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FRACTIONAL POWERS AND INTERPOLATION
THEORY FOR MULTIVALUED LINEAR OPERATORS
AND APPLICATIONS TO DEGENERATE
DIFFERENTIAL EQUATIONS

By

Alberto FAvARON and Angelo FAviNi

Abstract. We provide intermediate properties for the domains of
the fractional powers of an abstract multivalued linear operator A4 of
weak parabolic type. In particular, our results exhibit the special role
played by the linear subspace A0, which reduces to {0} if and only
if A is single-valued. The behaviour of the singular semigroup
generated by 4 with respect to the domains of the fractional powers
is then studied, and applications of this behaviour to questions of
maximal time and space regularity for abstract multivalued evolu-
tion equations are given. As a concrete case we consider a class of
degenerate partial differential evolution equations which may be
rewritten in a multivalued evolution form.

1. Introduction

The aim of this paper is to establish some intermediate properties for the
domains of the fractional powers of abstract multivalued linear operators. The
class of operators we shall deal with consists of those multivalued linear operators
A from a complex Banach space X to itself, which have a single-valued resolvent
satisfying the following estimate:

(I —A)'x||y < C(IA+ 1) 7P|x|ly, VieZ,, VxeX. (1.1)

Here, I is the identity operator, C is a positive constant, € (0, 1] and X, is the
complex region {zeC:Rez> —c(|Smz|+1)"}, ¢>0, ae[f1].
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To elucidate the motivation of our research, we make a brief digression
in the ambit of single-valued operators. To this purpose, recall that if 4 is a
single-valued densely defined linear operator satisfying (1.1) with f =1, then the
domains Z((—4)") of its fractional powers (—A)’ enjoy the following inter-
mediate property (cf. [24], [25] and [35]):

(X79(A))H%e 0,1 - ‘@((_A)H) — (Xw@(A))éRe 0,001 Re 0 e (O’ 1)’ (12)

(X,2(4)), ,, € (0,1), pe[l, 0], being real interpolation spaces between X and
the domain Z(4) of A. Relation (1.2) is decisive in a lot of abstract results whose
proofs employ interpolation theory’s techniques. For instance, it is the starting
point in the abstract theory of semilinear parabolic equations (cf. [20] and [27]).
On the contrary, if («,f) # (1,1) and/or Z(A4) is not dense, it is not known
whether embedding (1.2), or at least a similar one, continues to hold. Since
estimate (1.1) with § € (0,1) occurs in many concrete cases (cf. [29], [32], [36], [37]
and [38]), it is clear how much the question of generalizing (1.2) necessitates to be
answered, even if only for the single-valued case.

Although a single-valued approach would certainly have been easier, we have
preferred to treat the problem in the more general context of multivalued linear
operators. This choice depends on two reasons. The first is that any single-valued
linear operator A is by itself a trivial multivalued one, in which the linear
subspace 40 reduces to {0}. Consequently, the generalization of (1.2) for the
single-valued case will be obtained simply by taking 40 = {0} in the result that
we are going to describe. The second reason is that the applications we have in
mind concern degenerate differential equations of the type considered in [8]-[13],
[28] and [40]. The standard procedure for solving such equations is to rewrite
them in a non degenerate multivalued form, where the basic multivalued linear
operator A satisfies (1.1) and the case e (0,1) appears in many concrete cir-
cumstances. As shown in [12], the belonging of some data to Z((—A)") for
opportune values of 0 is in general sufficient to get existence, uniqueness and
regularity results for this kind of equations. On the other hand, when dealing
with questions of maximal regularity in both time and space, the absence of
any known intermediate property for the domains of the fractional powers of
multivalued linear operators yields to assume that the data belong to some
unnatural intersections as those in [8]; intersections which could be easily char-
acterized if we were in possess of a relation of type (1.2).

To highlight the novelty of our results we remind that, contrarily to the
single-valued case with =1 for which the theory goes back to [4], [19] and
[23]-[25], the study of fractional powers of multivalued linear operators satisfying
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(1.1) is still a quite unexplored field. To our knowledge, fractional powers of
multivalued linear operators were first introduced in [1] for the case f =1, and
subsequently in [11] and [12] for the general case. We quote also [32], but only
for the single-valued sub-case with o = 1. However, in none of these papers
intermediate properties of type (1.2) were investigated. In the monograph [6],
fractional powers are not even mentioned.

We now provide the detailed contents of this paper. Section 2 contains all
the needed preliminary material of the theory of multivalued linear operators. At
first, we introduce the basic concepts of inversion, sum, product, extensions and
sections of multivalued linear operators. For a multivalued linear operator A
from X to itself, we then pay particular attention to its resolvent set p(4) and to
the bounded section z(zI — A)™' — I of A(zI — A)™", z € p(A4). It is here that the
linear subspace A0 begins to reveal its crucial role (cf. Lemma 2.1). Finally, to
those multivalued linear operators A satisfying (1.1), we associate the corre-
sponding infinitely differentiable semigroup {e’},., on X.

In Section 3 we introduce the fractional powers (—4)*’, Re @ >1—p, of a
multivalued linear operator A satisfying (1.1). We first define the negative frac-
tional powers (—A)fl), Re 0 > 1 — f, by explicit complex integrals converging in
the #(X)-norm and we briefly recall their main properties. The positive frac-
tional powers (—4)”, Re § > 1 — f3, are then defined as the inverse of (—4)".
Therefore, since in the really multivalued case the negative fractional powers are
not injective, the positive fractional powers turn out to be a class of multivalued
linear operators. Some relations between the domains Z((—A4)") of (—A)? are
provided for different values of Re § > 1 —f, and the semigroup property is
investigated. In Remarks 3.5-3.8 we compare the single- and the multivalued
cases. In particular, we show that the method of the closed extension, used in [4]
and [23] to define (—4)’, Re 6> 0, for single-valued densely defined linear
operators satisfying (1.1) with f = 1, fails in the really multivalued case. It is for
this failure that in the multivalued case the definition of (—A4)” as multivalued
inverse of (—A)fg is the only possible, with the remarkable consequence that an
explicit formula for (—A4)” is nor at our disposal anymore. As a result of this
lack, it is not clear, not even in the case of f =1, how to define the purely
imaginary powers (—A)", 1€ R, of a really multivalued linear operator 4. We
conclude the section introducing the bounded operators [(—d4)%%e™, 1> 0,
Re 0 > 0, and the relative estimates for their (X )-norm.

For a multivalued linear operator A4 satisfying (1.1), in Section 4 we in-
troduce the Banach spaces (X, Z(4)), , and X;”, y € (0,1), p € 1, co]. The main
result of the section is Proposition 4.3, where we extend to p e [l, ] some
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embedding relations among such spaces shown in [12] only for p = co. From
Proposition 4.3 it follows that, with the exception of f=1 when (X,%(4)),,
and X)” coincide with equivalent norms, the spaces X’ are intermediate
between X and Z(A4) only for y € (0, f), whereas they may be smaller than 2(A4)
for y € [f,1). Our interest on spaces X7 for values of p other than p = oo is
motivated by the key role that spaces Xj’l play in the theory of fractional powers
of single-valued linear operators satisfying (1.1) with = 1. Of course, in this
case they coincide with the interpolation spaces (X, %(4)), ;, but their definition
makes them suitable for the construction of a closable operator having domain
Xfe %1 Re 0 e (0,1), and whose closure is just (—A4)? (cf. Remark 4.1). Even
though in the really multivalued case we can not proceed at the same way, in a
sense that we clarify soon below the basic idea still remains valid. An interesting
property of spaces Xy is that they have in common with A0 the solely zero
element of X (cf. Remark 4.2). It thus suffices to investigate only a relation of

type
Xl — {0} U[2((—4)")\0] — X7, (13)

for opportune Re 0, y; and p;, j =1,2. Clearly, if 4 is single-valued and =1,
then we should obtain y, =y, =Re 0 € (0,1) and (p1, p2) = (1, 0).

As byproduct of Proposition 4.3, in Section 5 we characterize the regularity of
{e"},5 with respect to the space Y7 € {(X,%(4)), ,, X;"}, 7€ (0,1), pel, 0]
First, in Lemma 5.1 we prove that the uniform norm |H(—A)1}°e’A||$(Y;p;X) may
blow-up as ¢ goes to zero, but not faster than #(#*7=2/%_ Then, in Proposition 5.2
we show that {e’!},_, is strongly continuous in the X-norm on the space Y?,
ye (1 —p,1). Finally, in Corollary 5.4 we derive that the map ¢ — e is Holder
continuous from [0, ) to Z(Y/;X), ye(2—a—pf,1), with Holder exponent
o= (a+pf+y—2)/o

Section 6 contains the proof of (1.3). We first introduce the Banach spaces
D40y, p), v€(0,1), pe|l, o], and in Proposition 6.3 we prove some embedding
relations among the spaces X7, (X :2(4)),, and Z,4(y, p). In particular, we
obtain {0} U [Z4(y, 0)\A40] — X *, where y € (2—a—f,1) and o is as above.
Since Z((—A4)") — P4(Re 0, 0), Re e (2—o—p,1), this yields (cf. Theorem
6.9):

{0} U[2((—A)")\A0] — xR0/ pe ge 2 —a—p1).  (1.4)

In Theorem 6.6 we focus on the embedding on the left of (1.3). In a certain sense,
we generalize to the multivalued case the idea of the method of the closed
extension. More precisely, we define a single-valued linear operator with domain
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Xfe 0’1, Re 0 e (1 —p,p), and we prove that it is a section of the restriction of
(-4)" to Xfe %1 Due to the mentioned property of the spaces X7, this leads to

xR0 {0} U [2((—4)))\A0], ReOe (1—B,B). (1.5)

Finally, provided that Refe (2 —a—f,f), in Theorem 6.10 we combine
(1.4) and (1.5) and we get (1.3) with (p1,p2) =(1l,0), yy=Red and p, =
(a+p+ReO—2)/ 0.

In Section 7 we investigate the behaviour of the bounded operators
[(—4)"1%e™, >0, Re 0 > 0, with respect to the domains Z((—A4)”), Re y > 1 — f.
In Proposition 7.3 we show that the uniform norm ||([—A]0)°e“’||$<X;g((7A>~,r))
may goes to infinity as ¢ goes to zero, but not faster than ¢(F—Rer—Re0-1)/2 Thig
enables us to characterize the time and space regularity of some basic operator
functions which appear naturally in the study of multivalued evolution equations
(cf. Lemmas 7.6, 7.7, 7.10 and 7.11).

Section 8 contains applications of our results to questions of maximal
regularity for multivalued and degenerate evolution equations. First, for a
multivalued linear operator A satisfying (1.1) we consider the problem

Du(t) € Au(t) + f(¢), te(0,T], u(0)=uo, (1.6)

and in Theorem 8.2 we show that it has a unique solution ue C'*7([0, T7;
2((—A)7), provided that ¢ and Re y are opportunely chosen and the data pair
(f,up) is regular enough. We then consider the class of degenerate evolution
equations

D,(Mv(t)) = Lo(t) + (1), te(0,T], Mv(0) = u, (1.7)

where M and L are single-valued linear operators in X such that (L) < Z(M)
and M may have no bounded inverse. Hence, M~ being generally defined only
as a multivalued linear operator, problem (1.7) is completely equivalent to (1.6)
with (u, 4) = (Mv,LM~"). Of course, 4 is wanted to satisfy (I.1), and this is
done by requiring ||M(/1M—L)71Hy(x) <C(iA+1)7" iex, It thus follows
from Theorem 8.2 that problem (1.7) has a unique solution v such that Mv e
C'™(]0, T]; 2((—A)"). Applications of this result are then given to two concrete
situations. We conclude the section suggesting possible applications of our results
to the semilinear and non autonomous versions of problem (1.6).

Finally, in Section 9, for a multivalued linear operator A4 satisfying (1.1) and
under an additional hypothesis on the ranges of (—4)™’, Re 0 e [8,1] = (1 — j, 1],
p>1/2, we provide a possible definition of the fractional powers (—A)ie,
Re 8 € [0,1 —p], as a class of multivalued linear operators. In particular, if 4 is
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single-valued, densely defined and satisfies (1.1) with f = 1, then we restore the
definition of (—A4)", reR, given in [24].

2. Basic Notions on Multivalued Linear Operators

Let X be a complex Banach space endowed with norm |-/, and let 2%
be the collection of all the subsets of X. For a number 1 € C and three subsets
F; of 2"\, i=1,2,3, AF| and F,+ F; denote the subsets of X defined by
{M: fieF} and {f+ f3: fi € F;,i = 2,3}, respectively. Then, a mapping A4
from X into 2% is called a multivalued linear operator in X, shortened to m. 1.
operator, if its domain 2(4) = {xe€ X : Ax # J} is a linear subspace of X and
A satisfies:

1) Ax+Ay c A(x+y), ¥x, ye Z(4);
i) Adx = A(4x), YA e C, Yxe Z(A).

Given Ue2* we write A(U) =/, oy 4u and the set 2(4) = A(X) =
A(2(A)) is called the range of A. If #(A4) = X, then A4 is said to be surjective.
The subset ¥(A) of X x X defined by {(x,y):xe€ Z(A4),ye Ax} is called the
graph of A. If U e2¥ is such that UN%(A) # &, then the restiriction 4|, of
A to U is the m. 1. operator having domain Z(A4|,) = UNZ(A) and such that
(A|y)x = Ax, x € D(A|y). The following properties of a m. 1. operator A are
immediate consequences of its definition (cf. [12]):

ili) Ax+ Ay = A(x+y), Vx, y € Z(4);

iv) AAx = A(Ax), VA e C\{0}, Vxe Z(A);

v) A0 is a linear subspace of X and Ax = y + A0 for any y € Ax, x € Z(A).
Thus, A4 is single-valued if and only if 40 = {0}.

The inverse 4~! of a m. 1. operator 4 is the m. 1. operator having domain
D(A7") = #(A) and such that A7y = {xe D(A): ye Ax}, ye 2(A47"). In par-
ticular, (4~")™" = 4 (cf. [12, Theorem 1.3]). The set 4710 = {x € Z(A4) : 0 € Ax}
is called the kernel of 4 and it is denoted by .4°(4). Thus, A4 (47!) = A40. If
N (A) = {0}, ie. if 47! is single-valued, then A4 is said to be injective. From v) it
thus follows that 4x = A0 if and only if x € 47(A4). Notice that, in general, from
v) it follows that Ax = Ay, x, y € D(A), if and only if AxN Ay # &, but, if 4 is
injective, Ax = Ay if and only if x = y.

If 4, and A4, are m. 1. operators in X and z e C, then the scalar multi-
plication zA;, the sum A; + A,, and the product A4, are the m. 1. operators
in X defined as follows:
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D(zA1) = 9(A41), (zA1)x =zA1x, x € D(zA,),

D(Ay1+ Ay) = 2(A1)ND(A4y), (A1 + Ar)x = A1x + Axx, x € D(A; + A>),

,@(AlAz) = {x € @(Az) : Al(Azx) #* @}, (A1A2)x = Al(Azx), X e @(AlAz).
2.1)

It is verified that ((z)d4; = {(z4)), {,z € C, and (cf. [12, Section 1.2]) (414;)"" =
A;1A47!. Moreover, denoting by I the identity operator in X, from (2.1) we see
that a m. 1. operator A4 is injective (respectively, single-valued) if and only if
A A =1\, (respectively, 44™" = 1|, ).

Defining A° and 2(A°) to be I and X, respectively, from the third relation in
(2.1) we have that the integer powers 4", ne€ N = {1,2,...}, of a m. 1. operator 4
are defined by induction in the following way:

{@(Aﬂ) ={xe A" ") : Z(A)NA"'x £ F}, 22)

A"x = (A4 Hx = Uyeéj(A)ﬂA”’lx Ay, xe (4.

Hence, an induction argument leads to (4") ' = (4" '4~1 = (41", neN.
Clearly, if A4 is single-valued, (2.2) coincides with the usual definition for
integer powers of single-valued operators, since Z(A4)N A" 'x # @ reduces to
A" ' x e 9(A).

If 4 and B are m. 1. operators in X we write 4 < B if 2(4) < Z(B) and
Ax < Bx for every x € Z(A), where “<” must be understood in the set-theoretical
meaning. If 4 = B and Ax = Bx for every x e Z(4), ie. if A= B|,), then B
is said to be an extension of A4. Clearly, A < B< A4 is equivalent to 4 = B.
Observe that 4 = B if and only if z4 < zB, ze C\{0}. Indeed, if 4 = B, then
2(zA) = 2(A) = 9(B) = 9(zB) and (z4)x = zAx < zBx = (zB)x, x € Z(zA), i.e.
zA = zB. Vice versa, if zA < zB, ze C\{0}, then from the first part it follows
that 4 = z7!'(z4) < z7'(zB) = B. If a linear single-valued operator S has domain
2(S)=2(A) and S <= A4, then S is called a section of 4. With an arbitrary
section S, it holds that Ax = Sx+ A0, x € 2(A4), and %#(A) = #(S) + A0, but
this latter sum may or may not be direct (cf. [6, p. 14]). A method for con-
structing sections is provided by [6, Proposition 1.5.2].

If (X5, |-l X ), j=1,2, are two complex Banach spaces, the linear space of
all bounded single-valued linear operators L from X; to X, is denoted by
Z(X1;X>) and it is equipped with the uniform operator norm |[|L[ 4y, y,) =
infg>o{l|Lx|y, < Kl[|x|y, for all xe X1}, L e Z(X;;Xz). For brevity, Z(Xi; X1)
= Z(X1). Then, if 4 is a m. 1. operator in X, the resolvent set p(A4) of A4 is
defined to be the set of all z e C such that Z((zI — A)"') = X and (zI —A) ' €
Z(X). The basic properties of the resolvent set of single-valued operators hold
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the same for m. 1. operators. First, if p(4) # J, then the m. 1. operator A4 is
closed, that is its graph %(A) is closed in X x X (cf. [6, p. 43]). Further (cf. [12,
Theorem 1.6]), p(A4) is an open set of C and the operator function z € p(4) —
(zI — A)"' € £(X) is holomorphic. Finally (cf. [12, Theorem 1.8]), the resolvent
equation (A —A) ' — (ul —A) " = (u— DL — A) Nl — A)7", e p(d), is
satisfied, too. Unlike the single-valued case, instead, it holds that (cf. [12, Theo-
rem 1.7]):

(Zl—A)'Aczzl—A) ' —TcAzI—A)", zepA). (2.3)

Then, in general, z(zI — 4)™"

operator A(zI — A)fl. Throughout the paper this bounded section is denoted by

—1, ze p(A), is only a bounded section of the m. 1.

