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Complex Interpolation of Certain Closed Subspaces
of Generalized Morrey Spaces
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Abstract. In this paper, we give a description about the first and second complex interpolation between L∞
and the generalized Morrey spaces. Our result can be viewed as a supplement of the complex interpolation of
generalized Morrey spaces, discussed in [9]. We also give an explicit description of some closed subspaces of
generalized Morrey spaces and their complex interpolation spaces.

1. Introduction

Based on the study of the solution of certain elliptic partial differential equations by C.B.
Morrey in [15], many researchers studied the Morrey spaces. For 0 < q ≤ p < ∞, the
Morrey space Mp

q = Mp
q (Rn) is defined to be the set of all functions f ∈ Lqloc(R

n) such that

‖f ‖Mp
q

:= sup
x∈Rn,r>0

|B(x, r)| 1
p
− 1
q ‖f ‖Lq(B(x,r)) < ∞ . (1.1)

Here, B(x, r) denotes the ball centered at x ∈ Rn with radius r . Remark that, for p = q , we
have the Morrey space Mp

q is equal to the Lebesgue space Lp . The function r ∈ (0,∞) �→
rn/p in (1.1) can be generalized to a suitable function ϕ : (0,∞) → (0,∞) to define the
generalized Morrey space Mϕ

q = Mϕ
q (Rn) whose norm is given by

‖f ‖Mϕ
q

:= sup
x∈Rn,r>0

ϕ(r)

|B(x, r)|1/q ‖f ‖Lq(B(x,r)) < ∞ . (1.2)

The space Mϕ
q was introduced by Nakai in [16]. Here, we may assume that ϕ ∈ Gq , that is, ϕ

is increasing and r �→ r−n/qϕ(r) is decreasing (see [16]). Remark that, when ϕ(r) = r
n
p and

ψ(r) = 1, we have Mϕ
q = Mp

q and Mψ
q = L∞ (see [17, Proposition 3.3]), respectively.

It is known that Morrey spaces do not have an interpolation property in general, as indi-
cated in [3, 19]. However, there has been some progress in the interpolation theory of Morrey
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spaces. Let [X0,X1]θ and [X0,X1]θ be the first and second Calderón complex interpolation
spaces, respectively (see [1, 5]). It was shown by Cobos et al. in [7] that

[Mp0
q0 ,Mp1

q1 ]θ ⊆ Mp
q

whenever 1 ≤ q0 ≤ p0 < ∞, 1 ≤ q1 ≤ p1 < ∞, and 1 ≤ q ≤ p < ∞ satisfy

1

p
= 1 − θ

p0
+ θ

p1
and

1

q
= 1 − θ

q0
+ θ

q1
. (1.3)

Moreover, by adding the assumption p0
q0

= p1
q1

, Lu et al. [14, Theorem 1.2] showed the

following description:

[Mp0
q0 ,Mp1

q1 ]θ = Mp0
q0 ∩ Mp1

q1

Mp
q

. (1.4)

For the second complex interpolation space, Lemarié-Rieusset [13] proved that

[Mp0
q0 ,Mp1

q1 ]θ = Mp
q (1.5)

when one assumes (1.3) and p0
q0

= p1
q1

. Furthermore, the results in [13] and [14, Theorem 1.2]

were extended to generalized Morrey spaces in [9]. Meanwhile, Burenkov and Nursultanov
[4] obtained a real interpolation method for local Morrey spaces, and their results were ex-
tended to Bwu setting by Nakai and Sobukawa [18]. The interpolation of Morrey-Campanato
spaces and smoothness spaces by the complex method, the Peetre-Gagliardo method, and the
± method can be found in [26].

Recall the complex interpolation of Lebesgue spaces:

[Lp0, Lp1 ]θ = [Lp0, Lp1]θ = Lp (1.6)

where 1 ≤ p0 ≤ ∞, 1 ≤ p1 ≤ ∞, and 1 ≤ p ≤ ∞ satisfy 1
p

= 1−θ
p0

+ θ
p1

. Remark that, when

p0 and p1 are finite, (1.6) is a special case of (1.4) and (1.5). Our aim is to give a supplement
of (1.4), (1.5), and [9] which recovers (1.6) for the case p0 = ∞. More precisely, one of our
main results is stated as follows:

THEOREM 1.1. Let θ ∈ (0, 1), 1 ≤ q < ∞, and ϕ ∈ Gq . Then we have

[L∞,Mϕ
q ]θ =

{
f ∈ Mϕθ

q/θ : lim
N→∞ ‖f χ{|f |< 1

N }∪{|f |>N}‖Mϕθ

q/θ

= 0

}
(1.7)

and

[L∞,Mϕ
q ]θ = Mϕθ

q/θ . (1.8)

When 1 ≤ q < p < ∞, we know that f (x) := |x|−n/p ∈ Mp
q , and for any R > 0, we

have

‖f − χB(0,R)f ‖Mp
q

= ‖fχB(0,R)‖Mp
q

= ‖f ‖Mp
q
. (1.9)
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This shows the difficulty of approximating functions in the Morrey space Mp
q by compactly

supported functions. Recently, the description of the closure in Mp
q of L∞

c was given in [9,
Lemma 7]. For the next discussion, we use the following notation:

DEFINITION 1.2. Let 1 ≤ q < ∞, ϕ ∈ Gq , and L0
c be the set of compactly supported

functions. The spaces M̃ϕ
q ,

∗Mϕ
q , and Mϕ

q denote the closure in Mϕ
q of L∞

c , L0
c ∩ Mϕ

q , and

L∞ ∩ Mϕ
q , respectively. We also write L̃∞ for the closure of L∞

c in L∞. If ϕ(t) := tn/p,

then we write M̃p
q ,

∗Mp
q , and Mp

q for the corresponding closed subspaces of Morrey spaces.

Our results on the explicit description of M̃ϕ
q and

∗Mϕ
q are given as follows:

THEOREM 1.3. Let 1 ≤ q < ∞ and ϕ ∈ Gq . Then we have
M̃ϕ

q = {f ∈ Mϕ
q : lim

R→∞ ‖χ{|f |>R}∪(Rn\B(0,R))f ‖Mϕ
q

= 0
}

(1.10)

and
∗Mϕ
q = {f ∈ Mϕ

q : lim
R→∞ ‖χRn\B(0,R)f ‖Mϕ

q
= 0
}
. (1.11)

Note that, the identity (1.10) for the case infϕ = 0 can be seen in [9, Lemma 15]. We also

remark that another characterization of
∗Mp
q was given by Yuan et al. in [26, Lemma 2.33].

Meanwhile, the description of the space Mp
q and Mϕ

q was given in [6, Lemma 3.1] and
[10, Lemma 2.6], respectively. We mention that we do not discuss the closed subspaces of
Morrey spaces having smoothness property. Morrey spaces, which date back to [15], have
significant progress from the point of smoothness. From the point of the function spaces
having smoothness, it turned out that Morrey spaces can be realized with function spaces
related to the Carleson measure; see [24] for an exhaustive account. We refer to [22, 23] for
more recent surveys. We refer to [8, 11, 12, 25] for some recent approaches in this direction.

Related to the complex interpolation of closed subspaces of Morrey spaces, we state one
of our main theorems:

THEOREM 1.4. Suppose that θ ∈ (0, 1), q0, q1, q ∈ [1,∞), ϕ0 ∈ Gq0 , ϕ1 ∈ Gq1 , and
ϕ ∈ Gq satisfy

q0 �= q1,
1

q
= 1 − θ

q0
+ θ

q1
, ϕ = ϕ1−θ

0 ϕθ1 , and ϕ
q0
0 = ϕ

q1
1 . (1.12)

Then we have the following characterizations:

[ ∗Mϕ0
q0
,Mϕ1

q1
]θ = [Mϕ0

q0
,

∗Mϕ1
q1

]θ = {f ∈ Mϕ
q : χ{a≤|f |≤b}f ∈ ∗Mϕ

q for all 0 < a < b < ∞} ,
(1.13)

[M̃ϕ0
q0 ,Mϕ1

q1
]θ = [Mϕ0

q0
,M̃ϕ1

q1 ]θ = {f ∈ Mϕ
q : χ{a≤|f |≤b}f ∈ ∗Mϕ

q for all 0 < a < b < ∞} ,
(1.14)
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and

[Mϕ0
q0 ,Mϕ1

q1
]θ = [Mϕ0

q0
,Mϕ1

q1 ]θ = Mϕ
q . (1.15)

Theorem 1.4 can be seen as a refinement of our previous results, namely Theorems 3 and
4 in [9] and the following theorem:

THEOREM 1.5 ([10, Corollary 1.10]). Suppose that θ ∈ (0, 1), 1 ≤ q0 < ∞, 1 ≤
q1 < ∞, and ϕq0

0 = ϕ
q1
1 . Define ϕ := ϕ1−θ

0 ϕθ1 and 1
q

:= 1−θ
q0

+ θ
q1
. Then

[M̃ϕ0
q0 ,M̃ϕ1

q1 ]θ = [ ∗Mϕ0
q0
,

∗Mϕ1
q1

]θ =
⋂

0<a<b<∞
{f ∈ Mϕ

q : χ{a≤|f |≤b}f ∈ M̃ϕ
q } (1.16)

and

[Mϕ0
q0 ,Mϕ1

q1 ]θ = Mϕ
q . (1.17)

We also consider the complex interpolation between L∞ and each of the spaces M̃ϕ
q ,

∗Mϕ
q , and Mϕ

q . One of our results is the following theorem:

THEOREM 1.6. Let θ ∈ (0, 1), 1 ≤ q < ∞, and ϕ ∈ Gq . Then we have

[L∞,M̃ϕ
q ]θ = [L∞, ∗Mϕ

q ]θ = ˜Mϕθ

q/θ . (1.18)

Now, we outline the rest of this paper. We shall recall some notation and definition
related to the complex interpolation spaces in Section 2. We also recall some known results
about the interpolation of generalized Morrey spaces. The proof of Theorem 1.1 is given in
Section 3. In Section 4, we give the proof of Theorem 1.3. The proof of Theorem 1.4 is given
in Section 5. In the last section, we prove Theorem 1.6 and we also present other complex

interpolation spaces between L∞ and each of the spaces M̃ϕ
q ,

∗Mϕ
q , and Mϕ

q .

