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Abstract. In this paper we prove, under some assumptions, that every polynomial D(−1)-triple in Z[X] can

only be extended to a polynomial D(−1; 1)-quadruple in Z[X] by polynomials d±. More precisely, if {a, b, c; d} is
a polynomial D(−1; 1)-quadruple, then

d = d± = −(a + b + c) + 2(abc ± rst) ,

where r , s and t are polynomials from Z[X] with positive leading coefficients that satisfy ab − 1 = r2, ac − 1 = s2

and bc − 1 = t2.

1. Introduction

DEFINITION 1. Let n �= 0 be an integer. We call a set of m distinct positive integers
a D(n)-m-tuple, if the product of any two of its distinct elements increased by n is a perfect
square.

One of the most interesting questions concerning such sets is how large those sets can
be. The most well-known and studied case is in n = 1, but the cases n = −1 and n = 4
have also been intensively studied in recent years. All the details, together with the history of
the problem, all generalizations and the most recent results with references can be found on
webpage [2].

In the case n = 1, we have the following conjecture:

CONJECTURE 1. If {a, b, c, d} is a D(1)-quadruple such that a < b < c < d , then

d = d+ = a + b + c + 2
(
abc + √

(ab + 1)(ac + 1)(bc + 1)
)
.

It is obvious that this conjecture implies that there does not exist a D(1)-quintuple. Du-
jella [1] proved an important result, that there does not exist a D(1)-sextuple and that there
are only finitely many D(1)-quintuples. There have been some improvements of his results
recently (the reader can again consult [2]), but the proof of the conjecture is still far away.
However, very recently He, Togbé and Ziegler reported that they proved that there does not
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exist a D(1)-quintuple.

In the case n = −1, there is a conjecture that there does not exist a D(−1)-quadruple.
Similarly as in the case n = 1, Dujella et al. [3] proved that there exist only finitely many
D(−1)-quadruples. Even though a D(−1)-triple {a, b, c} such that a < b < c conjecturally
cannot be extended to a D(−1)-quadruple, there always exist a positive integer d such that
each of ad + 1, bd + 1 and cd + 1 is a perfect square. Moreover, d = d+ has such property,
where

d+ = −(a + b + c) + 2
(
abc + √

(ab − 1)(ac − 1)(bc − 1)
)
.

This leads us to the following definition:

DEFINITION 2. A set {a, b, c; d} of four distinct positive integers is said to have a
property D(−1; 1), or that it is D(−1; 1)-quadruple, if {a, b, c} is a D(−1)-triple and each of
ad + 1, bd + 1 and cd + 1 is a perfect square.

There are not a lot of works done on the existence of such sets, but we have a reason to
believe that the following conjecture is true:

CONJECTURE 2. If {a, b, c; d} has the property D(−1; 1), then

d = d± = −(a + b + c) + 2
(
abc ± √

(ab − 1)(ac − 1)(bc − 1)
)
.

It is possible that d− = 0, and in that case we do not have extension of D(−1)-triple
to D(−1; 1)-quadruple. Fujita [10, 11] proved Conjecture 2 for D(−1)-triples of the form
{1, 2, c} and for parametric family of D(−1)-triples of the form {F2k+1, F2k+3, F2k+5} where
k ≥ 1 is an integer. The second author [9] proved the same if a = k12 + 1, b = k12 + 2k6 + 2

and c = 4k12+4k6+5 where k ≥ 1 is an integer. He and Togbé [12] proved that D(−1)-triples

of the form {1, k2 + 1, (k + 1)2 + 1}, where k is a positive integer, have a unique extension
to a D(−1; 1)-quadruple. Their result and its proof is important, because the authors in [12]
have used the linear forms in two logarithms for the first time in solving such problems. All
mentioned results support Conjecture 2.

There are various generalizations of D(n)-m-tuples which can also be found at [2]. How-
ever, in this paper we study the polynomial variant of the problem so we need the following
definitions:

DEFINITION 3. Let n �= 0 be a polynomial with integral coefficients. We call the set
of m distinct non-zero polynomials from Z[X] a polynomial D(n)-m-tuple, if the product of
any two of its distinct elements increased by n is a square of some polynomial with integer
coefficients.