A°(zl — A)_l, but here A° is only a symbol and does not necessarily denote a
section of A itself. Of course, if 0 € p(A4), then 4°(0] — A) = —I by definition
and, if 4 is single-valued, 4°(zI — A)~" reduces to A(zI — A)"'. Notice that the
first inclusion in (2.3) implies that (zI — 4) "' 4, z € p(A), is single-valued on Z(A)
and (zI — A)"Ax = (zI — A)"'y for every y € Ax, x € (A). Another difference
with the single-valued case is that for every z € p(4) it holds A ((zI — A)™") =
(zI — A)0 = A0. Therefore, in the really multivalued case, {0} < A" ((zI — 4)™")
for every z € p(4).

We recall that, if 0 € p(4), then from [11, Lemma 5.1 with T = 4~'] we have

(ZI—A) ' =a47'za ' =)' =(za' =)', vzecC, (2.4)

in the sense of m. 1. operator. As a consequence, when 0 € p(A4), we have also the
following useful characterization of 4°(zI — A4)™" (cf. [11, p. 375)):

A —A) ' =zAa = D)7, Vzep(A). (2.5)
Thus, if 0 € p(4), combining (2.4) and (2.5) we get
A A —A) ' =AzAT = D) =T = A7, Vzep(d). (26)

LEMMA 2.1. Let 0 € p(A). Then N (A°(zI — A)™") = {0} for every z € p(A).
In addition, x ¢ A0 if and only if A°(zI — A) 'x ¢ A0, z € p(A).

PROOF. Let zep(4) and assume xe A (A°(zI —A)"'). Then 0=
A°(zl — A) 'x=z(zI — 4)'x—x, so that z(zI —A) 'x=x. This implies
xe D(A), for (zI — A) 'x € Z(A4) and Z(A) is a linear subspace of X. Therefore,
zx € (zI — A)x = {zx — y : y € Ax} which leads to 0 € Ax, i.e. x € A'(A4). Since 4
is injective, we thus find x = 0, completing the proof of 4" (A4°(zI — A)~") = {0}.
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Let us now prove that x¢ A0 if and only if A°(zf — A) 'x ¢ A0, z e p(A).
Assume first x ¢ 40. If for some zep(4) it holds that A°(zI — A) 'x € A0,
then from (2.6) it follows that 0= A~'4°(zI — A) 'x = (zI — 4) 'x, ie. xe€
N ((zI —A)™") = A0, a contradiction. Vice versa, if x € A0, then A°(zI — A) 'x
= z(zl — A) 'x — x = —x € AO. O

LemmA 2.2. For every 2, we p(A) it holds that
(=) —A) A (ul — A =AM —A) T — Al — A, (27)

(= )AL — Al —A) " =AU —A) " —A°(u — A7, (2.8)

Proor. First, since A°(ul — A)"" = p(ul — A)™' — I, we have
(= 7Y = A) 4 (ud = 4)”!
— = L= Al =AY = (= DOI— A (29)
Then, applying the resolvent equation to the right-hand side of (2.9), we get
(= 2T = A)~ A (ul — 4)”
= u(Al = A) " = p(pd — A" = (= 2T — A)
— ML= A) ™ 1) — [l — 4)” 1)
This completes the proof of (2.7). To prove (2.8) it suffices to write A°(A — 4)
= A —A)" =TI and to proceed as in the proof of (2.7). O

Let 4 be a m. I. operator in X satisfying the following resolvent condition:

(H1) p(A) contains a region X, ={ze C:Rez> —¢(|Sm z| + 1)*,Sm z € R},
o e (0,1], ¢ > 0, and for some exponent f§ € (0, and constant C > 0 it
holds:

1 = A) Mgy < CUA+1)7F, VieZ,

Assumption (H1), said of abstract weak parabolicity, implies that 4 generates
an infinitely strongly differentiable semigroup of bounded linear operators on X.
Precisely, introduce the family {e},. ) = £(X) defined by ¢! =1 and

1
e :%J e (A — A dA, >0, (2.10)
r
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I =%,\{zeC:Rez>0} being the contour parametrized by 2 = —c(|y| +1)" +
in, n € (—oo, o). We shall denote by I'; the infinite branches {1 €T : +3m z > 0}
of I' such that ' =T, UT'_U{—c}. Then, according to [11, Section 3] for the
multivalued case and to [32, Theorem 5.1] for the single-valued one, {e'!},_ is a
semigroup on X, infinitely many times strongly differentiable for ¢ > 0 with
Dkt = LJ Me*(J1—A4)""di, 1>0,keN. (Dk = i) (2.11)
! 27i Jr ’ ’ todek

In general, no analiticity should be expected for e’!. For, if « <1 in (H1), then
X, does not contain any sector A, .» = {z€ C\{0}:|argz| <w+7n/2}, we
(0,7/2), and [32, Theorem 5.3], which extends e’/ to an analytic semigroup in the
sector A, containing the positive real axis, is not applicable.

We stress that (2.10) and A" ((zI — 4)™') = A0, z € p(A), imply 40 = A" (')
for every t >0, whereas A" (e"!) = A4"(I) = {0}. Hence, if A is really a m. L
operator, then e/ has definitely nonzero kernel for ¢ >0 and the following
inclusion holds:

A0 = () A (™). (2.12)

>0

From the semigroup property it also follows A (e®4) = 47 (e"4) for #; > t5 > 0.

We shall come back in Section 3 to the semigroup e/, after having intro-
duced the operators [(—A)(’}oe“1 e (X)), =0, t >0. Here, instead, we want
only to recall that under assumption (H1) we can specify a topology on Z(A4)
equipping it with the norm

1¥llga) = nfyearlylly,  x€2(4). (2.13)

Since A~! belongs to Z(X) this norm is equivalent to the graph norm and makes
2(A) a complex Banach space (cf. [12, Proposition 1.11]). From now on, X; and
X, being given normed complex linear spaces, we shall say that X; is con-
tinuously embedded in X,, and we shall write X; — X3, if X; € X, and there
exists a positive constant C; such that [|x|y, < Ci[|x||y, for every x e X;. Then,
2(A) endowed with the norm (2.13) satisfies Z(A4) — X. In fact, if x € 2(A4),
then x = A"y for every ye Ax so that [lx|ly < |47l yx)ll¥llxy < Cllyly for
every y € Ax. Taking the infimum with respect to y € Ax in the latter inequality,
we thus find |[x||y < Cl|x[|4) for every xe Z(4).

3. The Fractional Powers (—A)*’ for Re 6> 1—§

Let A4 be a m. 1. operator in X satisfying assumption (H1) for some f € (0, o,
a € (0,1]. Then, according to [12, Section 1.4] which generalizes [32, Section 6]
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to m. 1. operators, we define the fractional powers (—A)fo of —A4 by the
integrals
LJ (=001 —4)""di, 0eC,Red>1—p. (3.1)

A0 =
(=4) 27 )

Here the contour I' avoiding the origin and the positive real axis is the same
occurring in formula (2.10), and for the function (—1)~ = e 184 we choose
the principal branch holomorphic in the region C\{zeC: Rez >0}, where
for principal branch we mean that the principal determination In|z| + i arg(z),
arg(z) € (—m,n), of log(z) is considered. We like to mention that in the case
A € £(X) definition (3.1) coincide with that given in [19, Section 17.7], where the
theory of fractional powers in the framework of operational calculus originated.
Now, for every A€l and every { € C it holds that

|(_}V)C| — |eClog(7).)| _ |}v|%e Cefi‘fméarg(fi) < Ml%e Ce(n/Z) Sm §|. (32)

Then, since || > ¢ for A€, for Re 6 > 1 —f from (3.1) and (3.2) we have:
-y sl = Ce2Ioma] [ 1470012 1)1 e
r

0
< 2Ce(n/2)\%m 0| |:J ’7—§Re 0-p d’?} ”xHX

C

=2Ce™ImU(Re g+ f— 1) e OP x|, VxeX.

It thus follows that (—4)" e Z(X) for every O e C such that Re 6> 1—p.
Notice that, f being positive the Value Re 0 = 1 is admitted. In particular, (3.1)
with 0 =1 leads to (—4)"' = (27i)~ Ir "I — 4)™" d2 which is precisely
the Cauchy’s formula for the holomorphlc function pe p(A4) — (ud — A)f1 €
Z(X). We recall briefly the main properties of (—4)™’, Re # > 1 — f. First (cf.
[8, p. 252]), using the resolvent equation and the residue theorem we can easily
verify the semigroup property (—A)fg(—A)fgl = (—A) (0+0) , Re O, Re 0 > 1—p.
Then, the same proof as in [32, Proposition 6.1(ii)], shows that (—4)™" =
((—4)™")", neN. Finally, applying the Cauchy theorem to deform the infinite
branches I'y and I'_ of T" into the upper and lower sides of the positive real axis,
respectively, in [32, Theorem 6.2] it is shown that

(=)0 = Sinl0m) r sOsI—A) " ds, Rebe(l-p1). (3.3)

T 0



270 Alberto Favaron and Angelo Favini

REMARK 3.1. Let assume here f = 1. Then, reasoning as in [26, p. 281], it is
possible to assign a meaning to (3.3) for all # in the half-plane {z € C: Re z > 0}.
Indeed, integrating by parts the right-hand side of (3.3) and using the formula

LI =) = (D) KA = )7, keN, dep(d), for ReOe(0,1) we

obtain
-0 _ sin(0n) 0] — 4y wsl,g o — A2 ds
(A = SO 0ot Ay [t - )7 0
_ sin(0n) wsl,g o — A2 ds
7@_@L [(sT — A)')? ds. (34)

The latter integral actually converges in the ¥ (X)-norm for Re 0 € (0,2) and the
coefficients in this integral are entire functions. Hence (3.4) gives an analytic
continuation of (3.3) to the infinite vertical open strip {ze C: Re z € (0,2)}.
Repeating the previous argument, by m successive integration by parts, m € N, we
obtain

(—4)™ = m! sin(0n) Jw (s — )" ds, ReOe (0,m+1). (3.5)

AL (k= 0) Jo

Each formula in (3.5) defines an analytic continuation of (3.4) to the strip
{zeC:Reze (0,m+ 1)}, meN, and we may consider (3.3) to be defined for all
Oe{zeC:Rez>0}.

RemMaArk 3.2. If f€(0,1), then it is not possible to repeat the argument in
Remark 3.1. Indeed, if f € (0,1), then the integral on the right-hand side of (3.4)
requires e 0 € (2(1 — f),2) to converge in the norm of #(X). This means that
(3.3) and (3.4) may both take sense, but for possibly non overlapping intervals.
Thus, we can not consider (3.4) as an analytic continuation of (3.3). Similarly, the
integral in (3.5) needs Re O € ((m+ 1)(1 — f),m+ 1) for converging in the norm
of #(X). For this reason, in the case e (0,1), the representation (3.1) of
(=A4)"" is more convenient than (3.3).

Observe that (3.1) is meaningless in the closed strip Aj_y={zeC:Reze
[0,1 — p]}, for the integral on the right-hand side becomes singular at infinity for
0 € Ai_p. In particular, when f =1, Ag coincides with the imaginary axis and,
according to the results in [23, Section 5], [25, Section 1] and [35, Section 1.15]
for the single-valued case, (3.1) provides the fractional powers (—4) "’ e Z(X) of
—A only for Re 6 > 0.
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The case =1 is explicit and we assume it for a moment. Contrarily to the
single-valued case and as we shall make clearer in Remark 3.8 below, here the
multivalued character of 4 prevents us to proceed as in [23, p. 305] for defining
the pure imaginary powers of —A. This fact highlights the peculiar feature of
m. l. operators and, at the same time, suggests that all the abstract and concrete
results which contain assumptions on the behavior of the pure imaginary powers
of single-valued linear operators may fail in the multivalued case. We refer
in particular to [2, Lemma 3.2, Theorem 3.3, Proposition 4.2 and Section 7],
[7, Theorems 2.1, 3.1-3.3 and Corollary 2.9], [16, Section 6], [30, 31, Section 3],
[24, Proposition 2.9] and [35, Theorem 1.15.3]).

Later on, in Section 9, we shall provide a possible approach for defining
(—A)fe also for 0 e Aj_p. If 4 is a single-valued densely defined linear closed
operator and f = 1, then our attempt will be in accordance with [24, Proposition
2.9], but in our general case it will furnish the fractional powers (—4) ™, 6 e A,
only as a class of m. 1. operators.

Now, for Ref>1—pf, we define (—A4)’ as the inverse ((—4) %)~ of
(=A)~". Thus

{@«—AW%=%«—AV%=4xeX:x=<—Ar%ayeXL 36)

(~A)'x={peX:x= (A"}, xea((-4)".

Clearly, from ((—A))'=(((-4) ) Y '=(-4)"e£(X) we have Oe
p((=4)%), and (—A4)? turns out to be a closed m. 1. operator. Also, in both the
single- and multivalued cases, if fe (1/2,a], o€ (1/2,1], it holds that (cf. [32,
Theorem 6.5] and [8, p. 252]):

I(A) = 9((-4)"), Rebe(1-Bp). (3.7)

Indeed, if x e Z(A4) and Re O (1 —f,f), then x = A~'y for every y e Ax and
we can define both (—A4)™? and (—=4)""""?. The assertion now follows from x =
Ay = (=4)7(=4)"""%y), y e Ax, which proves x € Z((—4)"%) = 2((-4)").
Similarly,

G(—A)") < ((-A)"), 1-p<Rely <Re b +p—1. (3.8)

In fact, in this case (—4) ” and (—A)_(e‘_(m are both well-defined and the
semigroup property leads to (—4) ™" = (—A)foz(—A)f(O‘wZ), that is 2((—4)") =
R((—A)"") = 2((—4)™") = 2((—4)™). Notice that (3.8) with (6,6,) = (1,6) is
precisely (3.7).
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For Re 6 > 1 — f, from (2.1) and (3.6) it follows that:

{@«—Ar%—m — (x e I(~A)"): XN (~A)'x # B} = D(-4)"),
()" = U, - A) Oy =5, Yxea(-4)"),

whereas

{9<<—A>0<—A>"> —(reX:(-A) yea(-4)")} = X,
()~ y = U a0, (~A)x 2 {3}, WyeX.

Therefore, for e § > 1 — B, we have:

{1 = (A )", on (-4, (3.9)
I < (—A) (—A) , on X.

We stress that, if A is single-valued, then [32, Proposition 6.(iii)] applies and
(—A4)~" is injective for Re 6§ > 1 — f. Thus (—A)” is single-valued and the second
of (3.9) becomes an equality. This is a remarkable fact, since, as we shall see in
Remark 3.7 for the case = 1, the usual definition of (—A4)?, Re 0 > 0, for single-
valued linear operators leads to (—d4)’(—4)™" =1 only on %(4), closure of
(A) in X. On the contrary, since (3.1) implies 40 = .4"((—A4)~%), the injectivity
of (—A)fg, or, equivalently, the single-valuedness of (—A)o, is far from being
true in the really multivalued case. Further, observe that %((—4)”)N 40 may
properly contain {0} and that, if xe %((—A4)’)N A0, then x = (—4)""y with
ye (=4 D) For, 0= -4 x = (—A) " (=4) "y = (—a) 10y,

The semigroup property does not hold in general, since the operators
(—A)Hl(—A)g2 and (—A)H‘w2 may be very different. In fact, for Re 0; > 1 — S,
j=1,2, we have:

(=" (—)?) = {xe 2((=4)") : D((=)") N (—4)"x # &}
= {xe((=A)") : A(—4) )N (=4)"x # T},
((_A)Hl (_A)Hz)x = Uye_%((,Ay“l)ﬂ(,A)”zx(_A)ely’ Vxe D((_A)Hl (_A)62)7

but

()" *%) = A=) ),

(~A)"Px={ye X x= (=)}, VxeD(-0)"").
Notice that from (3.8) we have Z((—d4)"%) < ﬂjzzl Z((—4)"), Re 0, >1-p,
Jj=12Infact Re(0) +6) +f—1=Re ) +Rebr+f—1>Re b >1-p, j=
1,2. We are then able to exhibit a special situation in which the semigroup
property holds. This is when x € 2((—4)"""), Re 0;>1—-p, j=1,2, is such
that (—A)Hzx, which is well defined due to the previous argument, is contained in
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@((—A)o‘). In this case, using (3.6) and the semigroup property for the negative
fractional powers we obtain

()" (—4)™)x = Uye@((fA)”I)m(,A)ﬂzx(_A)()ly _ U,)E(,A)sz(—/l)o‘y
- UyE(fA)“Zx{W eX:y=(-4)"w}
—{weX:y=(-A)"w, ye(-4)"x}
={weX:iy= (A mx= (=™}
={weXix=(=A) (=) ")
= {we X ix=(=4) "M} = (a)"
If A is a single-valued densely defined linear operator satisfying (H1) with f =1,

0+0'y = (=4)’(-=4)" x holds assuming only
0+0’)

then the semigroup property (—A)
that both side are well defined, and this is precisely when x € Z((—A4) or
when xe@((—A)Ol) is such that (—A)O,xeg((—A)U). This is shown in [23,
Proposition 5.2] and [35, Theorem 1.15.2], but using arguments and formulae
that can not be employed in the really multivalued case (see the following
Remark 3.5).

Similarly to what done for Z(4) in (2.13), a topology can be specified on the
domain 2((—A4)") of (—A4)”, Re 0 > 1 — f, by equipping it with the norm

HX”:@((,A)“) = infye(,A)f’X”)’HXv X € 9((_’4)9)- (3.10)

Since ((—A4)")™" = (—4)" € #(X), then, replacing A4 with (—4)” in [12, Prop-
osition 1.11], we see that (3.10) is equivalent to the graph norm and makes
2((—A4)") a complex Banach space. Also, Z((—4)") < X. Indeed, x|y =
(=4l < [(=A4) | g0 | 7]l x for every ye (—4)’x, xe 2((—A4)"), so that,
passing to the infimum with respect to y € (—A)Ox, it follows

Il < 1= N o Il oy, x € 2((=4)°). (3.11)
When 2((—4)") is endowed with the norm (3.10) inclusions (3.8) become
embeddings.
PROPOSITION 3.3. Let A be a m. I operator in X satisfying (H1). Then
G((—A)") = G((—A)™), 1—p<Rely<Re 0, +—1. (3.12)
In particular, if > 1/2, then 9(A) — 2((—A4)"), Re e (1—8,5).
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PrOOF. Let xe 2((—4)"). Then, x = (—A) "y = (=A) " ((—4)""=%)y),
for every ye (—A)O‘x and for every 0;,0,e€C such that 1 —f<Reb, <
e 0; + f — 1. Hence (cf. the second in (3.9)), (—A)f(e‘fgﬁy e (—A4)"x, for every
ye(—A4)"x, so that

: —(0,-0 0
1l gy ey = B0F oy [l < (=) i Ml Wy e (—4)"x.
Passing to the infimum with respect to y € (—A)Hlx in the latter inequality, we get

1l ey < =) g 5l gy € Z((—~4)™), which proves (3.12).
The last assertion follows by taking (6;,60,) = (1,60) in (3.12). ]

REMARK 3.4. If §=neN, then the definition of (—A4)" through (3.6)
coincides with that in (2.2), with A4 being replaced by —A. In fact, letting
((-4)", 2((—-4)°)) = (1, X), from (3.6) and the semigroup property of the
negative integer powers of —A4 we find:

(A" ) = A(-A) ") = {xe X :x=(~A) ")y yeX)
={xeX:x=(—A)""Vf, for some feP(—A)},
={xe2((~A4)""): I € Z(~A) such that f e (~4)" 'x}
= {xe2((-4)""): 2(~A)N(-4)""'x # T},

(~4)"x={yeX:x=(~4) "=y}

={reX:ye(=A(=4)""x)}
= (=A)((=A)"'%) = () (=" )x, xeD((-A)").