2. Preliminaries

In this section, we recall the definition of the first and second complex interpolation
methods and we also state some previous results which will be used in the proof of our main
theorem. We begin with the first complex interpolation method.

DEFINITION 2.1 (Calderón’s first complex interpolation space). Let X = (X0,X1)

be a compatible couple of Banach spaces. Let S := {z ∈ C : 0 ≤ Re(z) ≤ 1} and S be
its interior.

1. Define F(X0,X1) as the set of all functions F : S → X0 +X1 such that

(a) F is continuous on S and sup
z∈S

‖F(z)‖X0+X1 < ∞,

(b) F is holomorphic in S,
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(c) the functions t ∈ R �→ F(j + it) ∈ Xj are bounded and continuous on R for
j = 0, 1.

The space F(X0,X1) is equipped with the norm

‖F‖F(X0,X1) := max
{

sup
t∈R

‖F(it)‖X0 , sup
t∈R

‖F(1 + it)‖X1

}
.

2. Let θ ∈ (0, 1). Define the complex interpolation space [X0,X1]θ with respect to
(X0,X1) to be the set of all functions f ∈ X0 + X1 such that f = F(θ) for some
F ∈ F(X0,X1). The norm on [X0,X1]θ is defined by

‖f ‖[X0,X1]θ := inf{‖F‖F(X0,X1) : f = F(θ) for some F ∈ F(X0,X1)} .
The fact that [X0,X1]θ is a Banach space can be seen in [5] and [1, Theorem 4.1.2]. We

invoke the following useful lemmas:

LEMMA 2.2 ([5], [1, Theorem 4.2.2]). Let θ ∈ (0, 1) and (X0,X1) be a compatible
couple of Banach spaces. Then we have X0 ∩X1 is dense in [X0,X1]θ .

LEMMA 2.3 ([1, Lemma 4.3.2]). Let θ ∈ (0, 1) and F ∈ F(X0,X1). Then we have

‖F(θ)‖[X0,X1]θ ≤
(

1

1 − θ

∫
R

‖F(it)‖X0P0(θ, t) dt

)1−θ(1

θ

∫
R

‖F(1 + it)‖X1P1(θ, t) dt

)θ
(2.1)

where P0(θ, t) and P1(θ, t) are defined by

P0(θ, t) := sin(πθ)

2(cosh(πt)− cos(πθ))
and P1(θ, t) := sin(πθ)

2(cosh(πt)+ cos(πθ))
.

In order to obtain the explicit description of the first complex interpolation spaces, some-
times it is easier to calculate the Calderón product and then use the result of Sestakov in [21].
The definition of Calderón product and Sestakov’s lemma are given as follows:

DEFINITION 2.4. Let X = (X0,X1) be a compatible couple of Banach lattices on R
and θ ∈ (0, 1). The Calderón productX0

1−θX1
θ of X0 and X1 is defined by

X0
1−θX1

θ :=
⋃

f0∈X0,f1∈X1

{
f : Rn → C : |f (x)| ≤ |f0(x)|1−θ |f1(x)|θ

}
.

For f ∈ X0
1−θX1

θ , define the norm

‖f ‖X0
1−θX1

θ := inf
{‖f0‖1−θ

X0
‖f1‖θX1

: f0 ∈ X0, f1 ∈ X1, |f | ≤ |f0|1−θ |f1|θ
}
.

LEMMA 2.5. For every θ ∈ (0, 1), we have [X0,X1]θ = X0 ∩X1
X1−θ

0 Xθ1 .

Now, we recall the definition of the second complex interpolation method.
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DEFINITION 2.6. Let X be a Banach space. Denote by Lip(R,X) the set of all func-
tions f : R → X such that

‖f ‖Lip(R,X) := sup
−∞<s<t<∞

‖f (t)− f (s)‖X
|t − s|

is finite.

DEFINITION 2.7 ([1, 5](Calderón’s second complex interpolation space)). Let
(X0,X1) be a compatible couple of Banach spaces.

1. Denote by G(X0,X1) the set of all functionsG : S̄ → X0 +X1 such that:

(a) G is continuous on S̄ and sup
z∈S̄

∥∥∥ G(z)1+|z|
∥∥∥
X0+X1

< ∞,

(b) G is holomorphic in S,

(c) the functions

t ∈ R �→ G(j + it)−G(j) ∈ Xj
are Lipschitz continuous on R for j = 0, 1.

The space G(X0,X1) is equipped with the norm

‖G‖G(X0,X1) := max
{‖G(i·)‖Lip(R,X0), ‖G(1 + i·)‖Lip(R,X1)

}
. (2.2)

2. Let θ ∈ (0, 1). The second complex interpolation space [X0,X1]θ with respect to
(X0,X1) is defined to be the set of all f ∈ X0 + X1 such that f = G′(θ) for some
G ∈ G(X0,X1). The norm on [X0,X1]θ is defined by

‖f ‖[X0,X1]θ := inf{‖G‖G(X0,X1) : f = G′(θ) for some G ∈ G(X0,X1)} .
Relation between the inclusion and the complex interpolation is given as follows:

LEMMA 2.8. If X0 ⊆ Y0 and X1 ⊆ Y1 with continuous embedding, then

[X0,X1]θ ⊆ [Y0, Y1]θ .
PROOF. Let f ∈ [X0,X1]θ . Then there exists G ∈ G(X0,X1) such that f = G′(θ).

By using the following inequalities

‖x0‖Y0 � ‖x0‖X0, ‖x1‖Y1 � ‖x1‖X1, and ‖x‖Y0+Y1 � ‖x‖X0+X1 ,

for every x0 ∈ X0, x1 ∈ X1, and x ∈ X0 + X1, we can verify that G ∈ G(Y0, Y1). Hence,
f ∈ [Y0, Y1]θ . �

The relation between the first and second complex interpolation functors is given in the
following lemma:
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LEMMA 2.9 ([10, Lemma 2.4]). ForG ∈ G(X0,X1), z ∈ S, and k ∈ N, define

hk(z) := G(z+ 2−ki)−G(z)

2−ki
.

Then we have hk(θ) ∈ [X0,X1]θ .
PROOF. We give a simplified proof of [10, Lemma 2.4]. The continuity and holomor-

phicity of hk follows from the corresponding property of G. Since t ∈ R �→ G(j + it) ∈ Xj
are Lipschitz-continuous for j = 0, 1, we see that t ∈ R �→ hk(j + it) ∈ Xj are bounded
and continuous on R. Moreover,

‖hk(θ)‖[X0,X1]θ ≤ ‖hk‖F(X0,X1)

= max
j=0,1

sup
t∈R

∥∥∥∥G(j + i(t + 2−k))−G(j + it)

2−ki

∥∥∥∥
Xj

≤ ‖G‖G(X0,X1) < ∞ ,

as desired. �

We use the following density result in addition to Lemma 2.5:

LEMMA 2.10 ([2]). Let (X0,X1) be a compatible couple and θ ∈ (0, 1). Then we
have

[X0,X1]θ = X0 ∩X1
[X0,X1]θ . (2.3)

We invoke the previous result about the second complex interpolation of generalized
Morrey spaces.

THEOREM 2.11 ([9, Lemmas 4 and 12 and Theorem 2]). Suppose that θ, q0, q1, q ,

ϕ0, ϕ1, and ϕ are defined in Theorem 1.4. For f ∈ Mϕ
q and z ∈ S, define

F(z) := sgn(f )|f |q
(

1−z
q0

+ z
q1

)
and G(z) := (z− θ)

∫ 1

0
F(θ + (z− θ)t) dt . (2.4)

Then we have:

1. |G(z)| ≤ (1 + |z|)
(
|f |

q
q0 + |f |

q
q1

)
for every z ∈ S;

2. G ∈ G(Mϕ0
q0 ,Mϕ1

q1 );

3. [Mϕ0
q0 ,Mϕ1

q1 ]θ = Mϕ
q .

3. The proof of Theorem 1.1

To prove (1.7), we combine the Calderón product of L∞ and Mϕ
q with Lemma 2.5. Our

description of the Calderón product of L∞ and Mϕ
q is given as follows:
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LEMMA 3.1. Let θ ∈ (0, 1), 1 ≤ q < ∞, and ϕ ∈ Gq . Then we have
(L∞)1−θ (Mϕ

q )
θ = Mϕθ

q/θ . (3.1)

PROOF. For f ∈ Mϕθ

q/θ , define f0 := 1 and f1 := |f |1/θ . Since

|f0|1−θ |f1|θ = |f |, ‖f0‖L∞ = 1, and ‖f1‖Mϕ
q

= ‖f ‖1/θ

Mϕθ

q/θ

< ∞ ,

we have f ∈ (L∞)1−θ (Mϕ
q )
θ and ‖f ‖(L∞)1−θ (Mϕ

q )
θ ≤ ‖f ‖Mϕθ

q/θ

. Therefore, Mϕθ

q/θ ⊆
(L∞)1−θ (Mϕ

q )
θ with embedding constant 1.

