Second Sectional Classes of Polarized Three-folds

Yoshiaki FUKUMA

Kochi University

(Communicated by H. Kaji)

Abstract. Let X be a smooth complex projective variety of dimension 3 and L an ample line bundle on X. In this paper we study the second sectional class $cl_2(X, L)$ of (X, L). First we show the inequality $cl_2(X, L) \ge L^3 - 1$, and we characterize (X, L) with $-1 \le cl_2(X, L) - L^3 \le 3$. Furthermore the classification of pairs (X, L) with small second sectional classes is obtained. We also classify (X, L) with $2L^3 \ge cl_2(X, L)$.

1. Introduction

Let (X, L) be a polarized manifold of dimension *n* defined over the field of complex numbers, that is, let *X* be a smooth projective variety of dimension *n* defined over the field of complex numbers and *L* an ample line bundle on *X*. If *L* is very ample, then the *class* m(X, L) of (X, L) is defined as follows. Let $\phi_{|L|} : X \hookrightarrow \mathbf{P}^N$ be the embedding defined by |L| and X^{\vee} the dual variety of *X*. The class m(X, L) of (X, L) is defined by

$$m(X, L) = \begin{cases} \deg X^{\vee}, & \text{if } X^{\vee} \text{ is a hypersurface of } (\mathbf{P}^N)^{\vee}, \\ 0, & \text{if } X^{\vee} \text{ is not a hypersurface of } (\mathbf{P}^N)^{\vee}. \end{cases}$$

The class of (X, L), when L is very ample, has been extensively studied ([16], [19], [24], [17], [20], [18], [1], [23]). In [10], we defined the *i*th sectional class $cl_i(X, L)$ of (X, L) for every integer *i* with $0 \le i \le n$ (see Definition 2.4). If L is very ample, then $cl_n(X, L) = m(X, L)$, and in this case, there exists a sequence of smooth subvarieties $X \supset X_1 \supset \cdots \supset X_{n-i}$ such that $X_j \in |L_{j-1}|$ and dim $X_j = n - j$ for every integer *j* with $1 \le j \le n - i$, where $L_j = L|_{X_j}$ and $L_0 = L$. Then, $cl_i(X, L) = m(X_{n-i}, L_{n-i})$. The *i*th sectional class is a natural generalization of the class. Moreover, we stress that this $cl_i(X, L)$ is defined for merely ample divisors (not necessarily very ample). By the definition of $cl_i(X, L)$, we can expect that $cl_i(X, L)$ has properties similar to those of the class of (Y, H) such that dim Y = iand that H is a very ample divisor on Y.

2010 Mathematics Subject Classification: 14C20 (Primary), 14J30, 14C17 (Secondary)

Received February 10, 2016; revised June 6, 2016

Key words and phrases: Polarized manifold, sectional class, adjunction theory

This research was partially supported by JSPS KAKENHI Grant Number 24540043.

If i = 2, $n \ge 3$, and *L* is very ample, then there are some results in [24], [20], and [18], but there are no results for the case in which *L* is ample. In this paper, we study the case in which i = 2, dim X = 3, and *L* is ample. First we show the inequality $cl_2(X, L) - L^3 \ge -1$ (see Theorem 3.1), and we characterize polarized 3-folds (X, L) with $-1 \le cl_2(X, L) - L^3 \le$ 3 (see Theorem 3.2). Moreover we get the classification of pairs (X, L) with $0 \le cl_2(X, L) \le$ 4 (see Theorem 3.3). Finally we also classify (X, L) with $2L^3 \ge cl_2(X, L)$ as a generalization for the case of 3-folds in [20, Theorem 2] (see Theorem 3.4).

The author would like to thank the referee for giving useful suggestions.

2. Preliminaries

DEFINITION 2.1. Let X be a smooth projective variety of dimension n and \mathcal{E} a vector bundle on X. For every integer j with $j \ge 0$, the jth Segre class $s_j(\mathcal{E})$ of \mathcal{E} is defined by the following equation: $c_t(\mathcal{E}^{\vee})s_t(\mathcal{E}) = 1$, where $c_t(\mathcal{E}^{\vee}) = \sum_{k\ge 0} c_k(\mathcal{E}^{\vee})t^k$, which is called the Chern polynomial of \mathcal{E}^{\vee} , and $s_t(\mathcal{E}) = \sum_{i>0} s_j(\mathcal{E})t^j$.

REMARK 2.1. Let X be a smooth projective variety and \mathcal{E} a vector bundle on X. Let $\tilde{s}_j(\mathcal{E})$ be the Segre class which is defined in [13, Chapter 3]. Then $s_j(\mathcal{E}) = \tilde{s}_j(\mathcal{E}^{\vee})$.

DEFINITION 2.2 ([9, Definition 2.1.3]). Let X be a smooth projective variety of dimension n and \mathcal{E} an ample vector bundle on X with rank $\mathcal{E} = r$. We assume that $r \leq n$. For every integer p with $0 \leq p \leq n - r$, we set

$$C_p^{n,r}(X,\mathcal{E}) := \sum_{k=0}^p c_k(X) s_{p-k}(\mathcal{E}^{\vee}).$$

DEFINITION 2.3 ([9, Definition 3.1 (i)]). Let (X, L) be a polarized manifold of dimension *n*, and *i* an integer with $0 \le i \le n$. The *i*th sectional Euler number $e_i(X, L)$ of (X, L) is defined as follows:

$$e_i(X, L) := C_i^{n,n-i}(X, L^{\oplus n-i})L^{n-i}.$$

REMARK 2.2. By the definition of $e_i(X, L)$,

$$e_i(X, L) = \sum_{l=0}^{i} (-1)^l \binom{n-i+l-1}{l} c_{i-l}(X) L^{n-i+l}.$$

The definition of the *i*th sectional Euler number in Definition 2.3 is the same as that in [8, Definition 3.1(1)].