Remarks 3.5-3.8 below explain why, in defining fractional powers for m. L.
operators, we are prevented to proceed as in the known literature for single-
valued operators.

REMARK 3.5. The main problem of definition (3.6) is that does not provide
us of any explicit representation of the fractional powers (—A)g, Rel>1-p.
On the other hand, when a A is really a m. 1. operators, the choice of definition
(3.6) is motivated by a substantial difference existing between the single- and the
multivalued case. That is, the so-called “method of closed extension” used for
defining fractional powers of single-valued linear operators, does not work for
m. 1. operators. Precisely, let 4 be a single-valued linear operator and denote by
R (2), ne NU{0}, A€ p(4), the operator (—1)"2 """ A(Al — A)'(—A4)" having
domain Z((—A4)"). According to [23, p. 291], for c =n+v, ne NU{0}, ve [0,1),
define the space 2° as follows:

o {{xe@((_A)") (—A)'x e Z(A)}, if v=0,

~—

; A , (3.13)
{xeP((-A)"): R (A)x=0(1""") as A — o0}, if v>0.

n
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Then, in [23], the fractional powers (—A4), Re { >0, of a single-valued linear
operator A satisfying (H1) with =1 are defined by:

(=A)" =closure of (—A):, D((—A)%)=2°, if Rele(0,0),0>0, (3.14)

and, for given (, it is shown that the closure is independent on ¢ > Re {. Here:

(—A)*x, if CeN,

) sin(¢r) [ (Y k+N k
(—A)ix={ " [L Ssl — A)~ xds+z ! (—A4)"x

+ Jm s R (s)x ds} . if (¢N,
N

where N > 0 is an arbitrary fixed number. If e { € (n,0), we may let N — 0 and
obtain
(—A)ox = (1) MJ sV AT — A) 7 (—A)"x ds, (3.16)
n 0
which is the expression used in [4] to define (—A)° for Rele (mn+1), ne
NU{0}, by taking Z((—4)"™") instead of 27 as the domain of (—A)g. As usual,

¢
4

the proof that the operators (—A): are closable consists in showing that, if
{X¥t}ren © 27 is a sequence converging to zero, then the sequence {(—A)gxk}k N>
if convergent, has zero limit, too. Letting y = limk_,go(—A)gxk, in [4, Lemma 2.1]
and [23, Proposition 4.1] the assertion y =0 follows from ye A"((Al —A)™"),
A€ p(A). This is just the argument which fails in the multivalued case. For, if 4
is a m. 1. operator, then .4°((AI — 4)~') = 40 2 {0}, preventing us to conclude

the proof as in [4] and [23].

REMARK 3.6. In [22] the fractional powers of single-valued densely defined
linear closed operators satisfying (H1) with f =1 are defined by

: N
(fA)ox:—Ms- limj sUVA(sT — A)'x ds, 0€(0,1),
0

T N—owo

2((—A)") = {xe X : (-4)’x e X},

(3.17)

where ‘s-lim” denote the strong limit. This method does not require any closure,
but it is with difficulty applicable for defining fractional powers of m. 1. operators,
due to the presence of the strong limit in (3.17). Moreover, even only for single-
valued operators, it seems a hard task to remove the assumption f =1 in this
approach, due to the large numbers of technical details in which such assumption
plays role in [22].
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REMARK 3.7. Let A be single-valued and let f =1 in (H1). After having
defined via (3.14) the fractional powers (—4)¢, Re { > 0 of —A, in [23, Sections 4
and 5] the cases $e { < 0 and Re { = 0 are considered. Let first e { < 0. In [23,
Section 5] it is shown that for every { € C such that Re { € (—(m+ 1),0), m e N,
the fractional power (—A4)° is the operator defined by (3.5) with 0 = —(. The
definition is then completed by setting

(~4)° = (-47")",

@

(A =X, if {=-nneN, (3.18)

which is just what follows from (3.1) with 8 = n. Hence, due to Remark 3.1, for
single-valued linear operators satisfying (H1) with =1, our definition (3.1) of
the negative fractional powers is equivalent to that in [23]. Let now Re { = 0. The
original idea in [23] for this case is to give another definition of fractional powers,
by means of the closure of a family of operators defined in a vertical open strip
Ay ={{eC:Re (e (~-1,0)}, g,7 >0, containing the imaginary axis. For the
clarity’s sake, we remind the definition in [23]. Let RS (1) be as in Remark 3.5
and let R (1) be the operator (—1)" 2" (1l — A) "' (—=A)™", me NU{0}, A € p(4),
having domain the whole of X. Now, let ¢ =n+ v, and 7 =m+ v, be positive
numbers, where n,m e NU {0} and v; € [0,1), j = 1,2. According to [23, formula
(4.11)], define the operator (—A):. with domain %° by

at

x, if (=0,
(—A)'x, if (eA,.NZ,
i N
(fA)iTx: _smffn) [Jo xds—i—k;ﬂ kH ( A|@1)kx
+ J@ s*RI(s)x ds], if {eA, \(ZU{0}),

N

where N > 0 is an arbitrary fixed number. It is show in [23, Proposition 4.11]
that (—A)if is closable and its closure is independent of ¢ and 7 such that
(€A, .. This closure is denoted by (—A)g. When e (e (0,0), we may take
m =0 and (—A)g_f coincides with (—A)g defined by (3.15). Correspondingly, for
e ( € (—7,0), we may take n =0 and (—A)f;,f coincides with the restriction to
97 of (—A)* defined by (3.5) with @ = — and (3.18). Passing to the closure, we
get (cf. [23, pp. 305, 306]) (—A)5 = (—A)° for Re { >0 and( A5 = (=170
for Re ¢ < 0. In particular (cf. [23, Corollary 5.3]), (—A4)¢, Re >0, defined
through (3.14) coincides with ((—A4)~ ’(A))fl, so that (—4 )((—A)fg =1 only on
2(A). Recalling the observation after formula (3.9), this is less than what we




Fractional powers and interpolation theory 277

obtain by defining (—A)C, Re { > 0, through (3.6) taking advantage from the
injectivity of (—A)~*, which, in the single-valued case, comes from [26, p. 285].

RemMARK 3.8. Let now fe(0,1) in (HI1). In this case, even restricting our
interest to single-valued operators, we can not repeat the construction in [23] in
order to provide a definition of (—A)iC for every { € C which coincides with
(3.1) and (3.6) for (¢ Aj_p={ze C:Reze (0,1 — f]}. Indeed, if we try to define
(—A)g as in Remark 3.7, the first problem we encounter is that the spaces &°
defined by (3.13) are no longer the suitable ones for the case fe (0,1) in
(H1). Maybe, since R; (A)x=A""4(U —A)'x= (I — 4)'x—2"'x = 0(]4 ")
as || — oo, a possible different choice could be that of replacing O(4~"") with
O(/~°") in the second of (3.13). On the other side, the proof of [23, Theorem
2.1], from which the first characterization in (3.13) comes out, is not adaptable
to the case f € (0,1), since in that proof the value f =1 is necessary to ensure
that the operator AR; () is uniformly bounded allowing to apply the Banach-
Steinhaus theorem. Another problem is that we have to take ¢ and 7 greater than
1 — f for comparing the eventual definition of (—A)Oﬂ with that we already know
from (3.1) and (3.6) for Re { > 1 — . Also, contrarily to the case = 1, in which
one may take help from formula (3.5) for the construction of (—A)g for e { < 0,
when f € (0,1) one has only formula (3.5) for Re { € (-1, — 1). Of course, still
worst is the case in which e (0,1] and 4 is really a m. 1. operator. In fact, in
this case we have to define (—A)Oﬂ so that, when e >1-p, (—A)(;C and
(—A)g coincide, respectively, with the single-valued bounded linear operator (3.1)
and with the closed m. L. operator (3.6), but we do not know if (—A)Oﬂ has to be
single-valued, multivalued, or of both types in the strip Aj_g.

Now, let {e1},. ) = Z(X) be the semigroup generated by A and defined by
e’ =1 and the Dunford integrals (2.10). We set

()" =

___J (=)’ — A) " di Re0=0,1>0, (3.19)
27i Jr

but here [(—4)"]° does not denote a section of (—4)” itself. Clearly,
A0 = o0 V(=A%) Re = 0. (3.20)

We recall that operators (3.19) were introduced first in [11] and [12] only for
real nonnegative values of 6. However, due to (3.2), it is clear that all the
estimates obtained in that papers for 0 > 0 hold the same for complex 0 such that
e 0 > 0, provided that all the constants depending by ¢ in [11] and [12] are

rescaled by a factor e®?2ISmal,
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Of course, from (2.10) we have [(—A4)"°¢4 = e, ¢ > 0. Moreover, from
(3.1) and (3.19), using the resolvent equation and the residue theorem, we easily
derive

(=)' e (=) = [(—4)" )%, Rebe(1—p,1],1>0. (3.21)

As remarked in [13, p. 426], if Re 0 > 1 — f, the operator [(—A)H]oe"‘ is really a
section of the m. 1. operator (—A4)”e™, so that from (2.11) we get

(=)Dt = [(—A)¥]°e" = (—A)* e, 1>0,keN. (3.22)
Finally, (H1) implies the following estimates (see [11, Section 3]):
(=) 17| ) < Eupot POV Re 0 >0, 1>0, (3.23)

where the ¢, p’s are positive constants depending on o, f and 0. Thus, letting
0 =0 in (3.23), we see that, if S e (0, 1), the function 7 — e is not bounded as
t — 0% and e is not necessarily strongly continuous in the norm of X on the
linear subspace Z(A). Indeed, as established in [12, Theorem 3.3], if Re { > 1 — f
and ye (1 —p,1), then, when ¢ — 0%, e'4 converges to I in the norm of X on
the domains Z((—A4)%) of the fractional powers (—4)¢ and on the spaces X~
defined in the next Section 4, whereas the convergence on the whole X holds only
with respect to the seminorm p4(-) = ||[4~! - ||,. We stress that later, in Section 5,
we shall extend [12, Theorem 3.3] showing that, if ye (1 —pf,1), then e is
strongly continuous in the norm of X not only on X}™, but in fact on the spaces
(X,2(4)),, and X;” for every pe|[l, 0] (cf. definitions (4.1) and (4.4)).
The following Lemma 3.9 extends [27, Lemma 2.1.6] to m. 1. operators.

Lemma 3.9. Let o and f in assumption (H1) be such that o+ f > 1. Then
0

J e ey dr=(zI —A)'x, VRez>0,VxeX. (3.24)
0

In addition, (), (e') = AO. Further, if « =1, then N (e"*) = A0 for every
t>0.

Proor. First, if «+f > 1 and Re z > 0, then the integral on the left-hand
side of (3.24) is convergent on X. In fact, for every x € X, from (3.23) with 6 =0
we have

o
J e Tlex dr
0

e )
< Gugo || A0 ]l
X 0
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and the transformation ¢ fe z = s in the latter integral leads to

< Gy po(Re ) PE(a+ - 1) /0)|x]ly < oo,
X

©
J e —zt tAxdt
0

where E(x), x >0, denotes the Euler’s gamma function [;°s*~'e™ ds. Hence,
using (2.10), or, equivalently, (3.19) with 8 =0, Fubini’s theorem yields

J e ey dr = J U g2 dt} (Al — 4)"'x da
0 2mi 0

_ —L,J Go) Gl = Ay ' di= (I — A) 'x. (325
27 )

Here we have used [-(4— 2 YA — 4)"'x dA = —27i(z — A)"'x which can be
verified using the Cauchy’s formula for the holomorphic function e p(4) —
(ul —A)"' € #(X) and by closing I' on the right by circles of diameter con-
verging to infinity. Clearly, due to (2.12) and A" ((ul — A)™") = A0, pe p(A4), if
x € A0, then all the terms in (3.25) are equal to the zero element of X. This
completes the proof of (3.24). From (3.24) it follows that, if xe ) (e™),
then x € A ((zI — A)~") = A0 for every Re z > 0. Therefore (Vo A (e) = 40
which, together with (2.12), leads to (7)., 4 (e"*) = A0. Finally, if o =1, then
from [32, Theorem 5.3] it follows that e’ can be extended to an analytic

I>0

semigroup in some sector containing the positive real axis. Now, let x € 4" (e"4),
to > 0. First, the semigroup property implies e”/x =0 for every 7> t;. Then,
the map t€(0,00) — e e £(X) being analytic, we have ex =0 for every
t€(0,00) and from (3.24) we derive x € A°((zI — A)~") = 40. This shows that, if
« =1, then .4 (e"*) = A0 for every ty > 0. Combining this inclusion with (2.12)
we obtain the assertion ./ (e4) = A0 for every o > 0. O

4. The Spaces (X,2(A)),, and X7

7P

Let 4 be a m. 1. operator satisfying assumption (H1). We introduce here the
spaces (X,%(4)),,
such spaces. From now on, Y being a Banach space, we denote by C((0, 0); Y)

and X77, and we recall the basic relations existing among

the set of all continuos functions from (0, ) to Y, and for a Y-valued strongly
measurable function (&), <€ (0, ), we set [|g(&)ll,,y = (Jy" llg(¢) qd‘f)l/q
qe(l,0), and |g()llL; (y) = SUPze(0. ) 19(E)ly- Let elthef Po, P1 6[1 00) or
po=p1 =0, and for y € (0,1) define p~' = (1—y)pg' +yp7" if po, pr€[l, )
and p= oo if po= p; = 0. We set

3
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(X,2(4)), ,={xe X :x=10(¢) +u(¢),¢ € (0, 0),
vp € C((0,00); X),v; € C((0,00); 2(A)),
1€700(E) ;o) + 167 01Ol oay < 0},

I¥llx, oy, , = 0Fe0.e 17201 oy + 11E7 01(E)]

7,

4.1

Ly (9(4)) b

where the infimum is taken over all possible representations of x having the
specified form and Z(4) is endowed with the norm (2.13). This characterization
of the spaces (X,Z(4)), , is that obtained by the so called “mean-methods”, and
it is equivalent to that performed by the usual “K-method” (cf. [35, Theorem
1.5.2 and Remark 1.5.2/2]). Then, due to [35, Theorem 1.3.3], for every y € (0,1)
and p € [1, o] the space (X, Z(4)), , is an exact interpolation space of exponent
y with respect to the pair (X,%(A4)). Since both the “mean-methods” and the
“K-method” belong to the class of real methods for constructing interpolation
spaces (cf. [35]), we shall call the spaces (X,%(4)), ,, y€(0,1), pell, ], the
real interpolation spaces between X and Z(A4).

Let us list the main properties of the spaces (X, SZ(A))% - First, if 2(A) =X,
then (X, X)W =X, ye(0,1), pell,o0], with equivalence of the respective
norms. Then, for every xe Z(A4) there exists a positive constant c;(y, p),

np

ci(y, p)||x||)1[7||x|\;’f2(A) holds. Further, the spaces (X,%(4)), , being intermediate
spaces between X and Z(4), ie. Z(4) — (X,%(4)),
and pe[l,o0] there exists a positive constant c¢(y, p) such that |[x|, <
oy, PN x, o4y, for every xe (X,%(4)),,. Finally, for ye(0,1) and 1<

7€ (0,1), pell,c0], such that the interpolation inequality |[|x[|yx (1)) <

, = X, for every y e (0,1)

p1 < p<py<oo we have

2(4) = (X, 2(4)), ,, = (X,2(4)), , = (X,2(4)), ,, = X, (42
whereas, for 0 <y, <y, <1,
(X, 2(4)),, o = (X, 2(4)),, - (4.3)

In addition, the inclusion (X,%(4)),, < %(A4) holds for every ye (0,1) and
p e [l, ] Then, if Z(4) is closed in X, Z(4) and (X, Z(A4)), , coincide as linear
subspaces of X for every y e (0,1) and pe€[l, ], but the norms |- ||, and
- Mlex, o 4)),, may be not equivalent, unless that the embedding (X, %(4)), , —
2(A) is shown to hold, too.

For ye (0,1) and pe[l, 0] we now define the Banach spaces X7 by

Ly(x) < o},

{Xj‘p ={xeX ¥y = 1C7A%(ET - A" (4.4)

el = lxllx + Dl
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We recall that, if A4 is single-valued and f=1 in (H1), then the classes
(X,2(4)), , and X 77 coincide with equivalence of the respective norms (cf.
(18, Theorem 3.1], [24, Theorem 3.1] and [35, Theorem 1.14.2]). On the contrary,
if fe(0,1), such an equivalence is no longer true, as first observed in [38,
Theorem 2] for single-valued operators and, in the case p = oo, in [12, Theorem
1.12] for multivalued ones. Thus, in general, the spaces X7” are neither in-
termediate nor interpolation spaces between X and 2(4).