Conversely, for f ∈ (L∞)1−θ (Mϕ
q )
θ and ε > 0, choose f0 ∈ L∞ and f1 ∈ Mϕ

q such
that

|f | ≤ |f0|1−θ |f1|θ and ‖f0‖1−θ
L∞ ‖f1‖θMϕ

q
≤ (1 + ε)‖f ‖(L∞)1−θ (Mϕ

q )
θ . (3.2)

Let x ∈ Rn and r > 0. As a consequence of (3.2), we have

ϕ(r)θ

|B(x, r)| θq
(∫

B(x,r)

|f (y)|q/θ dy
) θ
q ≤ ϕ(r)θ

|B(x, r)| θq
(∫

B(x,r)

|f0(y)|
q(1−θ)
θ |f1(y)|q dy

) θ
q

≤ ‖f0‖1−θ
L∞ ‖f1‖θMϕ

q

≤ (1 + ε)‖f ‖(L∞)1−θ (Mϕ
q )
θ ,

and hence, f ∈ Mϕθ

q/θ with ‖f ‖Mϕθ

q/θ

≤ ‖f ‖(L∞)1−θ (Mϕ
q )
θ . Therefore, (L∞)1−θ (Mϕ

q )
θ ⊆

Mϕθ

q/θ . Thus, (3.1) holds. �

The proof of the first complex interpolation of L∞ and Mϕ
q is given as follows:

PROOF OF (1.7). We combine Lemmas 2.5 and 3.1 to obtain

[L∞,Mϕ
q ]θ = L∞ ∩ Mϕ

q

(L∞)1−θ (Mϕ
q )
θ

= L∞ ∩ Mϕ
q

Mϕθ

q/θ
. (3.3)

Let f ∈ Mϕθ

q/θ be such that

lim
N→∞ ‖f χ{|f |< 1

N }∪{|f |>N}‖Mϕθ

q/θ

= 0 . (3.4)

For each N ∈ N, define fN := f χ{ 1
N ≤|f |≤N}. Since fN ∈ L∞,

‖fN‖Mϕ
q

≤ (1/N)1− 1
θ ‖|f |1/θ‖Mϕ

q
= N

1
θ
−1‖f ‖1/θ

Mϕθ

q/θ

< ∞ ,
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and

‖f − fN‖Mϕθ

q/θ

= ‖fχ{|f |< 1
N }∪{|f |>N}‖Mϕθ

q/θ

→ 0

as N → ∞, we see that f ∈ L∞ ∩ Mϕ
q

Mϕθ

q/θ = [L∞,Mϕ
q ]θ .

Conversely, let f ∈ [L∞,Mϕ
q ]θ . As a consequence of (3.3), for each ε > 0, there exists

g = gε ∈ L∞ ∩ Mϕ
q such that

‖f − g‖Mϕθ

q/θ

<
ε

6
. (3.5)

For each N ∈ N, we have∣∣fχ{|f |< 1
N }∪{|f |>N}

∣∣ ≤ ∣∣f χ{|f |< 1
N }
∣∣+ |f χ{|f |>N}|

≤ 2|f − g| + ∣∣gχ{|f |< 1
N }∩{|g |> 2

N }
∣∣+ ∣∣gχ{|g |≤ 2

N }
∣∣

+ ∣∣f χ{|f |>N}∩{|g |≤N
2 }
∣∣+ ∣∣gχ{|g |>N

2 }
∣∣ . (3.6)

Observe that, on the set {|f | < 1
N

} ∩ {|g| > 2
N

}, we have

|g| ≤ |f − g| + |f | < |f − g| + 1

N
< |f − g| + |g|

2
.

Therefore,

|gχ{|f |< 1
N }∩{|g |> 2

N }| ≤ 2|f − g| . (3.7)

Meanwhile, on the set {|f | > N} ∩ {|g| ≤ N
2 }, we have

|f | ≤ |f − g| + |g| ≤ |f − g| + N

2
< |f − g| + |f |

2
,

and hence, ∣∣fχ{|f |>N}∩{|g |≤N
2 }
∣∣ ≤ 2|f − g| . (3.8)

By combining (3.6)–(3.8), for

N > 2 max

⎧⎨⎩‖g‖L∞ ,

(1 + ‖g‖θMϕ
q

ε

) 1
1−θ
⎫⎬⎭ , (3.9)

we have

|fχ{|f |<1/N}∪{|f |>N}| ≤ 6|f − g| + ∣∣gχ{|g |≤ 2
N }
∣∣+ ∣∣gχ{|g |>N

2 }
∣∣

≤ 6|f − g| +
(

2

N

)1−θ
|g|θ + ∣∣gχ{|g |>N

2 }
∣∣
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≤ 6|f − g| + ε

1 + ‖g‖θMϕ
q

|g|θ .

We combine the last inequality and (3.5) to obtain∥∥f χ{|f |< 1
N }∪{|f |>N}

∥∥
Mϕθ

q/θ

≤ 6‖f − g‖Mϕθ

q/θ

+ ε

1 + ‖g‖θMϕ
q

‖|g|θ‖Mϕθ

q/θ

< ε + ε

1 + ‖g‖θMϕ
q

‖g‖θMϕ
q
< 2ε .

This shows that lim
N→∞ ‖f χ{|f |< 1

N
}∪{|f |>N}‖Mϕθ

q/θ

= 0. �

Our proof of (1.8) combines (1.7) and Lemma 2.9. We give the proof of the second
complex interpolation of L∞ and Mϕ

q as follows:

PROOF OF (1.8). Let f ∈ [L∞,Mϕ
q ]θ and ε > 0. Then there exists G ∈ G(L∞,Mϕ

q )

such that

G′(θ) = f and ‖G‖G(L∞,Mϕ
q )

≤ (1 + ε)‖f ‖[L∞,Mϕ
q ]θ .

For every z ∈ S and k ∈ N, define

Hk(z) := G(z+ 2−ki)−G(z)

2−ki
.

By Lemma 2.9, we have Hk(θ) ∈ [L∞,Mϕ
q ]θ with

‖Hk(θ)‖[L∞,Mϕ
q ]θ ≤ (1 + ε)‖f ‖[L∞,Mϕ

q ]θ . (3.10)

By combining (3.10) and (1.7), we have

‖Hk(θ)‖Mϕθ

q/θ

≤ (1 + ε)‖f ‖[L∞,Mϕ
q ]θ . (3.11)

Since lim
k→∞Hk(θ) = G′(θ) = f in L∞ + Mϕ

q , we can find a subsequence {Hkj (θ)}∞j=1 ⊆
{Hk(θ)}∞k=1 such that

lim
j→∞Hkj (θ)(x) = f (x) a.e.

By Fatou’s lemma and (3.11), we get

‖f ‖Mϕθ

q/θ

≤ lim inf
j→∞ ‖Hkj (θ)‖Mϕθ

q/θ

≤ (1 + ε)‖f ‖[L∞,Mϕ
q ]θ .

Since ε > 0 is arbitrary, we have ‖f ‖Mϕθ

q/θ

≤ ‖f ‖[L∞,Mϕ
q ]θ .

Conversely, let us suppose that f ∈ Mϕθ

q/θ . For every z ∈ S, define

F(z) := sgn(f )|f | zθ and G(z) := (z − θ)

∫ 1

0
F(θ + (z − θ)t) dt . (3.12)
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Let F0(z) := χ{|f |≤1}F(z), F1(z) := F(z) − F0(z), G0(z) := χ{|f |≤1}G(z), and G1(z) :=
G(z)−G0(z). Let u ∈ S. Since Re(u) ∈ [0, 1], we have

|F0(u)| = χ{|f |≤1}|f | Re(u)
θ ≤ 1 and |F1(u)| = χ{|f |>1}|f | Re(u)

θ ≤ |f | 1
θ .

Consequently,

‖F(u)‖L∞+Mϕ
q

≤ ‖F0(u)‖L∞ + ‖F1(u)‖Mϕ
q

≤ 1 + ‖|f |1/θ‖Mϕ
q

= 1 + ‖f ‖1/θ

Mϕθ

q/θ

, (3.13)

‖G0(z)‖L∞ =
∥∥∥∥∫ z

θ

F0(u) du

∥∥∥∥
L∞

≤ |z− θ | ≤ (1 + |z|) (3.14)

and

‖G1(z)‖Mϕ
q

=
∥∥∥∥∫ z

θ

F1(u) du

∥∥∥∥Mϕ
q

≤ |z− θ |‖|f | 1
θ ‖Mϕ

q
≤ (1 + |z|) ‖f ‖

1
θ

Mϕθ

q/θ

< ∞ .

(3.15)

This impliesG(z) ∈ L∞ + Mϕ
q and

sup
z∈S

∥∥∥∥ G(z)1 + |z|
∥∥∥∥
L∞+Mϕ

q

≤ 1 + ‖f ‖
1
θ

Mϕθ

q/θ

< ∞ . (3.16)

Fix 0 < ε � 1. Let z ∈ S with ε < Re(z) < 1 − ε and w ∈ C with |w| < ε
2 . Since

G(z+w)−G(z) =
∫ z+w

z

F (u) du = F(z+w)− F(z)

log(|f |1/θ ) ,

we have∣∣∣∣G0(z+ w)−G0(z)

w
− F0(z)

∣∣∣∣ = |F0(z)|
∣∣∣∣exp(w log(|f |1/θ ))− 1

w log(|f |1/θ ) − 1

∣∣∣∣
= χ{|f |≤1}|f | Re(z)

θ

∣∣∣∣exp(w log(|f |1/θ ))− 1

w log(|f |1/θ ) − 1

∣∣∣∣
≤ χ{|f |≤1}|f | εθ

∣∣∣∣exp(w log(|f |1/θ ))− 1

w log(|f |1/θ ) − 1

∣∣∣∣
≤ sup

0<t≤1
tε
∣∣∣∣exp(w log t)− 1

w log t
− 1

∣∣∣∣ .
Observe that, for every t ∈ (0, 1), we have

tε
∣∣∣∣exp(w log t)− 1

w log t
− 1

∣∣∣∣ = tε

∣∣∣∣∣
∞∑
k=2

(w log t)k−1

k!

