special case b ¼ 1, this latter inclusion combined with the

second in (6.9) yields X
g;y
A ¼ f0gU ½DAðg;yÞnA0� in the sense of equivalence of

the respective norms.

We can now prove our main theorems.

Theorem 6.6. Let A be a m. l. operator satisfying ðH1Þ with a A ð1=2; 1� and
b A ð1=2; a�. Then, for every y A C such that <e y A ð1� b; bÞ it holds that

DðAÞ ,! X
<e y;1
A ,! Dðð�AÞyÞ; X

<e y;1
A J f0gU ½Dðð�AÞyÞnA0�: ð6:24Þ

Proof. We introduce the single-valued linear operator

½ð�AÞy�� ¼ � 1

2pi

ð
G

ð�lÞy�1
A�ðlI � AÞ�1 dl; <e y A ð1� b; bÞ;

Dð½ð�AÞy��Þ ¼ X
<e y;1
A ;

8><
>: ð6:25Þ

2 In fact, if fxngn2N � A0 is such that xn ! x in X , then from A�1 2 LðXÞ it follows that

0 ¼ A�1xn ! A�1x. Hence, A�1x ¼ 0 or, equivalently, x 2 A0.
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where Dð½ð�AÞy��Þ is endowed with the graph norm kxk
Dð½ð�AÞ y��Þ ¼ kxkX þ

k½ð�AÞy��xkX . We shall prove that, if x A X
<e y;1
A , then x ¼ ð�AÞ�y

y where

y ¼ ½ð�AÞy��x, yielding x A Rðð�AÞ�yÞ ¼ Dðð�AÞyÞ. The embeddings and the

inclusion in (6.24) will then follow from Remarks 4.2 and 4.5, and inequality

(6.31) below. We first show that ½ð�AÞy�� is well defined on X <e y;1
A . To this

purpose, using Cauchy’s theorem, we deform the infinite branches Gþ and G�
of G into the upper and lower sides of the positive real axis, respectively. That

is GG ! ~GGG, where ~GGG ¼ fz A C : z ¼ xG i0; x A ð0;yÞg. Therefore, since for

<e y A ð1� b; bÞ we have ð�lÞy�1 ¼ eðy�1Þ logð�lÞ ¼ jljy�1eHðy�1Þpi, l A ~GGG, we

obtain

½ð�AÞy��x ¼ � 1

2pi

ðy
0

xy�1e�ðy�1ÞpiA�ðxI � AÞ�1
x dx

� 1

2pi

ð 0
y
xy�1eðy�1ÞpiA�ðxI � AÞ�1

x dx

¼ eðy�1Þpi � e�ðy�1Þpi

2pi

ðy
0

xy�1A�ðxI � AÞ�1
x dx

¼ � sinðypÞ
p

ðy
0

xy�1A�ðxI � AÞ�1
x dx: ð6:26Þ

As a consequence

k½ð�AÞy��xkX a p�1ej=m yjp½x�
X

<e y; 1
A

< y; Ex A X <e y;1
A : ð6:27Þ

Now, the map l A rðAÞ ! ð�lÞy�1
A�ðlI � AÞ�1 A LðX Þ being holomorphic, we

replace the contour G in (6.25) with the contour G 0 parametrized by m ¼
�c 0ðjhj þ 1Þa þ ih, h A R, c 0 A ð0; cÞ. Then, using (2.7) and (3.1), for every

x A X <e y;1
A , <e y A ð1� b; bÞ, we find

ð�AÞ�y½ð�AÞy��x

¼ � 1

2pi

� 	2ð
G

ð�lÞ�y

ð
G 0
ð�mÞy�1ðlI � AÞ�1

A�ðmI � AÞ�1
x dm

� �
dl

¼ � 1

2pi

� 	2ð
G

ð�lÞ�y
A�ðlI � AÞ�1

ð
G 0
ð�mÞy�1ðm� lÞ�1 dm

� 	
x

� �
dl

� 1

2pi

� 	2ð
G 0
ð�mÞy�1

A�ðmI � AÞ�1

ð
G

ð�lÞ�yðl� mÞ�1 dl

� 	
x

� �
dm: ð6:28Þ
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After having enclosed G and G 0 on the left with an arc of the circle

fz A C : jzþ c 0j ¼ Rg, R > c� c 0, we apply the residue theorem and we let R go

to infinity. Since G 0 lies to the right of G, the same computations as in [32, pp. 547,

548] yield
Ð
G 0 ð�mÞy�1ðm� lÞ�1 dm ¼ 2pið�lÞy�1 and

Ð
Gð�lÞ�yðl� mÞ�1 dl ¼ 0.

Hence, from (6.28) we get

ð�AÞ�y½ð�AÞy��x ¼ 1

2pi

ð
G

l�1A�ðlI � AÞ�1
x dl; Ex A X <e y;1

A : ð6:29Þ

Since x A X
<e y;1
A ,! ðX ;DðAÞÞ<e y;1, <e y A ð1� b; bÞ, the right-hand side of (6.29)

is precisely the element w defined by (5.7) with ðg; pÞ ¼ ð<e y; 1Þ. Therefore, the
same proof as that in Proposition 5.2 shows w� x A ½X <e yþb�1;y

A VA0� ¼ f0g and

(6.28) reduces to

ð�AÞ�y½ð�AÞy��x ¼ x; Ex A X
<e y;1
A : ð6:30Þ

Then x A Rðð�AÞ�yÞ ¼ Dðð�AÞyÞ for every x A X
<e y;1
A , <e y A ð1� b; bÞ, show-

ing that the inclusion X
<e y;1
A JDðð�AÞyÞ, <e y A ð1� b; bÞ, holds. Also, (6.30)

implies ½ð�AÞy��x A ð�AÞyx, x A X
<e y;1
A , meaning that ½ð�AÞy�� is a section of

ð�AÞyj
X

<e y; 1
A

. Thus, for every x A X
<e y;1
A , from (6.27) we deduce

kxk
Dðð�AÞ yÞ ¼ inf

y A ð�AÞyxkykX a k½ð�AÞy��xkX a p�1ej=m yjkxk
X

<e y; 1
A

; ð6:31Þ

completing the proof of X <e y;1
A ,! Dðð�AÞyÞ, <e y A ð1� b; bÞ. Finally (6.24)

follows from DðAÞ ,! X
j;p
A , j A ð0; bÞ, p A ½1;y� and ½X j;p

A VA0� ¼ f0g, j A ð0; 1Þ,
p A ½1;y�. r

Remark 6.7. Due to (6.26) and Remark 4.1, if A is a single-valued densely

defined linear operator satisfying (H1) with b ¼ 1, then the fractional power

ð�AÞy, <e y A ð0; 1Þ, is just the closure of ½ð�AÞy�� (cf. [24, Section 2] and

[35, Subsection 1.15.1]).

Remark 6.8. The change of variable x ¼ t�1 in the right-hand side of (6.26)

yields

½ð�AÞy��x ¼ sinðypÞ
p

ðy
0

t�yð�AÞtx dt; ð�AÞt :¼ ½I � ðI � tAÞ�1�=t;

showing that ½ð�AÞy�� coincides with the operator Fyð�AÞ in [1, p. 166]. As-

suming b ¼ 1 and considering only fractional powers with real exponents, in [1]

it is proved DðAÞJDðFyð�AÞÞJDðð�AÞyÞ, y A ð0; 1Þ, where DðFyð�AÞÞ ¼
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fx :
Ðy
0 t�ykAtxkX dt < yg. The transformation t�1 ¼ x thus shows that

DðFyð�AÞÞ is just X y;1
A , and the result in [1] may be restated as DðAÞJX

y;1
A J

Dðð�AÞyÞ, y A ð0; 1Þ. Of course, even in a weaker form, this inclusion agrees with

(6.24) for b ¼ 1 and y A R. The main problem in [1] is that DðFyð�AÞÞ is not

characterized in terms of interpolation spaces. We mean, di¤erently from what

follows from Proposition 4.3 with b ¼ 1, in [1] the domain DðFyð�AÞÞ ¼ X y;1
A is

not recovered to be just the interpolation space ðX ;DðAÞÞy;1.

Theorem 6.9. Let A be a m. l. operator satisfying ðH1Þ with aþ b > 1.

Then, for every y A C such that <e y A ð2� a� b; 1Þ it holds that

f0gU ½Dðð�AÞyÞnA0� ,! X
ðaþbþ<e y�2Þ=a;y
A : ð6:32Þ

Here f0gU ½Dðð�AÞyÞnA0� is a normed linear space over C with the norm

k � k
Dðð�AÞ yÞ.

