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AN ASYMPTOTIC EXPANSION FOR THE DISTRIBUTION

OF THE SUPREMUM OF A MARKOV-MODULATED

RANDOM WALK*

By

Mikhail Sgibnev

Abstract. We obtain an asymptotic expansion for the distribution of

the supremum of a Markov-modulated random walk, which takes

into account the influence of the roots of the characteristic equation.

An estimate is given for the remainder term by means of sub-

multiplicative weight functions.

1. Introduction

Let fkngyn¼0 be an irreducible aperiodic Markov chain with finite state space

N ¼ f1; . . . ;Ng and transition matrix P ¼ ðpijÞ, where pij ¼ Pðkn ¼ j j kn�1 ¼ iÞ,
i; j A N, n ¼ 1; 2; . . . . Let p ¼ ðp1; . . . ; pNÞ denote the stationary distribution of

the chain. In our case, pi > 0, i A N. Let fXmði; jÞgym¼1 be a sequence of in-

dependent identically distributed random variables with distribution Fij. As-

sume that the sequences of random variables fXmði; jÞgym¼1, ði; jÞ A N�N, and

fkngyn¼0 are mutually independent. Write S0 ¼ 0 and Sn ¼ Sn�1 þ Xnðkn�1; knÞ for

nb 1. Suppose that My :¼ supnb0 Sn < y a.s. for every initial state of the

chain. This is the case when the expectation of a one-step increment of the

random walk fSng is negative under the stationary distribution p of the chain:

EpS1 :¼
PN

i; j¼1 pi pijEX1ði; jÞ < 0, which will be assumed without loss of gener-

ality in the context of the present paper.

Let hðxÞ :¼ minfnb 1 : Sn > xg and hðxÞ :¼ y on the event fMy a xg.
Clearly, fMy > xg ¼ 6N

j¼1
fkhðxÞ ¼ jg. Denote by A the N �N matrix ðpijFijÞ
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and by W the N �N matrix ðWijÞ, where Wij is the measure defined on B by the

relations

Wijððx;yÞÞ :¼ PðkhðxÞ ¼ j j k0 ¼ iÞ; x > 0;

Wijðð�y; 0ÞÞ :¼ 0, i, j A N, and Wijðf0gÞ :¼ dij � Pðkhð0Þ ¼ j j k0 ¼ iÞ, where dij

is the Kronecker delta (the reason for this definition will be clear from (4) below).

The asymptotic behaviour of PðMy > x j k0 ¼ iÞ has already been studied by

K. Arndt [2], P. R. Jelenković and A. A. Lazar [5], G. Alsmeyer and M. Sgibnev

[1]. The present paper is a continuation of [12]. We shall obtain an asymptotic

expansion (see Theorem 4 and (6)) for the matrix measure W which takes into

account the influence of roots of the characteristic equation (see (3) below). The

integral estimate
Ðy
0 jðxÞjDjðdxÞ < y is given for the remainder term D by means

of a submultiplicative weight function jðxÞ.

2. Preliminaries

Let jðxÞ, x A R, be a submultiplicative function, i.e., jðxÞ is a finite, positive,

Borel measurable function with the following properties:

jð0Þ ¼ 1; jðxþ yÞa jðxÞjðyÞ for all x; y A R:

It is well known [3, Section 7.6] that

�y < r�ðjÞ :¼ lim
x!�y

log jðxÞ
x

¼ sup
x<0

log jðxÞ
x

a inf
x>0

log jðxÞ
x

¼ lim
x!y

log jðxÞ
x

¼: rþðjÞ < y: ð1Þ

Consider the collection SðjÞ of all complex-valued measures k defined on the

s-algebra B of Borel subsets of R and such that

kkkj :¼
ð
R

jðxÞjkjðdxÞ < y:

here jkj stands for the total variation of k. The collection SðjÞ is a Banach

algebra with norm kkkj by the usual operations of addition and scalar multi-

plication of measures, the product of two elements n and k of SðjÞ is defined as

their convolution n � k [3, Section 4.16]. The unit element of SðjÞ is the Dirac

measure d0, i.e., the atomic measure of unit mass at the origin. Relation (1)

implies that the Laplace transform k̂kðsÞ ¼
Ð
R
expðsxÞkðdxÞ of an element k A SðjÞ

converges absolutely with respect to jkj for all s in the strip

PðjÞ ¼ fs A C : r�ðjÞa<sa rþðjÞg:
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The following theorem of [9] describes the structure of homomorphisms of

SðjÞ onto C.