∣∣∣∣∣
≤ −tε|w|(log t)

∞∑
k=2

(−|w| log t)k−2

(k − 2)!



498 DENNY IVANAL HAKIM

≤ −tε|w|(log t) exp(−|w| log t)

≤ −tε|w|(log t) exp
(
−ε

2
log t
)

= −t ε2 (log t)|w| ≤ 2

εe
|w| .

Consequently, ∥∥∥∥G0(z+w)−G0(z)

w
− F0(z)

∥∥∥∥
L∞

≤ 2

εe
|w| . (3.17)

By a similar argument, we also have∥∥∥∥G1(z+w)−G1(z)

w
− F1(z)

∥∥∥∥Mϕ
q

≤ 2

εe
|w|‖|f | 1

θ ‖Mϕ
q

= 2

εe
|w|‖f ‖1/θ

Mϕθ

q/θ

. (3.18)

We combine (3.17) and (3.18) to obtain∥∥∥∥G(z+w)−G(z)

w
− F(z)

∥∥∥∥
L∞+Mϕ

q

≤ 2

εe

(
1 + ‖f ‖

1
θ

Mϕθ

q/θ

)
|w| → 0 (3.19)

as w → 0. According to (3.13) and (3.19), we have G : Sε → L∞ + Mϕ
q is a holomorphic

function. Since ε is arbitrary, we conclude that G : S → L∞ + Mϕ
q is holomorphic.

Note that, for j = 0, 1 and t1, t2 ∈ R, we have

G(j + it2)−G(j + it1) = i

∫ t2

t1

F(j + it) dt . (3.20)

By combining (3.20), |F(it)| = 1, and |F(1 + it)| = |f | 1
θ , we have

‖G(it2)−G(it1)‖L∞ ≤ |t2 − t1|
and

‖G(1 + it2)−G(1 + it1)‖Mϕ
q

≤ |t2 − t1|‖f ‖
1
θ

Mϕθ

q/θ

,

which verify Lipschitz-continuity of the functions t ∈ R �→ G(it) − G(0) ∈ L∞ and t ∈
R �→ G(1+it)−G(1) ∈ Mϕ

q . In total, we haveG ∈ G(L∞,Mϕ
q ). Since f = F(θ) = G′(θ),

we conclude that f ∈ [L∞,Mϕ
q ]θ as desired. �

4. Description of the spaces M̃ϕ
q ,

∗Mϕ
q , and Mϕ

q

In this section, we give the proof of Theorem 1.3 and we also explain the relation between

M̃ϕ
q ,

∗Mϕ
q , and Mϕ

q . Our proof utilizes the information about the level sets of the function

f ∈ M̃ϕ
q and the function g ∈ L∞

c ∩ Mϕ
q which approximate f . The proof of (1.10) is given

as follows:
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PROOF OF THEOREM 1.3 (1.10). Let f ∈ Mϕ
q be such that

lim
R→∞ ‖χ{|f |>R}∪(Rn\B(0,R))f ‖Mϕ

q
= 0 .

For each R > 0, define fR := χ{|f |≤R}∩B(0,R)f . Since |fR| ≤ R and supp(fR) ⊆ B(0, R),
we have fR ∈ L∞

c . Since

lim
R→∞ ‖f − fR‖Mϕ

q
= lim
R→∞ ‖χ{|f |>R}∪(Rn\B(0,R))f ‖Mϕ

q
= 0

and fR ∈ L∞
c , we see that f ∈ M̃ϕ

q .

Conversely, let f ∈ M̃ϕ
q and ε > 0. Choose g ∈ L∞

c such that

‖f − g‖Mϕ
q
<
ε

2
.

Choose Rε > 0 such that Rε ≥ 2‖g‖L∞ and supp(g) ⊆ B(0, Rε). For every R > Rε , we
have

|χ{|f |>R}∪(Rn\B(0,R))f | ≤ |f − g| + |χ{|f |>R}g| + |χRn\B(0,R)g|

≤ |f − g| + χ{|f |>R}
R

2
(4.1)

≤ |f − g| + χ{|f |>R}∪(Rn\B(0,R))
|f |
2
. (4.2)

Therefore, for every R > Rε , we have

|χ{|f |>R}∪(Rn\B(0,R))f | ≤ 2|f − g| ,
and hence

‖χ{|f |>R}∪(Rn\B(0,R))f ‖Mϕ
q

≤ 2‖f − g‖Mϕ
q
< ε .

This shows that lim
R→∞ ‖χ{|f |>R}∪(Rn\B(0,R))f ‖Mϕ

q
= 0. �

Now, we give the proof of Theorem 1.3 (1.11):

PROOF OF THEOREM 1.3 (1.11). Assume that f∈Mϕ
q and that lim

R→∞‖χRn\B(0,R)f ‖Mϕ
q

= 0. For every R > 0, define fR := χB(0,R)f . Then fR ∈ L0
c ∩ Mϕ

q , and it follows that

lim
R→∞ ‖f − fR‖Mϕ

q
= 0 ,

so then f ∈ ∗Mϕ
q . Conversely, let f ∈ ∗Mϕ

q . Given ε > 0, there exists gε ∈ L0
c ∩ Mϕ

q such
that

‖f − gε‖Mϕ
q
< ε . (4.3)

For any R > 0, we have

|χRn\B(0,R)f | ≤ |χRn\B(0,R)gε| + |χRn\B(0,R)(f − gε)| ≤ |χRn\B(0,R)gε| + |f − gε| .
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Choose Rε > 0 such that supp(gε) ⊂ B(0, Rε). Then, for all R > Rε, we have

|χRn\B(0,R)f | ≤ |f − gε| .
Consequently, for all R > Rε , we have

‖χRn\B(0,R)f ‖Mϕ
q

≤ ‖f − gε‖Mϕ
q
< ε .

This shows that lim
R→∞ ‖χRn\B(0,R)f ‖Mϕ

q
= 0. �

Next, we move on to the description of Mϕ
q given in [10, Lemma 2.6]. For the sake of

completeness, we also give the proof here.

LEMMA 4.1 ([10, Lemma 2.6]). Let 1 ≤ q < ∞ and ϕ ∈ Gq . Then
Mϕ

q =
{
f ∈ Mϕ

q : lim
R→∞ ‖χ{|f |>R}f ‖Mϕ

q
= 0
}
. (4.4)

PROOF. Let f ∈ Mϕ
q be such that lim

R→∞ ‖χ{|f |>R}f ‖Mϕ
q

= 0. Define fR :=
χ{|f |≤R}f . Since fR ∈ L∞ ∩ Mϕ

q and

‖f − fR‖Mϕ
q

= ‖χ{|f |>R}f ‖Mϕ
q

→ 0

as R → ∞, we see that f ∈ Mϕ
q .

Conversely, let f ∈ Mϕ
q and ε > 0. Choose g ∈ L∞ ∩ Mϕ

q be such that

‖f − g‖Mϕ
q
<
ε

2
.

Let Rε := 2‖g‖L∞ . Then, for every R > Rε , we have

|χ{|f |>R}f | ≤ |χ{|f |>R}(f − g)| + |χ{|f |>R}g|

≤ |f − g| + χ{|f |>R}
R

2

≤ |f − g| + χ{|f |>R}
|f |
2
,

so |χ{|f |>R}f | ≤ 2|f − g|. Therefore, for every R > Rε , we have

‖χ{|f |>R}f ‖Mϕ
q

≤ 2‖f − g‖Mϕ
q
< ε .

This shows that lim
R→∞ ‖χ{|f |>R}f ‖Mϕ

q
= 0, as desired. �

Now, we compare the space M̃ϕ
q ,

∗Mϕ
q , and Mϕ

q when ϕ(t) = tn/p and p > q . By using

(1.10), (1.11), and (4.4), we can verify that M̃p
q �

∗Mp
q � Mp

q and Mp
q � Mp

q as follows:

EXAMPLE 4.2. Let 1≤q<p<∞. Define f (x) :=|x|−n/p, g(x) :=f (x)χRn\B(0,1)(x),
and h(x) := f (x)χB(0,1)(x). Then f ∈ Mp

q \(Mp
q∪ ∗Mp

q ), g ∈ Mp
q \

∗Mp
q , and h ∈ ∗Mp

q \M̃p
q .
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Finally, we give a corollary of Theorem 1.3 and Lemma 4.1, that is, M̃ϕ
q is the intersec-

tion of
∗Mϕ
q and Mϕ

q :

THEOREM 4.3. Let 1 ≤ q < ∞ and ϕ ∈ Gq . Then, M̃ϕ
q = ∗Mϕ

q ∩ Mϕ
q .