Proof. Due to the second embedding in (6.9) it su‰ces to show that

Dðð�AÞyÞ ,! DAð<e y;yÞ, <e y A ð2� a� b; 1Þ. Let x A Dðð�AÞyÞ and take

y A ð�AÞyx. Then, since 1� ba 2� a� b and x ¼ ð�AÞ�y
y, using (3.21) and

(3.23) we obtain

k½ð�AÞ1��e tAxkX ¼ k½ð�AÞ1�y��e tAykX a ~cca;b;1�yt
ðbþ<e y�2Þ=akykX : ð6:33Þ

Estimate (6.33) implies

½x�DAð<e y;yÞ a ca;b;1�ykykX ; Ey A ð�AÞyx: ð6:34Þ

In addition, if x A Dðð�AÞyÞ, then

kxkX ¼ kð�AÞ�y
ykX a kð�AÞ�ykLðX ÞkykX ; Ey A ð�AÞyx: ð6:35Þ

Finally, taking the infimum with respect to y A ð�AÞyx, from (6.34) and (6.35) we

get

kxkDAð<e y;yÞ ¼ kxkX þ ½x�DAð<e y;yÞ a ðkð�AÞ�ykLðX Þ þ ca;b;1�yÞkxkDðð�AÞ yÞ;

proving Dðð�AÞyÞ ,! DAð<e y;yÞ, <e y A ð2� a� b; 1Þ. Finally, the same rea-

sonings made below (6.20), but with f0gU ½DAðg;yÞnA0� being replaced with

f0gU ½Dðð�AÞyÞnA0�, show that f0gU ½Dðð�AÞyÞnA0�, <e y A ð2� a� b; 1Þ, is a

normed linear space over C endowed with the norm k � k
Dðð�AÞyÞ. This completes

the proof. r
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The following Theorem 6.10 generalizes (4.26) to multivalued linear operators

satisfying (H1) and having not necessarily dense domain.

Theorem 6.10. Let A be a m. l. operator satisfying ðH1Þ with a A ð2=3; 1�
and b A ð1� a=2; a�. Then, for every y A C such that <e y A ð2� a� b; bÞ it holds

that

DðAÞ ,! X
<e y;1
A ,! f0gU ½Dðð�AÞyÞnA0� ,! X

ðaþbþ<e y�2Þ=a;y
A : ð6:36Þ

Here f0gU ½Dðð�AÞyÞnA0� is a normed linear space over C with the norm

k � k
Dðð�AÞ yÞ.

Proof. First, our assumptions on a and b imply b A ð1=2; a� and aþ b >

1þ a=2 > 1, so that the assumptions of Theorems 6.6 and 6.9 are satisfied.

Moreover, since b > 1� a=2 and 1� ba 2� a� b, the choice <e y A

ð2� a� b; bÞ makes sense and satisfy the requirements for <e y in both the

quoted theorems. Therefore, (6.36) follows from (6.24) and (6.32), where the

inclusion in (6.24) now becomes just an embedding due to (6.31). r

Remark 6.11. Of course, if A is single-valued, densely defined, and b ¼ 1,

then (6.36) coincides with embedding (4.26) proved in [24], [25] and [35]. More-

over, if A is multivalued and b ¼ 1, then (6.36) refines the result in [1] mentioned

in Remark 6.8.

7. On the Behaviour of e tA with Respect to Dðð�AÞgÞ

Here we study the behaviour of the operators ½ð�AÞy��e tA, <e yb 0, t > 0,

defined by (3.19) with respect to the domains Dðð�AÞgÞ, <e g > 1� b, of the

fractional powers ð�AÞg of �A. Throughout this section A will be a m. l.

operator in X satisfying (H1).

Lemma 7.1. Let ½ð�AÞg��, <e g A ð1� b; bÞ, b A ð1=2; a�, a A ð1=2; 1�, be the

operator defined by ð6:25Þ; and let ½ð�AÞy��e tA, <e yb 0, t > 0, be the operators

defined by ð3:19Þ. Then, for every x A X it holds that

½ð�AÞg��ð½ð�AÞy��e tAxÞ ¼ ½ð�AÞgþy��e tAx: ð7:1Þ

Proof. Let x A X and <e g A ð1� b; bÞ. First, from [8, Lemma 3.1] and

Remark 4.5 we have ½ð�AÞy��e tAx A DðAÞ ,! X
<e g;1
A and we can apply ½ð�AÞg��
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to ½ð�AÞy��e tAx. Replacing the contour G in (3.19) with the contour G 0 defined

in the proof of Theorem 6.6 and using (2.8), for every t > 0 we find

½ð�AÞg��ð½ð�AÞy��e tAxÞ

¼ � 1

2pi

� 	2ð
G

ð�lÞg�1

ð
G 0
ð�mÞye tmA�ðlI � AÞ�1ðmI � AÞ�1

x dm

� �
dl

¼ � 1

2pi

� 	2ð
G

ð�lÞg�1
A�ðlI � AÞ�1

ð
G 0
ð�mÞye tmðm� lÞ�1 dm

� 	
x

� �
dl

� 1

2pi

� 	2ð
G 0
ð�mÞye tmA�ðmI � AÞ�1

ð
G

ð�lÞg�1ðl� mÞ�1 dl

� 	
x

� �
dm:

Since G 0 lies to the right of G, the residue theorem implies
Ð
G 0 ð�mÞye tmðm� lÞ�1 dm

¼ 2pið�lÞye tl and
Ð
G
ð�lÞg�1ðl� mÞ�1 dl ¼ 0. Therefore

½ð�AÞg��ð½ð�AÞy��e tAxÞ ¼ � 1

2pi

ð
G

ð�lÞgþy�1e tlA�ðlI � AÞ�1
x dl

¼ � 1

2pi

ð
G

ð�lÞgþy�1e tl½lðlI � AÞ�1 � I �x dl

¼ 1

2pi

ð
G

ð�lÞgþye tlðlI � AÞ�1
x dl: ð7:2Þ

Here in the latter equality we have used
Ð
Gð�lÞgþy�1e tl dl ¼ 0 for every t > 0,

which follows from the Cauchy’s formula after having enclosed G on the left

with an arc of the circle fz A C : jzþ cj ¼ Rg, R > 0, and then letting R to

infinity. The right-hand side of (7.2) being precisely ½ð�AÞgþy��e tAx, the proof is

complete. r

Remark 7.2. In particular, (7.1) with y ¼ 0 shows that at least for <e g A
ð1� b; bÞ the operator ½ð�AÞg��e tA defined by (3.19) is just the product of the

section ½ð�AÞg�� of ð�AÞgj
X

<e g; 1
A

with the semigroup e tA.

Proposition 7.3. Let a, b, g and y be as in Lemma 7.1. Then, there exists a

positive constant c25 ¼ c25ða; b; g; yÞ such that the following estimate holds

k½ð�AÞy��e tAkLðX ;Dðð�AÞ gÞÞ a c25t
ðb�<e g�<e y�1Þ=a; Et > 0: ð7:3Þ

Proof. Let x A X . Then, since ½ð�AÞy��e tAx A DðAÞ ,! X
<e g;1
A ,! Dðð�AÞgÞ,

t > 0, <e yb 0, <e g A ð1� b; bÞ, from the fact that ½ð�AÞg�� is a section of
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ð�AÞgj
X

<e g; 1
A

using identity (7.1) and estimates (3.23) we get

k½ð�AÞy��e tAxkDðð�AÞ gÞ a k½ð�AÞgþy��e tAxkX a ~cca;b; gþyt
ðb�<e g�<e y�1Þ=akxkX :

The proof is complete. r

As a corollary we have that, if t is bounded away from zero, then for every

s A ð0; 1Þ the operator function t ! ½ð�AÞy��e tA is s-Hölder continuous with

values in LðX ;Dðð�AÞgÞÞ.