Theorem 1. Let m : SðjÞ ! C be an arbitrary homomorphism. Then the

following representation holds:

mðnÞ ¼
ð
wðx; nÞ expðbxÞnðdxÞ; n A SðjÞ;

where b is a real number such that r�ðjÞa ba rþðjÞ and the function wðx; nÞ of

the two variables x A R and n A SðjÞ is a generalized character.

We shall not give a complete definition of a generalized character here; in what

follows only one property of a generalized character will be used:

n� ess sup
x AR

jwðx; nÞja 1:

We shall need the following two theorems [10, Theorems 2 and 3].

Theorem 2. Let jðxÞ, x A R, be a submultiplicative function such that r�ðjÞ <
rþðjÞ. Suppose the function jðxÞ=exp½rþðjÞx�, xb 0, is nondecreasing and the

function jðxÞ=exp½r�ðjÞx�, xa 0, is nonincreasing. Assume n A SðjÞ and let s0 be

an interior point of PðjÞ. Then the function ½n̂nðsÞ � n̂nðs0Þ�=ðs� s0Þ, s A PðjÞ, is the

Laplace transform of some measure, say Tðs0Þn A SðjÞ.

If s0 lies on the boundary of the strip PðjÞ, the situation becomes more

involved. Nevertheless, the following theorem holds (for the sake of definiteness

we consider the case <s0 ¼ rþðjÞ).

Theorem 3. Let jðxÞ, x A R, be a submultiplicative function. Suppose the func-

tion jðxÞ=exp½rþðjÞx�, xb 0, is nondecreasing and the function jðxÞ=exp½r�ðjÞx�,
xa 0, is nonincreasing. Assume thatðy

0

ð1þ xÞjðxÞjnjðdxÞ < y or

ð
R

ð1þ jxjÞjðxÞjnjðdxÞ < y;

depending on whether r�ðjÞ < rþðjÞ or r�ðjÞ ¼ rþðjÞ. Let <s0 ¼ rþðjÞ. Then

the function s A PðjÞ, g 0 a<sa g, is the Laplace transform of some measure

Tðs0Þn A SðjÞ.

The absolutely continuous component with respect to Lebesgue measure of

an arbitrary distribution F will be denoted by Fc and its singular component,

by Fs: Fs ¼ F � Fc, i.e. Fs ¼ Fd þ Fs, where Fd is the discrete component of F
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and Fs is the singular component of F in the usual sense. We denote by 0 the

zero matrix whose size will be determined by the context. We agree that all the

operations with matrices and vectors are carried out elementwise. Suppose a

matrix, say B ¼ ðBijÞ, is made up of elements of SðjÞ. Then we shall denote by

B̂BðsÞ the matrix whose elements are the Laplace transforms of the elements of B,

i.e. B̂BðsÞ :¼ ðB̂BijðsÞÞ. In this case we shall also write B A SðjÞ. A similar convention

also applies to inequalities involving matrices or vectors.

Let B be a scalar N �N-matrix and sðBÞ the set of all its eigenvalues. The

number %ðBÞ :¼ maxfjlj : l A sðBÞg is called the spectral radius of B. It is well

known that if Bb 0, then %ðBÞ A sðBÞ and there exists a nonnegative vector

xb 0, x0 0 such that Bx ¼ %ðBÞx [4, Theorem 8.3.1]. By Perron-Frobenius

theorem [4, Theorem 8.4.4], each nonnegative irreducible matrix B has a positive

eigenvalue of multiplicity 1 equal to %ðBÞ and there exist positive left and right

eigenvectors corresponding to this eigenvalue.

Define the convolution A � B of two matrix measures A ¼ ðAijÞ and B ¼ ðBijÞ
as follows: ðA � BÞij :¼

PN
k¼1 Aik � Bkj. By Ak� we shall denote the k-fold con-

volution of the matrix measure A, i.e. A1� :¼ A, Ak� :¼ A � Aðk�1Þ�, kb 1. Let

sn ¼ max1aman Sm, wðxÞ ¼ ShðxÞ � x and Pið�Þ ¼ Pð� j k0 ¼ iÞ, i A N.