PROOF. Since M̃ϕ
q ⊆ ∗Mϕ

q and M̃ϕ
q ⊆ Mϕ

q , we have M̃ϕ
q ⊆ ∗Mϕ

q ∩ Mϕ
q . Conversely,

let f ∈ ∗Mϕ
q ∩ Mϕ

q . Define AR := {|f | > R} ∪ (Rn \ B(0, R)). Then

‖χARf ‖Mϕ
q

≤ ‖χRn\B(0,R)f ‖Mϕ
q

+ ‖χ{|f |>R}f ‖Mϕ
q
. (4.5)

Since f ∈ ∗Mϕ
q and f ∈ Mϕ

q , by combining Theorem 1.3, Lemma 4.1, and (4.5), we have

lim
R→∞ ‖χARf ‖Mϕ

q
= 0 , (4.6)

and hence, f ∈ M̃ϕ
q . This shows that

∗Mϕ
q ∩ Mϕ

q ⊆ M̃ϕ
q . �

5. The proof of Theorem 1.4

In this section, we prove Theorem 1.4. Our proof uses Lemma 2.3 and also the descrip-

tion of the space
∗Mϕ
q . We begin with the lattice property of

∗Mϕ
q :

LEMMA 5.1. Let f and g belong to Mϕ
q with |f | ≤ |g|. If g ∈ ∗Mϕ

q , then f ∈ ∗Mϕ
q .

PROOF. Given ε > 0, there exists gε ∈ L0
c ∩ Mϕ

q such that ‖g − gε‖Mϕ
q
< ε. Define

fε := f
g gεχ{g �=0}. Then fε ∈ L0

c ∩ Mϕ
q and

‖f − fε‖Mϕ
q

≤ ‖g − gε‖Mϕ
q
< ε .

This shows that f ∈ ∗Mϕ
q . �

REMARK 5.2. By the same argument, we also have the lattice property of M̃ϕ
q .

Here and below, we use the same notation and assumptions as in Theorem 1.4. We use
the following auxiliary lemma which is a special case of [10, Lemma 3.5]. For convenience,
we supply its proof.

LEMMA 5.3 ([10, Lemma 3.5]). Let 0 < a < b < ∞. Then

∗Mϕ
q

∗Mϕ0
q0 +Mϕ1

q1 ∩ Mϕ
q ⊆ {f ∈ Mϕ

q : χ{a≤|f |≤b}f ∈ ∗Mϕ
q

}
. (5.1)

PROOF. Without loss of generality, we assume that q0 > q1. Let {fj }∞j=1 be a sequence
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in
∗Mϕ
q such that fj → f in

∗Mϕ0
q0 + Mϕ1

q1 . For every t ≥ 0, define

�(t) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, 0 ≤ t ≤ a

2 or t > 2b ,

2t − a, a
2 ≤ t ≤ a ,

a, a ≤ t ≤ b ,

− a
b
t + 2a, b < t ≤ 2b .

Choose {gj }∞j=1 ⊆ ∗Mϕ0
q0 and {hj }∞j=1 ⊆ Mϕ1

q1 such that f−fj = gj+hj , lim
j→∞ ‖gj‖Mϕ0

q0
= 0,

and lim
j→∞ ‖hj‖Mϕ1

q1
= 0. Since |�(t) −�(s)| ≤ (2 + a

b
)|t − s| and |�(t)− �(s)| ≤ 2a for

every t, s ≥ 0, we have

|χ{a≤|f |≤b}�(|fj |)− χ{a≤|f |≤b}�(|f |)| � χ{a≤|f |≤b} min(1, |f − fj |)
≤ χ{a≤|f |≤b}(min(1, |gj |)+ min(1, |hj |)) . (5.2)

By using the Hölder inequality, we have

‖χ{a≤|f |≤b} min(1, |gj |)‖Mϕ
q

≤ ‖χ{a≤|f |≤b} min(1, |gj |)‖1−θ
Mϕ0

q0

‖χ{a≤|f |≤b} min(1, |gj |)‖θMϕ1
q1

≤ 1

a
θq
q1

‖gj‖1−θ
Mϕ0

q0

‖|f |q/q1‖θMϕ1
q1

= 1

a
θq
q1

‖gj‖1−θ
Mϕ0

q0

‖f ‖θq/q1

Mϕ
q
. (5.3)

Meanwhile, by using q > q1, we get

‖ min(1, |hj |)‖Mϕ
q

≤ ‖|hj |q1/q‖Mϕ
q

= ‖hj‖q1/q

Mϕ1
q1

. (5.4)

Combining (5.3) and (5.4), we get

‖χ{a≤|f |≤b}�(|fj |)− χ{a≤|f |≤b}�(|f |)‖Mϕ
q
� ‖gj‖1−θ

Mϕ0
q0

‖f ‖θq/q1

Mϕ
q

+ ‖hj‖q1/q

Mϕ1
q1

.

We combine the last inequality with lim
j→∞ gj = 0 in Mϕ0

q0 and lim
j→∞ hj = 0 in Mϕ1

q1 to have

lim
j→∞χ{a≤|f |≤b}�(|fj |) = χ{a≤|f |≤b}�(|f |) (5.5)

in Mϕ
q . Since �(t) ≤ t , we have

χ{a≤|f |≤b}�(|fj |) ≤ χ{a≤|f |≤b}|fj | ≤ |fj | , (5.6)

so χ{a≤|f |≤b}�(|fj |) ∈ ∗Mϕ
q , and thus, χ{a≤|f |≤b}�(|f |) ∈ ∗Mϕ

q . Since χ{a≤|f |≤b}|f | ≤
b
a
χ{a≤|f |≤b}�(|f |), we have χ{a≤|f |≤b}f ∈ ∗Mϕ

q . �

By combining the previous lemma, we are ready to prove Theorem 1.4.
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PROOF OF THEOREM 1.4. Let f ∈ Mϕ
q be such that χ{a≤|f |≤b}f ∈ ∗Mϕ

q . Since

χ{a≤|f |≤b}f ∈ L∞ and L∞ ∩ ∗Mϕ
q ⊆ M̃ϕ

q , we have χ{a≤|f |≤b}f ∈ M̃ϕ
q . By combining

this with [ ∗Mϕ0
q0 ,

∗Mϕ1
q1 ]θ ⊆ [ ∗Mϕ0

q0 ,Mϕ1
q1 ]θ and (1.16), we get the following inclusion⋂

0<a<b<∞

{
f ∈ Mϕ

q : χ{a≤|f |≤b}f ∈ ∗Mϕ
q

} ⊆ [ ∗Mϕ0
q0
,Mϕ1

q1

]θ
. (5.7)

Conversely, let f ∈ [ ∗Mϕ0
q0 ,Mϕ1

q1 ]θ . Since [ ∗Mϕ0
q0 ,Mϕ1

q1 ]θ ⊆ [Mϕ0
q0 ,Mϕ1

q1 ]θ = Mϕ
q , we have

f ∈ Mϕ
q . Choose G ∈ G( ∗Mϕ0

q0 ,Mϕ1
q1 ) such that f = G′(θ). For z ∈ S and k ∈ N, define

hk(z) := G(z+ 2−ki)−G(z)

2−ki
.

By virtue of Lemma 2.3 and [Mϕ0
q0 ,Mϕ0

q0 ]θ = Mϕ
q , we have

‖χRn\B(0,R)hk(θ)‖Mϕ
q

≤ ‖χRn\B(0,R)hk(θ)‖[Mϕ0
q0 ,M

ϕ0
q0 ]θ

≤
(

1

1 − θ

∫
R

‖χRn\B(0,R)hk(it)‖Mϕ0
q0
P0(θ, t) dt

)1−θ

×
(

1

θ

∫
R

‖hk(1 + it)‖Mϕ1
q1
P1(θ, t) dt

)θ
.

Since hk(it) ∈ ∗Mϕ0
q0 , we see that lim

R→∞ ‖χRn\B(0,R)hk(it)‖Mϕ0
q0

= 0. Hence, by the dominated

convergence theorem, we have lim
R→∞ ‖χRn\B(0,R)hk(θ)‖Mϕ

q
= 0. Consequently, hk(θ) ∈

∗Mϕ
q . Since

lim
k→∞ ‖f − hk(θ)‖˜Mϕ0

q0 +Mϕ1
q1

= lim
k→∞

∥∥∥∥∥G′(θ)− G
(
θ + 2−ki

)−G(θ)

2−ki

∥∥∥∥∥˜Mϕ0
q0 +Mϕ1

q1

= 0 ,

we have f ∈ ∗Mϕ
q

˜Mϕ0
q0 +Mϕ1

q1 . By virtue of Lemma 5.3, we have χ{a≤|f |≤b}f ∈ ∗Mϕ
q . From

this fact and (5.7), we conclude that (1.13) holds.