Corollary 7.4. Let a, b, g and y be as in Lemma 7:1. Then, for every

s A ð0; 1Þ and 0 < s < t the following estimate holds where c26 ¼ s�1c25:

k½ð�AÞy��e tA � ½ð�AÞy��e sAkLðX ;Dðð�AÞ gÞÞ a c26s
ðaþb�<e g�<e y�2�asÞ=aðt� sÞs: ð7:4Þ

Proof. It is shown in [8, formula (22)] that

½ð�AÞy��e tA � ½ð�AÞy��esA ¼ �
ð t
s

½ð�AÞyþ1��exA dx; 0 < s < t: ð7:5Þ

Consequently, for every s A ð0; 1Þ, using (7.3) with y being replaced by yþ 1 and

the well-known inequality ts � ss a ðt� sÞs, from (7.5) it follows that

k½ð�AÞy��e tA � ½ð�AÞy��e sAkLðX ;Dðð�AÞ gÞÞ a c25

ð t
s

xðb�<e g�<e y�2Þ=a dx

a c25s
ðaþb�<e g�<e y�2�asÞ=a

ð t
s

xs�1 dx

a s�1c25s
ðaþb�<e g�<e y�2�asÞ=aðt� sÞs:

This completes the proof of (7.4). r

Remark 7.5. Proposition 7.3 and Corollary 7.4 show that, if a A ð1=2; 1�,
b A ð1=2; a�, then the operators ½ð�AÞy��e tA, considered from X to Dðð�AÞgÞ,
<e g A ð1� b; bÞ, behave like when they are considered as operators from X to

the interpolation spaces ðX ;DðAÞÞg;p, g A ð0; 1Þ, p A ½1;y�. Indeed (cf. [8, for-

mulae (19) and (21)]), for every 0 < s < t the following estimate hold with

c27 ¼ c27ða; b; g; y; pÞ > 0 and c28 ¼ s�1c27:

k½ð�AÞy��e tAkLðX ; ðX ;DðAÞÞg; pÞ a c27t
ðb�g�<e y�1Þ=a; ð7:6Þ

k½ð�AÞy��e tA � ½ð�AÞy��esAkLðX ; ðX ;DðAÞÞg; pÞ a c28s
ðaþb�g�<e y�2�asÞ=aðt� sÞs: ð7:7Þ
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We stress that (7.6) is derived in [8] by means of interpolation techniques that can

not be employed for the derivation of (7.3). For, due to (3.11) and Proposition

3.3, the domains Dðð�AÞgÞ, <e g A ð1� b; bÞ, are in general only intermediate

spaces between X and DðAÞ, but may be not real interpolation spaces. Here, the

key role in the derivation of (7.3) is played by Lemma 7.1 and the property of

½ð�AÞg�� to be a section of ð�AÞgj
X

<e g; 1
A

.

Due to Proposition 7.3, Corollary 7.4 and Remark 7.5 we can extend the

results in [8, Section 4], replacing there the interpolation spaces ðX ;DðAÞÞg;p,
g A ð0; 1Þ, p A ½1;y� with the domains Dðð�AÞgÞ, <e g A ð1� b; bÞ, of the frac-

tional powers ð�AÞg of �A. We warn that this is not a trivial extension, for, in

general, the space ðX ;DðAÞÞ<e g;p and Dðð�AÞgÞ are not comparable. At the best

(cf. (1.2) and (4.2)), when A is single-valued and b ¼ 1, it is only known that for

<e g A ð0; 1Þ the spaces ðX ;DðAÞÞ<e g;p, p A ð1;yÞ, and Dðð�AÞgÞ are interme-

diate spaces between ðX ;DðAÞÞ<e g;y and ðX ;DðAÞÞ<e g;1.
From now on, given a complex Banach space ðZ; k � kZÞ, Cð½0;T �;ZÞ ¼

C0ð½0;T �;ZÞ and C dð½0;T �;ZÞ, d A ð0; 1Þ, T > 0, denote, respectively, the spaces

of all continuous and d-Hölder continuous functions from ½0;T � into Z endowed

with the usual norms

kgkC dð½0;T �;ZÞ ¼ kgkd;T ;Z ¼
supt A ½0;T �kgðtÞkZ; if d ¼ 0;

kgk0;T ;Z þ jgjd;T ;Z; if d A ð0; 1Þ;

�

where jgjd;T ;Z ¼ sup0as<taTðt� sÞ�dkgðtÞ � gðsÞkZ. Moreover, we set

C1þdð½0;T �;ZÞ ¼ fg A Cð½0;T �;ZÞ : Dtg A C dð½0;T �;ZÞg, d A ½0; 1Þ, and kgk1þd;T ;Z

¼ kgk0;T ;Z þ kDtgkd;T ;Z. Through the rest of the paper, given a A ð0; 1�, b A ð0; a�,
g A C and s A ð0; 1Þ, cjðTÞ, j ¼ 29; . . . , denote positive nondecreasing functions of

T depending on a, b, g and s.

Lemma 7.6. Let 2aþ 2b > 3. Then, for every <e g A ð1� b; 2aþ b � 2Þ and

s A ð0; ð2aþ b � <e g� 2Þ=aÞ the linear operator

½Q1g�ðtÞ :¼
ð t
0

eðt�xÞAgðxÞ dx; t A ½0;T �; ð7:8Þ

maps Cð½0;T �;XÞ into C sð½0;T �;Dðð�AÞgÞÞ and satisfies the estimate:

kQ1gks;T ;Dðð�AÞ gÞ aT ð2aþb�<e g�2�asÞ=ac29ðTÞkgk0;T ;X : ð7:9Þ

Proof. Due to Proposition 7.3 and Corollary 7.4 the proof is the same as

that of [8, Lemma 4.1]. To this purpose it su‰ces to replace in that proof
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g A ð0; 2aþ b � 2Þ, 2aþ b > 2, and ðX ;DðAÞÞg;p with <e g A ð1� b; 2aþ b � 2Þ,
2aþ 2b > 3, and Dðð�AÞgÞ, respectively, and to use estimates (7.3) and (7.4) with

y ¼ 0 in place of (7.6) and (7.7) with y ¼ 0. c29ðTÞ is given by [8, formula (27)],

replacing there g and c1 ¼ c27 with <e g and c25. r

Lemma 7.7. Let aþ 2b > 2 and let x A Dðð�AÞjÞ, <e j A ð3� a� 2b; 1�.
Then, for every <e g A ð1� b; aþ b þ <e j� 2Þ and s A ð0; ðaþ b � <e gþ
<e j� 2Þ=a� it holds that e�Ax A C sð½0;T �;Dðð�AÞgÞÞ with

ke�Axks;T ;Dðð�AÞ gÞ a c30ðTÞkxkDðð�AÞjÞ: ð7:10Þ

Proof. Let x A Dðð�AÞjÞ, <e j A ð3� a� 2b; 1�J ð2ð1� bÞ; 1�, and let y A

ð�AÞjx be arbitrary. Then, since x ¼ ð�AÞ�j
y and (cf. [12, Theorem 3.3]) e tA is

strongly continuous on Dðð�AÞjÞ in the norm of X , using (3.21) we find

e tAx� x ¼ �
ð t
0

½ð�AÞ1��exAð�AÞ�j
y dx ¼ �

ð t
0

½ð�AÞ1�j��exAy dx:

Thus, when <e g A ð1� b; aþ b þ <e j� 2ÞJ ð1� b; b þ <e j� 1ÞJ ð1� b; bÞ,
estimate (7.3) with y ¼ 1� j yields

ke tAx� xkDðð�AÞ gÞ a c25

ð t
0

xðb�<e gþ<e j�2Þ=akykX dxa %�1c25kykX t%; ð7:11Þ

where % ¼ ðaþ b � <e gþ <e j� 2Þ=a > 0. Passing to the infimum with respect

to y A ð�AÞjx, from (7.11) it follows that:

ke tAx� xkDðð�AÞ gÞ a %�1c25kxkDðð�AÞjÞt
%: ð7:12Þ

Now, from (3.12) with ðy1; y2Þ ¼ ðj; gÞ we have Dðð�AÞjÞ ,! Dðð�AÞgÞ, so that,

for every t A ½0;T �, from (7.12) we get

ke tAxkDðð�AÞ gÞ a ke tAx� xkDðð�AÞ gÞ þ kxkDðð�AÞ gÞ a ~cc30ðtÞkxkDðð�AÞjÞ; ð7:13Þ

where ~cc30ðtÞ ¼ %�1c25t
% þ kð�AÞ�ðj�gÞkLðXÞ. Now, let s A ð0; %� and3 0 < s <

taT . Then, reasoning as in the derivation of (7.11), for every y A ð�AÞjx we

obtain

ke tAx� esAxkDðð�AÞ gÞ a

ð t
s

k½ð�AÞ1�j��exAykDðð�AÞ gÞ dxa %�1c25kykX ðt� sÞ%:

3Since � 2 ð0; %� and e0A ¼ I , the case s ¼ 0 follows from (7.12).
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Therefore, as in (7.12), from the latter inequality it follows that

ke tAx� esAxkDðð�AÞ gÞ a %�1c25T
%�skxkDðð�AÞjÞðt� sÞs: ð7:14Þ

From (7.13) and (7.14) we deduce (7.10) with c30ðTÞ ¼ ~cc30ðTÞ þ %�1c25T
%�s.

r

Remark 7.8. A result similar to Lemma 7.7 is shown in [8, Lemma 4.3], but

with x A Dðð�AÞjÞ, <e j A ð3� a� 2b; 1�, <e g A ð1� b; aþ b þ <e j� 2Þ and

Dðð�AÞgÞ being replaced, respectively, by x A Dðð�AÞjÞVX
j;1
A , j A ð2� a� b; bÞ,

g A ð0; aþ b þ j� 2Þ and ðX ;DðAÞÞg;p, p A ½1;y�. In fact, at the time of [8],

inclusion (6.24) and embedding (6.36) were not known. Now, with the result

of this paper we can conclude that the intersection Dðð�AÞjÞVX
j;1
A , j A

ð2� a� b; bÞ, in [8, Lemma 4.3] reduces to X
j;1
A . Consequently, all the results in

[8, Sections 5 and 6] can be restated replacing that intersection with X
j;1
A .