Let ÂAðrÞ < y, r > 0, and let I be the unit matrix. Choose r 0 A ð0; rÞ. By

Arndt [2, Proposition 1], the matrix I� ÂAðsÞ admits the factorization I� ÂAðsÞ ¼
ÂA�ðsÞÂAþðsÞ, r 0 a<sa r, with

ÂA�ðsÞ ¼ I�
Xy
n¼1

ð 0
�y

esxPiðsn�1 < Sn A dx; kn ¼ jÞ
 !

;

ÂAþðsÞ ¼ I�
ðy
0

esxPiðwð0Þ A dx; khð0Þ ¼ jÞ
� �

; ð2Þ

where A�;Aþ A Sðr 0; rÞ :¼ SðjÞ with jðxÞ :¼ maxfer 0x; erxg. Moreover, the matrix

measure A� is invertible in Sðr 0; rÞ, i.e. there exists a matrix measure A�1
� A Sðr 0; rÞ

such that A� � A�1
� ¼ A�1

� � A� ¼ d0I. Notice that A� may not be invertible in

Sð0; rÞ, which is one of the reasons why we deal with Sðr 0; rÞ, where r 0 > 0.

3. Main Result

Let ÂAðrÞ < y. Consider the characteristic equation

detðI� ÂAðsÞÞ ¼ 0: ð3Þ

Assume that the set, say Z, of the nonzero roots of (3) lying in the strip

fs A C : 0a<sa rg is finite. Denote the elements of Z by s1; s2; . . . ; sl . We do
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not exclude the case Z ¼ q. We then put l ¼ 0 and use the following con-

ventions:
P l

j¼1 :¼ 0 and
Q l

j¼1 :¼ 1. Let nj be the multiplicity of the root sj.

This means that detðI� ÂAðsÞÞ ¼ ðs� sjÞnj fjðsÞ, where fjðsjÞ0 0. If s A Z, then

s A Z and the root s has the same multiplicity as s.

Lemma 1. Suppose that ÂAðrÞ < y for some r > 0. Let Z ¼ fs1; . . . ; slg be the

finite set of the nonzero roots of (3) lying in the strip fs A C : 0a<sa rg. Then
there exists one real root q A Z of multiplicity 1 such that <sj > q for all sj 0 q.

Proof. Put lðxÞ :¼ %½ÂAðxÞ�, x A ½0; r�. First, let us prove that <sj > 0 for

all j. Suppose the contrary, i.e. that there exists sj A Z such that <sj ¼ 0.

Since ÂAð0Þb ðjÂAklðsjÞjÞ, it follows by [4, Theorem 8.1.18] that 1 ¼ lð0Þ ¼
%½ÂAð0Þ�b %½ÂAðsjÞ�b 1, and hence %½ÂAðsjÞ� ¼ 1. Applying [4, Theorem 8.4.5], we

arrive at the following conclusion. There exist real numbers y1; . . . ; yN such

that ÂAðsjÞ ¼ DÂAð0ÞD�1, where D ¼ diagðeiy1 ; . . . ; eiyN Þ (diagonal matrix). We

have ÂAklðsjÞ ¼ eiðyk�ylÞÂAklð0Þ, which means that the measure Akl is concentrated

on the set ðyk � ylÞ==sj þ ð2p==sjÞZ, k; l ¼ 1; . . . ;N [7, Section 2.1]. Hence

detðI� ÂAðmi=sjÞÞ ¼ 0, m A Z, i.e. mi=sj A Z for all m A Z, which contradicts the

assumption that Z is a finite set. Thus <sj > 0 for all j.