REMARK 4.1. When A is a single-valued densely defined linear operator
satisfying (H1) with f =1, the spaces X »1or, equivalently, (X ,Q(A))%l, play a
key role in the definition of the fractional powers of —A4. To see this, we first
observe that, if g€ (0,1), then 27 defined by the second of (3.13) is contained
in Xj’l for every y € (0,0). In fact, if x € 27, then R (A)x = A7NAG — A x =
O(2°"") as A — co. Moreover, since A(Al — A)™' = J(A — A)"' + 1, from (H1)
with f=1 we deduce ||A(Af — 4)~" #(x) < C+ 1. Therefore

[X}X/:*] = Jo 57"1||A(51 — A)_leX dé <0, Vxe2° ye(0,0),

for the integrand goes as ¢! at the origin and as &’°°! at infinity. In par-
ticular, 2° coincides with X7 ”. For, if xe€ 27, then [x]y-~ < oo, whereas, if
xeXJ”, then RS (2)x = O(4°""). Hence, according to (4%) in the case f =1,
we have 27 = X7 — X! for every y € (0,0). We then replace (3.14) with the
following

(—A)" = closure of (—A)S, Z((—A)2)=X7", Rele(0,0),0e(0,1),

g’

where, letting N to 0 in (3.15), (—A)S is defined by (3.16) with n = 0, that is

ag

(—A)ix = — Smff”> Jﬁ sSTUAGsl — A) 'xds, Re e (0,0). (4.5)
0

Clearly, when Re { € (0,0) the integral on the right-hand side of (4.5) is con-

vergent even for x belonging to the larger space Xfe “1 The value Re { = o may

be considered as well, provided to define @((—A)g) = Xj’l for Re { = g. These

observations lead to the following definition of the fractional powers which is the

one employed in [24] and [35]:

(—A)‘f = closure of (—A)c @((—A)g) = XZ’I, Re (e (0,0],0€(0,1), (4.6)

g’

where (—A)fr is defined by (4.5) and 9((—14)5) it is endowed with the graph
norm. It is shown in [24, Section 2] that definition (4.6) coincides with that given
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in [23] through (3.14). Observe also that, since ' = Z(A4) due to Z(4) = X,
taking o = 1 in (3.14) we obtain the definition of (—4)¢, Re { € (0, 1), in the sense
of [4]:

(=A)" = closure of (—A)S, Z((—A)5) =2(4), Rele(0,1), (4.7

(—A)f being defined by (4.5). It is clear that (4.7) is equivalent to (4.6), since for
every fixed ¢ such that Re { € (0,1) the domain Z(A) of (—A)f may be extended
to X et

REMARK 4.2. We stress that [X)”NA0] = {0} for every ye(0,1) and
pe(l,o0]. Indeed, assume there exists x #0 such that xe [X;”NA0] for
some ye (0,1) and pe[l,o0]. Then, since x e A0, we have A°((I —A) 'x =
EEI—A) 'x—x=—x for every Eep(d) and, consequently, [x]X:.,p =
1€7]

L |IX[lx = o0, contradicting x e X7,

The following Proposition 4.3 provides a proof of the embeddings announced
in [8, p. 254], and extends [38] to m. 1. operators and [12] to p e [l, oo].

PROPOSITION 4.3. Let A be a m. I operator satisfying assumption (HI).
Then

Xi" = (X, 2(4)),, ve(0,1), pell, o], (4.8)
(X, 9(4)),, = X777 ye(1=B,1), pell, . (4.9)
PrOOF. We begin by showing (4.8). Let xe X7, y€(0,1), pe|[l, 0], and,

using A°(&1 — A) ™' = E(ET— A)' =1, £ € (0,0) = %, rewrite x in the following
form

x=vo(&) +v1(&), <&e(0,00), (4.10)

where vy(&) = —A4°(¢T — A)_lx and (&) = &(¢I — A)_lx. We have vpe
C((0,0);X) and vy € C((0,0); Z(A4)). Indeed, let & e (0,00), j=1,2. Then,
using the resolvent equation and (H1), it follows that

[vo(&1) — vo(&2) I x
= [|=&1(&T — A)x+ &G — )]y

= (& = ENET - A) X+ &[G - A)7 = (& - 4) x|y
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= (& = ENET — A) X+ E(E — E)(ET — A) (&I - A)_1X||X
< ClE = &|E + D) Pl + CalE = &l(&+ D)7 E + D) 7P Ix

< ClE) — & + D)L+ C& (& + 1)_ﬁ]||x||xf}'%

This shows vy € C((0, c0); X). Concerning v;, instead, we first observe that, since
(2.3) implies 4°(zI — A)™' < A(zI — A)™', z€p(A4), the definition of |- |,
leads to

(1 = A) Vg < 14°(T—A) 'ylly, VyeX, Vzep(d).  (411)
But, for every z € X,, we have
14°(z1 = A) 'Yl = Nllz(zT = )7 = Tylly
< [Cl/(z+ D7 + 1]l ylx
< (C+ DA+ D" P ylly, WreX, (4.12)
so that from (4.11) it follows that
1T = A Ylop < (C+ DA+ D' ylly, VveX,VzeZ,. (4.13)
Now, using the resolvent equation,
[o1(&1) — v1(E)loa)
= &&= A)"x = &(&d = 4) x|y
= (& = ENET - A)  x+ EET - A) " — (&I - A)il]x”,@(A)
= (& =)&) v+ &G - &)Ed —A)_l(le—A)_lx”g(A)
< (& = &IET = A) Nl + Gl (T = A) (& = A xlpg] (414)

Hence, applying (4.13) once with (z,y)=({,x) and once with (z,y)=
(&1, (&I — A)"'x), from (4.14) we deduce

lo1(E1) = v1(E) oy < (C+ D& = &I(&E + D) [lIxlly + &Nl (T = 4) 7 x4

<(C+DfE &+ D)1+ caE + 1)7ﬁ]\|x||xf‘;‘~">
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completing the proof of v; € C((0,0);Z(A)). Therefore, recalling the definition
(4.1) of the norm |||y 5.4 ~With po=pi=p, pe[l,oo], from (4.10) and
(4.11) we get

XMl x, 204y, < [1E700(E)] L)t ||fy_lvl(f)||L;(.@(A))

Y.

<|lgr4% (<t _A)_IXHL;(X) + ||fy(51—A)_lx||L;(gz(A))

<2||ETA°(ET — A)'x

Ly(X)

SQ’HXHXX'“ yE(O,l),pE[l,OO]. (415)

This completes the proof of (4.8). Let us now prove (4.9). To this purpose, we
first notice that when y € Z(4) from (2.3) we have A°(zI — A) 'y = (z1 — A)"'f,
zep(A4), with any f e Ay. Then, for zeX, from (H1) it follows that
|4°(z1 — A) "'yl < C(l2) + 1)_ﬂ||f|\X with any f e Ay. Taking the infimum
with respect to f € Ay, we thus find ||4°(zI — 4)'y||, < C(|z| + 1)_ﬁ||y||@(A) for
every y € Z(A), or, equivalently,

14°(zT = A) | ggaxy < Clzl +1)7F, VzeZ, (4.16)

On the other side, (4.12) implies
14°(zT = A) gy < (C+ V(|21 + D', Vzex, (4.17)

So, wusing the interpolation inequality in [27, Proposition 1.2.6] with
(X1, 11, X5, Y2) = (X,2(4),X,X), from (4.16) and (4.17) we obtain, for every
y€(0,1) and pe[l, 0]

|4°(z1 _A)71||£/((X,£‘Z(A)) s <6 p) (2] + D' vzex,  (4.18)

opt
Vs

Let now x e (X,2(4)), ,, ye (1 =p,1), pel, o). If p= oo, then from (4.18)
we get

(] o1 = Pt Ao — 4) x

L3 (X)

< SUPe (9, o) [€(E + D7 ey, 0)|[ x| (x; o)

¥, 0

Hence, using [|x[ly < c2(y, )Xl (x;9(4y), » P €[1, 0], from the latter inequality
’ 7P
we derive

||x||X/?l‘+/(*1-“ < C4(y7 OO)HXH(X{/(A))JTa VE (1 - ﬂ) 1)7
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where ¢4(y, 0) = 21‘322 ¢;j(y, o0). This proves (4.9) with p = co. If p € [1, 0), then
[x]i,jﬂi—l‘p = ||fy+/>’—1AO(§] — A)*lei;(X) =L+ (4.19)

where

I(Hﬂfl)p o -1 pdg . (+B-Dpy 40 -1 pdf
I = Oc'f |4°(¢T — A) XIIX? L=] ¢ [4°(ST = A) " x[ly —=-

¢
Of course, since | —f—y <0 for ye (1 —p,1), (4.18) leads us to

1
I < a3y, p))” “0 o=t df} ¥l aay),, = Tes(Bor, PP Iy, o (4-20)

7P

where ¢s(8,7, p) = [(7+ 8 — 1)p] Pes(y, p). As far as I, is concerned, we write
x =v9(&) +v1(&), £€(0,00), the functions v;, j=0,1, having the properties in
definition (4.1). Then, using (a+b)” <277 (a? +bF), a,b >0, pe[l,©), we
have

L <2/ Lo+ by, (4.21)

where we have set

by = [ e e - g0 S =0
From (4.17) applied to o and & '(&+1) <2, Eel,00), it thus follows
Bos @+ 17 [ e @ 0 Pl
< AP IO (422)

with ¢5(f) = 2"P(C 4 1). Instead, from (4.16) applied to I i, it follows that

* - - d -
I 1)V I Ol E S I oy (423)

Then, taking the infimum over all possible representations of the form x =
vo(&) + v1(€), from (4.21)—(4.23) we obtain

1271 < CPJ
1

12 < [07(ﬁ7 p)]p||x||{x;@(,4))wa (4'24)

where c7(f, p) = 2(P~V/P¢g(p). Finally, summing up (4.19), (4.20) and (4.24), we
have

[x]];/l:%»/!fl.]) < [CS (B, p)]pHXHf)Xﬂ(A))M,
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with ¢s(B, 7, p) = {les(B, 7, p))” + [e2(B, p))"}'"7. Therefore,
Hx”,\//;/‘*ﬂ"'/’ < co(B,7, p)”x”(X;@(A))M’ ye(l=p1), pell, ),

where ¢o(f, 7, p) = c2(y, p) + cs(B, 7, p). The proof is complete. ]

REMARK 4.4. If A is single-valued and § = 1, then the proof of (4.9) may be
performed in a easier way. We refer to [18, p. 158-160] for the details, but the
basic fact is that in the single-valued case one may take advantage from the
inequality [|A(z1 — A)~'y|ly < (zI — A)"'¥lly(s), Z€p(A4), y € X, which fails in
the multivalued case (cf. (4.11)).

REMARK 4.5. By setting p=y+f—1, ye (1 —f,1), from (4.2) and (4.9) it
follows that Z(4) — (X,%2(A4)),,, 4, — X7’ — X, € (0,5), p€[l,0]. Then,
according to what we have noticed before Remark 4.1, if f e (0,1), the spaces
X" are intermediate spaces between X and Z(A) only for ¢ € (0,f), whereas
when ¢ € [, 1) they may be smaller than Z(4). We mention that the embedding
D(A) — X7, 9€(0,B), pell, ], can be shown even using only the definitions
of the norms || - |5, and |-
theory (cf. [9, Section 2]).

I xir and avoiding any argument of interpolation

REMARK 4.6. We can now refine Remark 4.2. Indeed, (4.9) implies {0} =
[(X,2(4)),,040] = (X777 NA40] = {0}, ye(1—p.1), pe[l, o], whereas,
when f <1, {0} may be a proper subset of [(X,%(4)), ,NA0], ye (0,1 —f]. In
any case [Z(A4)NA0] = {0}, since Remark 4.5 implies Z(4)NA0 < X7 N A0
for every ¢e(0,5) and pe([l,]. On the contrary, due to the inclusion

(X,2(4)),, = Z(A) for every ye (0,1) and p € [l, 00], in general it is not true

that [2(A4) N A0] = {0}. This is true, instead, if f = 1. In this case the topological
direct sum M@AO is a closed subspace of X, and, if X is reflexive, it
coincides with the whole X (cf. [40, Theorems 2.4 and 2.6]). We refer to [28],
for an equivalence between the identity X = 2(A4) @ A0 and the well-posedness
on Z(A) of the abstract multivalued Cauchy problem D,w(¢) € Aw(t), t € (0, T},

w(0) = x.

REMARK 4.7. In particular, if 4 is a m. 1. operator satisfying (H1) and
2(A) = X, then from [2(A4)NA0] = {0} it follows that 40 = {0} and A4 is
necessarily single-valued.

Observe that, with the exception of the case f=1 when (X,%(4)), , and

X7 coincide with equivalence of the respective norms, in general it is not clear if
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embeddings analogous to (4.2) and (4.3) hold even for the spaces X . In fact,
using (4.2), (4.3), (4.8) and (4.9) we can only prove that, if ye (1 —f,1) and
1 < p1 < pr < 0, then

XpM e (X, 9(4)), , = (X, 9(4)), ,, = X;77 (4.25)

7, P1 P2

whereas, if 1 —f <y, <y, <1, then Xj"" — (X,2(4)), , — (X,2(4)), | —
Xjﬁﬁ 11 We also recall that, if A is single-valued, densely defined, and satisfies
assumption (H1) with = 1, then the spaces X j'”, or, equivalently, (X, Z(4)), ,,
are linked to the domains Z((—A4)") of the fractional powers of —A4 by the
following continuous embedding (cf. [24, Proposition 2.8], [25, p. 12] and [35,
Theorem 1.15.2(d) with m = 1]):

X0l g((=4)") = xJ°%* Rebe(0,1). (4.26)

Combining (4.3) with (4.26) we find also Z((—4)") — 2((—4)"), 0 < Re 0> <
Re 0; < 1, which agrees with (3.12) with f = 1. Later on, in Section 6, we shall
generalize (4.26) to multivalued (and hence, possibly single-valued) linear oper-
ators satisfying (H1) with e (0,0, a € (0,1], and having not necessarily dense
domain Z(A4).

We conclude this section with two open problems which may constitute the
subject of future investigations. Indeed, although our result, that is a version of
(4.26) for m. L. operators satisfying (H1), is enough satisfactory from the point
of view of applications, especially those dealing with optimal regularity for
degenerate differential equations, sometimes it may be useful to have a precise
characterization of the domains Z((—A)?). When A is a closed single-valued
linear operator having dense domain and satisfying (H1) with f =1, a remark-
able result in this direction is the following (cf. [24, Proposition 2.9]): if there
exists ) € C such that Re ) € (0,1) and Z((—4)") coincides, in the sense of
equivalence of the norms, with Xj% %P for some pe [1, 0], then 2((—4)") =
Xe%? for every 6, e C such that Re 0, € (0,1). In particular, Z((—4)") =
F((—A)") if Re 0, = Re 0,. Also, in [24], an example and a counterexample
of this fact are given. At the moment, even assuming f =1 in (H1), we do not
know if this result can be extended to m. 1. operators. For, in the proof of [24,
Proposition 2.9], a basic role is played by the definition of (—A)19 as the closure
of the operator (—A4) g defined in (3.15) (cf. [24, Theorems 2.6 and 2.7]), which is
just the argument failing in the multivalued case. Further, it is not even known
if, and if how, the result in [24] changes for single-valued linear operators when
p=11in (H1) is replaced by e (0,a], o e (0,1].
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In the single-valued case with =1 another interesting relation is that
provided in [35, Theorem 1.15.3]: assume there exist &, C” >0 such that
||(—A)it||$(X> < C” for every t e [—¢,¢. Then, for every Re 6 > Re 0, >0 and

€ (0,1) it holds that

[2((—4)"), 2((-=A)™)], = 2((—4)" =0, (4.27)

Y

Here, [X7, X>];, 0 €(0,1), denote the complex interpolation space of exponent o
between two Banach spaces X; and X, (cf. [35, Sections 1.9]). This result has
been successfully applied by several authors in many concrete cases. We quote,
for instance, [2, Section 7], [14, Section 1], [15, Section 3], [16, Section 6], and
[30, Section 4]. It is therefore clear how much efficient it would be to have an
analogous characterization for the domains of fractional powers of m. 1. operators
(possibly single-valued) satisfying (H1) with f € (0, 1]. According to Remark 3.8,
the main problem in generalizing this result is the condition on the pure imagi-
nary powers of —A4, whose meaning, if any, is lacking when fe (0,1] in the
multivalued case and when € (0,1) in the single-valued one. It is in this spirit
that should be regarded our attempt of giving, in Section 9, a definition of the
fractional powers (—A)* for Re (e [0,1 —f].

5. Strong Continuity of ¢! on (X,%(4)), , and X’

Let 4 be a m. l. operator A satisfying assumption (H1). Then the linear
operator [(—A)']°e (cf. (3.19)) satisfies the following estimates (cf. [12, Prop-
osition 3.4]):

H[(_A)I}OCIA”J(XJ’%;X) = ClOl(ﬁJrV?Z)/da t> Oa VE (1 _ﬁ7 1)7 (51)

c1jp being a positive constant depending on o, f and y. Due to the strong
continuity of {e1},_, in the norm of X on the space X}, y € (1 — f, 1), proved
in [12, Theorem 3.3], for every xe X7 ™, y e (1 — §,1), using (3.22) we can write
ey —x=— [1[(—4)']°e*x ds. Therefore (cf. [12, Theorem 3.5]), if o+ f > 1,
estimate (5.1) easily yields:

e = Il gy, xy < ent™ P20 150, pe @—a—p,1),  (52)

c11 being a positive constant depending on «, f and y. We now improve (5.1)
and (5.2) showing that in those estimates X7 ” can in fact be replaced by
(X,2(4)),, and X;”, p e [l,0]. We begin with the following Lemma 5.1 which
refines (5.1).
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LemmA 5.1. Let A be a m. I operator satisfying (H1) and let Y/ e

{(X7 @(A))y,pi
c12 = ciaa, fyy, p) such that:

X773}, ye(0,1), pell,o]. Then, there exists a positive constant

||[(_A)1]°e“‘||g<y,:x) < et 150, 9€(0,1), pe[l, ], (5.3)

Proor. We first prove (5.3) with Y? = (X,2(4)),, by interpolation. Let
xeP(A) and ye Ax. Then x = Ay = (—4) "' (—y) and from (3.21) with 0 =1
we deduce

[(=4) '] x = [(=4) e (=) (=p) = [(=4)]°e"! (—y) = —e"y.
Hence, (3.23) with 0 =0 yields:
I(=) 17 "%l < lle“Ylly < pot "V lIylly, 1>0, yedx.