Now, we move on to (1.14). We combine (1.13) and [M̃ϕ0
q0 ,Mϕ1

q1 ]θ ⊆ [ ∗Mϕ0
q0 ,Mϕ1

q1 ]θ to
obtain [M̃ϕ0

q0 ,Mϕ1
q1

]θ ⊆
⋂

0<a<b<∞

{
f ∈ Mϕ

q : χ{a≤|f |≤b}f ∈ ∗Mϕ
q

}
. (5.8)

Conversely, let f ∈ Mϕ
q be such that χ{a≤|f |≤b}f ∈ ∗Mϕ

q for every 0 < a < b < ∞. Since

χ{a≤|f |≤b}f ∈ L∞ and L∞ ∩ ∗Mϕ
q ⊆ M̃ϕ

q , we have χ{a≤|f |≤b}f ∈ M̃ϕ
q . As a consequence of

(1.16) and [M̃ϕ0
q0 ,M̃ϕ1

q1 ]θ ⊆ [M̃ϕ0
q0 ,Mϕ1

q1 ]θ , we have f ∈ [M̃ϕ0
q0 ,Mϕ1

q1 ]θ . By combining this
and (5.8), we arrive at (1.14).
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Finally, we prove (1.15). Observe that the inclusions [Mϕ0
q0 ,Mϕ1

q1 ]θ ⊆ Mϕ
q and

[Mϕ0
q0 ,Mϕ1

q1 ]θ ⊆ Mϕ
q follow from Lemma 2.8 and [Mϕ0

q0 ,Mϕ1
q1 ]θ = Mϕ

q . Meanwhile,

by combining (1.17) and [Mϕ0
q0 ,Mϕ1

q1 ]θ ⊆ [Mϕ0
q0 ,Mϕ1

q1 ]θ , [Mϕ0
q0 ,Mϕ1

q1 ]θ , we get Mϕ
q ⊆

[Mϕ0
q0 ,Mϕ1

q1 ]θ , [Mϕ0
q0 ,Mϕ1

q1 ]θ . Thus, we conclude that (1.15) holds. �

6. The description of the complex interpolation of L∞ and closed subspaces of
Morrey spaces

In this section, we give the proof of Theorem 1.6 and also give the description of other
complex interpolation spaces between L∞ and closed subspaces of Mϕ

q .

6.1. The proof of Theorem 1.6. In the proof of Theorem 1.6, we use the following
lemma:

LEMMA 6.1. Let 1 ≤ q < ∞ and ϕ ∈ Gq . Then, for every f ∈ L∞ ∩ M̃ϕ
q , we have

‖f ‖[L∞,M̃ϕ
q ]θ � ‖f ‖Mϕθ

q/θ

.

PROOF. Since [L∞,M̃ϕ
q ]θ ⊆ [L∞,Mϕ

q ]θ = Mϕθ

q/θ , we have

‖f ‖Mϕθ

q/θ

� ‖f ‖[L∞,M̃ϕ
q ]θ .

Assume that ‖f ‖Mϕθ

q/θ

= 1. For every z ∈ S, define

F(z) := sgn(f )|f | zθ , G(z) :=
∫ z

θ

F (u) du, and G1(z) := χ{|f |>1}G(z) .

For every u ∈ S, we have

|χ{|f |>1}F(u)| = χ{|f |>1}|f | Reu
θ ≤ |f | 1

θ ≤ ‖f ‖
1
θ −1
L∞ |f | ,

so |G1(z)| ≤ (1 + |z|)‖f ‖
1−θ
θ

L∞ |f |. Since f ∈ M̃ϕ
q , we see that G1(z) ∈ M̃ϕ

q . Let t1, t2 ∈ R.

Since f ∈ L∞ ∩ M̃ϕ
q and

|G(1 + it2)−G(1 + it1)| =
∣∣∣∣ i∫ t2

t1

F(1 + it) dt

∣∣∣∣ ≤ |t2 − t1||f |1/θ ≤ |t2 − t1|‖f ‖
1−θ
θ

L∞ |f | ,

we haveG(1+ it2)−G(1+ it1) ∈ M̃ϕ
q . CombiningG1(z) ∈ M̃ϕ

q ,G(1+ it2)−G(1+ it1) ∈
M̃ϕ

q , and G ∈ G(L∞,Mϕ
q ) we have G ∈ G(L∞,M̃ϕ

q ). Moreover,

‖G‖G(L∞,M̃ϕ
q )

= max

(
sup
t<s

∥∥∥∥G(it)−G(is)

t − s

∥∥∥∥
L∞

, sup
t<s

∥∥∥∥G(1 + it)−G(1 + is)

t − s

∥∥∥∥M̃ϕ
q

)
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= max

(
sup
t<s

∥∥∥∥G(it)−G(is)

t − s

∥∥∥∥
L∞

, sup
t<s

∥∥∥∥G(1 + it)−G(1 + is)

t − s

∥∥∥∥Mϕ
q

)
≤ max

(
1, ‖|f |1/θ‖Mϕ

q

)
= max

(
1, ‖f ‖1/θ

Mϕθ

q/θ

)
= 1 = ‖f ‖Mϕθ

q/θ

.

Since f = G′(θ), we have

‖f ‖[L∞,Mϕ
q ]θ ≤ ‖G‖G(L∞,M̃ϕ

q )
≤ ‖f ‖Mϕθ

q/θ

,

as desired. �

The proof of Theorem 1.6 is given as follows:

PROOF OF THEOREM 1.6. For f ∈ [L∞,M̃ϕ
q ]θ , choose F ∈ F(L∞,M̃ϕ

q ) such that
f = F(θ). By combining Lemma 2.3 and Theorem 1.1, we have

‖χRn\B(0,R)f ‖Mϕθ

q/θ

≤ ‖χRn\B(0,R)F (θ)‖[L∞,Mϕ
q ]θ

≤
(

1

1 − θ

∫
R

‖F(it)‖L∞P0(θ, t) dt

)1−θ

×
(

1

θ

∫
R

‖χRn\B(0,R)F (1 + it)‖Mϕ
q
P1(θ, t) dt

)θ
. (6.1)

From F(1 + it) ∈ M̃ϕ
q ⊆ ∗Mϕ

q , we see that

lim
R→∞ ‖χRn\B(0,R)F (1 + it)‖Mϕ

q
= 0 . (6.2)

We combine (6.1), (6.2), and the dominated convergence theorem to obtain

lim
R→∞ ‖χRn\B(0,R)f ‖Mϕθ

q/θ

= 0 .

According to (1.11), we have f ∈ ∗Mϕθ

q/θ . Since

[
L∞,M̃ϕ

q

]
θ

⊆ [L∞,Mϕ
q

]
θ

= L∞ ∩ Mϕ
q

Mϕθ

q/θ ⊆ Mϕθ

q/θ ,

we see that f ∈ ∗Mϕθ

q/θ ∩ Mϕθ

q/θ = ˜Mϕθ

q/θ , as desired.

Now, let f ∈ ˜Mϕθ

q/θ . We shall show that f ∈ [L∞,M̃ϕ
q ]θ . Since L∞

c ⊆ M̃ϕ
q , we have

f ∈ L∞ ∩ M̃ϕ
q

Mϕθ

q/θ

. Then, there exists a sequence {fj }∞j=1 ⊆ L∞ ∩ M̃ϕ
q such that

‖f − fj‖Mϕθ

q/θ

≤ 1

j
. (6.3)
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Therefore, for every j, k ∈ N with j > k, we have

‖fj − fk‖[L∞,M̃ϕ
q ]θ � ‖fj − fk‖Mϕθ

q/θ

≤ 1

j
+ 1

k
<

2

k
,

so {fj }∞j=1 is a Cauchy sequence in [L∞,M̃ϕ
q ]θ . By completeness of [L∞,M̃ϕ

q ]θ , there exists

g ∈ [L∞,M̃ϕ
q ]θ such that

lim
j→∞ ‖fj − g‖[L∞,M̃ϕ

q ]θ = 0 . (6.4)

Combining Mϕθ

q/θ ⊆ L∞ + Mϕ
q , [L∞,Mϕ

q ]θ ⊆ L∞ + Mϕ
q , (6.3), and (6.4), we get

f = g ∈ L∞ ∩ M̃ϕ
q

[L∞,M̃ϕ
q ]θ

. Finally, by using (2.3), we have f ∈ [L∞,M̃ϕ
q ]θ , as desired.

We shall show that [L∞, ∗Mϕ
q ]θ = ˜Mϕθ

q/θ . Let f ∈ [L∞, ∗Mϕ
q ]θ . By virtue of (1.7), we

have [L∞, ∗Mϕ
q ]θ ⊆ [L∞,Mϕ

q ]θ ⊆ Mϕθ

q/θ , so f ∈ Mϕθ

q/θ . By Lemma 2.2, for each ε > 0,

there exists g ∈ L∞ ∩ ∗Mϕ
q such that

‖f − g‖[L∞,Mϕ
q ]θ < ε .

Since L∞ ∩ ∗Mϕ
q ⊆ Mϕ

q ∩ ∗Mϕ
q = M̃ϕ

q , we have g ∈ M̃ϕ
q . Therefore,

‖χ{|g |>R}∪(Rn\B(0,R))g‖Mϕθ

q/θ

≤ ‖g‖1−θ
L∞ ‖χ{|g |>R}∪(Rn\B(0,R))g‖θMϕ

q
→ 0

as R → ∞. Consequently, g ∈ ˜Mϕθ

q/θ . Since [L∞, ∗Mϕ
q ]θ ⊆ [L∞,Mϕ

q ]θ ⊆ Mϕθ

q/θ , we have

‖f − g‖Mϕθ

q/θ

� ε .

This implies f ∈ ˜Mϕθ

q/θ . Thus, [L∞, ∗Mϕ
q ]θ ⊆ ˜Mϕθ

q/θ .

Meanwhile, the inclusion
˜Mϕθ

q/θ ⊆ [L∞, ∗Mϕ
q ]θ follows from [L∞,M̃ϕ

q ]θ ⊆

[L∞, ∗Mϕ
q ]θ and [L∞,M̃ϕ

q ]θ = ˜Mϕθ

q/θ . �

6.2. The spaces [L∞,Mϕ
q ]θ , [L∞,Mϕ

q ]θ , [L∞,M̃ϕ
q ]θ , and [L∞, ∗Mϕ

q ]θ . Next,

we move on to the description of the spaces [L∞,Mϕ
q ]θ , [L∞,Mϕ

q ]θ , [L∞,M̃ϕ
q ]θ , and

[L∞, ∗Mϕ
q ]θ . First, we prove the following lemma:

LEMMA 6.2. Let 1 ≤ q < ∞ and ϕ ∈ Gq . Then we have

∗Mϕθ

q/θ

L∞+Mϕ
q

∩ Mϕθ

q/θ ⊆
⋂

0<a<b<∞

{
f ∈ Mϕθ

q/θ : χ{a≤|f |≤b} ∈ ∗Mϕθ

q/θ

}
.
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PROOF. Let
∗Mϕθ

q/θ

L∞+Mϕ
q

∩ Mϕθ

q/θ and 0 < a < b < ∞. For every t ≥ 0, define

ψa,b(t) := χ( a2 ,2b)
(t)(t − a/2)2(t − 2b)2 .