Further, suppose that EpS1 < 0 is finite. Then l 0ð0Þ ¼ EpS1 < 0 [8] and hence

lðxÞ < 1 for su‰ciently small x > 0. Let sk A Z. Then ðjÂAijðskÞjÞa ÂAð<skÞ and

hence lð<skÞb 1 [4, Theorem 8.1.18]. By continuity, there exists q A ½0;<sk� such
that lðqÞ ¼ 1. The function lðxÞ is strictly convex [8, Theorem 2], which implies

the uniqueness of q. To prove that the multiplicity of q is equal to 1, assume

the contrary, i.e. detðI� ÂAðsÞÞ ¼ ðs� qÞgðsÞ, where gðqÞ ¼ 0. Choose positive

left and right eigenvectors l ¼ ðl1; . . . ; lNÞ and r ¼ ðr1; . . . ; rNÞT corresponding to

the eigenvalue 1 of ÂAðqÞ in such a way that lr ¼ 1; the superscript T denotes

transposition of matrices. We have l 0ðqÞ ¼ lÂA 0ðqÞr; this is essentially the same

as l 0ð0Þ ¼ EpS1 ¼ pÂA 0ð0Þ1 with 1 :¼ ð1; . . . ; 1ÞT in [8]. Also, we have 0 ¼
detðI� ÂAðsÞÞ0js¼q ¼ �clÂA 0ðqÞr, where c > 0 [11, the proof of Lemma 9]. It follows

that l 0ðqÞ ¼ 0 and hence the strictly convex function lðxÞ attains its minimum

lðqÞ ¼ 1 at x ¼ q, which contradicts the existence of x > 0 such that lðxÞ < 1.

Hence the multiplicity of q must be equal to 1.

Now suppose that EpS1 ¼ �y. Let Ymði; jÞ :¼ Xmði; jÞ if Xmði; jÞ > a and

Ymði; jÞ :¼ a if Xmði; jÞa a, where a A ð�y; 0Þ. We have EpY1ðk0; k1Þ is finite

and negative for su‰ciently large jaj and

E exp½xY1ði; jÞ�bE exp½xX1ði; jÞ� for all x A ð0; rÞ:
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Let l1ðxÞ be the spectral radius of the matrix ðpijE exp½xY1ði; jÞ�Þ. Then

l1ðxÞb lðxÞ for all x > 0. By the above, l1ðxÞ < 1 for su‰ciently small x > 0. It

follows that lðxÞ < 1 for su‰ciently small x > 0 and, by the above arguments,

there exists a unique real root q A Z of multiplicity 1. For the sake of defi-

niteness, we put s1 :¼ q.

Finally, repeating the reasoning at the beginning of the proof, we establish

that <sj > q for all jb 2. The proof of Lemma 1 is complete.

We have (see Arndt [2])

I� ðPiðkhð0Þ ¼ jÞÞ þ
ðy
0þ

esxdxPiðkhðxÞ ¼ jÞ
� �

¼ ŴWðsÞ ¼ ½ÂAþðsÞ��1ÂAþð0Þ: ð4Þ

In other terms,

ŴWðsÞ ¼ f½ÂA�ðsÞ��1½I� ÂAðsÞ�g�1ÂAþð0Þ ¼ ½I� ÂAðsÞ��1ÂA�ðsÞÂAþð0Þ:

Let the coe‰cients Bjk, k ¼ 1; . . . ; nj, be defined by the asymptotic expansion

ŴWðsÞ :¼
Xnj
k¼1

ð�1ÞkBjk

ðs� sjÞk
þ o

1

s� sj

� �
as s ! sj ; ð5Þ

provided
Ð
R
jxjnj e<sjxAðdxÞ < y. This inequality is automatically fulfilled if

<sj < r. Denote by Ej the complex-valued measure with density 1ð0;yÞðxÞe�sjx,

1AðxÞ being the indicator of A. Its Laplace transform is equal to 1=ðsj � sÞ,
<ðs� sjÞ < 0. The desired expansion for W will be of the form

W ¼
Xl

j¼1

Xnj
k¼1

BjkE
k�
j þ D; ð6Þ

where the remainder D will possess, roughly speaking, the same moments as the

underlying matrix A. If Z0q, then the main contribution to the asymptotics

of W will be given by the term B11E1, corresponding to the root s1 ¼ q of (3)

since, by Lemma 1, <sj > q, j > 1. Therefore, it is appropriate to calculate the

matrix B11 in explicit form.