DEFINITION 2.4 ([10, Definitions 2.8 and 2.9]). Let (X, L) be a polarized manifold of dimension *n* and *i* an integer with $0 \le i \le n$. The *i*th sectional class of (X, L) is defined

as follows:

$$cl_i(X,L) = \begin{cases} e_0(X,L), & \text{if } i = 0, \\ (-1)\{e_1(X,L) - 2e_0(X,L)\}, & \text{if } i = 1, \\ (-1)^i\{e_i(X,L) - 2e_{i-1}(X,L) + e_{i-2}(X,L)\}, & \text{if } 2 \le i \le n. \end{cases}$$

PROPOSITION 2.1. Let (X, L) be a polarized manifold of dimension n. For any integer i with $0 \le i \le n$,

$$cl_i(X,L) = \sum_{t=0}^{i} (-1)^{i-t} \binom{n-i+t+1}{t} c_{i-t}(X) L^{n-i+t}.$$

PROOF. By Definition 2.4 and Remark 2.2,

$$\begin{split} cl_{i}(X,L) &= (-1)^{i} \bigg(\sum_{l=0}^{i} (-1)^{l} \binom{n-i+l-1}{l} c_{i-l}(X) L^{n-i+l} \\ &- 2 \sum_{l=0}^{i-1} (-1)^{l} \binom{n-i+l}{l} c_{i-1-l}(X) L^{n-i+l+1} \\ &+ \sum_{l=0}^{i-2} (-1)^{l} \binom{n-i+l+1}{l} c_{i-2-l}(X) L^{n-i+l+2} \bigg) \\ &= (-1)^{i} \bigg(\sum_{l=2}^{i} (-1)^{l} \bigg\{ \binom{n-i+l-1}{l} + 2 \binom{n-i+l-1}{l-1} \bigg\} \\ &+ \binom{n-i+l-1}{l-2} \bigg\} c_{i-l}(X) L^{n-i+l} \\ &+ c_{i}(X) L^{n-i} - (n-i) c_{i-1}(X) L^{n-i+1} - 2 c_{i-1}(X) L^{n-i+1} \bigg) \\ &= (-1)^{i} \bigg(\sum_{l=2}^{i} (-1)^{l} \binom{n-i+l+1}{l} c_{i-l}(X) L^{n-i+l} \\ &- (n-i+2) c_{i-1}(X) L^{n-i+1} + c_{i}(X) L^{n-i+l} \bigg) \\ &= (-1)^{i} \bigg(\sum_{l=0}^{i} (-1)^{l} \binom{n-i+l+1}{l} c_{i-l}(X) L^{n-i+l} \bigg) . \end{split}$$

This establishes the assertion.

REMARK 2.3. (i) By [2, Lemma 1.6.4], $cl_i(X, L) = c_i(J_1(L))L^{n-i}$, where $J_1(L)$ is the first Jet bundle of L.

(ii) By Proposition 2.1,

(1)
$$\operatorname{cl}_2(X,L) = c_2(X)L^{n-2} + nK_XL^{n-1} + \frac{1}{2}(n^2+n)L^n$$
.

REMARK 2.4 ([10, Remark 2.3]). Assume that *L* is very ample. There exists a sequence of smooth subvarieties $X \supset X_1 \supset \cdots \supset X_{n-i}$ such that $X_j \in |L_{j-1}|$ and dim $X_j = n - j$ for every integer *j* with $1 \le j \le n - i$, where $L_j = L|_{X_j}$ and $L_0 = L$. In particular, X_{n-i} is a smooth projective variety of dimension *i* and L_{n-i} is a very ample line bundle on X_{n-i} . Then, $cl_i(X, L)$ is equal to the class of (X_{n-i}, L_{n-i}) .

PROPOSITION 2.2. Let (X, L) be a polarized manifold of dimension $n \ge 2$, (Y, H) a polarized manifold such that (X, L) is a composite of simple blowing ups of (Y, H) and γ the number of its simple blowups. For every integer i with $0 \le i \le n$,

$$cl_{i}(X,L) = \begin{cases} cl_{0}(Y,H) - \gamma, & \text{if } i = 0, \\ cl_{1}(Y,H) - 2\gamma, & \text{if } i = 1, \\ cl_{i}(Y,H), & \text{if } 2 \le i \le n-1 \text{ or } i = n \ge 2. \end{cases}$$

PROOF. See [10, Corollary 2.3].

NOTATION 2.1. (i) (See [3, §3].) Let (X, L) be a polarized manifold of dimension $n \ge 3$. Assume that (X, L) is a hyperquadric fibration over a smooth curve C. Let $f : X \to C$ be its morphism. We put $\mathcal{E} := f_*(L)$. Then, \mathcal{E} is a locally free sheaf of rank n + 1 on C. Let $\pi : \mathbf{P}_C(\mathcal{E}) \to C$ be the projective bundle. Then, $X \in |2H(\mathcal{E}) + \pi^*(B)|$ for some $B \in \text{Pic}(C)$ and $L = H(\mathcal{E})|_X$, where $H(\mathcal{E})$ is the tautological line bundle of $\mathbf{P}_C(\mathcal{E})$. We put $e := \deg \mathcal{E}$ and $b := \deg B$. Then,

$$K_X = ((-n+1)H(\mathcal{E}) + \pi^*(K_C + \det(\mathcal{E}) + B))|_X$$

= (-n+1)L + f^{*}(K_C + det(\mathcal{E}) + B),

and

$$g(X, L) = 2g(C) - 1 + e + b$$
.

(ii) (See [5, (13.10)].) Let (M, A) be a \mathbf{P}^2 -bundle over a smooth curve *C*, and $A|_F = \mathcal{O}_{\mathbf{P}^2}(2)$ for any fiber *F* of $M \to C$. Let $f : M \to C$ be the fibration and $\mathcal{E} := f_*(K_M + 2A)$. Then, \mathcal{E} is a locally free sheaf of rank 3 on *C*, and $M \cong \mathbf{P}_C(\mathcal{E})$ such that $H(\mathcal{E}) = K_M + 2A$. In this case, $A = 2H(\mathcal{E}) + f^*(B)$ for a line bundle *B* on *C*, and by the canonical bundle formula, $K_M = -3H(\mathcal{E}) + f^*(K_C + \det \mathcal{E})$. Here, we set $e := \deg \mathcal{E}$ and $b := \deg B$.

REMARK 2.5. Let (X, L) be a polarized manifold of dimension 3. If $K_M + A$ is nef, then $\kappa(K_X + L) = \kappa(K_M + A) \ge 0$, where (M, A) is the reduction of (X, L) (see [8, Definition 2.4]). So by [2, Proposition 7.2.2, Theorems 7.2.4, 7.3.2, and 7.3.4] or [5, Chapter II, Theorems (11.2), (11.7), and (11.8)] we see that if $\kappa(K_X + L) = -\infty$, then (X, L) is one of the following types.