Since

χ{a≤|f |≤b} ≤ 1

a
χ{a≤|f |≤b}|f | ≤ b

a
χ{a≤|f |≤b} ≤ Ca,bχ{a≤|f |≤b}ψa,b(|f |) , (6.5)

we only need to show that χ{a≤|f |≤b}ψa,b(|f |) ∈ ∗Mϕθ

q/θ . Let {fj }∞j=1 be such that

lim
j→∞ ‖f − fj‖L∞+Mϕ

q
= 0 .

Choose {gj }∞j=1 ⊆ L∞ and {hj }∞j=1 ⊆ Mϕ
q such that

f − fj = gj + hj , lim
j→∞ ‖gj‖L∞ = 0, and lim

j→∞ ‖hj‖Mϕ
q

= 0 . (6.6)

Since ψa,b ∈ C1(R) and ψa,b, ψ ′
a,b ∈ L∞(R), we have

|χ{a≤|f |≤b}ψa,b(|f |)− χ{a≤|f |≤b}ψa,b(|fj |)| � χ{a≤|f |≤b} min(1, |f − fj |)
� χ{a≤|f |≤b}(min(1, |gj |)+ min(1, |hj |)) .

Since min(1, |hj |) ≤ |hj |θ , we have

‖ min(1, |hj |)‖Mϕθ

q/θ

≤ ‖|hj |θ‖Mϕθ

q/θ

= ‖hj‖θMϕ
q
. (6.7)

Meanwhile,

‖χ{a≤|f |≤b} min(1, |gj |)‖Mϕθ

q/θ

≤ 1

a
‖gj‖L∞‖f ‖Mϕθ

q/θ

. (6.8)

By combining (6.7) and (6.8), we get

‖χ{a≤|f |≤b}ψa,b(|f |)− χ{a≤|f |≤b}ψa,b(|fj |)‖Mϕθ

q/θ

≤ 1

a
‖gj‖L∞‖f ‖Mϕθ

q/θ

+ ‖hj‖θMϕ
q
.

According to (6.6), we have lim
j→∞ ‖χ{a≤|f |≤b}ψa,b(|f |) − χ{a≤|f |≤b}ψa,b(|fj |)‖Mϕθ

q/θ

= 0.

Since χ{a≤|f |≤b}ψa,b(|fj |) � |fj |, we have χ{a≤|f |≤b}ψa,b(|fj |) ∈ ∗Mϕθ

q/θ , and hence,

χ{a≤|f |≤b}ψa,b(|f |) ∈ ∗Mϕθ

q/θ . As a consequence of (6.5), we conclude that χ{a≤|f |≤b} ∈
∗Mϕθ

q/θ . �

The description of the spaces [L∞,Mϕ
q ]θ , [L∞,Mϕ

q ]θ , [L∞,M̃ϕ
q ]θ , and [L∞, ∗Mϕ

q ]θ is
given as follows:

THEOREM 6.3. Let 1 ≤ q < ∞ and ϕ ∈ Gq . Then we have
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(i) [L∞,Mϕ
q ]θ = Mϕθ

q/θ ,

(ii) [L∞,Mϕ
q ]θ = Mϕθ

q/θ ,

(iii) [L∞,M̃ϕ
q ]θ = [L∞, ∗Mϕ

q ]θ = ⋂
0<a<b<∞

{f ∈ Mϕθ

q/θ : χ{a≤|f |≤b} ∈ ∗Mϕθ

q/θ }.

PROOF. Note that [L∞,Mϕ
q ]θ ⊆ [L∞,Mϕ

q ]θ = Mϕθ

q/θ . Now, let f ∈ Mϕθ

q/θ . Define

F(z) := sgn(f )|f | zθ and G(z) := ∫ z
θ
F (w) dw. In the proof of (1.8), we know that G ∈

G(L∞,Mϕ
q ), so it suffices to show that

1. G1(z) := χ{|f |>1}G(z) ∈ Mϕ
q for every z ∈ S;

2. G(1 + it)−G(1) ∈ Mϕ
q for every t ∈ R.

From the inequalities

|G1(z)| =
∣∣∣∣χ{|f |>1}

F(z)− F(θ)

log |f |1/θ
∣∣∣∣ � χ{|f |>1}

|f |1/θ
log |f |1/θ

and |G1(z)| ≤ (1 + |z|)|f |1/θ , it follows that

‖χ{|G1(z)|>R}G1(z)‖Mϕ
q
�
∥∥∥∥χ{|f |1/θ> R

1+|z| }
|f |1/θ

log |f |1/θ
∥∥∥∥Mϕ

q

� 1

log(R/(1 + |z|))‖f ‖1/θ

Mϕθ

q/θ

→ 0

as R → ∞. Therefore,G1(z) ∈ Mϕ
q . Similarly, for every t ∈ R, we have

‖χ{|G(1+it )−G(1)|>R}(G(1 + it)−G(1))‖Mϕ
q
�

‖f ‖1/θ

Mϕθ

q/θ

log(R/(1 + |t|)) → 0 (R → ∞) ,

so G(1 + it)−G(1) ∈ Mϕ
q . Hence, G ∈ G(L∞,Mϕ

q ) and f = G′(θ) ∈ [L∞,Mϕ
q ]θ .

We now move on to the proof of (ii). Let f ∈ [L∞,Mϕ
q ]θ . By virtue of Lemma 2.2 and

[L∞,Mϕ
q ]θ ⊆ Mϕθ

q/θ , for each ε > 0, there exists g ∈ L∞ ∩ Mϕ
q such that

‖f − g‖Mϕθ

q/θ

� ε . (6.9)

By combining (6.9) and ‖g‖Mϕθ

q/θ

≤ ‖g‖1−θ
L∞ ‖g‖θMϕ

q
< ∞, we see that f ∈ Mϕθ

q/θ . Mean-

while, by virtue of Theorem 6.3 (i) and (2.3), we have

Mϕθ

q/θ ⊆ L∞ ∩ Mϕ
q

[L∞,Mϕ
q ]θ = [L∞,Mϕ

q ]θ ,
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as desired.

Finally, let us prove (iii). Let f ∈ Mϕθ

q/θ be such that χ{a≤|f |≤b} ∈ ∗Mϕθ

q/θ for every

0 < a < b < ∞. Since

‖χRn\B(0,R)χ{a≤|f |≤b}‖Mϕ
q

= ‖χRn\B(0,R)χ{a≤|f |≤b}‖
1
θ

Mϕθ

q/θ

→ 0

as R → ∞, we have χ{a≤|f |≤b} ∈ ∗Mϕ
q . For every z ∈ S, define

F(z) := sgn(f )|f | zθ and G(z) :=
∫ z

θ

F (w) dw .

In the proof of Theorem 6.3 (i), we know that G ∈ G(L∞,Mϕ
q ). Hence, in order to prove

that G ∈ G(L∞,M̃ϕ
q ), we only need to show that

G1(z) := χ{|f |>1}G(z) ∈ ∗Mϕ
q and G(1 + it)−G(1) ∈ ∗Mϕ

q

for each z ∈ S and t ∈ R. For every R > 0, we have∣∣χ{|f |≤R}G1(z)
∣∣ ≤ (1 + |z|)R1/θχ{1≤|f |≤R} ,

so χ{|f |≤R}G1(z) ∈ ∗Mϕ
q . Since∥∥G1(z)− χ{|f |≤R}G1(z)

∥∥Mϕ
q
� 1

log(R/(1 + |z|))‖f ‖1/θ

Mϕθ

q/θ

→ 0

as R → ∞, we have G1(z) ∈ ∗Mϕ
q . For every t ∈ R and R > 1, we have

|G(1 + it)−G(1)|χ{ 1
R≤|f |≤R} ≤ (1 + |t|)R1/θχ{ 1

R≤|f |≤R} ,

so (G(1 + it)−G(1))χ{ 1
R≤|f |≤R} ∈ ∗Mϕ

q . Meanwhile,

∥∥(G(1 + it)−G(1))χ
Rn\{ 1

R
≤|f |≤R}

∥∥Mϕ
q
� θ

logR
‖f ‖1/θ

Mϕθ

q/θ

→ 0

as R → ∞, so G(1 + it) − G(1) ∈ ∗Mϕ
q . Since G ∈ G(L∞,M̃ϕ

q ) and f = G′(θ), we

conclude that f ∈ [L∞,M̃ϕ
q ]θ . Combining with [L∞,M̃ϕ

q ]θ ⊆ [L∞, ∗Mϕ
q ]θ , we have⋂

0<a<b<∞

{
f ∈ Mϕθ

q/θ : χ{a≤|f |≤b} ∈ ∗Mϕθ

q/θ

} ⊆ [L∞,M̃ϕ
q

]θ ⊆ [L∞, ∗Mϕ
q

]θ
. (6.10)