Lemma 2. Let detðI� ÂAðqÞÞ ¼ 0. Choose positive left and right eigenvectors

l ¼ ðl1; . . . ; lNÞ and r ¼ ðr1; . . . ; rnÞT corresponding to the eigenvalue 1 of ÂAðqÞ in

such a way that lr ¼ 1. Then

B11 ¼
rlÂA�ðqÞÂAþð0Þ

lÂA 0ðqÞr
:
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Proof. The function detðI� ÂAðsÞÞ is a linear combination of products of N

factors. These factors are the Laplace transforms of elements of the matrix

d0I� A A Sðr 0; rÞ, where r 0 A ð0; qÞ. Consequently, detðI� ÂAðsÞÞ is the Laplace

transform, say âaðsÞ, of some measure a in Sðr 0; rÞ. As s ! q, we have (M̂MðsÞ being
the adjugate matrix of I� ÂAðsÞ)

½I� ÂAðsÞ��1 ¼ M̂MðsÞ
âaðsÞ=ðs� qÞ

1

s� q
¼ M̂MðqÞ

âa 0ðqÞ
1

s� q
þ o

1

s� q

� �
;

whence

½I� ÂAðsÞ��1ÂA�ðsÞÂAþð0Þ ¼
M̂MðqÞÂA�ðqÞÂAþð0Þ

âa 0ðqÞ
1

s� q
þ o

1

s� q

� �
:

Thus, B11 ¼ �M̂MðqÞÂA�ðqÞÂAþð0Þ=âa 0ðqÞ. By [11, Lemma 9],

M̂MðqÞ
âa 0ðqÞ ¼ � rl

lÂA 0ðqÞr
;

which completes the proof of the lemma.

Theorem 4. Let jðxÞ, x A R, be a submultiplicative function such that

jðxÞ1 1 for x < 0, r :¼ rþðjÞ > 0 and the function jðxÞ=expðrxÞ, xb 0, is non-

decreasing. Suppose that ÂAðrÞ < y. Assume that the spectral radius of the matrix

ðAm�Þ5s ðrÞ is less than 1 for some integer mb 1. Let Z ¼ fs1; . . . ; slg be the set of

the roots of (3) lying in the strip fs A C : 0a<sa rg and having multiplicities nj,

j ¼ 1; . . . ; l. Denote by N the maximal multiplicity of those roots which lie on

f<s ¼ rg (N ¼ 0 means that there are no such roots on this line). Suppose thatÐy
0 ð1þ xÞ2NjðxÞAðdxÞ < y. Then the matrix W admits the representation (6),

where the remainder D satisfies the inequality
Ðy
0 jðxÞjDjðdxÞ < y.

Proof. We form the following submultiplicative functions jkðxÞ: jkðxÞ :¼
ð1þ xÞkjðxÞ for xb 0 and jkðxÞ :¼ expðr 0xÞ for x < 0, where r 0 A ð0; qÞ and

0a ka 2N. Obviously, rþðjkÞ ¼ r and r�ðjkÞ ¼ r 0 for all k ¼ 0; . . . ; 2N. More-

over, SðjkÞHSðjk�1Þ, kb 1.

Choose a > r and put p ¼
P l

j¼1 nj. Consider the function

dðsÞ :¼ ðs� aÞp detðI� ÂAðsÞÞQ l
j¼1ðs� sjÞnj

¼ ðs� aÞpâaðsÞQ l
j¼1ðs� sjÞnj

:

Lemma 3. Under the assumptions of Theorem 4, the function dðsÞ is the

Laplace transform of some measure D A SðjNÞ.
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Proof of Lemma 3. The function detðI� ÂAðsÞÞ is a linear combination of

products of N factors. These factors are the Laplace transforms of elements of

the matrix d0I� A A Sðj2NÞ. Consequently, detðI� ÂAðsÞÞ is the Laplace transform

âaðsÞ of some measure a A Sðj2NÞ. Decomposing rational function into partial

fractions, we have

dðsÞ ¼ 1þ
Xl

j¼1

Xnj
k¼1

Cjk

ðs� sjÞk

" #
âaðsÞ; ð7Þ

where Cjk are constants. Consider the functions fjkðsÞ :¼ âaðsÞ=ðs� sjÞk, k ¼
1; . . . ; nj, j ¼ 1; . . . ; l. We shall establish that if <sj < r, then fjkðsÞ is the Laplace

transform of some measure belonging to Sðj2NÞ, and if <sj ¼ r, then fjkðsÞ is the