Remark 7.9. Since from Proposition 3.3 we have DðAÞ ,! Dðð�AÞjÞ,
<e j A ð1� b; bÞ, if we want to ensure that the element x in Lemma 7.7 may not

belong to DðAÞ, i.e. that is less regular, we have to take <e j A ð3� a� 2b; bÞ.
Of course, this can be made, but provided that the more restrictive assumption

aþ 3b > 3 is satisfied. When we shall consider applications in Section 8 it will be

clearer the importance of being permitted to take x in a space bigger than DðAÞ
(cf. Theorems 8.1 and 8.2 with x ¼ u0 and x ¼ g0).

Lemma 7.10. Let 2aþ 2b > 3. Then, for every m A ðð3� a� 2bÞ=a; 1Þ,
<e g A ð1� b; amþ aþ b � 2Þ and s A ð0; ðamþ aþ b �<e g� 2Þ=aÞ, the linear

operator

½Q2 f �ðtÞ :¼ e tA½ f ðtÞ � f ð0Þ�; t A ½0;T �; ð7:15Þ

maps C mð½0;T �;XÞ into C sð½0;T �;Dðð�AÞgÞÞ and satisfies the estimate:

kQ2 f ks;T ;Dðð�AÞ gÞ aT ðamþaþb�<e g�2�asÞ=ac31ðTÞj f jm;T ;X : ð7:16Þ

Proof. Due to Proposition 7.3 and Corollary 7.4 the proof is the same

as that of [8, Lemma 4.4], except for replacing there m A ðð2� a� bÞ=a; 1Þ,
2aþ b > 2, g A ð0; amþ aþ b � 2Þ and ðX ;DðAÞÞg;p with m A ðð3� a� 2bÞ=a; 1Þ,
2aþ 2b > 3, <e g A ð1� b; amþ aþ b � 2Þ and Dðð�AÞgÞ, respectively, and for

using (7.3) and (7.4) with y ¼ 0 in place of (7.6) and (7.7) with y ¼ 0. c31ðTÞ is

given by [8, formula (44)] with c1 being replaced by c25. r
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Lemma 7.11. Let 3aþ 2b > 4. Then, for every m A ðð4� 2a� 2bÞ=a; 1Þ,
<e g A ð1� b; amþ 2aþ b � 3Þ and s A ð0; ðamþ 2aþ b � <e g� 3Þ=aÞ, the linear

operator

½Q3 f �ðtÞ :¼ �
ð t
0

½ð�AÞ1��eðt�xÞA½ f ðxÞ � f ðtÞ� dx; t A ½0;T �; ð7:17Þ

maps C mð½0;T �;XÞ into C sð½0;T �;Dðð�AÞgÞÞ and satisfies the estimate:

kQ3 f ks;T ;Dðð�AÞ gÞ aT ðamþ2aþb�<e g�3�asÞ=ac32ðTÞj f jm;T ;X : ð7:18Þ

Proof. Due to Proposition 7.3 and Corollary 7.4 the proof is the same as

that of [8, Lemma 4.5] where the notation �A�eðt�xÞA is used for ½ð�AÞ1��eðt�xÞA.

To this purpose it su‰ces to repeat the computations of that proof, except for

replacing there m A ðð3� 2a� bÞ=a; 1Þ, 3aþ b > 3, g A ð0; amþ 2aþ b � 3Þ and

ðX ;DðAÞÞg;p with m A ðð4� 2a� 2bÞ=a; 1Þ, 3aþ 2b > 4, <e g A ð1� b; amþ 2aþ
b � 3Þ and Dðð�AÞgÞ, respectively, and for using (7.3) and (7.4) with y ¼ 1 in

place of (7.6) and (7.7) with y ¼ 1. Here c32ðTÞ is given by [8, formula (53)], with

g and c1 being replaced with <e g and c25. r

As we have seen in the proofs of Lemmas 7.6, 7.10 and 7.11, to extend

[8, Lemmas 4.1, 4.4 and 4.5] to the case in which the space C sð½0;T �;Dðð�AÞgÞÞ
is considered in place of C sð½0;T �; ðX ;DðAÞÞg;pÞ we have to assume stronger

assumptions on the pair ða; bÞ and to restrict the admissible subinterval of ð0; 1Þ
in which m may varies. This is due to the fact that now we have to use estimates

(7.3) and (7.4) which requires <e g A ð1� b; bÞ, instead of (7.6) and (7.7) where

g may vary in the whole ð0; 1Þ. In particular, since in all the Lemmas 7.6,

7.10 and 7.11 the right extreme points of the admissible intervals for <e g are

less or equal than b, it is just the condition <e g > 1� b which forces us to

strengthen the assumptions on the triplet ða; b; mÞ in the corresponding results

of [8].

8. Applications

Let A be a m. l. operator in X having domain DðAÞ and satisfying ðH1Þ. We

shall use the results of Section 6 to provide maximal time regularity with respect

to the domains of the fractional powers of �A for the strict solution u to the

multivalued evolution problem

DtuðtÞ A AuðtÞ þ f ðtÞ; t A ð0;T �; uð0Þ ¼ u0; ð8:1Þ
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where f A Cð½0;T �;XÞ and u0 A X are given. We recall that, according to [12,

p. 53], a strict solution to (8.1) is a function u A C 1ðð0;T �;XÞ such that uðtÞ A DðAÞ
for every t A ð0;T � and u satisfies (8.1) where the initial condition is understood

in the sense of the seminorm pAð�Þ ¼ kA�1 � kX , that is limt!0þ pAðuðtÞ � u0Þ ¼ 0.

The strict solution is said to be a classical solution if u A Cð½0;T �;XÞ, that is

limt!0þkuðtÞ � u0kX ¼ 0.

Theorem 8.1. Let 2aþ 2b > 3, let u0 A Dðð�AÞjÞ, <e j A ð3� a� 2b; aÞ,
and let f A C mð½0;T �;X Þ, m A ðð2� a� bÞ=a; 1Þ. Then, for every <e g A ð1� b;

aþ b þ <e j� 2Þ and s A ð0; ðaþ b �<e gþ <e j� 2Þ=a� problem ð8:1Þ has a

unique classical solution u A C sð½0;T �;Dðð�AÞgÞÞ. Moreover, the following esti-

mate holds

kuks;T ;Dðð�AÞ gÞ a c30ðTÞku0kDðð�AÞjÞ þ T ð2aþb�<e g�2�asÞ=ac29ðTÞk f k0;T ;X : ð8:2Þ

Proof. First, since 2aþ b > 3� bb 2, our choice for m makes sense.

Now, when f A C mð½0;T �;X Þ, m A ðð2� a� bÞ=a; 1Þ, and u0 A Dðð�AÞjÞ, <e j A

ð3� a� 2b; aÞJ ð1� b; 1Þ, from [12, Theorem 3.7 and Remark p. 54] it follows

that problem (8.1) admits a unique classical solution. In particular, the following

representation holds:

uðtÞ ¼ e tAu0 þ ½Q1 f �ðtÞ; t A ½0;T �; ð8:3Þ

Q1 being defined by (7.8). Now, observe that <e j < a implies

<e g A ð1� b; aþ b þ<e j� 2ÞW ð1� b; 2aþ b � 2Þ;

s A ð0; ðaþ b � <e gþ <e j� 2Þ=a�W ð0; ð2aþ b � <e g� 2Þ=aÞ;

so that we are in position to apply both Lemmas 7.6 and 7.7. Hence Q1 f and

e�Au0 belong to C sð½0;T �;Dðð�AÞgÞÞ and the same belonging is true for u by

virtue of (8.3). Estimate (8.2) finally follows from (7.9), (7.10) and (8.3). r

We now come to the main maximal regularity result of the section.