- (I) $(\mathbf{P}^3, \mathcal{O}_{\mathbf{P}^3}(1)).$
- (II) $(\mathbf{Q}^3, \mathcal{O}_{\mathbf{Q}^3}(1)).$
- (III) A scroll over a smooth projective curve.
- (IV) $K_X \sim -2L$, that is, (X, L) is a Del Pezzo manifold.
- (V) A hyperquadric fibration over a smooth curve.
- (VI) A classical scroll over a smooth projective surface.
- (VII) Let (M, A) be the reduction of (X, L).
- (VII.1) $(M, A) = (\mathbf{Q}^3, \mathcal{O}_{\mathbf{Q}^3}(2)).$
- (VII.2) $(M, A) = (\mathbf{P}^3, \mathcal{O}_{\mathbf{P}^3}(3)).$
- (VII.3) M is a \mathbf{P}^2 -bundle over a smooth curve C, and for any fiber F' of $M \to C$, $(F', A_{F'}) \cong (\mathbf{P}^2, \mathcal{O}_{\mathbf{P}^2}(2)).$

Here, we calculate $cl_2(X, L)$ and L^3 of (X, L) above.

(I) If $(X, L) \cong (\mathbf{P}^3, \mathcal{O}_{\mathbf{P}^3}(1))$, then $cl_2(X, L) = 0$ and $L^3 = 1$ by [12, Example 2.1 (i)].

(II) If $(X, L) \cong (\mathbf{Q}^3, \mathcal{O}_{\mathbf{Q}^3}(1))$, then $cl_2(X, L) = 2$ and $L^3 = 2$ by [12, Example 2.1 (ii)].

(III) If (X, L) is a scroll over a smooth curve, then $cl_2(X, L) = L^3$ by [12, Example 2.1 (ix)]. (IV) If (X, L) is a Del Pezzo manifold, then $cl_2(X, L) = 12$ and $L^3 \le 8$ by [12, Example 2.1 (vii)].

(V) Assume that (X, L) is a hyperquadric fibration over a smooth curve C. Then, $L^3 = 2e+b$, and by [12, Example 2.1 (viii)], $cl_2(X, L) = 8e + 8b + 4(g(C) - 1)$.

(VI) Assume that (X, L) is a classical scroll over a smooth projective surface S. Then, there exists an ample vector bundle \mathcal{E} of rank 2 on S such that $(X, L) \cong (\mathbf{P}_S(\mathcal{E}), H(\mathcal{E}))$, where $H(\mathcal{E})$ is the tautological line bundle of $\mathbf{P}_S(\mathcal{E})$. Then, $L^3 = H(\mathcal{E})^3 = c_1(\mathcal{E})^2 - c_2(\mathcal{E})$. By [12, Example 2.1 (x)],

$$cl_2(X, L) = c_2(S) + 3c_1(\mathcal{E})^2 + 2K_Sc_1(\mathcal{E}).$$

(VII.1) If $(M, A) = (\mathbf{Q}^3, \mathcal{O}_{\mathbf{Q}^3}(2))$, then $cl_2(X, L) = cl_2(M, A) = 40$ and $L^3 \le A^3 = 16$ by [12, Example 2.1 (iv)].

(VII.2) If $(M, A) = (\mathbf{P}^3, \mathcal{O}_{\mathbf{P}^3}(3))$, then $cl_2(X, L) = cl_2(M, A) = 72$ and $L^3 \le A^3 = 27$ by [12, Example 2.1 (v)].

(VII.3) Assume that (M, A) is the type (VII.3). We use Notation 2.1. Then, $cl_2(X, L) = cl_2(M, A) = 36e + 47b$ and $L^3 \le A^3 = 8e + 12b$ by [12, Example 2.1 (vi)].

3. Main results

THEOREM 3.1. Let (X, L) be a polarized manifold of dimension 3. Then, $cl_2(X, L) \ge L^3 - 1$ holds.¹

PROOF. (A) Assume that $\kappa(K_X + L) \ge 0$. Let (M, A) be the reduction of (X, L). Then, $K_M + A$ is nef, and according to the result of Höring [14, 1.5 Theorem], $h^0(K_X + L) = h^0(K_M + A) > 0$.

CLAIM 3.1. If $h^0(K_X + L) > 0$, then a **Q**-twisted bundle $\Omega_X(L)$ is generically nef.

PROOF. If $\Omega_X \langle L \rangle$ is not generically nef, then by [14, 3.1 Theorem], there exist smooth projective varieties X' and Y, a birational morphism $\mu : X' \to X$, and a fiber space $\lambda : X' \to Y$ such that $m := \dim Y < 3$, a general fiber F_λ of λ is rationally connected, and $h^0(D) = 0$ for any Cartier divisor D on F_λ with $D \sim_{\mathbf{Q}} K_{F_\lambda} + j (\mu^*(L))_{F_\lambda}$ and $j \in [0, 3 - m] \cap \mathbf{Q}$. However, this is impossible because $h^0(K_{F_\lambda} + (\mu^*L)_{F_\lambda}) > 0$ under the assumption.

By [14, 2.11 Corollary],

$$c_2(X)L + 2K_XL^2 + 3L^3 \ge 0$$
.