Passing to the infimum with respect to y € Ax in the latter inequality we thus get
I[(=4)"]°e“x|, < &y p.0t "%\ x]| 59, x € Z(A), or, equivalently,

||[(_A)1]OetAH$(9(A);X) <& pot V>0, (5.4)
Furthermore, from (3.23) with § =1 we have:
I[(=4)"1°e ]| ) < Eupat P20 1>0. (5.5)

Now, wusing the interpolation inequality [27, Proposition 1.2.6] with
(X1, Y1, X5, ) = (X,2(A4), X, X), from (5.4) and (5.5) we finally find, for every
y€(0,1) and pe|l, o0

l10 ~2)/a
1[(=4)] e[AHJK((X,@(A))J,_p;X) < et P >0, (5.6)

This proves (5.3) with Y/ = (X,%(4)),, and ci» =ci3. To prove (5.3) with
Yr = X77 it suffices to recall that, if X, j=1,2,3, are three Banach spaces
with- Xj — X, and Le Z(X;X;), then Le Z(Xi;X3) and |[|L| gy, x,) <
col|Lll #(x,: x,)» Where ¢o > 0 is such that [|x[|y, < col|x[|y, for every x e X;. Then,
the assertion follows from (5.6) and embedding (4.8). In particular (cf. (4.15)),

12 = ¢oc13 = 2¢13. O
The following Proposition 5.2 extends [12, Theorem 3.3].
PROPOSITION 5.2.  Let A be a m. I operator satisfying (H1). If ye (1 — f, 1),

then e is strongly continuous in the norm of X on (X,%(4)), , and X;" for
every p € [l, o]
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Proor. First, let x e (X,%2(4)), ,, y€ (1 —f,1), pe[l, 0], and set

1

— 2 o — A Y da
W—ZniJFA A°(Al — A)” x dJ,

(5.7)
where T is the contour in (2.10). We shall prove that lim, .o+ e/ x =w and
w—xe [Xf'ﬁ_l’OO N A0], so that from Remark 4.2 it will follows w = x. We begin
by proving that w is a well defined element of X. To see this we observe that,
using estimate (4.18), |A| > ¢ > 0 for every A eI, and y € (1 — f, 1), from (5.7) we
get

Iwlly < (27)'es(7, p) Ur A7+ 1>”“’|dx|] 1l . o)

P

o0

<7 'es(y,p) “

c

ol + 1) dn} ¥l .o,

P

o0

——

c

ﬂ*ﬁf}' dﬂ:| ||x||(X,9(A)):a1’

= [+ B - D] ey, PN x, a4y, - (5.8)

"y

Hence ||w|y < o0, i.e. we X. Now, we show that lim, o+ e’ x = w. Due to
(I —A)" =27"4°G0 — A)™" + 1) and [ 2 'e dA =0, > 0, we rewrite (2.10)
as

1
e’Ax:—_J Ale”4°(A1 — 4)'x da, 1> 0.
27i )

Therefore, exploiting (5.8) and Lebesgue’s dominated convergence theorem we
derive

1 ﬂ
lim e“x = —J lim 2'e”A°(A — A)'x di = w. (5.9)
=0+ 2ni Jp =0+
Finally, let us prove w — x e [X"~1% N 40] = {0}. Using 4! € Z(X) to com-
mute A~! with the integral sign, from (2.6) and (3.1) with 0 =1 we find
1

A w = TJ 27NAT A (T — A) x d) =
i Jr

1

J AV — A 'xda =47 x,
il )¢

that is w — x € 4"(4~") = 40. Moreover, (2.7) and [, Ata—odi=0,¢&>0,
yield
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-1 _ 1 -1 _ -1 o/ _ —1
(E1—-A) M/'—_znijr;t (1 —A)" A°(M — A)” xdA
. 1 1 —1 ° -1 o -1
_—2m,Jrz (= &) A(E = ) — A2 — A) ] di
:—LJ NG =87'a0r— A 'xda, >0
27Tl r ’ '

Then

A(ET—A) ' w=¢(ET—A) 'w—w

= —LJ ANEA =& 4 1)4°(A — 4) ' da
r

27

I .
_ ij(z A - A) 'k dh, E>0.  (5.10)

Observe now that for every A" and ¢ > 0 it holds that
=&l = {le(lnl + 1" + &7 + 07}
> (E+) 2227 P&+ ), neR. (5.11)
Using (4.18) and (5.11), from (5.10) it thus follows, for every & >0 and
VE (1 _ﬁ7 1)
J4°(61 = 4wl < ))&+ 0000 Wl

o0
<2227 e5(y, p) UO (E+n) Iyt dn] 1Ml x, o)),

Hence, setting cj4 = 2'?7'¢3(y, p) and changing the variable from # to &u, we

get
476 = )l < 7|00 el (512)

Then we Xfﬂ*l"’o, for the integral on the right-hand side of (5.12) is conver-
gent for ye (1 —f,1). In conclusion, since (4.25) with (p1, p2) = (p, o0) implies

e (X,2(4)),, = XL we have w—x e [X7771% N 40] = {0}. Recalling
(5.9), this completes the proof of the strong continuity of €4 in the norm of X on
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(X,2(4)), ,, ye (1 =p,1), pell,co]. Finally, due to (4.8), the strong continuity
of ¢! in the norm of X on X}, ye (1 —p,1), pe|l, ], follows from that on
(X,2(4)), ,- The proof is complete. O

We are now ready to improve (5.2).

COROLLARY 5.3. Let A be a m. I operator satisfying (H1) with o+ f > 1
and let Yy” be as in Lemma 5.1. Then, there exists a positive constant ci5 =
cs(a, fyy, p) such that:

HetA_IHS’(Y«.";X) Scl5l‘(m+ﬁ+772)/m7 t>07 ye(2—oc—[>’,l), pe[l,OO} (513)

PrOOF. Let xe Y!, ye(2—a—p,1), pe[l, ], where Y/ e {(X,%(4))
X77}. Since (2—a—p,1) = (1 —p,1), Proposition 5.2 allows us to write

7P’

t t

(D], x dr — —J (—A) e xde, >0, (5.14)

e’Ax—x:J
0

0

From (5.3) it thus follows
t
HetAx _ XHX < |:J T(ﬁ+7—2)/0( d‘L':| ||x||Y.(’ < clsl(a+ﬁ+y—2)/o<||x||xp7 (515)
0 7 y

where ¢15 = o(e+ f + 7 — 2) '¢1o. This completes the proof. O

COROLLARY 5.4. Let A and Y! be as in Corollary 5.3. If ye (2 —a—f,1),
then

le" — el gyr.x) < 1t = )T 1> 520, pe(l o) (5.16)

Proor. The case s =0 following from Corollary 5.3 and the definition
e’ =1, it suffices to consider the case ¢ >s > 0. To this purpose, we replace
(5.14) with e“x —e“x = — [/[(—4)"]°¢™x dr, > 5> 0. Then, taking into ac-

count the inequality 1" —s" < (r —s)", v € [0, 1], the assertion follows reasoning as
in the derivation of (5.15). O

ReMARK 5.5. To show that estimate (5.3), and, consequently, (5.13) and
(5.16), does not depend on the interpolation method used in the proof of Lemma
5.1, here we provide a different proof of (5.3), in which we make use only of
definition (3.19) and estimate (4.18). First, using z(zI — A) ™' = A°(z] — A) ™' +1,
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zep(4), and [pe”di=0, we rewrite [(=4)'%e"x, >0, xe(X,2(A))
ye (0,1), pell, o], as follows

7P

[(—4)']°e"x = fzimjre”'A"(MfA)’lx da. (5.17)

Due to (4.18), from (5.17) we thus obtain

(=)' 5l < (27) ' e3(7, p) Urefwmuﬂﬂw ¥llix oy, - (5-18)

Now, recalling that |1|>¢>0 for every Ael, we have |A|<|i|+1<
(14+c¢7Y)A|, AeT. As a consequence, the following inequality holds

(A + D)7 < ep 2|7, VaeT, (5.19)

where ¢5, = (14+¢")'"77 or ¢;,=1 according that ye (0,1 —pf) or ye
[1 —B,1). Moreover, Re 2= —c(|Sm A| +1)* > —c(1+ ¢ 1)*|4|*, AeT. Then,
replacing (5.19) in (5.18) and setting ¢ = 7 'cp ,c3(7, p), we get

o0

170 _ % 1—f—
L R | R [ TN

where ¢, = ¢(1 + ¢7!)”. Finally, the transformation c,#* = s in the latter integral
yields

1(=4)"17e %]l < crex™ E(2 = B=2)/2)(ext) P72 x| . oy, s

»p

E(x), x>0, being the Euler’s gamma function.

6. Intermediate Properties of the Domains 2((—A4)")

Let 4 be a m. L. operator satisfying assumption (H1). On the basis of (5.3),
for every y € (0,1) and p € [1, o0] we now introduce the Banach spaces Z,(y, p)
defined by:

—f—y)/a 170

{@A(y,p) = {xe X : Xy, = 1EEP (=) e x| ) < o0},
X194, py = XNl x + (X2, 5, -

As we have noticed in Section 2, if A4 is single-valued and f =1 in (H1), then the

semigroup e/ is analytic in some sector containing the positive real axis. In this

case it is well-known that the spaces Z4(y, p) coincide, in the sense of equivalence
of the norms, with the real interpolation spaces (X, %(4)), , (cf. [5, Theorem 3,
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with o being replaced by 1 —y — 1/p], [27, Proposition 2.2.2] and [35, Theorem
1.14.5]). If A4 is really a m. 1. operator, i.e. {0} & 40, the things become con-
siderably worse. Indeed, contrarily to the identities [X 77N A40] = {0}, y € (0,1),
and [(X,2(4)),,NA0] = {0}, ye (1 —p,1), which we have verified in Remarks
42 and 4.6, the spaces Z4(y,p) contain A40. For (cf. (3.20)), if xe A0 =
Mo A ([(—4)"%™), then [x],,(, , = 0.

Our proof of the multivalued version of (4.26) will deeply depends on the
forthcoming Proposition 6.3, which estabilishes some inclusion relations between
the spaces (X, Z(4)), ,,
the linear subspace 40. We begin by proving the following Lemmas 6.1 and 6.2.

X7 and Z4(y, p) and exhibits the special role played by

LemmA 6.1.  For every pe p(A) and every x € X it holds that:

{re 4 (=) e Al = ) x = [ A) ey, >0, (6)

Proor. Using (3.19) with 6 =0 and 0 = 1, we rewrite the left-hand side of
(6.1) as follows

{ne™ 4 [(=4) '] e" "} A% (ul — A) "'

_[1 z)v_—1~LJ_~m«_—1 of 7 4yl
_{ZniLﬂe (Al — A) d/b+27ri r( e (Al —A)" dApA°(ul — A)” ' x

= %J (u— e (Al — A)'A°(ul — A) 'xdi, >0, xeX.
T

Then, using (2.7) and [.e” di=0, >0, and recalling (5.17), we obtain

{ue' +[(=A4)']°e" 1A% (ul — A) '
1
= —J e A°(M — A)'x — A°(ul — A)"'x] dA
27i )¢
1
- —,J A (i — A) " x di = —[(=A)' e, 1> 0, xe X.
27i Jr
This completes the proof of (6.1). O

LEmMMA 6.2. Let o and f in assumption (H1) be such that o+ f > 1 and let
xe{0}U[D4(y, p\AOL, ye (2—a—pB,1), pe[l, 0] Then

J e 7[(—4)°e"x dr = —A°(z1 — 4) 'x, VRez>0. (6.2)
0
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Proor. First, observe that, due to (3.20), if x € A0, then the left-hand
side of (6.2) is the zero element of X whereas the right-hand side reduces to
—A°(zl — A) 'x = —z(zI — A)"'x + x = x. Therefore, if x € A0, then (6.2) fails,
unless x = 0. This agrees with the identity .4/"(A4°(z] — A)~") = {0} established in
Lemma 2.1 and explains why, in general, the linear subspace 40\{0} should be
removed from Dy(y, p). Let us now show that the integral in (6.2) converges
for xe Dy(y,p), y€2—a—p,1), pe[l,o]. We have already noticed that, if
x € A0, then our integral is the zero element of X. If x e Dy(y, p)\A0, then,
denoting with p’ the conjugate exponent of p, from Holder’s inequality and the
definition of seminorm [, . , we get

r e (—A) "% x dr
0

X

[}
< | e et ar
0

e
< J e t?ReA [(B+y— 2/¢]+1/pt[(2 p—7)/o]— l/p”[( )1]0 tAx”
0

© e [ e gp)
—p't e4 + o+
<<L ’ 2 Ppm) ¥ (6.3)
Since p’/p = p’ — 1, the transformation p’t fe z = 7 leads to
J% e Pt Rez ((f+7=-2)p"/A+p" /P §y
0
= (p' Re )T IR0t f+y—2)p' ), (6.4)

where E(y), y > 0, is the Euler’s gamma function. As a consequence, from (6.3)
we obtain that for every Rez > 0 and every x € Z4(y, p)\A40, ye (2 —a—f,1),
pell, ool

r (= 4) ey dr
0

< [C17(Ot,ﬁ, yap/7§Re Z)}]/p/[x]?j/,(yﬁp) < 0. (65)
X
where ¢7(a, f,y, p’,Re z) is the constant on the right-hand side of (6.4). Let
us now prove (6.2). Clearly, if x =0, then there is nothing to prove. If
x€[Pa(y,p)\A0], ye (2—a—p,1), pe|[l,oo], then, substituting identity (6.1)
with u being replaced by z, the left-hand side of (6.2) can be rewritten as
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JOC e [(—A4)'%e"x dr = Jm e {—ze —[(—A)']%e"}4°(zT — 4) ' x dt
0 0

[ee]
= —J ze e A% (2l — A) 'x dt
0

0
_J e [(—A4)" e a°(zl — 4) ' x dr. (6.6)
0

Notice that, if x € A0, then A°(zI — A)"'x = —x € A0 and the first integral on the
right-hand side of (6.6) becomes zero in X. In fact, from Lemma 3.9 we have
A0 = (0),., A (e"). Thus, when x € 40, (6.6) reduces to [;" e *[(—4)'|°e"x dt =
— [ e [(—4)"]°e™(=x) dz = 0. On the contrary, if x ¢ 40, then Lemma 2.1
implies A°(zI — A) 'x ¢ A0 = A"((zI — A)™") and from identity (3.24) it follows
that

0
J ze e A%zl — A) 'xdr=z(zI — A) 7' A°(zl — 4)'x #0.
0

Hence, when x ¢ A0, the first integral on the right-hand side of (6.6) is different
from the zero element of X and an integration by parts yields

0
— J ze e A% (2l — A) 'x dt
0

0
= [e e A%(zl — A) ' x — J e DA%zl — A) 'x dr
0

= —A°(zI — A) 'x + J e 7[(—=4)" % A°(zI — A) ' x dr, (6.7)

0
where we have used lim,_,, e “e’4 =0, Re z > 0, which follows from estimate
(3.23) with 0 =0. Replacing (6.7) in (6.6) we finally obtain (6.2). ]

PROPOSITION 6.3.  Let A be a m. I operator satisfying (H1). Then, for every
7€ (0,1):

{X,;”" = X2 A),, = Faloyp), - pell o), (6.8)

X7 = (X, 2(4)), . = Daly, »).

7,00

Further, if o+ p>1, then for every ye(2—a—p,1) and every o€
0, (x4 B+7=2)/a)":

"Here (a+8+v—2)/a<1, since y<1<2-3.
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FNM%MMMWH@“H@QMMWPGWW7 (69)

o v—2)/o, 00
{0} U[Zu(y, 0)\AO] = X725 s (X 9(A4)) (s piyz) oo

Here {0}U[24(y, p)\AO] is a normed linear space over C endowed with the norm

|| : H@A(y,p)‘

Proor. Due to (4.8), it suffices to prove the embeddings on the right of (6.8)
and on the left of (6.9). First, let x € (X,2(4)), ., 7 € (0,1). Then from (5.3) we
have

—B—) /o 170
X247, 00) = Sllglll(2 P (—4) e X y < eIl (x, o)
>

?
7, 0

proving the second in (6.8). Now, let x € (X, %(4)), ,, 7€ (0,1), pe[l,0). We
write

[x]‘;/;(ocy,p) =h+D, (610)
where
! 1 d‘[
h= [ e et . (6.1)
0 T
- ” (2—p—ay)p/u lyo 4 P dr
h=| = (=) 1 "e ™ xlly —- (6.12)

Consider first I;. To this purpose we recall that the transformation & =t"! in

definition (4.1) leads to the following equivalent characterization of the spaces

(X.2(4)),

(X,2(4)),,={xe X : x=up(r) + ui(r),7 € (0, 0),
up € C((0,00); X),u; € C((0,0); 2(A)),
w7010 + 17 701l oy < 03 (6:13)
”x”(X.@(A))W = infyy,u {[|777uo Lyx) 7! 7| L;(,@(A))}-

So, with any pair of functions uy and u; satisfying the condition in (6.13), from
(6.11) and inequality (a+ b)” <27~'(a? +b?), a,b >0, pe[l,®), we get:

I S2p71[11‘0+1171], (6.14)

where

1
B\ p/a o 1 dz .
By = | ) Pe @ =0,
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Applying (5.5) to I; o we obtain

1
N [ de _
ho < @op)” | TP la0@IE T < @opn el (619
0
Instead, (5.4) applied to 7, ; yields:
1
- —oy o dT
Ly < (cw,o)”J L(-)p/ lar (Ol - (6.16)
0

Since (1 —oy)/o=(1—-p)+ (1 —a)/a and 1 —a >0, from (6.16) we thus find

1
~ — —a)p/o dT
I < (vaﬂ,o)pj (I=np(1=a)p/ ||ul(T)H;(A)T
0
dr _ -
— < (Ep0)’llr ]

(6.17)

1
< (e po) L Dy ()12 ! @iy

Therefore, summing up (6.14), (6.15) and (6.17) and taking the infimum over all
possible representations of the form x = ug(7) + u;(r), we have

Il S [CIS(avﬂvp)]p”x”(px,gg(A))y_pv (618)

where c5(, B, p) = 2P~V/P maxy_g | ¢, p . Consider now I, defined by (6.12).
From (5.5) and ||x|y < c2(y, p)IIxl[(x,5(4)), it follows that
? hP

7

0
I < (Cnp) Ul -l df} x4 < [619(057[>”%P)]p||x||fx,@(/1))wa (6.19)

where ci9(a, 8,7, p) = x.p.1(yp) P ea(y, p). From (6.10), (6.18) and (6.19) we
derive

[x];/l(i%lﬁ < [CZO(aaﬁ7 Vs p)}p”xllﬁ\’_g(,q))y.pa

where e 8,7, p) = {[e1s (2 B p)I” + [e19 (2, B, 7, p))'} 7. Consequently

||x||5f/1(0f%17) < CZI(OCaﬂv yvp)”x”(Xff(A)) VE (Oa 1)a PE [la OO),

N )
7P

where (o, 8,7, p) = ca(y, p) + c20(a, f, 7, p). This completes the proof of (6.8).
We now assume o+ f > 1 and prove (6.9). Let first x e {0} U[Z4(y, c0)\A40],
y€(2—oa—p,1). Then, from (6.2) and (6.5) with (z, p, p’) = (£, o0, 1) it follows
that for every & > 0:

14° (& = A) x|y < EBE(at 4y = 2) /0N, 6,0,
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where E(y), y >0, is the Euler’s gamma function. Therefore
160|217 = [|¥lly + supz XTI 40T — A) 7 x|
<max{L, E((a+f+y—2)/0)}xll 5,0, ) (6.20)

proving that xe X770/ Let us show that {0}U[Z4(y, 0)\A0], ye
(2—a—p,1), is a normed linear space over C endowed with the norm
| l,(, 00)- First, let A€ C and x € {0}U[Z4(y, 0)\A0], y € (2 —o—f,1). Then
Jx € {0}U[Z4(y, 0)\40]. For, if ix = ye A0\{0}, 1€ C\{0}, then x=1""ye
A0\{0}, which is a contradiction. Now, let xj,x; € {0} U[Z4(y, 0)\A40], y e
(2—o—p,1). Then, since x,xe X7/ dque to (6.20), we have
X1 +x € XA Erom (X970 40] = {0}, e (0,1), pell, o], it thus
follows that x; +x; € A0 only if x; +x; =0, ie. x; = —x;. Since xj+ x;
obviously belongs to Z,4(y, o), we conclude that x| + x, € {0} U [Z4(y, c0)\A40].
This completes the proof of the second of (6.9). Now, let x € {0} U [Z4(y, p)\A40],
ye(2—a—p,1), pe[l,). For every de (0,(x+ f+y—2)/a) we write

er =I5+ I, (6.21)
where

dé dg

1 w0
he| e -t n= | e - a7g g

Using (4.17) we obtain

1
L<(C1) U g-1(e 1 1) 0P dé} Il
0

1 o
p(C 1 1) U gl dé} % = en (8.6, D) |55 (6.22)

where ¢ (8,6, p) = 20-A)(C + 1)(6p) "7 As far as I, is concerned, first, using
(6.2) and (6.5) we derive for every & > 0:

14°(ET = A) x|y < eno By, p)EC* PN, (0 s

where (e, B,7, p') = (p") P E(a+ B+ 7 —2)p' /@), Then
I4 < [622(%57%17,)}]] |:J é[o+<2 wh- y/yp ldé [ ](fA( P)
1

< [623(O‘aﬂ7 %5;[7»1’/)]])[)5];%1(%,,)» (623)
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where ¢3(2, 8,7,0, p, p') = 2 (2, B, 7, P2 P[0+ B + 7 = 2 — a8) p] """, Therefore,
summing up (6.21)—(6.23) we get

[x]i/j.p < [C24(Oﬁ,ﬁ, %57P7P,)}p||x||g/1(y,’p)
where C24(Of,ﬂ, %53 D, pl) = maX{Czl (:8753 p)7 C23(Oﬁ,ﬁ, %571771’,)}- Consequently
X[y 20 = Nl + X yor < [V caa(2: 87,0, 22X 9,41, )
proving that x € Xj’p, 0€(0,(x+pf+y—2)/a). The same reasonings made before
for p = oo now show that {0} U[Z,(y, p)\A40], ye 2 —a—p,1), pe[l,0), is a

normed linear space over C endowed with the norm || - || (, ,)- This completes
the proof. O

REMARK 6.4. We stress that {0} U[Z4(y,p)\A0], ye(2—a—f,1), pe
[1,00], is, in general, only a normed linear space over C endowed with the
norm |+ |lg, ., » of Za(y,p), but it may not be a Banach space. For, due to
A" e #(X), the linear subspace A0 is closed on? X and hence Z4(y, p)\A40 is,
in general, only an open subset of Z4(y, p).