Theorem 8.2. Let 3aþ 2b > 4 and let f A C mð½0;T �;X Þ, m A ðð4� 2a

� 2bÞ=a; 1Þ. Further, let u0 A DðAÞ and assume there exists u1 A Au0 such that

u1 þ f ð0Þ ¼: g0 A Dðð�AÞjÞ, <e j A ð3� a� 2b; amþ a� 1Þ. Then, for every

<e g A ð1� b; aþ b þ <e j� 2Þ and s A ð0; ðaþ b � <e gþ <e j� 2Þ=a� problem
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ð8:1Þ has a unique classical solution u A C1þsð½0;T �;Dðð�AÞgÞÞ. Moreover, the

following estimate holds

kDtuks;T ;Dðð�AÞ gÞ a c30ðTÞkg0kDðð�AÞjÞ

þ T ðamþ2aþb�<e g�3�asÞ=ac33ðTÞj f jm;T ;X ; ð8:4Þ

where c33ðTÞ ¼ T ð1�aÞ=ac31ðTÞ þ c32ðTÞ.

Proof. Let us denote with Ia;b, Ia;b;m, Ia;b;j and Ia;b; g;j the intervals

ðð4� 2a� 2bÞ=a; 1Þ, ð3� a� 2b; amþ a� 1Þ, ð1� b; aþ b þ <e j� 2Þ and

ð0; ðaþ b � <e gþ <e j� 2Þ=a�, respectively. Then, since m A Ia;b J ðð2� a

� bÞ=a; 1Þ and u0 A DðAÞ ,! Dðð�AÞjÞ, <e j A Ia;b;m W ð3� a� 2b; aÞ, Theorem

8.1 applies and for every <e g A Ia;b;j and s A Ia;b; g;j problem (8.1) has a unique

classical solution u A C sð½0;T �;Dðð�AÞgÞÞ satisfying (8.2). Moreover, di¤erenti-

ating (8.3) with respect to t and using g0 A Dðð�AÞjÞ, it turns out that the

derivative of the solution is given by (cf. [12, Remark p. 55])

DtuðtÞ ¼ e tAg0 þ ½Q2 f �ðtÞ þ ½Q3 f �ðtÞ; t A ð0;T �; ð8:5Þ

Q2 and Q3 being defined by (7.15) and (7.17), respectively. Now, <e j A Ia;b;m

implies

Ia;b;j W ð1� b; amþ 2aþ b � 3ÞJ ð1� b; amþ aþ b � 2Þ;

Ia;b; g;j W ð0; ðamþ 2aþ b �<e g� 3Þ=aÞJ ð0; ðamþ aþ b � <e g� 2Þ=aÞ;

and the assumptions in all of Lemmas 7.7, 7.10 and 7.11 are satisfied when

<e g A Ia;b;j and s A Ia;b; g;j. It then follows that for every <e g A Ia;b;j and

s A Ia;b; g;j, e�Ag0 and Qj f , j ¼ 2; 3, belong to C sð½0;T �;Dðð�AÞgÞÞ. Of course,

due to (8.5), the same belonging holds for Dtu. In particular, by setting Dtuð0Þ ¼
g0 A Au0 þ f ð0Þ, we have limt!0þkDtuðtÞ �Dtuð0ÞkDðð�AÞ gÞ ¼ 0 and the equation

in (8.1) is satisfied even at t ¼ 0. Finally, estimates (7.10), (7.16) and (7.18) yield

(8.4), and the proof is complete. r

Remark 8.3. Notice that 3aþ 2b > 4 and ba a yield b A ð2� ð3aÞ=2; a�, so
that a A ð4=5; 1�. In particular, if a ¼ 1, then b A ð1=2; 1�, m A ð2ð1� bÞ; 1Þ, <e j A

ð2ð1� bÞ; mÞ, <e g A ð1� b; b þ <e j� 1Þ and s A ð0; b � <e gþ <e j� 1�. Hence,

in the optimal case ða; bÞ ¼ ð1; 1Þ, we have m A ð0; 1Þ, <e j A ð0; mÞ, <e g A ð0;<e jÞ,
s A ð0;�<e gþ <e j�.
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Remark 8.4. The peculiar feature of both Theorems 8.1 and 8.2 is that they

exhibit a sort prevalence for the space regularity. We mean, the larger is the real

part of the parameter g in the domain Dðð�AÞgÞ where we look for the space

regularity, the smaller is the corresponding interval where the Hölder exponent s

of regularity in time may vary.

Theorem 8.2 enable us to treat questions of maximal regularity for the

problem

DtðMvðtÞÞ ¼ LvðtÞ þ f ðtÞ; t A ð0;T �; Mvð0Þ ¼ u0; ð8:6Þ

where M and L are two single-valued closed linear operators from X to itself

whose domains satisfy DðLÞJDðMÞ. We allow M to have no bounded

inverse, so that, in general, M�1 is the m. l. operator in X defined by M�1y ¼
fx A DðMÞ : y ¼ Mxg, y A DðM�1Þ ¼ RðMÞ. As a consequence, problem (8.6)

may have a degeneration in the time derivative and for this reason is called

degenerate. Clearly, if M ¼ I , then problem (8.6) is non-degenerate and for this

particular case the question of maximal regularity is nowadays well-known (see

[27] and the references therein).

We recall that the M-modified resolvent set rMðLÞ of L is the set of all

z A C such that RðzM � LÞ ¼ X and ðzM � LÞ�1 A LðX Þ. It is shown in [12,

Theorem 1.14] that

rMðLÞJ rðLM�1Þ and MðzM � LÞ�1 ¼ ðzI � LM�1Þ�1; z A rMðLÞ: ð8:7Þ

With the notion of M-modified resolvent set of L at hand, we assume:

(H2) rMðLÞ contains a region Sa ¼ fz A C : <e zb�cðj=m zj þ 1Þa;
=m z A Rg, a A ð0; 1�, c > 0, and for some b A ð0; a� and C > 0 it holds

that:

kMðlM � LÞ�1kLðXÞ aCðjlj þ 1Þ�b; El A Sa:

Let A be the (possibly) m. l. operator LM�1. Then (cf. (2.1) with ðA1;A2Þ ¼
ðL;M�1Þ)

DðAÞ ¼ fu A DðM�1Þ : DðLÞVM�1u0qg
¼ fu A RðMÞ : there exists v A DðLÞ such that v A M�1ug
¼ fu A RðMÞ : u ¼ Mv for some v A DðLÞg ¼ MðDðLÞÞ;

Au ¼ 6
v ADðLÞVM�1u

Lv ¼ fLv : v A DðLÞ such that u ¼ Mvg; u A DðAÞ:

8>>><
>>>:

ð8:8Þ

Of course, due to (8.7), assumption (H2) implies that A fulfills assumption (H1)

and hence that it generates a semigroup fe tAgtb0 defined by (2.10) and satisfying

(2.12), (3.20), (3.22) and (3.23). The m. l. operator A naturally appears when we
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rewrite (8.6) into an equivalent non-degenerate form. In fact, changing the

unknown function to u ¼ Mv, problem (8.6) turns out to be completely equivalent

to the multivalued evolution problem (8.1) with A defined by (8.8). By virtue of

this equivalence between, we then say that a function v A Cðð0;T �;DðLÞÞ is a

strict (respectively, classical ) solution to (8.6) if u ¼ Mv is a strict (respectively,

classical) solution to (8.1) with A ¼ LM�1.

To our knowledge, under assumption (H2), the first results of time regularity

for the strict solutions to (8.6) are [10, Theorem 9] and [12, Theorem 3.26]. In

particular, the quoted results show that, unless b ¼ 1, the time regularity of DtMv

decreases with respect to that of f . Precisely, if f A C mð½0;T �;XÞ, m A ðð2� a� bÞ=
a; 1Þ, 2aþ b > 2, and u0 ¼ Mv0, where v0 A DðLÞ satisfies Lv0 þ f ð0Þ A X

g;y
A ,

g ¼ a2mþ ð2� a� bÞð1� aÞ, then DtMv A C nð½0;T �;XÞ, n ¼ amþ aþ b � 2.