Hence, by (1) in Remark 2.3 (ii),

(2)
$$cl_{2}(X, L) = c_{2}(X)L + 3K_{X}L^{2} + 6L^{3}$$
$$\geq -2K_{X}L^{2} - 3L^{3} + 3K_{X}L^{2} + 6L^{3}$$
$$= (K_{X} + 2L)L^{2} + L^{3}.$$

Since $\kappa(K_X + L) \ge 0$, $K_X + 2L$ is nef. Hence, $cl_2(X, L) \ge L^3$. (B) Assume that $\kappa(K_X + L) = -\infty$. Then, (X, L) is one of the types in Remark 2.5. (a) If $(X, L) \cong (\mathbf{P}^3, \mathcal{O}_{\mathbf{P}^3}(1))$, then $cl_2(X, L) = L^3 - 1$ by Remark 2.5. (b) If $(X, L) \cong (\mathbf{Q}^3, \mathcal{O}_{\mathbf{Q}^3}(1))$, then $cl_2(X, L) = L^3$ by Remark 2.5. (c) If (X, L) is a scroll over a smooth curve, then $cl_2(X, L) = L^3$ by Remark 2.5. (d) If (X, L) is a Del Pezzo manifold, then $cl_2(X, L) \ge L^3 + 4$ by Remark 2.5. (e) If $(M, A) = (\mathbf{Q}^3, \mathcal{O}_{\mathbf{Q}^3}(2))$, then $cl_2(X, L) \ge L^3 + 24$ by Remark 2.5. (f) If $(M, A) = (\mathbf{P}^3, \mathcal{O}_{\mathbf{P}^3}(3))$, then $cl_2(X, L) \ge L^3 + 45$ by Remark 2.5. (g) Assume that (M, A) is the type (VII.3). We use Notation 2.1. Note that (3) $8e + 12b = A^3$,

(4)
$$2g(C) - 2 + e + 2b = 0$$

(5)
$$g(X, L) = 1 + 2e + 2b$$
.

¹In particular, $cl_2(X, L) \ge 0$.

Here, we set $A^3 = 4m$. Then, m is an integer with $m \ge 1$. From (3) and (4),

(6)
$$b = 4(1 - g(C)) - m$$

and

(7)
$$e = 6(g(C) - 1) + 2m.$$

Therefore, by Remark 2.5,

$$cl_2(X, L) - L^3 \ge cl_2(M, A) - A^3 = 28e + 35b = 21m + 28(g(C) - 1)$$

CLAIM 3.2. Either $g(C) \ge 1$ or $m \ge 2$ holds.

PROOF. If g(C) = 0 and m = 1, then e = -4 and b = 3, but then, by (5), g(X, L) = -1 < 0, which is impossible. Hence, $g(C) \ge 1$ or $m \ge 2$.

By Claim 3.2,

$$cl_2(X, L) - L^3 \ge 21m + 28(g(C) - 1) \ge 14.$$

(h) Assume that (X, L) is a hyperquadric fibration over a smooth curve C.

LEMMA 3.1. $cl_2(X, L) - L^3 \ge 4$ holds.

PROOF. Here, we use Notation 2.1. By Remark 2.5,

$$cl_2(X, L) - L^3 = 6e + 7b + 4(g(C) - 1).$$

Here, $L^3 = 2e + b > 0$, and [3, (3.3)] implies that $2e + 4b \ge 0$.

CLAIM 3.3. $6e + 7b \ge 5$ holds.

PROOF. Assume that $b \ge 0$. If 2e + b = 1 and b = 0, then 2e = 1. However, this is impossible because *e* is an integer. Hence, $2e + b \ge 2$ or b > 0. Then, $6e + 7b = 3(2e + b) + 4b \ge 6$.

Assume that b < 0. Then, $6e + 7b = 3(2e + 4b) - 5b \ge 5$. This establishes the assertion.

By Claim 3.3,

$$cl_2(X, L) - L^3 = 6e + 7b + 4(g(C) - 1) \ge 1$$
.

(h.1) If $cl_2(X, L) - L^3 = 1$, then g(C) = 0, b = -1, and 2e + 4b = 0. Thus, (g(C), b, e) = (0, -1, 2). However, g(X, L) = b + e + 2g(C) - 1 = 0, which is impossible because $\kappa(K_X + 2L) \ge 0$ in this case.

(h.2) If $cl_2(X, L) - L^3 = 2$, then g(C) = 0 and 6e + 7b = 6. If b < 0, then 2e + 4b = 0. Hence, 6 = 6e + 7b = -12b + 7b = -5b, which is impossible. Hence, we can assume that $b \ge 0$. Then, b = 0 and 2e + b = 2. Hence, e = 1. In this case, g(X, L) = b + e + 2g(C) - 1 = b + 2g(C) + 2g(C

0, which also does not occur.

(h.3) If $cl_2(X, L) - L^3 = 3$, then g(C) = 0 and 6e + 7b = 7. If b < 0, then 2e + 4b = 0. Hence, 7 = 6e + 7b = -12b + 7b = -5b, which is impossible. Hence, we can assume that $b \ge 0$. Then, b = 1 and 2e+b = 1. Hence, e = 0. In this case, g(X, L) = b+e+2g(C)-1 = 0, which is also impossible. This establishes the assertion of Lemma 3.1.

(i) Assume that (X, L) is a classical scroll over a smooth projective surface S. There exists an ample vector bundle \mathcal{E} of rank 2 on S such that $(X, L) \cong (\mathbf{P}_S(\mathcal{E}), H(\mathcal{E}))$.

LEMMA 3.2. $cl_2(X, L) - L^3 \ge 5$ holds unless $(S, \mathcal{E}) \cong (\mathbf{P}^2, \mathcal{O}_{\mathbf{P}^2}(1) \oplus \mathcal{O}_{\mathbf{P}^2}(1)).$

PROOF. By Remark 2.5,

$$cl_2(X, L) - L^3 = c_2(S) + c_2(\mathcal{E}) + 4(g(S, c_1(\mathcal{E})) - 1).$$

(i.1) If $\kappa(S) \ge 0$, then $c_2(S) \ge 0$ by [21, Proposition 2] and $g(S, c_1(\mathcal{E})) \ge 2$. Hence, we get $cl_2(X, L) - L^3 \ge 5$.

(i.2) Assume that $\kappa(S) = -\infty$. First, we prove the following.

CLAIM 3.4. If $S \ncong \mathbb{P}^2$, then $c_2(S) \ge 4(1 - q(S))$ holds.

PROOF. Let S' be the relatively minimal model of S and u the number of its blowups. Then, by Noether's formula,

$$12(1 - q(S)) = 12\chi(\mathcal{O}_S) = c_2(S) + K_S^2$$

= $c_2(S) + K_{S'}^2 - u$
= $c_2(S) - u + 8(1 - q(S)).$

Hence,

$$c_2(S) = u + 4(1 - q(S)) \ge 4(1 - q(S)).$$

This establishes the assertion of Claim 3.4.