Laplace transform of some measure belonging to Sðj2N�kÞ.
Let n A SðjmÞ. If <sj < r, then by Theorem 2 TðsjÞn A SðjmÞ, and if <sj ¼ r

and m > 0, then by Theorem 3 TðsjÞn A Sðjm�1Þ. Therefore, fjkðsÞ ¼ ½TðsjÞka�5ðsÞ,
k ¼ 1; . . . ; nj , j ¼ 1; . . . ; l, are the Laplace transforms of some measures belonging

to Sðj2NÞ or to Sðj2N�kÞ, depending upon whether <sj is less than or equal to r.

Thus, by (7), a A SðjNÞ. The proof of Lemma 3 is complete.

Lemma 4. Let the conditions of Theorem 4 be satisfied. Then the element

D A SðjNÞ is invertible in SðjNÞ.

Proof of Lemma 4. Let M be the space of maximal ideals of the Banach

algebra SðjNÞ. Each M A M induces a homomorphism h : SðjNÞ ! C and M is

the kernel of h. Denote by nðMÞ the value of h at n A SðjNÞ, i.e. nðMÞ :¼ hðnÞ,
not the value of the measure n on the set M. An element n A SðjNÞ has an inverse

if and only if n does not belong to any maximal ideal M A M. In other words, n

is invertible if and only if nðMÞ0 0 for all M A M.

The space M is split into two sets: M1 is the set of those maximal ideals

which do not contain the collection Lðr 0; rÞ of all absolutely continuous measures

from SðjNÞ, and M2 ¼ MnM1. If M A M1, then the homomorphism induced by

M is of the form hðnÞ ¼ n̂nðs0Þ, where r 0 a<s0 a r. In this case, M ¼ fn A SðjNÞ :
n̂nðs0Þ ¼ 0g [3, Chapter IV, Section 4]. If M A M2, then nðMÞ ¼ 0 for all

n A Lðr 0; rÞ.
We now show that DðMÞ0 0 for each M A M, thus establishing the

existence of D�1 A SðjNÞ. Actually, if M A M1, then, for some s0 A Pðr 0; rÞ, we

have DðMÞ ¼ D̂Dðs0Þ0 0. Now let M A M2. By the multiplicative property of the
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functional n 7! nðMÞ, n A SðjNÞ, we have AðMÞm ¼ Am�ðMÞ ¼ ðAm�ÞsðMÞ. Let

Y ¼ ðYijÞ :¼ ðAm�Þs. By Theorem 1,

jYijðMÞj ¼
ð
R

wðx;YijÞ expðbxÞYijðdxÞ
����

����a
ð
R

expðbxÞYijðdxÞ

for some b A ½r 0; r�. It follows that the spectral radius of YðMÞ does not exceed

that of ŶYðbÞ ¼ ðAm�Þ5s ðbÞ. By [6, Corollaries 1 and 2], the function %½ŶYðtÞ�,
t A ½0; r�, is convex. By assumption, %½ŶYðrÞ� < 1, Moreover, %½ŶYð0Þ�a 1 which

is implied by ŶYð0Þa ÂAð0Þm and by the fact that ÂAð0Þm is stochastic (whence

%½ÂAð0Þm� ¼ 1). Consequently, %½ŶYðbÞ� < 1. Thus the spectral radius of AðMÞm is

less than 1 and the spectral radius of AðMÞ, being equal to the m-th root of

that of AðMÞm, is also less than 1. Since TðsjÞka A Lðr 0; rÞ for all j, k, (7) implies

DðMÞ ¼ aðMÞ ¼ detðI� AðMÞÞ0 0:

So DðMÞ0 0 for all M A M. This means that there exists D�1 A SðjNÞ and the

function 1=dðsÞ, r 0 a<sa r, is the Laplace transform of D�1. The proof of

Lemma 4 is complete.

Consider the matrix

qðsÞ :¼
Q l

j¼1ðs� sjÞnj

ðs� aÞp ½I� ÂAðsÞ��1; s A Pðr 0; rÞnZ:

Lemma 5. Let the conditions of Theorem 4 be satisfied. Then qðsÞ is the

Laplace transform of some matrix Q A SðjNÞ.