Concerning space regularity, instead, the first result is that given in

[10, Theorem 5], but only for b ¼ 1 in (H2). In this case T ¼ A�1j
RðA�1Þ ¼

ðML�1Þj
DðAÞ has an inverse T�1 which is the generator of an analytic semi-

group in DðAÞ. Let P the projection operator onto NðA�1Þ ¼ A0 and assume

f A Cð½0;T �;XÞ and ðI � PÞLv0 A X
g;y

T�1 , where g A ð0; 1Þ and u0 ¼ Mv0, v0 A

DðLÞ. Then in [10, Theorem 5] it is shown that DtMv is bounded from ½0;T �
to X

g;y

T�1 provided that ðI � PÞ f is.

Recently, the results in [10] and [12] have been improved in [8, Theorem 5.3].

There, under assumption (H2) and without invoking any projection operator, an

optimal ‘‘cross’’ regularity results is established, in which regularity in both time

and space is provided for Mv and DtMv. Precisely, let b A ð1� a=2; 2a� 1�,
a A ð4=5; 1�, and let f A C mð½0;T �;XÞ, m A ðð3� 2a� bÞ=a; ð1þ b � aÞ=aÞ. Assume

u0 ¼ Mv0 A DðAÞ, where v0 A DðLÞ is such that Lv0 þ f ð0Þ A X
j;1
A , j A ð2� a� b;

amþ a� 1Þ. Then, for every g A ð0; aþ b þ j� 2Þ, s A ð0; ðaþ b � gþ j� 2Þ=a�
and p A ½1;y�, problem ð8:6Þ has a unique classical solution v such that Mv A

C1þsð½0;T �; ðX ;DðAÞÞg;pÞ.
Since X

j;1
A J f0gU ½Dðð�AÞjÞnA0� for j A ð1� b; bÞ, [8, Theorem 5.3] is not

applicable if Lv0 þ f ð0Þ A Dðð�AÞjÞnX j;1
A . It is in this case that Theorem 8.2

turns out to be particularly useful, allowing us to prove time and space regularity

for the solutions to (8.6) even when the data are less smooth than what is

required in [8]. The only main di¤erence is that now the space regularity is

established with respect to the domains Dðð�AÞgÞ and no more with respect to

the interpolation spaces ðX ;DðAÞÞg;p.

Theorem 8.5. Let (H2) be satisfied with 3aþ 2b > 4 and let f A C mð½0;T �;XÞ,
m A ðð4� 2a� 2bÞ=a; 1Þ. Further, A being the m. l. operator LM�1 defined by
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ð8:8Þ; let u0 ¼ Mv0 A DðAÞ where v0 A DðLÞ is such that Lv0 þ f ð0Þ ¼: g0 A

Dðð�AÞjÞ, <e j A ð3� a� 2b; amþ a� 1Þ. Then, for every <e g A ð1� b; aþ bþ
<e j� 2Þ and s A ð0; ðaþ b � <e gþ <e j� 2Þ=a� problem ð8:6Þ has a unique

classical solution v such that u ¼ Mv A C1þsð½0;T �;Dðð�AÞgÞÞ. Moreover, estimate

ð8:4Þ holds for Dtu ¼ DtMv.

Proof. It su‰ces to rewrite problem (8.6) into the equivalent non-

degenerate multivalued form (8.1) with ðu;AÞ ¼ ðMv;LM�1Þ and to apply

Theorem 8.2 with u1 ¼ Lv0 A Au0. r

We now apply Theorem 8.5 to a concrete case deeply investigated in [10]–

[12]. Let WHRn be a bounded region with a smooth boundary qW and consider

the problem:

DtðmðxÞvðt; xÞÞ ¼ Lðx;DxÞvðt; xÞ þ f ðt; xÞ; ðt; xÞ A ð0;T � �W;

vðt; xÞ ¼ 0; ðt; xÞ A ð0;T � � qW; mðxÞvð0; xÞ ¼ u0ðxÞ; x A W:

�
ð8:9Þ

Here mðxÞb 0, f ðt; xÞ and u0ðxÞ are three given functions whose regularity will

be specified later, while Lðx;DxÞ ¼
Pn

i; j¼1 Dxiðai; jðxÞDxj Þ � a0ðxÞ. The coe‰cients

ai; j and a0 of Lðx;DxÞ are assumed to satisfy the following properties:

ai; j ¼ aj; i A C1ð�WWÞ; i; j ¼ 1; . . . ; n; a0 A Cð�WWÞ; a0ðxÞb n1; Ex A �WW;

n2jxj2 a
Xn

i; j¼1
ai; jðxÞxixj a n3jxj2; Eðx; xÞ A �WW� Rn;

nk, k ¼ 1; 2; 3, being three positive constants. Of course, problem (8.9) can be

reformulated in an abstract way as a problem of type (8.6), in which M is the

multiplication operator by the function m and L is Lðx;DxÞ with Dirichlet

boundary conditions. To this purpose, we take X ¼ LqðWÞ, q A ½1;y�, endowed
with the standard norm k � kq. The operator L is then defined by

DðLÞ ¼ W 2
q ðWÞVW

�
1
qðWÞ; Lu ¼ Lðx;DxÞu; u A DðLÞ: ð8:10Þ

Here (cf. [17, Chapter 7]), Wk
q ðWÞ, k A NU f0g, q A ½1;y�, is the usual Sobolev

space endowed with the norm k � kk;q (ðW 0
q ðWÞ; k � k0;qÞ ¼ ðLqðWÞ; k � kqÞ), whereas

W
�

k
q ðWÞ denotes the completion of Cy

0 ðWÞ in Wk
q ðWÞ, Cy

0 ðWÞ being the set of all

complex-valued infinitely di¤erentiable functions defined over W with compact

support. Assume now m A LyðWÞ, so that M A LðXÞ, Mv ¼ mv, v A X . Hence

the assumption DðLÞJDðMÞ is satisfied and the m. l. operator A ¼ LM�1 is

determined by (8.8) with DðLÞ as in (8.10).
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By referring to [8] and the references therein for the proof, we now recall

that for every fixed q A ð1;yÞ, the following estimates holds (cf. [8, formula

(77)]):

kMðlM � LÞ�1kLðX Þ aCðjlj þ 1Þ�1=q; El A S1; ð8:11Þ

where S1 ¼ fz A C : <e z > �cðj=m zj þ 1Þ;=m z A Rg, c being a suitable positive

constant depending on q and kmkLyðWÞ. Therefore, (H2) is satisfied with ða; bÞ ¼
ð1; 1=qÞ and the condition b A ð1=2; 1� necessary to apply Theorem 8.5 with a ¼ 1

yields q A ð1; 2Þ. So, let q A ð1; 2Þ and denote with q 0 the conjugate exponent of

q. Recalling Remark 8.3 assume that f A C mð½0;T �;X Þ, m A ð2=q 0; 1Þ, and that

u0 ¼ mv0 A DðAÞ, where v0 A DðLÞ is such that Lv0 þ f ð0; �Þ ¼ g0 A Dðð�AÞjÞ,
<e j A ð2=q 0; mÞ. Then, from Theorem 8.5 with ða; bÞ ¼ ð1; 1=qÞ we deduce that

for every <e g A ð1=q 0;<e j� 1=q 0Þ, s A ð0;�<e gþ <e j� 1=q 0� problem (8.9)

has a unique classical solution v such that mv A C 1þsð½0;T �;Dðð�AÞgÞÞ. In ad-

dition the following estimate holds

kDtðmvÞks;T ;Dðð�AÞ gÞ a c30ðTÞkg0kDðð�AÞjÞ þ T m�<e g�s�1=q 0
c33ðTÞj f jm;T ;X :

Values of q larger than two can be obtained assuming more smoothness and

some order of vanishing for the function m on �WW. Indeed, let m A C 1ð�WWÞ be such

that the following estimate holds for some % A ð0; 1Þ and some positive con-

stant K :

j‘mðxÞj :¼
nXn

j¼1
½DxjmðxÞ�2

o1=2

aK ½mðxÞ�%; x A �WW:

Then (8.11) holds with b ¼ 1=q being replaced by (cf. [8, formula (80)]):

b ¼ ð2� %Þ�1; if q A ð2� %; 2Þ; b ¼ 2½qð2� %Þ��1; if q A ½2;yÞ:

Then, in order that the condition b A ð1=2; 1� in Theorem 8.5 with a ¼ 1 is

satisfied, it su‰ces to take q A ð2� %; 2ÞU ½2; 4=ð2� %ÞÞ.
As another application we consider the following degenerate equation in

X ¼ L2ðWÞ, where WHRn is as before:

Dtðuðt; xÞÞ ¼ DxfaðxÞuðt; xÞg þ f ðt; xÞ; ðt; xÞ A ð0;T � �W;

aðxÞuðt; xÞ ¼ 0; ðt; xÞ A ð0;T � � qW; uð0; xÞ ¼ u0ðxÞ; x A W:

�
ð8:12Þ

Here, Dx denotes the usual Laplace partial di¤erential operator in Rn, whereas

a A LyðWÞ is a nonnegative given function such that aðxÞ > 0 almost everywhere

in W. The change of unknown vðt; xÞ ¼ aðxÞuðt; xÞ yields to rewrite problem (8.12)
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in the form (8.6), in which M is the multiplication operator by the function

mðxÞ ¼ 1=aðxÞ and L : W 2
2 ðWÞVW

�
1
2ðWÞ ! L2ðWÞ is Dx with the Dirichlet bound-

ary condition. Let assume that

m ¼ 1

a
2

LrðWÞ with some rb 2 when n ¼ 1;

LrðWÞ with some r > 2 when n ¼ 2;

LrðWÞ with some rb n when nb 3:

8><
>:

Then (cf. [8, p. 270]), the following estimate holds

kMðlM � LÞ�1kLðXÞ aCðjlj þ 1Þ�½1�n=ð2rÞ�; El A S1;

so that (H2) is satisfied with ða; bÞ ¼ ð1; 1� n=ð2rÞÞ. Hence b A ð1=2; 1� implies

r > n if nb 3. Let A be the m. l. operator defined by (8.8) with DðLÞ ¼
W 2

2 ðWÞVW
�
1
2ðWÞ and let f A C mð½0;T �;X Þ, m A ðn=r; 1Þ. Assume u0 ¼ mv0 A DðAÞ

where v0 A DðLÞ is such that Lv0 þ f ð0; �Þ ¼ g0 A Dðð�AÞjÞ, <e j A ðn=r; mÞ. From
Theorem 8.5 it thus follows that for every <e g A ðn=ð2rÞ;<e j� n=ð2rÞÞ and

s A ð0;�<e gþ <e j� g� n=ð2rÞ� problem (8.12) has a unique classical solution

u ¼ mv A C1þsð½0;T �;Dðð�AÞgÞÞ. Further, the time derivative Dtu ¼ DtðmvÞ sat-

isfies estimate (8.4) with n ¼ m�<e g� s� n=ð2rÞ.
We now suggest a possible application of our results to abstract multivalued

semilinear initial value problems of the kind

DtuðtÞ A AuðtÞ þ f ðt; uðtÞÞ; t A ð0;T �; uð0Þ ¼ u0; ð8:13Þ

A being a m. l. operator satisfying (H1). It is well-known (cf. [20, Chapter 3])

that if A is single-valued and satisfies (H1) with b ¼ 1, then problem (8.13) can

be solved assuming that f A Cð½0;T � � O;XÞ is locally Hölder continuous in

t A ½0;T � and locally Lipschitz in x A O, O being an open subset of Dðð�AÞgÞ,
g A ð0; 1Þ. Under these assumptions on f it is shown in [20, Theorem 3.3.3] that

for every u0 A O there exists T1 ¼ T1ðu0Þ A ð0;T � such that problem (8.13) has

a unique solution u in ð0;T1Þ with initial value uð0Þ ¼ u0. The global existence

is then shown in [20, Theorem 3.3.5] under the additional requirement that

there exist a continuous function Y : ½0;yÞ ! ½0;yÞ such that k f ðt; xÞkX a

YðtÞð1þ kxkXg
Þ for every ðt; xÞ A ½0;T � � O. We refer also to [21], where the local

and global existence for the single-valued version of problem (8.13) is treated

under the weak assumption u0 A Dðð�AÞdÞ, d A ½0; g�, but assuming f independent

of time. The case when A is single-valued, a ¼ 1 and b A ð0; 1Þ has been recently

considered in [29] under the assumptions that f A Cð½0;T � � X ;X Þ is locally

Lipschitz in x A X and that u0 A Dðð�AÞyÞ, y A ð1� b; bÞ. It seems to us that
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embedding (6.36) with A0 ¼ f0g may be used to generalize the results in [29] to

the case a < 1. Of course, in this case the semigroup generated by A is no longer

analytic and some details in the proofs of the main results in [29] should be

opportunely modified.

Contrarily to the single-valued case, when A is really a m. l. operator a

general solvability theory for problem (8.13) is still lacking. Maybe, embedding

(6.24) and/or (6.36) could be a first step in this direction. Recall that the linear

subspace A0 is closed on X and hence Dðð�AÞyÞnA0 turns out to be an open

subset of Dðð�AÞyÞ. This suggests that the assumption f A Cð½0;T � � O;XÞ, O

being an open subset of Dðð�AÞgÞ, g A ð0; 1Þ, used to treat the single-valued case

should be replaced by f A Cð½0;T � � ðf0gUOÞ;X Þ, where O ¼ Dðð�AÞgÞnA0 is

the open subset of Dðð�AÞgÞ having the desired intermediate property for

g A ð2� a� b; bÞ. Even if this were the case, another di‰culty is that the usual

procedure for uniquely solving problem (8.13) through a contraction argument

does not work when A is really a m. l. operator. Indeed, in this case we have to

employ a fixed-point theorem for m. l. operators, and fixed-point theorems for

m. l. operators generally provide existence but not uniqueness.

We conclude the section spending some words on the possible applications of

our results to multivalued non autonomous linear initial value problems of the

type

DtwðtÞ A AðtÞwðtÞ þ f ðtÞ; t A ð0;T �; wð0Þ ¼ u0; ð8:14Þ

where AðtÞ satisfies condition ðH1Þt for every t A ½0;T �, ðH1Þt being ðH1Þ with the

pair ðrðAÞ;AÞ replaced by ðrðAðtÞÞ;AðtÞÞ. The case when AðtÞ is single-valued for

every t A ½0;T � and b ¼ 1 in (H1)t has been studied by many authors. See, for

instance, the papers [2], [3], [33] and [39], and the books [27, Chapter 6] and

[34, Chapter 6]. Essentially, there are two di¤erent approach for solving problem

(8.14) in the single-valued case with b ¼ 1, according that the operators AðtÞ have
or not constant domains. The case of constant domains DðAðtÞÞ1D is con-

sidered in [27], [33] and [34] where, under the additional assumption that the map

t ! AðtÞ belongs to C sð½0;T �;LðD;XÞÞ for some s A ð0; 1Þ, it is shown that there

exists an evolution operator for problem (8.14). In the case of variable domains

several types of assumptions can be made to solve problem (8.14), but they can

be roughly divided in two groups. The first group of assumptions concerns the

case where the map t ! ðzI � AðtÞÞ�1 is very regular for every z A rðAðtÞÞ (cf.

[39]). The second group refers instead to the case where, although the dense

domains DðAðtÞÞ may vary, one between the intermediate spaces Dðð�AðtÞÞgÞ
and ðX ;DðAðtÞÞÞg;y is constant for some g A ð0; 1Þ (cf. [2] and [3]). As far as the
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single-valued case with a ¼ 1 and b A ð0; 1Þ in ðH1Þt it is concerned, this has been
treated in [36] and [37], but only in the concrete situation X ¼ C gð�WWÞ, where

g A ð0; 1Þ and WHRn is a bounded domain having smooth boundary. In that

papers the operators AðtÞ are elliptic operators of order 2l, l A N, having constant

domains C2lþgð�WWÞ, and the estimate kðlI � AðtÞÞ�1kLðXÞ aCð1þ jljÞ�b, l A S1, it

is shown to hold with b ¼ 1� g=ð2lÞ.
Since the intermediate property of the domains of the fractional powers of

�AðtÞ plays a key role in the approach followed in [2], it is our opinion that

embedding (6.36) can be used to extend the results in that paper to single-valued

linear operators AðtÞ which satisfies ðH1Þt with ða; bÞ0 ð1; 1Þ and whose domains

are neither constant nor dense in X . At moment, the main di‰cult in carrying

out this program is to find how to modify the proofs of [2], in order to avoid

there the use of identity (4.27).