By Claim 3.4,

$$cl_2(X, L) - L^3 = c_2(S) + c_2(\mathcal{E}) + 4(g(S, c_1(\mathcal{E})) - 1)$$

$$\geq 4(1 - q(S)) + c_2(\mathcal{E}) + 4(g(S, c_1(\mathcal{E})) - 1)$$

$$= 4(g(S, c_1(\mathcal{E})) - q(S)) + c_2(\mathcal{E}).$$

Here, $g(S, c_1(\mathcal{E})) \ge 2q(S)$ because $(S, c_1(\mathcal{E}))$ is not a scroll over a smooth curve (see [7, Lemma 1.16]).

(i.2.1) If $q(S) \ge 1$, then $g(S, c_1(\mathcal{E})) - q(S) \ge q(S) \ge 1$. Hence, $cl_2(X, L) - L^3 \ge 5$. (i.2.2) Assume that q(S) = 0. If $g(S, c_1(\mathcal{E})) \ge 1$, then $cl_2(X, L) - L^3 \ge 5$ holds. Hence, we can assume that $g(S, c_1(\mathcal{E})) = 0$. Then, $K_S + c_1(\mathcal{E})$ is not nef, and we see from [25, Theorem 1] that $(S, \mathcal{E}) \cong (\mathbf{P}^2, \mathcal{O}_{\mathbf{P}^2}(1) \oplus \mathcal{O}_{\mathbf{P}^2}(1))$. This establishes the assertion of Lemma 3.2.

488

Note that if $(S, \mathcal{E}) \cong (\mathbf{P}^2, \mathcal{O}_{\mathbf{P}^2}(1) \oplus \mathcal{O}_{\mathbf{P}^2}(1))$, then $cl_2(X, L) = 3$ and $L^3 = 3$. Hence, in this case, $cl_2(X, L) = L^3$.

THEOREM 3.2. Let (X, L) be a polarized manifold of dimension 3. Then, the following hold.

- (i) If $cl_2(X, L) = L^3 1$, then $(X, L) \cong (\mathbf{P}^3, \mathcal{O}_{\mathbf{P}^3}(1))$.
- (ii) If cl₂(X, L) = L³, then (X, L) is one of the following.
 (ii.1) A scroll over a smooth curve.
 (ii.2) (Q³, O_{Q³}(1)).
 (ii.3) (P_{P²}(E), H(E)), where E ≅ O_{P²}(1) ⊕ O_{P²}(1).
- (iii) There exists no polarized manifold of dimension 3 with $1 \le cl_2(X, L) L^3 \le 3$.

PROOF. If $\kappa(K_X + L) \ge 0$, then by (A) in the proof of Theorem 3.1,

$$cl_2(X, L) - L^3 \ge 2g(X, L) - 2$$
.

Assume that $cl_2(X, L) - L^3 \le 3$. Then, $g(X, L) \le 2$. Assuming that $\kappa(K_X + L) \ge 0$, we have $g(X, L) \ge 2$. Hence, g(X, L) = 2. By the classification of polarized manifolds with g(X, L) = 2, (X, L) is one of the following three types.

- (I) $\mathcal{O}(K_X) = \mathcal{O}_X$ and $L^3 = 1$.
- (II) X is a double covering of \mathbf{P}^3 whose branch locus is a smooth hypersurface of degree 6 in \mathbf{P}^3 and $L = \pi^*(\mathcal{O}_{\mathbf{P}^3}(1))$, where $\pi : X \to \mathbf{P}^3$ is its double covering.
- (III) (X, L) is a simple blowup of a polarized manifold (M, A) of type (II) above.

(I) If (X, L) satisfies $\mathcal{O}(K_X) = \mathcal{O}_X$ and $L^3 = 1$, then $cl_2(X, L) = c_2(X)L + 3K_XL^2 + 6L^3 = c_2(X)L + 6$. According to the result of Miyaoka, $c_2(X)L \ge 0$ (see [22, Theorem 6.6]). Hence, $cl_2(X, L) \ge 6 = L^3 + 5$.

(II) If (X, L) is type (II), then by [11, Lemma 3.4],

$$e_2(X, L) = 4 - \frac{1}{6}(5 + (-5)^3) = 24,$$

$$e_1(X, L) = 3 - \frac{1}{6}(5 + (-5)^2) = -2,$$

$$e_0(X, L) = 2 - \frac{1}{6}(5 + (-5)) = 2.$$

Therefore,

$$cl_2(X, L) = 24 - 2(-2) + 2 = 30 = L^3 + 28$$

(III) Assume that (X, L) is type (III). Then, $cl_2(X, L) = cl_2(M, A)$ by Proposition 2.2. Note also that $L^3 = A^3 - u$, where *u* is the number of its blowups. Hence,

$$cl_2(X, L) = cl_2(M, A) = A^3 + 28 = L^3 + 28 + u \ge L^3 + 28.$$

Therefore, if $\kappa(K_X + L) \ge 0$, then $cl_2(X, L) \ge L^3 + 4$ holds. Hence, if $cl_2(X, L) \le L^3 + 3$, then $\kappa(K_X + L) = -\infty$. By (B) in the proof of Theorem 3.1, we get the assertion.

THEOREM 3.3. Let (X, L) be a polarized manifold of dimension 3. Then the following hold.

- (i) If $cl_2(X, L) = 0$, then $(X, L) \cong (\mathbf{P}^3, \mathcal{O}_{\mathbf{P}^3}(1))$.
- (ii) If $cl_2(X, L) = 1$, then (X, L) is a scroll over a smooth projective curve with $L^3 = 1$.
- (iii) If $cl_2(X, L) = 2$, then (X, L) is either $(\mathbf{Q}^3, \mathcal{O}_{\mathbf{Q}^3}(1))$ or a scroll over a smooth projective curve with $L^3 = 2$.
- (iv) If $cl_2(X, L) = 3$, then (X, L) is either a scroll over a smooth projective curve with $L^3 = 3$ or $(\mathbf{P}_{\mathbf{P}^2}(\mathcal{E}), H(\mathcal{E}))$, where $\mathcal{E} \cong \mathcal{O}_{\mathbf{P}^2}(1) \oplus \mathcal{O}_{\mathbf{P}^2}(1)$.
- (v) If $cl_2(X, L) = 4$, then (X, L) is a scroll over a smooth projective curve with $L^3 = 4$.