REMARK 6.5. Observe that from the second in (6.8) and the property
(X 77N A0] = {0}, o€ (0,1), pe[l, o], we get X;” = {0} U[Dy(y,0)\40], y e
(0,1). Therefore, in the special case f = 1, this latter inclusion combined with the
second in (6.9) yields X ” = {0} U[Z4(y, 0)\40] in the sense of equivalence of
the respective norms.

We can now prove our main theorems.

THEOREM 6.6. Let A be a m. I operator satisfying (H1) with o e (1/2,1] and
pe(1/2,a]. Then, for every 0 € C such that Re 0 (1 —p,[) it holds that

D(A) = X0 < g((-4)"), X% < {0V U[2((-4)")\40].  (6.24)

Proor. We introduce the single-valued linear operator

[(—4)")° = _ijr(_z)“*ww —A)7"da, ReOe(1-8p),

2mi (6.25)

(=) = X",

2In fact, if {x,},cn C 40 is such that x, —x in X, then from A~!€ £(X) it follows that
0=A""x, — A 'x. Hence, A~'x =0 or, equivalently, x € 40.
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where Z([(—4)"°) is endowed with the graph norm 1%l 2 ayrey = My +
I[(=4)?]°x||y. We shall prove that, if xeXfeO’l, then x = (—A)"’y where
y=[(=A4)"°x, yielding xe 2((—4)"") = %((-A4)"). The embeddings and the
inclusion in (6.24) will then follow from Remarks 4.2 and 4.5, and inequality
(6.31) below. We first show that [(—4)”]° is well defined on X °*'. To this
purpose, using Cauchy’s theorem, we deform the infinite branches I', and T'_
of T' into the upper and lower sides of the positive real axis, respectively. That
is T, - T, where Ty ={zeC:z=¢+1i0,¢€(0,00)}. Therefore, since for
RelOe(1—p,f) we have (—i)" ' =el@Dlosl-4) — |77 1e¥0-Dmi e, we
obtain

_ e(0-1)mi ?(91)”’]@ 0T g0 T — 4) ' de
27i 0
o J: &ATEr - ) de, (6.26)
As a consequence
NP xlly < 77 PO s < o0, Ve XEOL (6.27)

Now, the map 4 e p(A4) — (=2)""'4°(J1 — 4)"" € #(X) being holomorphic, we
replace the contour ' in (6.25) with the contour I’ parametrized by u=
(gl + 1D)*+in, neR, ¢ €(0,c). Then, using (2.7) and (3.1), for every
xe X% Rebe(1-pp), we find

_ (ﬁﬁr/(_ﬂ)“m(ﬂz — a4 [(JF(_z)"(z —u)! di) x] du. (6.28)
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After having enclosed I' and I’ on the left with an arc of the circle
{zeC:|z4+ | =R}, R>c— ¢, we apply the residue theorem and we let R go
to infinity. Since '’ lies to the right of ', the same computations as in [32, pp. 547,
548] yield [0 (—p)" " (u—2) " du=2mi(=2)"" and [ (=) (A —w) ' dr=0.
Hence, from (6.28) we get

(=) (=)o x = _Z_Jr FUACGI - A) ' dh, Vxe X0 (629)

Since x € Xf"’ 0l (x, D(A))pe 91> Re 0 € (1 — B, ), the right-hand side of (6.29)
is precisely the element w defined by (5.7) with (y, p) = (Re 0, 1). Therefore, the
same proof as that in Proposition 5.2 shows w — x e [X 1 *7#~1 1 40] = {0} and
(6.28) reduces to

()= °x=x, Vxex ol (6.30)

Then x e 2((—A4)™") = 2((—4)°) for every xe X" Re O e (1 —p,p), show-
ing that the inclusion Xfeal = 9((—4)"), Re 0 (1 — B,p), holds. Also, (6.30)
implies [(—A4)"°x e (—4)"x, xerfe %1 meaning that [(—4)’]° is a section of
(—A)0|Xjeeo.1. Thus, for every x e Xj% 1 from (6.27) we deduce

. 00 -1,
¥l = 06, oyl < =) Pl < 22l nr, (631)

completing the proof of Xfe OV g((—4)"), ReOe (1 —p,p). Finally (6.24)
follows from Z(A4) — X[’, p € (0,5), pe[l, ] and [X " N A0] = {0}, p € (0,1),
pell, ol O

REMARK 6.7. Due to (6.26) and Remark 4.1, if 4 is a single-valued densely
defined linear operator satisfying (H1) with f =1, then the fractional power
(—A4)?, Re 0 (0,1), is just the closure of [(—A)H]c’ (cf. [24, Section 2] and
[35, Subsection 1.15.1]).

REMARK 6.8. The change of variable ¢ = ¢~! in the right-hand side of (6.26)
yields

R sin(6r) [*© _ _
() x =200 [ty dt, ()= - - )
showing that [(—A4)”]° coincides with the operator Fy(—A4) in [1, p. 166]. As-
suming f =1 and considering only fractional powers with real exponents, in [1]
it is proved Z2(4) € 2(F,(—4)) = 2((-4)%), 0€(0,1), where D(Fy(—4)) =



Fractional powers and interpolation theory 303

{x: [ 7% A4x|ydr < oo} The transformation ¢ '=¢ thus shows that
9D(Fy(—A)) is just X! and the result in [1] may be restated as Z(4) = Xj"l
2((—A)"), 0 (0,1). Of course, even in a weaker form, this inclusion agrees with
(6.24) for f =1 and 0 € R. The main problem in [1] is that 2(&,(—A4)) is not
characterized in terms of interpolation spaces. We mean, differently from what
follows from Proposition 4.3 with =1, in [1] the domain Z(&,(—4)) = Xg’l is
not recovered to be just the interpolation space (X,Z(4)), .

THEOREM 6.9. Let A be a m. I operator satisfying (H1) with a+f > L.
Then, for every 0 e C such that Re 0 € (2 —a— f,1) it holds that

{0} UZ((—A) N\AO] o e e, (6.32)
Here {0}U[2((—A)")\A0] is a normed linear space over C with the norm

[N g

ProOOF. Due to the second embedding in (6.9) it suffices to show that
((—A)") — D4(Re 0,0), ReOe(2—a—p,1). Let xeP((—4)") and take
ye(—A4)’x. Then, since 1 —f<2—o—p and x = (—4) "y, using (3.21) and
(3.23) we obtain

(=) 17 el = (=)' """ Pl < Epamot P02 ]|y (6.33)
Estimate (6.33) implies

o e 0,0) < Cxpi-oll vy, ¥y e (=4)"x. (6.34)

In addition, if x € Z((—4)"), then

el = =AWy < W=D Mg lIylly, Yre(=4)'x  (635)

Finally, taking the infimum with respect to y € (—A4)’x, from (6.34) and (6.35) we
get

¥l (re 0,0 = 1611 + ¥ e 0,000 < (=) ) + €pr-0)lI¥ll gy,

proving 2((—A)%) — @,4(Re 0, 0), Re 0 e (2— o — p,1). Finally, the same rea-
sonings made below (6.20), but with {0} U[Z4(y, ©0)\40] being replaced with
{0} U [2((—4)")\40], show that {0} U [Z((—4)")\40], Refe (2—oa—p,1), is a
normed linear space over C endowed with the norm || - H@((_ 4y7)- This completes
the proof. |
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The following Theorem 6.10 generalizes (4.26) to multivalued linear operators
satisfying (H1) and having not necessarily dense domain.

THEOREM 6.10. Let A be a m. I operator satisfying (H1) with a€(2/3,1]
and p e (1 —a/2,a]. Then, for every 0 € C such that Re 0 € (2 — o — f5,p) it holds
that

@(A) PN Xj%().l AR {O}U [@((_A)o)\AO] < X/(196+/3+§R6072)/9<.00. (636)

Here {0YU[2((—A4)")\AO0] is a normed linear space over C with the norm
Ny

Proor. First, our assumptions on « and £ imply fe(1/2,0] and o+ f >
14+ a/2>1, so that the assumptions of Theorems 6.6 and 6.9 are satisfied.
Moreover, since f>1-—o/2 and 1—-f<2—o—p, the choice Rele
(2 —a—f,f) makes sense and satisfy the requirements for Re @ in both the
quoted theorems. Therefore, (6.36) follows from (6.24) and (6.32), where the
inclusion in (6.24) now becomes just an embedding due to (6.31). O

REMARK 6.11. Of course, if 4 is single-valued, densely defined, and f =1,
then (6.36) coincides with embedding (4.26) proved in [24], [25] and [35]. More-
over, if A is multivalued and f = 1, then (6.36) refines the result in [1] mentioned
in Remark 6.8.

7. On the Behaviour of ¢’/ with Respect to Z((—A)")

Here we study the behaviour of the operators [(—A4)"]°¢', Re 0 >0, ¢ > 0,
defined by (3.19) with respect to the domains Z((—4)"), Rey > 1—f, of the
fractional powers (—A)” of —A. Throughout this section 4 will be a m. I
operator in X satisfying (H1).

LemMa 7.1. Let [(—A)"]°, Reye (1 —B,B), pe(1/2,a], ae(1/2,1], be the
operator defined by (6.25), and let [(—A)"]°e™, Re 0 > 0, t > 0, be the operators
defined by (3.19). Then, for every x € X it holds that

(=) ([(=4)"]7e"x) = [(=4)"")%e"x. (7.1)

ProOF. Let xe X and Reye (1l —f,p). First, from [8, Lemma 3.1] and
Remark 4.5 we have [(—4)?]°¢"x € 2(4) — X[°”' and we can apply [(—4)’]°
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to [(—A4)"°e™4x. Replacing the contour I in (3.19) with the contour I'" defined
in the proof of Theorem 6.6 and using (2.8), for every >0 we find

=—(=—=] | 0" (~wle™a°(i —A) " (ul — A) ' x du| da
() S, |
<21M>ZJF(A)VIA°(M —A)™! [<Jrr(ﬂ)"ew(ﬂ - dﬂ> x} di

(o (Lo o)

Since I" lies to the right of T, the residue theorem implies [ (—x) Oe’/‘( w— /1)71 du
= 2ni(—7)%" and [(—2)""'(4—u)"" d2 = 0. Therefore

[(—A))°([(—4)"] e ) = —ijr<—z>f+9*1e~‘~mw A di

2mi
1 .
- _%J (=2)"T 0 e (A — 4)™" = Ix dA
r
1 y+0 1)1 -1 ]
=5 (=) (Al — A)” x dA. (7.2)
r

Here in the latter equality we have used [.(—4)"""'e" di =0 for every 7> 0,
which follows from the Cauchy’s formula after having enclosed I' on the left
with an arc of the circle {ze C:|z+¢| =R}, R>0, and then letting R to
infinity. The right-hand side of (7.2) being precisely [(—4)”"]°¢!4x, the proof is
complete. |

REMARK 7.2. In particular, (7.1) with 6 =0 shows that at least for Re y e
(1 —B,pB) the operator [(—4)"]°e’! defined by (3.19) is just the product of the
section [(—A4)”]° of (—A)”| 1 with the semigroup e’
A

PrOPOSITION 7.3. Let o, f§, v and 0 be as in Lemma 7.1. Then, there exists a
positive constant c¢s = ca5(a, B,7,0) such that the following estimate holds
[(=A) 1 | gyag(oayy < costPRETRON2 > 0, (7.3)

PROOF. Let x € X. Then, since [(—4)"]°e"x € Z(4) — X" — g((-A4)),
>0, Re0 >0, Reye(l—p,p), from the fact that [(—4)’]° is a section of



306 Alberto Favaron and Angelo Favini

(—=A)"|#es1 using identity (7.1) and estimates (3.23) we get
A
070 070 ~ —Re y—Re O—
(=) Xl gy < W(=A) T xlly < o pror 7RV

The proof is complete. O

As a corollary we have that, if ¢ is bounded away from zero, then for every

o€ (0,1) the operator function ¢ — [(—A)e]c’e”‘ is o-Holder continuous with
values in Z(X;2((—A4)")).

COROLLARY 7.4. Let o, f, y and 6 be as in Lemma 7.1. Then, for every
g€ (0,1) and 0 < s <t the following estimate holds where ¢y = o Less:

”[(_A)@]OetA _ [(_A)H]OCSA||g)(X;gz((_A)"')) < Czés(oHrﬂ*?Re y—Ne 0727050)/“([ _ S)”. (74)
Proor. It is shown in [8, formula (22)] that
t
[(—A) e — [(—4)")°e = _J [(—A) " Peétde, 0<s<t  (1.5)

Consequently, for every o € (0, 1), using (7.3) with @ being replaced by 6 + 1 and
the well-known inequality 7 —s? < (1 — ), from (7.5) it follows that

t

(=) 7e = (=) | g, 0 -ayry) < C25J glpRey=Re0=2)/ gz

s
I3

< 025s(oz+,b’—§Re y—Re 0—-2—o0) /o J éa—l df
s

< 0_—1C25S(a+ﬁ—§te y—Re H—Z—m)/x(t _ S)J.

This completes the proof of (7.4). ]

REMARK 7.5. Proposition 7.3 and Corollary 7.4 show that, if a e (1/2,1],
Be(1/2,4], then the operators [(—A4)?|°e', considered from X to Z((—A)"),
Re ye (1 —p,p), behave like when they are considered as operators from X to
the interpolation spaces (X,%(4)), ,, y€(0,1), pe[l,o]. Indeed (cf. [8, for-
mulae (19) and (21)]), for every 0 <s < ¢ the following estimate hold with

1

c1 = c7(a, f,7,0,p) >0 and c3 =0~ ' a7

070 —y—9 —1)/a
(=41 Nl o (x. ox, 24 )= eopt PrrmRe 0=, (7.6)

7

070 070 o4-f—y— _2— o
(=) 7e™ — (=) | g, x. aay, ) < coss @702 (1 — )7 (7.7)
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We stress that (7.6) is derived in [8] by means of interpolation techniques that can
not be employed for the derivation of (7.3). For, due to (3.11) and Proposition
3.3, the domains Z((—A4)"), Reye (1 —p,p), are in general only intermediate
spaces between X and 2(A4), but may be not real interpolation spaces. Here, the
key role in the derivation of (7.3) is played by Lemma 7.1 and the property of
[(—4)"]° to be a section of (—A)y|X;reey,1.

Due to Proposition 7.3, Corollary 7.4 and Remark 7.5 we can extend the
results in [8, Section 4], replacing there the interpolation spaces (X, %(4)), ,,
7€ (0,1), pe|l,o0] with the domains Z((—4)"), Reye (1 —B,B), of the frac-
tional powers (—A4)” of —A. We warn that this is not a trivial extension, for, in
general, the space (X, Z(4))y,, , and %((—A)") are not comparable. At the best
(cf. (1.2) and (4.2)), when A is single-valued and f = 1, it is only known that for
Reye(0,1) the spaces (X,Z(A4))p, ,» pe(l,0), and Z((~4)") are interme-
diate spaces between (X, %(A4))y,, ,, and (X, 2(4))g,, ;-

From now on, given a complex Banach space (Z,|-|,), C([0,T];Z) =
C%([0,T];Z) and C°([0,T];Z), 5 e (0,1), T >0, denote, respectively, the spaces
of all continuous and d-Holder continuous functions from [0, 7] into Z endowed
with the usual norms

ol gl [Pl i 5=0.
Heworyz) = W02 = \igllo 7.z + 19ls. 7.z i 5 € (0,1),

where lgls 7.z = SuPocscrer(t — ) Olg(t) — gl . Moreover, we st
C19([0, T1; Z2) = {g € C(0, T Z) : Dig e C(10, T Z)}, 6.€ [0, 1), and gl 7.
= |lgllo. 7.z + ID:gll5 7. ,- Through the rest of the paper, given o€ (0,1], f € (0,4],
yeCandoe (0,1), ¢;(T), j=29,..., denote positive nondecreasing functions of
T depending on «, f, y and o.