If the operators AðtÞ are really m. l. operators which satisfies ðH1Þt and

whose not necessarily dense domains are allowed to vary, then problem (8.14) can

be solved provided that three additional types of assumptions are made on the

operators AðtÞ and on the exponent pair ða; bÞ (cf. assumptions ðA:jÞ, ðEx:jÞ,
j ¼ i; ii; iii, in [12, Chapter 4]). Also, the first of these assumptions is precisely the

multivalued version of that used in [39] to solve problem (8.14) in the single-

valued case with b ¼ 1. Hence, in a multivalued sense, the assumptions in [12]

belong to the first of the two groups mentioned before. It is an open question if

embedding (6.36) can be used to solve (8.14), adapting to the multivalued case the

approach followed in [2] in the single-valued case with b ¼ 1. In other words,

we query if, due to (6.36), the second group of assumptions used to solve (8.14)

in the single-valued case with b ¼ 1, can be used even for solving (8.14) in the

multivalued case with ða; bÞ0 ð1; 1Þ.

9. The m. l. Operators ð�AÞGy for <e y A ½0; 1� b�

We provide here a possible definition for the fractional powers ð�AÞGy,

<e y A ½0; 1� b�, of a m. l. operator A satisfying assumption (H1). Our approach

will furnish not only the positive fractional powers ð�AÞy, <e y A ð0; 1� b�, but
also the non positive fractional powers ð�AÞ�y, y0 0, <e y A ½0; 1� b�, as a class

of m. l. operators.

In order to motivate our next assumption (H3), we still recall the statement

of [24, Proposition 2.9]: let A be a single-valued densely defined linear operator

satisfying (H1) with b ¼ 1. If there exists z1 A C such that <e z1 A ð0; 1Þ and

Dðð�AÞz1Þ coincides, in the sense of equivalence of the norms, with X
<e z1;p
A for

319Fractional powers and interpolation theory



some p A ½1;y�, then Dðð�AÞz2Þ ¼ X
<e z2;p
A for every z2 A C such that <e z2 A

ð0; 1Þ. In particular, Dðð�AÞz1Þ ¼ Dðð�AÞz2Þ if <e z1 ¼ <e z2. In [24] this as-

sertion is proved not only for <e zk A ð0; 1Þ, but for all <e zk > 0, k ¼ 1; 2,

provided to replace X
<e zk ;p
A with D<e zk

p , where the spaces Dg
p, g > 0, p A ½1;y�,

are defined in [24, Definition 1.1] and coincide with X
g;p
A for g A ð0; 1Þ.

Let now A be a m. l. operator satisfying (H1) with a A ð1=2; 1� and

b A ð1=2; a�. We make the following further assumption on A:

(H3) for every z A C such that <e z A ½b; 1� it holds that Rðð�AÞ�zÞ ¼ DðAÞ.

Notice that (H3) is meaningful, since b A ð1=2; a� implies 1� b < b and the

fractional powers ð�AÞ�z are well defined for <e z A ½b; 1�. From (H3) we get

Dðð�AÞzÞ ¼ DðAÞ for every <e z A ½b; 1�. Hence, if z1; z2 A C are such that

<e z1 ¼ <e z2 A ½b; 1�, then Dðð�AÞz1Þ ¼ Dðð�AÞz2Þ. In this sense, (H3) is inspired

by [24, Proposition 2.9].

With assumption (H3) at hand, we can now proceed in our definition of the

fractional powers ð�AÞGy, <e y A ½0; 1� b� as follows. We set

ð�AÞ�y :¼ I ; if y ¼ 0;

ð�AÞ1�yð�AÞ�1; if y0 0; <e y A ½0; 1� b�;

�
ð9:1Þ

ð�AÞy :¼ ðð�AÞ�yÞ�1; <e y A ð0; 1� b�; ð�AÞ�y defined by ð9:1Þ: ð9:2Þ

Definition (9.1) is meaningful, for the m. l. operators ð�AÞ1�y and ð�AÞ1�yð�AÞ�1

on the right-hand side are both well defined. Indeed, since when <e y A ½0; 1� b�
we have <eð1� yÞ A ½b; 1�, the fractional power ð�AÞ1�y is defined as usual

through (3.6) as the inverse of ð�AÞ�ð1�yÞ. Moreover, by virtue of (H3), it

has domain Dðð�AÞ1�yÞ ¼ Rðð�AÞ�ð1�yÞÞ ¼ DðAÞ, and hence the composition

ð�AÞ1�yð�AÞ�1 is well defined, too. According to the second in (2.1) and since

A�1 A LðXÞ, from (9.1) and (9.2) we get

ð�AÞ�y
x ¼ fð�AÞ1�y

y : y ¼ ð�AÞ�1
xg; x A X ; y0 0; <e y A ½0; 1� b�;

ð�AÞyx ¼ fy A X : x A ð�AÞ�y
yg; x A Rðð�AÞ�yÞ; <e y A ð0; 1� b�:

(
ð9:3Þ

Therefore, the operators ð�AÞGy, y0 0, <e y A ½0; 1� b�, are a family of m. l.

operators. In particular, from (9.1) and the first of (9.3) with y ¼ �it, we obtain

that the purely imaginary powers ð�AÞ it of �A are the m. l. operators defined as

follows

ð�AÞ it ¼ ð�AÞ1þitð�AÞ�1; Dðð�AÞ itÞ ¼ X ; Et A Rnf0g;
ð�AÞ itx ¼ fð�AÞ1þit

y : y ¼ ð�AÞ�1
xg; x A X ; t A Rnf0g:

(
ð9:4Þ
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Remark 9.1. Let A be a single-valued linear operator having dense domain

and satisfying (H1) with b ¼ 1. In this case (9.4) is precisely the formula used in

[24, p. 97] to show that, if the assumption of [24, Proposition 2.9] is satisfied, then

ð�AÞ it A LðXÞ for every t A R. In fact, in this case the relation Dðð�AÞ1þitÞ ¼
DðAÞ follows from the thesis of [24, Proposition 2.9] extended to all <e z > 0

as explained before, whereas the identity ð�AÞ it ¼ ð�AÞ1þitð�AÞ�1 follows from

[23, Corollary 7.4]. Of course, here ð�AÞkþit ¼ ð�AÞkþit
0 , k ¼ 0; 1, where ð�AÞz0,

z A C, is defined in Remark 3.7. Therefore, ð�AÞ it, t A R, turns out to be a closed

single-valued linear operator having domain the whole X , and hence bounded

from the closed graph theorem. Clearly, as observed in [35, p. 103], the di‰cult

part in this proof of the boundedness of ð�AÞ it is to verify that the assumption

Dðð�AÞzÞ ¼ D<e z
p of [24, Proposition 2.9] is satisfied for some <e z > 0 and some

p A ½1;y�. Due to this di‰culty, the local boundedness of ð�AÞ it it is a priori

assumed in the proof of (4.27) in [35, Theorem 1.15.3].

Remark 9.2. Observe that without assumption (H3) the composition

ð�AÞ1�yð�AÞ�1 in the second of (9.1) may become meaningless, since it is not

guaranteed that ð�AÞ1�y, y0 0, <e y A ½0; 1� b�, is defined on the range of

ð�AÞ�1, that is on DðAÞ. Indeed, from (3.8) with ðy1; y2Þ ¼ ð1; 1� yÞ we can only

ensure that the inclusion DðAÞJDðð�AÞ1�yÞ holds for <e y A ð1� b; bÞ, which is

not our case.

Now that we have given a sense to the purely imaginary powers of m. l.

operators A satisfying (H1) and (H3), future research should investigate if

definition (9.4) allows to extend to this class of operators the results mentioned

in Sections 2–4 for single-valued operator satisfying (H1) with b ¼ 1, and which

require the boundedness of ð�AÞ it, t A R. This research is out of the aims of this

paper, so that here we limit ourselves to point out two inherent di‰culties on it.

A first di‰cult is that we have no explicit representation for ð�AÞ1þit, which is

only defined as the inverse of the operator ð�AÞ�ð1þitÞ A LðX Þ defined by (3.1).

This absence of an explicit formula for ð�AÞ1þit will constitute a problem for

examining the boundedness of ð�AÞ it already in the single-valued case with

ða; bÞ0 ð1; 1Þ. The second di‰cult is that in the really multivalued case the

boundedness of ð�AÞ it has to be intended with respect to the norm of m. l.

operators. To this purpose, we recall that a m. l. operator T with domain the

whole X is said to be bounded if kTk ¼ supkxkX a 1ðinfy ATxkykX Þ < y. Hence, in

general, to prove that a m. l. operator is bounded it is not an easy task, at least

of not knowing that T has a section S A LðXÞ, in which case kTka kSkLðX Þ
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(cf. [6, Proposition II.4.1]). A su‰cient condition for the existence of a bounded

section S for a given m. l. operator T is given in [6, Proposition II.4.2]. However,

this condition is of di‰cult application and it requires to a priori know that T is

bounded, which is just what we want to prove when T ¼ ð�AÞ it.
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