PROOF. Assume that $\kappa(K_X + L) \ge 0$. By the proof of Theorem 3.2, $cl_2(X, L) \ge L^3 + 4 \ge 5$. Hence, this is impossible. This enables us to assume that $\kappa(K_X + L) = -\infty$. By (B) in the proof of Theorem 3.1, we get the assertion.

In [20, Theorem 2], Lanteri and Turrini have studied (X, L) such that dim X = n, L is very ample and $2L^n \ge cl_2(X, L)$. In the following result, we treat the case in which dim X = 3, L is *ample* in general, and $2L^3 \ge cl_2(X, L)$.

THEOREM 3.4. Let (X, L) be a polarized manifold of dimension 3. If $2L^3 \ge cl_2(X, L)$, then (X, L) is one of the following.

- (i) $(\mathbf{P}^3, \mathcal{O}_{\mathbf{P}^3}(1))$. In this case, $2L^3 = cl_2(X, L) + 2$.
- (ii) $(\mathbf{Q}^3, \mathcal{O}_{\mathbf{Q}^3}(1))$. In this case, $2L^3 = cl_2(X, L) + 2$.
- (iii) A scroll over a smooth projective curve. In this case, $L^3 = cl_2(X, L)$.
- (iv) A Del Pezzo manifold with $6 \le L^3 \le 8$. In this case, $cl_2(X, L) = 12$.
- (v) A classical scroll over a smooth projective surface S. Then, there exists an ample vector bundle of rank two on S such that $X = \mathbf{P}_{S}(\mathcal{E})$ and $L = H(\mathcal{E})$, where $H(\mathcal{E})$ denotes the tautological line bundle. (S, \mathcal{E}) is one of the following.
- (v.1) $S \cong \mathbf{P}^2$ and $\mathcal{E} \cong \mathcal{O}_{\mathbf{P}^2}(1) \oplus \mathcal{O}_{\mathbf{P}^2}(1)$. In this case, $2L^3 = cl_2(X, L) + 3 = 6$.
- (v.2) $S \cong \mathbf{P}^2$ and $\mathcal{E} \cong \mathcal{O}_{\mathbf{P}^2}(1) \oplus \mathcal{O}_{\mathbf{P}^2}(2)$. In this case, $2L^3 = \mathrm{cl}_2(X, L) + 2 = 14$.
- (v.3) $S \cong \mathbf{P}^2$ and $\mathcal{E} \cong T_{\mathbf{P}^2}$. In this case, $2L^3 = cl_2(X, L) = 12$.
- (v.4) $S \cong \mathbf{P}^1 \times \mathbf{P}^1$ and $\mathcal{E} \cong (p_1^* \mathcal{O}_{\mathbf{P}^1}(1) \otimes p_2^* \mathcal{O}_{\mathbf{P}^1}(1))^{\oplus 2}$, where $p_i : \mathbf{P}^1 \times \mathbf{P}^1 \to \mathbf{P}^1$ is the ith projection for i = 1, 2. In this case, $2L^3 = cl_2(X, L) = 12$.

PROOF. (I) The case in which $\kappa(K_X + L) \ge 0$. By (2) in the proof of Theorem 3.1, $cl_2(X, L) \ge (K_X + L)L^2 + 2L^3 \ge 2L^3$. If $cl_2(X, L) = 2L^3$, then $(K_X + L)L^2 = 0$. Thus,

 $\kappa(K_X + L) = 0$ and $K_X + L = \mathcal{O}_X$ by [2, Lemma 3.3.2]. In particular, $h^i(\mathcal{O}_X) = 0$ for every i > 0, and $\chi(\mathcal{O}_X) = 1$. By the Hirzebruch-Riemann-Roch theorem,

$$h^{0}(K_{X} + L) = -\chi(-L)$$

= $\frac{1}{6}L^{3} + \frac{1}{4}K_{X}L^{2} + \frac{1}{12}(K_{X}^{2} + c_{2}(X))L - \chi(\mathcal{O}_{X})$
= $\frac{1}{12}c_{2}(X)L - 1$.

Since $h^0(K_X + L) = 1$, $c_2(X)L = 24$. Hence,

$$cl_2(X, L) = c_2(X)L + 3K_XL^2 + 6L^3$$

= $3L^3 + 24$.

However, this is impossible because we have assumed that $cl_2(X, L) = 2L^3$. Therefore, $cl_2(X, L) \ge 2L^3 + 1$ if $\kappa(K_X + L) \ge 0$.

(II) The case in which $\kappa(K_X + L) = -\infty$. Then, (X, L) is one of the types in Remark 2.5.

(a) If $(X, L) \cong (\mathbf{P}^3, \mathcal{O}_{\mathbf{P}^3}(1))$, then $cl_2(X, L) = 2L^3 - 2 < 2L^3$ by Remark 2.5.

(b) If $(X, L) \cong (\mathbb{Q}^3, \mathcal{O}_{\mathbb{Q}^3}(1))$, then $cl_2(X, L) = 2L^3 - 2 < 2L^3$ by Remark 2.5.

(c) If (X, L) is a scroll over a smooth curve, then $cl_2(X, L) = 2L^3 - L^3 < 2L^3$ by Remark 2.5.

(d) Assume that (X, L) is a Del Pezzo manifold. If $2L^3 \ge cl_2(X, L)$, then $6 \le L^3 \le 8$ by Remark 2.5.

(e) If $(M, A) = (\mathbf{Q}^3, \mathcal{O}_{\mathbf{Q}^3}(2))$, then $cl_2(X, L) \ge 2L^3 + 8$ by Remark 2.5.

(f) If $(M, A) = (\mathbf{P}^3, \mathcal{O}_{\mathbf{P}^3}(3))$, then $cl_2(X, L) \ge 2L^3 + 18$ by Remark 2.5

(g) Assume that (M, A) is the type (VII.3). We use Notation 2.1. By Remark 2.5, $cl_2(X, L) - 2L^3 \ge 36e + 47b - 16e - 24b = 20e + 23b$. By (6) and (7), $cl_2(X, L) - 2L^3 \ge 20e + 23b = 28(g(C) - 1) + 17m$. By Claim 3.2, $cl_2(X, L) - 2L^3 \ge 6$.