Proof of Lemma 5. Denote by M̂MðsÞ the adjugate matrix of I� ÂAðsÞ.
Then qðsÞ ¼ ½1=dðsÞ�M̂MðsÞ. Consequently, by Lemma 4, qðsÞ ¼ Q̂QðsÞ, where Q ¼
D�1 �M A SðjNÞ (the elements of Q are the convolutions of D�1 with the

corresponding elements of M). The proof of Lemma 5 is complete.

We return to the proof of Theorem 4. We have

ŴWðsÞ ¼ ½I� ÂAðsÞ��1ÂA�ðsÞÂAþð0Þ ¼
ðs� aÞpQ l
j¼1ðs� sjÞnj

Q̂QðsÞÂA�ðsÞÂAþð0Þ

¼ 1þ
Xl

j¼1

Xnj
k¼1

Cjk

ðs� sjÞk

" #
Q̂QðsÞÂA�ðsÞÂAþð0Þ: ð8Þ
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Define V :¼ Q � A�ÂAþð0Þ. Since the elements of A� are finite measures con-

centrated on ð�y; 0�, A� A SðjNÞ and hence V A SðjNÞ. Perform the following

calculations:

V̂VðsÞ
ðs� sjÞk

¼ V̂VðsjÞ
ðs� sjÞk

þ V̂VðsÞ � V̂VðsjÞ
ðs� sjÞk

¼
Xk�1

i¼0

vi; jðsjÞ
ðs� sjÞk�i

þ vk; jðsÞ; ð9Þ

where

v0; jðsÞ :¼ V̂VðsÞ; vi; jðsÞ :¼
vi�1; jðsÞ � vi�1; jðsjÞ

s� sj
; i ¼ 1; . . . ; k:

As before, applying step by step either Theorem 2 or Theorem 3, we establish

that the matrix measure Vi; j :¼ TðsjÞ iV with Laplace transform vi; jðsÞ belongs to

SðjNÞ or SðjN�kÞ, depending on whether <sj is less than or equal to r. Sub-

stituting (9) into (8) and collecting similar terms, we obtain, by the uniqueness of

the expansion (5), that

1þ
Xl

j¼1

Xnj
k¼1

Cjk

ðs� sjÞk

" #
V̂VðsÞ ¼ V̂VðsÞ þ

Xl

j¼1

Xnj
k¼1

ð�1ÞkBjk

ðs� sjÞk
þ
Xl

j¼1

Xnj
k¼1

Cjkvk; jðsÞ:

Put D :¼ Vþ
P l

j¼1

Pnj
k¼1 CjkTðsjÞkV. Then D A SðjÞ and

ŴWðsÞ ¼
Xl

j¼1

Xnj
k¼1

ð�1ÞkBjk

ðs� sjÞk
þ D̂DðsÞ; s A Pðr 0; rÞnZ:

Passing over in this equality from the Laplace transforms to the corresponding

measures, we obtain the representation (6). Theorem 4 is proved.

Let 1 denote the N � 1 column vector with unit elements. It follows from (2)

that ÂAþð0Þ1 ¼ ðPiðMy ¼ 0ÞÞ. Summing over j A N the probabilities PiðkhðxÞ ¼ jÞ,
we obtain the following result about the asymptotic behaviour of the PiðMy > xÞ.

Theorem 5. Under the assumptions of Theorem 4, we have

PiðMy > xÞ
tðxÞ

� �
¼
Xl

j¼1

Xnj
k¼1

Bjk1E
k�
j ððx;yÞÞ þ Dððx;yÞÞ1;

where jDððx;yÞÞ1ja jDjððx;yÞÞ1 ¼ oð1=jðxÞÞ1 as x ! y.

If Z0q, then there is no need to use Theorems 2 and 3 in the proof

of Theorem 4. It follows that, in this case, the conditions jðxÞ=expðrxÞ" and
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%½Am�Þ5s ðrÞ� < 1 become superfluous. Thus, Theorem 4 of the present paper

generalizes the su‰ciency part of [12, Theorem 5].
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