Let f ∈ [L∞, ∗Mϕ
q ]θ . From [L∞,Mϕ

q ]θ = Mϕθ

q/θ , it follows that f ∈ Mϕθ

q/θ . Choose

G ∈ G(L∞, ∗Mϕ
q ) such that f = G′(θ). For each z ∈ S, define

hk(z) := G(z+ 2−ki)−G(z)

2−ki
.
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By Lemma 2.9 and Theorem 1.6, we have hk(θ) ∈ [L∞, ∗Mϕ
q ]θ = ˜Mϕθ

q/θ ⊆ ∗Mϕθ

q/θ . Since

lim
k→∞ hk(θ) = f in L∞ +Mϕ

q , we have f ∈ ∗Mϕθ

q/θ

L∞+Mϕ
q

∩Mϕθ

q/θ . By virtue of Lemma 6.2,

we conclude that χ{a≤|f |≤b} ∈ ∗Mϕθ

q/θ , for every 0 < a < b < ∞. Hence,[
L∞, ∗Mϕ

q

]θ ⊆
⋂

0<a<b<∞

{
f ∈ Mϕθ

q/θ : χ{a≤|f |≤b} ∈ ∗Mϕθ

q/θ

}
. (6.11)

As a consequence of (6.10) and (6.11), we have Theorem 6.3 (iii). �

6.3. The spaces [L̃∞,Mϕ
q ]θ , [L̃∞,Mϕ

q ]θ , [L̃∞,M̃ϕ
q ]θ , and [L̃∞, ∗Mϕ

q ]θ . Finally,

we also consider the complex interpolation between L̃∞ and closed subspaces of Morrey
spaces. Recall that L̃∞ denotes the closure of L∞

c in L∞.

THEOREM 6.4. Let 1 ≤ q < ∞ and ϕ ∈ Gq . Then we have

(i) [L̃∞,Mϕ
q ]θ = ˜Mϕθ

q/θ ,

(ii) ⋂
0<a<b<∞

{
f ∈ Mϕθ

q/θ : χ{a≤|f |≤b} ∈ L̃∞} ⊆ [L̃∞,Mϕ
q

]θ
⊆

⋂
0<a<b<∞

{
f ∈ Mϕθ

q/θ : χ{a≤|f |≤b} ∈ ∗Mϕθ

q/θ

}
(iii) If inf ϕ > 0, then[

L̃∞,Mϕ
q

]θ =
⋂

0<a<b<∞

{
f ∈ Mϕθ

q/θ : χ{a≤|f |≤b} ∈ ∗Mϕθ

q/θ

}
. (6.12)

(iv) [L̃∞,M̃ϕ
q ]θ = [L̃∞, ∗Mϕ

q ]θ = ˜Mϕθ

q/θ .

PROOF. Let f ∈ ˜Mϕθ

q/θ . Since L∞
c ⊆ L̃∞, we have f ∈ L̃∞ ∩ Mϕ

q

Mϕθ

q/θ . Then, there

exists a sequence {fj }∞j=1 ⊆ L̃∞ ∩ Mϕ
q such that

‖f − fj‖Mϕθ

q/θ

≤ 1

j
. (6.13)

By using a similar argument as in the proof of Lemma 6.1, we have

‖fj‖[L̃∞,Mϕ
q ]θ � ‖fj‖Mϕθ

q/θ

.

Therefore, for every j, k ∈ N with j > k, we have

‖fj − fk‖[L̃∞,Mϕ
q ]θ � ‖fj − fk‖Mϕθ

q/θ

≤ 1

j
+ 1

k
<

2

k
,
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so {fj }∞j=1 is a Cauchy sequence in [L̃∞,Mϕ
q ]θ . By completeness of [L̃∞,Mϕ

q ]θ , there exists

g ∈ [L̃∞,Mϕ
q ]θ such that

lim
j→∞ ‖fj − g‖[L∞,M̃ϕ

q ]θ = 0 . (6.14)

Combining Mϕθ

q/θ ⊆ L∞ + Mϕ
q , [L∞,Mϕ

q ]θ ⊆ L∞ + Mϕ
q , (6.13), and (6.14), we get

f = g ∈ L̃∞ ∩ Mϕ
q

[L̃∞,Mϕ
q ]θ

. As a consequence of (2.3), we have f ∈ [L̃∞,Mϕ
q ]θ .

Conversely, let f ∈ [L̃∞,Mϕ
q ]θ and choose F ∈ F(L̃∞,Mϕ

q ) such that f = F(θ).

Since F(it) ∈ L̃∞, we have

lim
R→∞ ‖χRn\B(0,R)F (it)‖L∞ = 0 . (6.15)

By Lemma 2.3, we have

‖χRn\B(0,R)f ‖Mϕθ

q/θ

≤
(

1

1 − θ

∫
R

‖χRn\B(0,R)F (it)‖L∞P0(θ, t) dt

)1−θ

× ‖F‖F(L̃∞,Mϕ
q )
. (6.16)

By virtue of the dominated convergence theorem, (6.15), and (6.16), we have

lim
R→∞ ‖χRn\B(0,R)f ‖Mϕθ

q/θ

= 0 ,

so f ∈ ∗Mϕθ

q/θ . Since [L̃∞,Mϕ
q ]θ ⊆ [L∞,Mϕ

q ]θ = L∞ ∩ Mϕ
q

Mϕθ

q/θ ⊆ L∞ ∩ Mϕθ

q/θ

Mϕθ

q/θ

,

we have

f ∈ Mϕθ

q/θ ∩ ∗Mϕθ

q/θ = ˜Mϕθ

q/θ ,

as desired.

The proof of (ii) goes as follows. Let f ∈ Mϕθ

q/θ be such that χ{a≤|f |≤b} ∈ L̃∞ for every

0 < a < b < ∞. For each z ∈ S, define

F(z) := sgn(f )|f |z/θ and G(z) :=
∫ z

θ

F (w) dw .

Since G ∈ G(L∞,Mϕ
q ), we shall show that G0(z) := χ{|f |≤1}G(z) ∈ L̃∞ for every z ∈ S

and G(it)−G(0) ∈ L̃∞ for every t ∈ R. For each N ∈ N, we have

|G0(z)χ{|f |> 1
N }| ≤ (1 + |z|)χ{ 1

N <|f |<1} ,

so G0(z)χ{|f |> 1
N } ∈ L̃∞. Meanwhile,

∥∥G0(z)−G0(z)χ{|f |>1/N}
∥∥
L∞ =

∥∥∥∥θ sgn(f )|f |z/θ − sgn(f )|f |
log |f | χ{1/N≤|f |≤1}

∥∥∥∥
L∞
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≤ 2θ

logN
→ 0

as N → ∞. Therefore,G0(z) ∈ L̃∞.
Next, for all N ∈ N and t ∈ R, we have

|G(it)−G(0)|χ{1/N≤|f |≤N} ≤ (1 + |t|)χ{1/N≤|f |≤N} ,

so (G(it)−G(0))χ{1/N≤|f |≤N} ∈ L̃∞. Since |F(it)| = 1 for every t ∈ R, we have∥∥(G(it)−G(0))χRn\{1/N≤|f |≤N}
∥∥
L∞ =

∥∥∥∥θ F (it)− F(0)

log |f | χ{|f |<1/N}∪{|f |>N}
∥∥∥∥
L∞

≤ 2θ

logN
→ 0 ,

as N → ∞. Therefore, G(it) −G(0) ∈ L̃∞. In total, G ∈ G(L̃∞,Mϕ
q ). Since f = G′(θ),

we see that f ∈ [L̃∞,Mϕ
q ]θ .

Now, let f ∈ [L̃∞,Mϕ
q ]θ . Since [L∞,Mϕ

q ]θ = Mϕθ

q/θ , we have f ∈ Mϕθ

q/θ . Let

G ∈ G(L̃∞,Mϕ
q ) be such that such that f = G′(θ). For each z ∈ S, define

hk(z) := G(z+ 2−ki)−G(z)

2−ki
.

As a consequence of Lemma 2.9 and Theorem 6.4(i), we have hk(θ) ∈ ˜Mϕθ

q/θ . Since

lim
k→∞ hk(θ) = f in L∞ +Mϕ

q , we have f ∈ ∗Mϕθ

q/θ

L∞+Mϕ
q

∩Mϕθ

q/θ . By virtue of Lemma 6.2,

we conclude that χ{a≤|f |≤b} ∈ ∗Mϕθ

q/θ , as desired.

Finally, let us prove (iii) and (iv). Recall that, when infϕ > 0, we have Mϕθ

q/θ ⊆ L∞;

see [17, Proposition 3.3]. Therefore,
∗Mϕθ

q/θ ⊆ L̃∞. Combining this fact with Theorem 6.4

(ii), we get (6.12). From Theorem 6.4 (i), it follows that [L̃∞,M̃ϕ
q ]θ ⊆ ˜Mϕθ

q/θ . By the same

argument as in the proof of Theorem 6.4 (i), we have

˜Mϕθ

q/θ ⊆ L̃∞ ∩ M̃ϕ
q

Mϕθ

q/θ ⊆ L̃∞ ∩ M̃ϕ
q

[L̃∞,M̃ϕ
q ]θ = [L̃∞,M̃ϕ

q

]
θ
.

By combining [L̃∞, ∗Mϕ
q ]θ ⊆ [L̃∞,Mϕ

q ]θ = ˜Mϕθ

q/θ and
˜Mϕθ

q/θ = [L̃∞,M̃ϕ
q ]θ ⊆

[L̃∞, ∗Mϕ
q ]θ , we have [L̃∞, ∗Mϕ

q ]θ = ˜Mϕθ

q/θ .
�
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