(h) Let (X, L) be a hyperquadric fibration over a smooth projective curve C. Assume that $2L^3 \ge cl_2(X, L)$. Then,

(8)
$$0 \ge cl_2(X, L) - 2L^3 = 8e + 8b + 4(g(C) - 1) - 2(2e + b)$$
$$= 4e + 6b + 4(g(C) - 1).$$

Note that the following hold (see [3, (3.3) and (3.4)]).

$$(9) 2e+4b \ge 0,$$

(10) 2e+b>0.

(a) If $b \ge 0$, then by (10), we have 4e + 6b > 0. Hence, g(C) = 0 and $0 \ge 4e + 6b - 4$. Then, $2 \ge 2e + 3b = 2e + b + 2b > 2b$. Therefore, b = 0 from the assumption. Hence, $2 \ge 2e + 3b = 2e$, that is, $e \le 1$. By (10) and b = 0, e > 0. Therefore, e = 1. Thus, (g(C), b, e) = (0, 0, 1). However, g(X, L) = b + e + 2g(C) - 1 = 0 + 1 - 1 = 0, which is impossible.

(b) If b < 0, then by (9), $4e + 6b \ge -2b \ge 2$. Hence, $0 \ge 4e + 6b + 4(g(C) - 1) \ge 2 + 4(g(C) - 1)$ and g(C) = 0. Since $4e + 6b \le 4$ by (8), we see $-2b \le 4$, that is, $b \ge -2$. Therefore, b = -1 or -2.

(b.1) Assume that b = -2. Then, $4e + 6b \le 4$ implies $e \le 4$. On the other hand, $e \ge 4$ by (9). Hence, e = 4. Therefore, (g(C), b, e) = (0, -2, 4). However, then g(X, L) = b + e + 2g(C) - 1 = 1, which is impossible because (X, L) is a hyperquadric fibration over *C*.

(b.2) Assume that b = -1. Then, $4e + 6b \le 4$ implies $e \le 2$. On the other hand, $e \ge 2$ by (9). Hence, e = 2. Therefore, (g(C), b, e) = (0, -1, 2). However, g(X, L) = b + e + 2g(C) - 1 = 0, which is impossible because (X, L) is a hyperquadric fibration over *C*.

(i) Let (X, L) be a classical scroll over a smooth projective surface *S*. Then, there exists an ample vector bundle of rank two on *S* such that $X = \mathbf{P}_S(\mathcal{E})$ and $L = H(\mathcal{E})$, where $H(\mathcal{E})$ denotes the tautological line bundle. Then, $cl_2(X, L) = c_2(S) + 3c_1(\mathcal{E})^2 + 2K_Sc_1(\mathcal{E})$ and $L^3 = c_1(\mathcal{E})^2 - c_2(\mathcal{E})$. Assume that $2L^3 \ge cl_2(X, L)$. Then,

(11)
$$0 \ge c_2(S) + 2c_2(\mathcal{E}) - c_1(\mathcal{E})^2 + 4(g(S, c_1(\mathcal{E})) - 1).$$

(a) Assume that $\kappa(S) \ge 0$. Then,

(12)
$$c_2(S) = 12\chi(\mathcal{O}_S) - K_S^2 \ge 0$$

(13)
$$4(g(S, c_1(\mathcal{E})) - 1) - c_1(\mathcal{E})^2 = 2K_S c_1(\mathcal{E}) + c_1(\mathcal{E})^2 > 0,$$

$$(14) c_2(\mathcal{E}) > 0.$$

However, by (11), (12), (13), and (14), this is impossible. (b) Assume that $\kappa(S) = -\infty$.

(b.1) If $S \cong \mathbf{P}^2$, then $c_2(S) = 3$. We put $c_1(\mathcal{E}) = \mathcal{O}_{\mathbf{P}^2}(a)$. By (11),

$$0 \ge c_2(S) + 2c_2(\mathcal{E}) - c_1(\mathcal{E})^2 + 4(g(S, c_1(\mathcal{E})) - 1)$$

= 3 + 2c_2(\mathcal{E}) - 6a + a².

If $c_2(\mathcal{E}) \ge 4$, then

$$0 \ge 3 + 8 - 6a + a^{2} = a^{2} - 6a + 11 = (a - 3)^{2} + 2 > 0,$$

which is impossible. Hence, $c_2(\mathcal{E}) \leq 3$. From the result of Ishihara [15, Corollary (4.7)], \mathcal{E} is one of the following.

- (i) $\mathcal{E} \cong \mathcal{O}_{\mathbf{P}^2}(1) \oplus \mathcal{O}_{\mathbf{P}^2}(1)$. (ii) $\mathcal{E} \cong \mathcal{O}_{\mathbf{P}^2}(1) \oplus \mathcal{O}_{\mathbf{P}^2}(2)$. (...) $\mathcal{E} \simeq T$.
- (iii) $\mathcal{E} \cong T_{\mathbf{P}^2}$. (iii) $\mathcal{E} \simeq \mathcal{O}$ (1) $\oplus \mathcal{O}$
- (iv) $\mathcal{E} \cong \mathcal{O}_{\mathbf{P}^2}(1) \oplus \mathcal{O}_{\mathbf{P}^2}(3).$

If \mathcal{E} is case (i) (resp., (ii), (iii), (iv)), then $c_2(\mathcal{E}) = 1$ (resp., 2, 3, 3) and a = 2 (resp., 3, 3, 4). Hence, $cl_2(X, L) - 2L^3 = -3$ (resp. -2, 0, 1). Therefore, if $S \cong \mathbf{P}^2$ and $2L^3 \ge cl_2(X, L)$,

then \mathcal{E} is isomorphic to either $\mathcal{O}_{\mathbf{P}^2}(1) \oplus \mathcal{O}_{\mathbf{P}^2}(1) \oplus \mathcal{O}_{\mathbf{P}^2}(2)$, or $T_{\mathbf{P}^2}$. (b.2) Assume that $S \ncong \mathbf{P}^2$. Then, there exists a \mathbf{P}^1 -bundle S' over a smooth curve and a birational morphism $\pi : S \to S'$. Let u be the number of blowups of π . Since $K_S + c_1(\mathcal{E})$ is nef by [25],

$$0 \le (K_S + c_1(\mathcal{E}))^2$$

= $K_S^2 + 2K_S c_1(\mathcal{E}) + c_1(\mathcal{E})^2$
= $8(1 - q(S)) - u + 4(g(S, c_1(\mathcal{E})) - 1) - c_1(\mathcal{E})^2$
= $4(g(S, c_1(\mathcal{E})) - 2q(S) + 1) - u - c_1(\mathcal{E})^2$.