LemMMA 7.6. Let 2004+ 2f > 3. Then, for every Reye (1 — 20+ —2) and
g€ (0,2u+p—Rey—2)/a) the linear operator
t
Q) = | e g de, re o7, (78)
0
maps C([0,T); X) into C°([0,T];2((—A)")) and satisfies the estimate:

1019lly. 7.7y < TEHFRET22 209 (T) g, 7, - (7.9)

Proor. Due to Proposition 7.3 and Corollary 7.4 the proof is the same as
that of [8, Lemma 4.1]. To this purpose it suffices to replace in that proof
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y€(0,20+4-2), 20+ p>2, and (X,2(4)),, with Reye (1 —,2u+f-2),
20+ 28 > 3, and Z((—A)"), respectively, and to use estimates (7.3) and (7.4) with
0 =0 in place of (7.6) and (7.7) with 8 = 0. ¢x9(7) is given by [8, formula (27)],
replacing there y and ¢ = ¢p7 with fe y and c¢ys. O

Lemma 7.7. Let a+28>2 and let xe 2((—A)?), Repe (3 —a—26,1].
Then, for every Reye(l—pfa+pf+Rep—2) and oe(0,(a+pf—Rey+
Re ¢ — 2) /o] it holds that e“xe C°([0,T); 2((—A)")) with

el 7oy < so(T) Il aye- (7.10)

ProOF. Let xe Z((—A4)), Repe (3—a—28,1] = (2(1 —p),1], and let y e
(—A4)?x be arbitrary. Then, since x = (—A4) ?y and (cf. [12, Theorem 3.3]) e is
strongly continuous on 2((—A4)?) in the norm of X, using (3.21) we find

t t

[(—A) e (—a) 7y d& = — J [(—A)'7]°ey de.

e’Ax—x:—J
0

0

Thus, when Reye(l-f,a+f+Rep—-2)c(1-F,F+Rep—-1)<=(1-4,0),
estimate (7.3) with 6 =1 — ¢ yields

t
llex = Xllg(—ay) < Csz IR ey dé < o7t eas|yllx?, (710)
0

where o= (¢ + f — Re y + Re ¢ — 2) /o > 0. Passing to the infimum with respect
to ye (—A4)’x, from (7.11) it follows that:

e x — x

() < 0 easlxll gy (7.12)

Now, from (3.12) with (61,6,) = (p,y) we have Z((—A4)") — 2((—A)"), so that,
for every ¢ €0, 7], from (7.12) we get

||CIAX||5;((7A)>‘) < le™x - Xg—ayy + Xl o—ayry < E30@lxlg—ayey,  (7-13)

where ¢30(1) = 0 cast? + ||(—A)7(V’7y>||y(X). Now, let g€ (0,0] and® 0<s<
t < T. Then, reasoning as in the derivation of (7.11), for every ye (—4)’x we
obtain

t
s l—pyo ¢ —
lex —e AXH@((—A)"’) = J I[(=4)""] egAJ’H@((fA)‘/) d¢ < o7lers|yll (1 = 9)°.
S

3Since o € (0,0] and €™ =1, the case s =0 follows from (7.12).
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Therefore, as in (7.12), from the latter inequality it follows that
||etA.x — eSAXH?j((_A)}’) < Q71C25T970||X||g((_[4>¢)(t — S)a-. (714)

From (7.13) and (7.14) we deduce (7.10) with c30(T) = é30(T) + 0 'eas T2
O

REMARK 7.8. A result similar to Lemma 7.7 is shown in [8, Lemma 4.3], but
with xe 2((—4)7), Repe (3 —a—2p,1], Reye (1 —-f,a+f+Rep—2) and
9((—A)") being replaced, respectively, by x € Z((—4)")N X', pe (2 —a—B,p),
ye€(0,04+B+¢—2) and (X,2(4)),,, pel[l,o]. In fact, at the time of [8],
inclusion (6.24) and embedding (6.36) were not known. Now, with the result
of this paper we can conclude that the intersection Z((—4)")NX!', ¢pe
(2—o0—p,p), in [8, Lemma 4.3] reduces to Xj’l. Consequently, all the results in
[8, Sections 5 and 6] can be restated replacing that intersection with X/‘f’l.

REMARK 7.9. Since from Proposition 3.3 we have Z(4) — 2((—A4)%),
Re p e (1 —p,p), if we want to ensure that the element x in Lemma 7.7 may not
belong to Z(A), i.e. that is less regular, we have to take Re p € (3 — o — 28, f8).
Of course, this can be made, but provided that the more restrictive assumption
o+ 3f > 3 is satisfied. When we shall consider applications in Section 8 it will be
clearer the importance of being permitted to take x in a space bigger than Z(4)
(cf. Theorems 8.1 and 8.2 with x =uy and x = gj).

LemMa 7.10. Let 2a+2f >3. Then, for every pe((3—a—28)/a,l),
Reye(l—pfapu+o+p—2) and o€ (0,(ou+o+p—Rey—2)/a), the linear
operator

[02/1(1) = e"[f (1) = £(0)], re€]0,T], (7.15)

maps C*([0,T]; X) into C°([0,T);2((—A)")) and satisfies the estimate:

|| Q2f||a, T:9((—4)") < T(eerHﬂ*?Re y*2faco)/acC3l (T)|f|ﬂ, Tix- (716)

ProoF. Due to Proposition 7.3 and Corollary 7.4 the proof is the same
as that of [8, Lemma 4.4], except for replacing there pue (2 —a—p)/o,l),
204+4>2, ye(0,o0u+a+f~2) and (X,2(A4)), , with pe ((3—a—28)/x,1),
20428 >3, Reye (1 —p,ou+oa+f—2) and Z((—A)”), respectively, and for
using (7.3) and (7.4) with 8 =0 in place of (7.6) and (7.7) with 8 = 0. ¢3(7T) is
given by [8, formula (44)] with ¢; being replaced by cys. O
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Lemma 7.11. Let 3u+28>4. Then, for every ue((4—20—2p)/a,1),
Reye (1 —p,au+20+p—3) and o€ (0, (ou+ 20+ —Rey—3)/a), the linear
operator

t

[03/1(2) := —J (=)' 1711 (&) - ()] d¢, 1€]0,T), (7.17)

0

maps C*([0,T]; X) into C?([0,T);2((—A)")) and satisfies the estimate:
1O3 S o 7:7((—ayry < TR ey (T) | £, 7, - (7.18)

Proor. Due to Proposition 7.3 and Corollary 7.4 the proof is the same as
that of [8, Lemma 4.5] where the notation —A4°e(~94 is used for [(—A4)']%e(~94.
To this purpose it suffices to repeat the computations of that proof, except for
replacing there pe ((3 —20—f)/a,1), 3u+p>3, ye(0,ap+ 200+ —3) and
(X,2(4)),, with pe((4—20—-2p)/o,1), 3u+28>4, Reye(l —pfou+2u+
B —3) and 2((—A)"), respectively, and for using (7.3) and (7.4) with 6 =1 in
place of (7.6) and (7.7) with 0 = 1. Here c3(7) is given by [8, formula (53)], with
y and ¢; being replaced with Re y and c;s. OJ

As we have seen in the proofs of Lemmas 7.6, 7.10 and 7.11, to extend
[8, Lemmas 4.1, 4.4 and 4.5] to the case in which the space C°([0, T]; Z2((—A4)"))
is considered in place of C7([0,T]; (X, %(4)), ,)
assumptions on the pair (o, ) and to restrict the admissible subinterval of (0, 1)

we have to assume stronger

in which g may varies. This is due to the fact that now we have to use estimates
(7.3) and (7.4) which requires Re y € (1 — f,f), instead of (7.6) and (7.7) where
y may vary in the whole (0,1). In particular, since in all the Lemmas 7.6,
7.10 and 7.11 the right extreme points of the admissible intervals for fe y are
less or equal than f, it is just the condition fey > 1 — f which forces us to
strengthen the assumptions on the triplet («,f,4) in the corresponding results
of [8].

8. Applications

Let A be a m. 1. operator in X having domain 2(A4) and satisfying (H1). We
shall use the results of Section 6 to provide maximal time regularity with respect
to the domains of the fractional powers of —A for the strict solution u to the
multivalued evolution problem

Du(t) € Au(t) + £(1), t€(0,T], u(0)= up, (8.1)
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where f e C([0,T];X) and uy € X are given. We recall that, according to [12,
p. 53], a strict solution to (8.1) is a function u € C'((0, T]; X) such that u(t) € Z(A)
for every ¢ e (0, 7] and u satisfies (8.1) where the initial condition is understood
in the sense of the seminorm p4(-) = |[|[47" - ||y, that is lim, o+ p(u(t) —uo) = 0.
The strict solution is said to be a classical solution if ue C([0,T];X), that is
limy—o+ ||u(2) — uo||y = 0.

THEOREM 8.1. Let 2u+28 >3, let upe 2((—A)”), Repe (3 —a—2p,a),
and let e CF0,T); X), ue((2—oa—p)/a,1). Then, for every Reye (1—p,
a+pf+Rep—2) and ce(0,(a+p—Rey+ Rep—2)/a] problem (8.1) has a
unique classical solution ue C°([0,T]; 2((—A)")). Moreover, the following esti-
mate holds

lellg, 7.~y < e30(T)utollypyey + TEHFRT222 g (T) | fllg, 7y (8:2)

Proor. First, since 20+ f >3 —f =2, our choice for u makes sense.
Now, when fe CA[0,T);X), ue((2—a—p)/a1), and ug e 2((—A4)?), Repe
3—a—2p,0) = (1—p,1), from [12, Theorem 3.7 and Remark p. 54] it follows
that problem (8.1) admits a unique classical solution. In particular, the following
representation holds:

u(t) =eug + [01f1(1), €0, T], (8.3)
0, being defined by (7.8). Now, observe that Re ¢ < « implies
Reye(l—PBa+f+Rep—-2) = (1—-p20+F-2),
ge(0,(a+p—Rey+Rep—2)/0] (0, 204+ —Re y—2)/a),

so that we are in position to apply both Lemmas 7.6 and 7.7. Hence Q;f and
e“uy belong to C?([0,T];2((—A)")) and the same belonging is true for u by
virtue of (8.3). Estimate (8.2) finally follows from (7.9), (7.10) and (8.3). [

We now come to the main maximal regularity result of the section.

THEOREM 8.2. Let 3a+2f>4 and let feCH[0,T];X), ne((4—2a
—2B)/a, 1). Further, let uye P(A) and assume there exists u; € Auy such that
ur+ £(0) =:1goe 2((—-4)"), Repe(3—a—2B,au+a—1). Then, for every
Reye(l—Pa+f+Rep—2) and e (0,(x+—Rey+Rep—2)/a] problem
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(8.1) has a unique classical solution ue C'*°([0,T); Z((—A)")). Moreover, the
following estimate holds

1Dl g, 7,07y < €30(T)Igo0ll a7y

4 Tt 2a+f—Re y—3—0<<7)/°<c33(7“)|f‘ﬂ’T;X7 (8.4)

where c33(T) = TU=2/%c31(T) + ¢3(T).

Proor. Let us denote with 7,4, IL.g, ZI.p, and I,z,, the intervals
((4-20—-2f)/a,1), (B—o—-2Bou+a—-1), (I1-pa+f+Rep—2) and
(0,(x+p—Rey+RNep—2)/a], respectively. Then, since pel,p< ((2—«
—p)/a, 1) and uge 2(A4) — 2((—A)?), Repel,p, < (3 —a—2p0), Theorem
8.1 applies and for every Reyel, 3, and g€, 4, , problem (8.1) has a unique
classical solution ue C?([0, T]; Z((—A)")) satisfying (8.2). Moreover, differenti-
ating (8.3) with respect to ¢ and using go e %((—A4)"), it turns out that the
derivative of the solution is given by (cf. [12, Remark p. 55])

Dau(t) = g0 +[Q2f1(1) + [03/1(1), 1€ (0,T), (8.5)

0, and Q3 being defined by (7.15) and (7.17), respectively. Now, Re p € I, 5 ,,
implies

Lo < (1 =Bop+20+p=3) = (1 =B au+o+f-2),
Lo < (0, (ot + 204 f —Re y = 3) /) < (0, (o + 0+ f = Re y = 2) /1),

and the assumptions in all of Lemmas 7.7, 7.10 and 7.11 are satisfied when
Reyel,p, and o€l p,, It then follows that for every Reyel, s, and
gel,p,, €190 and Q;f, j=2,3, belong to C?([0,T);2((—A)”)). Of course,
due to (8.5), the same belonging holds for D,u. In particular, by setting D,u(0) =
go € Aug + f(0), we have lim, o+ || Du(r) — Du(0)||g (4 =0 and the equation
in (8.1) is satisfied even at t = 0. Finally, estimates (7.10), (7.16) and (7.18) yield
(8.4), and the proof is complete. O

REMARK 8.3. Notice that 3u+2f >4 and f < « yield f e (2 — (3%)/2,0], so
that o € (4/5, 1]. In particular, if o =1, then fe (1/2,1], ue (2(1 =f),1), Regpe
2(1 =p),un), Reye(l—p,f+Rep—1) and o € (0,5 — Re y + Ne ¢ — 1]. Hence,
in the optimal case (o, f) = (1, 1), we have € (0,1), Re ¢ € (0, u), Re y € (0, Re ¢),
g e (0,—Re y+ Re g].
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REMARK 8.4. The peculiar feature of both Theorems 8.1 and 8.2 is that they
exhibit a sort prevalence for the space regularity. We mean, the larger is the real
part of the parameter y in the domain Z((—A)") where we look for the space
regularity, the smaller is the corresponding interval where the Holder exponent o
of regularity in time may vary.

Theorem 8.2 enable us to treat questions of maximal regularity for the
problem

D(Mu(t)) = Lo(t) + £(£), te(0,T], Muv(0) = up, (8.6)

where M and L are two single-valued closed linear operators from X to itself
whose domains satisfy 2(L) < 2(M). We allow M to have no bounded
inverse, so that, in general, M~! is the m. 1. operator in X defined by M~y =
{(xeZ(M):y=Mx}, ye Z(M~")=#(M). As a consequence, problem (8.6)
may have a degeneration in the time derivative and for this reason is called
degenerate. Clearly, if M = I, then problem (8.6) is non-degenerate and for this
particular case the question of maximal regularity is nowadays well-known (see
[27] and the references therein).

We recall that the M-modified resolvent set p,, (L) of L is the set of all
zeC such that Z2(zM — L) = X and (zM — L) ' € #(X). It is shown in [12,
Theorem 1.14] that

pu(L) S p(LM™"Y) and MM — L)' = (zI — LM )", zepy,(L). (8.7)
With the notion of M-modified resolvent set of L at hand, we assume:

(H2) py (L) contains a region X,={zeC:Rez>—c(|Smz|+1)7
SmzeR}, ae(0,1], ¢ > 0, and for some f e (0,a] and C > 0 it holds
that:

IMOM = L) gy < CUA+1) 7P, VieZ,

Let 4 be the (possibly) m. 1. operator LM~'. Then (cf. (2.1) with (A4}, 4;) =
(L, M)

D(A)={uea(M"): 2(L)YN M 'u# &}
= {ue R(M) : there exists ve Z(L) such that ve M~'u}
={ueRZM):u= Mv for some ve P(L)} = M(Z(L)),

Au=\J, oynpr, Lo ={Lv:ve Z(L) such that u= Mv}, ueZ(A).

(8.8)

Of course, due to (8.7), assumption (H2) implies that 4 fulfills assumption (H1)
and hence that it generates a semigroup {e’},_, defined by (2.10) and satisfying
(2.12), (3.20), (3.22) and (3.23). The m. 1. operator A naturally appears when we
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rewrite (8.6) into an equivalent non-degenerate form. In fact, changing the
unknown function to u = Mv, problem (8.6) turns out to be completely equivalent
to the multivalued evolution problem (8.1) with 4 defined by (8.8). By virtue of
this equivalence between, we then say that a function ve C((0,T];2(L)) is a
strict (respectively, classical) solution to (8.6) if u = Mv is a strict (respectively,
classical) solution to (8.1) with 4 = LM~

To our knowledge, under assumption (H2), the first results of time regularity
for the strict solutions to (8.6) are [10, Theorem 9] and [12, Theorem 3.26]. In
particular, the quoted results show that, unless f = 1, the time regularity of D,Mv
decreases with respect to that of f. Precisely, if f € C#([0,T]; X), ue (2—a—p)/
a, 1), 20+ f>2, and uy = Mvy, where vo e Z(L) satisfies Lvg + f(0) e X7,
y=o’u+ (2—a—p)(1—a), then DMve C*'([0,T);X), v=ou-+a+p—2.

Concerning space regularity, instead, the first result is that given in
[10, Theorem 5], but only for f=1 in (H2). In this case sz’Wm =
(ML™Y)| ) has an inverse 7 ' which is the generator of an analytic semi-
group in Q(—A) Let P the projection operator onto .4/ (4~') = A0 and assume
feC([0,T];X) and (I —P)Lvge X%, where ye(0,1) and wuy = Muvy, vo €
Z2(L). Then in [10, Theorem 5] it is shown that D,Mv is bounded from [0, T
to X777 provided that (1 —P)f is.

Recently, the results in [10] and [12] have been improved in [8, Theorem 5.3].
There, under assumption (H2) and without invoking any projection operator, an
optimal ““cross” regularity results is established, in which regularity in both time
and space is provided for Mv and D,Mv. Precisely, let fe (1 —a/2,20— 1],
ae (4/5,1], and let f e C*([0,T); X), ue (3 —20—B)/o, (1 + — ) /o). Assume
uy = Mvy € Z(A), where vy € Z(L) is such that Lvy + f(0) € X:f’l, pe2—a—p,
au+o—1). Then, for every ye (0,0 +f+¢9—2), e (0,(a+f—y+¢—2)/d
and p e [l, o], problem (8.6) has a unique classical solution v such that Mv e
([0, T (X, 2(4)),,,)-

Since X' = {0} U[2((—A4)?)\A40] for ¢ € (1 —B,p), [8, Theorem 5.3] is not
applicable if Lvg + f(0) € 2((—A4)?)\X?'. It is in this case that Theorem 8.2
turns out to be particularly useful, allowing us to prove time and space regularity
for the solutions to (8.6) even when the data are less smooth than what is
required in [8]. The only main difference is that now the space regularity is
established with respect to the domains ((—4)”) and no more with respect to
the interpolation spaces (X, Z(4)), .

THEOREM 8.5. Let (H2) be satisfied with 3o+ 2f > 4 and let [ € C*(]0, T]; X),
we ((4 =20 —2pB)/a,1). Further, A being the m. L operator LM~ defined by
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(8.8), let uy= Mvye Z(A) where voe Z(L) is such that Lvy+ f(0) =:¢o €
9((—A4)?), Repe (3 —o—2B,o0u+ o —1). Then, for every Reye (1 —p,a+ f+
Rep—2) and o€ (0,(a+pf—Rey+Rep—2)/a] problem (8.6) has a unique
classical solution v such that u= Mv e C'*7([0, T]; 2((—A)")). Moreover, estimate
(8.4) holds for D,u = D,Muv.