On the other hand, since $c_2(S) = u + 4(1 - q(S))$,

$$cl_{2}(X, L) - 2L^{3} = c_{2}(S) + 2c_{2}(\mathcal{E}) - c_{1}(\mathcal{E})^{2} + 4(g(S, c_{1}(\mathcal{E})) - 1)$$

= $u + 2c_{2}(\mathcal{E}) - c_{1}(\mathcal{E})^{2} + 4(g(S, c_{1}(\mathcal{E})) - 2q(S) + 1) + 4q(S) - 4$
 $\geq 2u + 2c_{2}(\mathcal{E}) + 4q(S) - 4.$

If $2L^3 \ge cl_2(X, L)$, then $(q(S), c_2(\mathcal{E}), u) = (0, 1, 0), (0, 1, 1), (0, 2, 0).$ (b.2.1) If $(q(S), c_2(\mathcal{E}), u) = (0, 1, 0)$, then S is a Hirzebruch surface, which by [15, Corollary (2.11)] is impossible.

(b.2.2) If $(q(S), c_2(\mathcal{E}), u) = (0, 2, 0)$, then from [15, Corollary (2.11)], $S \cong \mathbf{P}^1 \times \mathbf{P}^1$ and $\mathcal{E} \cong (p_1^* \mathcal{O}_{\mathbf{P}^1}(1) \otimes p_2^* \mathcal{O}_{\mathbf{P}^1}(1))^{\oplus 2}$, where $p_i : \mathbf{P}^1 \times \mathbf{P}^1 \to \mathbf{P}^1$ is the *i*th projection for i = 1, 2. (b.2.3) If $(q(S), c_2(\mathcal{E}), u) = (0, 1, 1)$, then $(K_S + c_1(\mathcal{E}))^2 = 0$ and $K_S + c_1(\mathcal{E})$ is not ample. By a list of [6, Main Theorem], this case cannot occur because *S* is a blowup of a \mathbf{P}^1 -bundle over \mathbf{P}^1 .

References

- E. BALLICO, M. BERTOLINI and C. TURRINI, On the class of some projective varieties, Collect. Math. 48 (1997), 281–287.
- [2] M. C. BELTRAMETTI and A. J. SOMMESE, *The adjunction theory of complex projective varieties*, de Gruyter Expositions in Math. **16**, Walter de Gruyter, Berlin, NewYork, 1995.
- [3] T. FUJITA, Classification of polarized manifolds of sectional genus two, the Proceedings of "Algebraic Geometry and Commutative Algebra" in Honor of Masayoshi Nagata (1987), 73–98.
- [4] T. FUJITA, Ample vector bundles of small c₁-sectional genera, J. Math. Kyoto Univ. 29 (1989), 1–16.
- [5] T. FUJITA, Classification Theories of Polarized Varieties, London Math. Soc. Lecture Note Ser. 155, Cambridge University Press, 1990.
- [6] T. FUJITA, On adjoint bundles of ample vector bundles, *Complex algebraic varieties* (Bayreuth, 1990), 105–112, Lecture Notes in Math., 1507, Springer, Berlin, 1992.
- [7] Y. FUKUMA, On polarized 3-folds (X, L) with g(L) = q(X) + 1 and $h^0(L) \ge 4$, Ark. Mat. 35 (1997), 299–311.
- [8] Y. FUKUMA, On the sectional invariants of polarized manifolds, J. Pure Appl. Algebra 209 (2007), 99–117.
- Y. FUKUMA, Invariants of ample vector bundles on smooth projective varieties, Riv. Mat. Univ. Parma (N.S.) 2 (2011), 273–297.

- [10] Y. FUKUMA, Sectional class of ample line bundles on smooth projective varieties, Riv. Mat. Univ. Parma (N.S.) 6 (2015), 215–240.
- [11] Y. FUKUMA, Calculations of sectional Euler numbers and sectional Betti numbers of special polarized manifolds, preprint, http://www.math.kochi-u.ac.jp/fukuma/Calculations.html
- [12] Y. FUKUMA, Calculations of sectional classes of special polarized manifolds, preprint, http://www.math.kochi-u.ac.jp/fukuma/Cal-SC.html
- [13] W. FULTON, Intersection Theory, Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2, Springer-Verlag, Berlin, 1998.
- [14] A. HÖRING, On a conjecture of Beltrametti and Sommese, J. Algebraic Geom. 21 (2012), 721–751.
- [15] H. ISHIHARA, Rank 2 ample vector bundles on some smooth rational surfaces, Geom. Dedicata 67 (1997), 309–336.
- [16] A. LANTERI, On the class of a projective algebraic surface, Arch. Math. (Basel) 45 (1985), 79-85.
- [17] A. LANTERI, On the class of an elliptic projective surface, Arch. Math. (Basel) 64 (1995), 359–368.
- [18] A. LANTERI and F. TONOLI, Ruled surfaces with small class, Comm. Algebra 24 (1996), 3501–3512.
- [19] A. LANTERI and C. TURRINI, Projective threefolds of small class, Abh. Math. Sem. Univ. Hamburg 57 (1987), 103–117.
- [20] A. LANTERI and C. TURRINI, Projective surfaces with class less than or equal to twice the degree, Math. Nachr. 175 (1995), 199–207.
- [21] Y. MIYAOKA, On the Chern numbers of surfaces of general type, Invent. Math. 42 (1977), 225–237.
- [22] Y. MIYAOKA, The Chern classes and Kodaira dimension of a minimal variety, Advanced Studies in Pure Math. 10 (1985), 449–476.
- [23] M. PALLESCHI and C. TURRINI, On polarized surfaces with a small generalized class, Extracta Math. 13 (1998), 371–381.
- [24] C. TURRINI and E. VERDERIO, Projective surfaces of small class, Geom. Dedicata 47 (1993), 1–14.
- [25] Y.-G. YE and Q. ZHANG, On ample vector bundles whose adjunction bundles are not numerically effective, Duke Math. J. 60 (1990), 671–687.

Present Address: DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, KOCHI UNIVERSITY, AKEBONO-CHO, KOCHI 780–8520, JAPAN. *e-mail:* fukuma@kochi-u.ac.jp