Proor. It suffices to rewrite problem (8.6) into the equivalent non-
degenerate multivalued form (8.1) with (u,4) = (Mv,LM~"') and to apply
Theorem 8.2 with u; = Lvg € Auy. O

We now apply Theorem 8.5 to a concrete case deeply investigated in [10]—
[12]. Let Q = R” be a bounded region with a smooth boundary 0Q and consider
the problem:

{D,(m(x)v(t7 X)) = L(x; Dy)v(t, x) + f(t,x), (t,x) € (0,T] x Q, (8.9)

o(t,x) =0, (£,x)e(0,T] x3Q, m(x)v(0,x) =uy(x), xeQ.

Here m(x) >0, f(z,x) and uy(x) are three given functions whose regularity will
be specified later, while L(x; Dy) = 37", Dy,(ai j(x)Dy,) — ao(x). The coefficients
a;; and ag of L(x;D,) are assumed to satisfy the following properties:

aij=a,;€C(Q), i,j=1,....,n, apeC(Q), ao(x)=v, VxeQ,
el < Z;i:l a;;(X)&¢ < vlé’, V(x, &) e Qx R,

vk, k=1,2,3, being three positive constants. Of course, problem (8.9) can be
reformulated in an abstract way as a problem of type (8.6), in which M is the
multiplication operator by the function m and L is L(x;D,) with Dirichlet
boundary conditions. To this purpose, we take X = L,(Q), ¢ € [1, co], endowed
with the standard norm || - ||,. The operator L is then defined by

I(L) = WHQ)NWHQ), Lu=L(x;Du, ue%(L). (8.10)

Here (cf. [17, Chapter 7)), W;(Q), ke NU{0}, ¢ €[l, 0], is the usual Sobolev
space endowed with the norm || - ||, ((W[?(Q)7 - 1lo.q) = (LULQ), - [|,)), whereas
WZI‘(Q) denotes the completion of Cj°(€) in qu(Q), Cy (Q) being the set of all
complex-valued infinitely differentiable functions defined over Q with compact
support. Assume now m e L, (Q), so that M € £(X), Mv=mv, ve X. Hence
the assumption Z(L) € Z(M) is satisfied and the m. 1. operator 4 = LM~ is
determined by (8.8) with 2(L) as in (8.10).
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By referring to [8] and the references therein for the proof, we now recall
that for every fixed ¢ e (1, c0), the following estimates holds (cf. [8, formula

(7))
IMGM — L) |y < CUA + 1), Viesy, (8.11)

where ) = {ze C: Rez > —c(|Sm z| + 1), Sm z € R}, ¢ being a suitable positive
constant depending on ¢ and ||m||;(q). Therefore, (H2) is satisfied with (a, f) =
(1,1/q) and the condition f € (1/2, 1] necessary to apply Theorem 8.5 with o =1
yields g € (1,2). So, let g€ (1,2) and denote with ¢’ the conjugate exponent of
g. Recalling Remark 8.3 assume that f e C#([0,T];X), ue (2/¢’,1), and that
uy = muy € 9(A), where vy e Z(L) is such that Loy + f(0,-) = go € 2((—A)"),
Re p € (2/q’,u). Then, from Theorem 8.5 with (o, f) = (1,1/q) we deduce that
for every Reye (1/¢',Rep—1/q"), o€ (0,—Rey+ RNe ¢ — 1/¢’] problem (8.9)
has a unique classical solution v such that mve C'*°([0, T]; 2((—A)")). In ad-
dition the following estimate holds

Dm0l 5. 7.~ ayry < €30(T) NGl ayry + T es3(T)| £, 7, x-

Values of ¢ larger than two can be obtained assuming more smoothness and
some order of vanishing for the function m on Q. Indeed, let m € C'(Q) be such
that the following estimate holds for some pe (0,1) and some positive con-
stant K:

|Vm(x)| == {Z _ [Dr,m(x)]z}l/2 < K[mx)]?, xeQ.
Then (8.11) holds with f = 1/¢ being replaced by (cf. [8, formula (80)]):

ﬁ:(z_g)_lv if q€(2_9a2>v ﬂ:2[q(2_g)]_17 if qE[z,OO).

Then, in order that the condition fe (1/2,1] in Theorem 8.5 with a=1 is
satisfied, it suffices to take g e (2 —p,2)U[2,4/(2 — 0)).

As another application we consider the following degenerate equation in
X = L*(Q), where Q = R" is as before:

{ o(u(z, X)): fa(x)ult, x)} + f(1,x),  (1,x) € (0, T] x Q,

1
(X)u(t,x) =0, (t,x)€(0,T] x dQ, u(0,x) =uy(x), xeQ. (8.12)

Here, A, denotes the usual Laplace partial differential operator in R”, whereas
a € L*(Q) is a nonnegative given function such that a(x) > 0 almost everywhere
in Q. The change of unknown v(z, x) = a(x)u(z, x) yields to rewrite problem (8.12)
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in the form (8.6), in which M is the multiplication operator by the function
m(x) = 1/a(x) and L: W(Q)N W(Q) — L*(Q) is A, with the Dirichlet bound-
ary condition. Let assume that

| L"(Q) with some r >2 when n=1,
m=-_¢ L"(Q) with some r > 2 when n =2,
L"(Q) with some r >n when n > 3.

Then (cf. [8, p. 270]), the following estimate holds

| MM~ L)~

o < CUA+ D)y e s,

so that (H2) is satisfied with (a,f) = (1,1 —n/(2r)). Hence f e (1/2,1] implies
r>n if n>3. Let 4 be the m. 1. operator defined by (8.8) with (L) =
WiHQ)N I/%/ZI(Q) and let f e CH([0,T); X), ue (n/r,1). Assume uy = mvy € Z(A)
where vy € Z(L) is such that Loy + f(0,-) = go € 2((—A)”), Re ¢ € (n/r, u). From
Theorem 8.5 it thus follows that for every Reye (n/(2r),Re ¢ —n/(2r)) and
ge (0,—Re y+ Re g —y—n/(2r)] problem (8.12) has a unique classical solution
u=mve C*([0,T); Z((—A)")). Further, the time derivative D,u = D,(mv) sat-
isfies estimate (8.4) with v=pu—Rey —o—n/(2r).

We now suggest a possible application of our results to abstract multivalued
semilinear initial value problems of the kind

Du(t) € Au(t) + f(t,u(r)), te(0,T], u(0)=uo, (8.13)

A being a m. 1. operator satisfying (HI). It is well-known (cf. [20, Chapter 3])
that if 4 is single-valued and satisfies (H1) with f =1, then problem (8.13) can
be solved assuming that f e C([0,7] x O;X) is locally Holder continuous in
t€[0,T] and locally Lipschitz in x € ¢, ¢ being an open subset of Z((—A4)"),
y € (0,1). Under these assumptions on f it is shown in [20, Theorem 3.3.3] that
for every up e O there exists 77 = T (up) € (0, T] such that problem (8.13) has
a unique solution u in (0, 77) with initial value u(0) = uy. The global existence
is then shown in [20, Theorem 3.3.5] under the additional requirement that
there exist a continuous function O : [0, c0) — [0,00) such that | f(z,x)|y <
O(1)(1 4+ ||x||y.) for every (z,x) € [0,T] x . We refer also to [21], where the local
and global existence for the single-valued version of problem (8.13) is treated
under the weak assumption ug € Z((—A)%), 5 € [0,7], but assuming f independent
of time. The case when A is single-valued, o« = 1 and f € (0,1) has been recently
considered in [29] under the assumptions that f e C([0,T] x X;X) is locally
Lipschitz in xe X and that uo e 2((—4)"), 0e (1 —B,p). It seems to us that
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embedding (6.36) with 40 = {0} may be used to generalize the results in [29] to
the case o < 1. Of course, in this case the semigroup generated by A is no longer
analytic and some details in the proofs of the main results in [29] should be
opportunely modified.

Contrarily to the single-valued case, when A4 is really a m. 1. operator a
general solvability theory for problem (8.13) is still lacking. Maybe, embedding
(6.24) and/or (6.36) could be a first step in this direction. Recall that the linear
subspace A0 is closed on X and hence %((—A4)”)\40 turns out to be an open
subset of 9((—A)0). This suggests that the assumption f e C([0,T] x 0;X), O
being an open subset of Z((—A4)”), y € (0,1), used to treat the single-valued case
should be replaced by f e C([0,T] x ({0}U0); X), where O = Z((—A4)")\A0 is
the open subset of %((—A4)”) having the desired intermediate property for
y€(2—a—p,p). Even if this were the case, another difficulty is that the usual
procedure for uniquely solving problem (8.13) through a contraction argument
does not work when 4 is really a m. 1. operator. Indeed, in this case we have to
employ a fixed-point theorem for m. 1. operators, and fixed-point theorems for
m. 1. operators generally provide existence but not uniqueness.

We conclude the section spending some words on the possible applications of
our results to multivalued non autonomous linear initial value problems of the

type
Dw(t) e A()yw(t) + f(£), te(0,T], w(0)= uy, (8.14)

where A(t) satisfies condition (H1), for every ¢ € [0, T], (H1), being (H1) with the
pair (p(A4), A) replaced by (p(A(¢)), A(r)). The case when A(¢) is single-valued for
every 1€ [0,7] and =1 in (HI), has been studied by many authors. See, for
instance, the papers [2], [3], [33] and [39], and the books [27, Chapter 6] and
[34, Chapter 6]. Essentially, there are two different approach for solving problem
(8.14) in the single-valued case with f = 1, according that the operators A(#) have
or not constant domains. The case of constant domains Z(A(¢)) = Z is con-
sidered in [27], [33] and [34] where, under the additional assumption that the map
t — A(t) belongs to C?([0, T]; #(Z; X)) for some o € (0, 1), it is shown that there
exists an evolution operator for problem (8.14). In the case of variable domains
several types of assumptions can be made to solve problem (8.14), but they can
be roughly divided in two groups. The first group of assumptions concerns the
case where the map 7 — (zI — A(t))"" is very regular for every z e p(A(1)) (cf.
[39]). The second group refers instead to the case where, although the dense
domains Z(A(t)) may vary, one between the intermediate spaces Z((—A(t))”)
and (X, 2(A(1))),

7,

is constant for some y € (0,1) (cf. [2] and [3]). As far as the



Fractional powers and interpolation theory 319

single-valued case with o« =1 and f € (0,1) in (HI), it is concerned, this has been
treated in [36] and [37], but only in the concrete situation X = C7(Q), where
y€(0,1) and Q < R” is a bounded domain having smooth boundary. In that
papers the operators A(¢) are elliptic operators of order 2/, / € N, having constant
domains C2*7(€Y), and the estimate || (2 — A(1)) || y(x) < C(1 + |2))F, 22y, it
is shown to hold with g =1—y/(2]).

Since the intermediate property of the domains of the fractional powers of
—A(?) plays a key role in the approach followed in [2], it is our opinion that
embedding (6.36) can be used to extend the results in that paper to single-valued
linear operators A(¢) which satisfies (H1), with (o, ) # (1,1) and whose domains
are neither constant nor dense in X. At moment, the main difficult in carrying
out this program is to find how to modify the proofs of [2], in order to avoid
there the use of identity (4.27).

If the operators A(f) are really m. 1. operators which satisfies (H1), and
whose not necessarily dense domains are allowed to vary, then problem (8.14) can
be solved provided that three additional types of assumptions are made on the
operators A(7) and on the exponent pair («,f) (cf. assumptions (A.), (Ex.),
j =1,1i,1ii, in [12, Chapter 4]). Also, the first of these assumptions is precisely the
multivalued version of that used in [39] to solve problem (8.14) in the single-
valued case with = 1. Hence, in a multivalued sense, the assumptions in [12]
belong to the first of the two groups mentioned before. It is an open question if
embedding (6.36) can be used to solve (8.14), adapting to the multivalued case the
approach followed in [2] in the single-valued case with f = 1. In other words,
we query if, due to (6.36), the second group of assumptions used to solve (8.14)
in the single-valued case with f =1, can be used even for solving (8.14) in the
multivalued case with (o, ) # (1,1).

9. The m. 1. Operators (—A4)™ for Re 00,1 — f]

We provide here a possible definition for the fractional powers (—A)ie,
Re 0 € [0,1 —p], of a m. 1. operator A satisfying assumption (H1). Our approach
will furnish not only the positive fractional powers (—A4)?, Re 6 e (0,1 — p], but
also the non positive fractional powers (—A)_H, 0+#0,ReOe[0,1 —p], as a class
of m. l. operators.

In order to motivate our next assumption (H3), we still recall the statement
of [24, Proposition 2.9]: let 4 be a single-valued densely defined linear operator
satisfying (H1) with f=1. If there exists {; € C such that Re (; € (0,1) and
Z((—A)*") coincides, in the sense of equivalence of the norms, with Xfe P for
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some pe[l, ], then P((—A4)%) = Xfeéz’” for every (, € C such that Re {, €
(0,1). In particular, Z((—A4)*) = 2((—A4)%) if Re ), = Re . In [24] this as-
sertion is proved not only for Re {; € (0,1), but for all Re(, >0, k=1,2,
provided to replace X |°“” with @fe %, where the spaces 27, y >0, pe|l, o],
are defined in [24, Definition 1.1] and coincide with X77 for y e (0,1).

Let now 4 be a m. Ll operator satisfying (H1) with «e (1/2,1] and
pe(1/2,a]. We make the following further assumption on A:

(H3) for every { € C such that Re { e [$,1] it holds that Z((—A) %) = %(4).

Notice that (H3) is meaningful, since fe (1/2,a] implies 1 —f < f and the
fractional powers (—A)° are well defined for Re ¢ e [f,1]. From (H3) we get
9((—A)°) = 2(A) for every Rele[f,1]. Hence, if {;,{, e C are such that
Re (| = Re {, € [, 1], then Z((—A4)"") = Z((—4)%). In this sense, (H3) is inspired
by [24, Proposition 2.9].

With assumption (H3) at hand, we can now proceed in our definition of the
fractional powers (—4)™, Re 0 (0,1 — f] as follows. We set

B I, if =0,
(—4) 0::{(14)19(14)1, if 6#£0,Refel0,1—pf], O

(=)= (=)', Rebe(0,1—p], (—4)7 defined by (9.1). (9.2)

Definition (9.1) is meaningful, for the m. 1. operators (—4)' ™ and (—=4)"~(—4)™"
on the right-hand side are both well defined. Indeed, since when Re 6 € [0,1 — f]
we have Re(l —0) € [$,1], the fractional power (—4)'™" is defined as usual
through (3.6) as the inverse of (—A)f(“g). Moreover, by virtue of (H3), it
has domain Z((—4)"") :H72((—A)7<17‘9)) = 9(A4), and hence the composition
(—A4)'7?(=4)7" is well defined, too. According to the second in (2.1) and since
A e 2(X), from (9.1) and (9.2) we get

{(A)ex ={(~A)" "y y=(—A4)"'x}, xeX,0£0,Re0el0,1—f| 03)

(—A)'x={yeX :xe (A}, xen(-4)"), Re e (0,1-p).

Therefore, the operators (—A)io, 0+#0, Refe[0,1—p], are a family of m. L
operators. In particular, from (9.1) and the first of (9.3) with § = —iz, we obtain
that the purely imaginary powers (—A)” of —A are the m. 1. operators defined as
follows

(9.4)

()" = ()" (=), o(~A)") =X, VieR\{0},
(—A)'x ={(=A) """y y=(—=4)"'x}, xeX,teR\{0}.
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REMARK 9.1. Let 4 be a single-valued linear operator having dense domain
and satisfying (H1) with f = 1. In this case (9.4) is precisely the formula used in
(24, p. 97] to show that, if the assumption of [24, Proposition 2.9] is satisfied, then
(—4)" e £(X) for every teR. In fact, in this case the relation Z((—4)"™) =
2(A) follows from the thesis of [24, Proposition 2.9] extended to all Re { > 0
as explained before, whereas the identity (—A4)" = (—4)'™(—4)"" follows from
[23, Corollary 7.4]. Of course, here (—A)*™™ = (—=4)5™, k = 0,1, where (—A);,
{ € C, is defined in Remark 3.7. Therefore, (—A)”, t € R, turns out to be a closed
single-valued linear operator having domain the whole X, and hence bounded
from the closed graph theorem. Clearly, as observed in [35, p. 103], the difficult
part in this proof of the boundedness of (—A)" is to verify that the assumption
I((—A)°) = 92%4 of [24, Proposition 2.9] is satisfied for some e { > 0 and some
pell,©]. Due to this difficulty, the local boundedness of (—4)" it is a priori
assumed in the proof of (4.27) in [35, Theorem 1.15.3].

REMARK 9.2. Observe that without assumption (H3) the composition
(=4)"""(—4)™" in the second of (9.1) may become meaningless, since it is not
guaranteed that (—A)lf(), 0#0, Ree[0,1—p], is defined on the range of
(—A4)7", that is on Z(4). Indeed, from (3.8) with (0,0,) = (1,1 — 0) we can only
ensure that the inclusion 2(4) = 2((—4)"™") holds for Re 6 (1 — f, ), which is
not our case.

Now that we have given a sense to the purely imaginary powers of m. L
operators A satisfying (H1) and (H3), future research should investigate if
definition (9.4) allows to extend to this class of operators the results mentioned
in Sections 24 for single-valued operator satisfying (H1) with f =1, and which
require the boundedness of (—4)”, 1 € R. This research is out of the aims of this
paper, so that here we limit ourselves to point out two inherent difficulties on it.
A first difficult is that we have no explicit representation for (—A)H”, which is
only defined as the inverse of the operator (—A)*Hi’) € Z(X) defined by (3.1).

This absence of an explicit formula for (—A)'™

it

will constitute a problem for
examining the boundedness of (—A4)" already in the single-valued case with
(o, ) # (1,1). The second difficult is that in the really multivalued case the
boundedness of (—4)" has to be intended with respect to the norm of m. .
operators. To this purpose, we recall that a m. 1. operator 7 with domain the
whole X is said to be bounded if || 7| = supjy, < (infyer|yl[y) < co. Hence, in
general, to prove that a m. 1. operator is bounded it is not an easy task, at least
of not knowing that 7 has a section S € £(X), in which case ||T]| < [|S]| gy,
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(cf. [6, Proposition 11.4.1]). A sufficient condition for the existence of a bounded
section S for a given m. 1. operator T is given in [6, Proposition 11.4.2]. However,

this condition is of difficult application and it requires to a priori know that T is
bounded, which is just what we want to prove when T = (—4)".
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