DEFINITION 4. A set {a, b, c; d} of four non-zero distinct polynomials from Z[X] is
said to have a property D(−1; 1), or that it is polynomial D(−1; 1)-quadruple, if {a, b, c} is
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a polynomial D(−1)-triple and each of ad + 1, bd + 1 and cd + 1 is a square of polynomial
from Z[X].

In this paper we consider a polynomial variant of the D(−1; 1) problem. We can assume
that at least one polynomial in polynomial D(−1)-triple is not constant, because otherwise we
are in the integer case. Let Z+[X] denote the set of all polynomials with integer coefficients
and with a positive leading coefficient. For a, b ∈ Z[X], we define a < b if b − a ∈ Z+[X].
We also define |a| for a polynomial a ∈ Z[X] such that |a| = a for a ≥ 0 and |a| = −a for
a < 0. The main result of the paper is the following theorem:

THEOREM 1. Let {a, b, c} be a polynomial D(−1)-triple such that 0 < a < b < c. If
any of the following two conditions:

1. deg(c) < (3deg(a) + 5deg(b))/2,
2. there does not exist the extension of {a, b, c} to a D(−1; 1)-quadruple with 0 < d < c

and d �= d−,

is satisfied, then such a triple can be extended to a polynomial D(−1; 1)-quadruple only
by polynomials d±. More precisely, if r, s, t ∈ Z[X] are polynomials with positive leading
coefficients which satisfy ab − 1 = r2, ac − 1 = s2 and bc − 1 = t2, and if {a, b, c; d} is a
polynomial D(−1; 1)-quadruple, then

d = d± = −(a + b + c) + 2(abc ± rst) .

REMARK 1. The first assumption is satisfied for example for a = 1, b = x2 + 1,
c = 4x4 + 1 or a = 1, b = 4x2 + 1, c = 16x6 − 8x4 + x2 + 1. An example when the first

condition on degrees is not satisfied is a = 1, b = x2 + 1, c = 64x8 + 64x6 + 16x4 + 1.
The first assumption implies the second one, as will be explained in details in Section 3.
Unfortunately, when the condition on degrees is not satisfied, the second assumption was of
importance to give us the initial values of sequences introduced in Section 2. We believe that
the second assumption, and with it, a polynomial variant of Conjecture 2, is always true for
D(−1; 1)-quadruples.

This problem is not solved for the integer case, except for some families mentioned
above. The idea of considering polynomial variant is that Conjecture 1 and non-existence of
D(−1)-quadruple were proved by Dujella and Fuchs in [4] and [5] in polynomial case, while
in integer case there is still a lot of work towards proving those conjectures. The polynomial
variant was solved in an easier way, since in its solving there appeared contradictions in
comparing degrees of polynomials, which was not possible in an integer case.

In order to prove Theorem 1, we mostly use methods and strategy from [4] and [5].
However, not everything works in the same way, so some new ideas were needed which make
this result interesting. Unfortunately, the minimality assumption does not hold here, at least
not in the same or some obvious way, so we added the conditions mentioned in Theorem 1
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that give us the important information on initial values of binary recurrence sequences whose
intersection we want to find. It is therefore important that we work in Z[X] where we have
ordered elements.

The organization of the paper is the following. Firstly, we transform our problem of the
extension of D(−1)-triple to solving the system of simultaneous Pellian equations. Further-
more, it is transformed to finding intersection of binary recurrent sequences. We solve this
using congruence relations and gap principle.

Let us also mention that solving this problem we have found one mistake made in [9].
There is also necessary to consider the case of m and n not having the same parity. However,
the same way as here, this case is easier to solve.

2. System of Pellian Equations

From now on we assume that {a, b, c} is a polynomial D(−1)-triple such that a < b < c,
and without loss of generality we can assume that all polynomials are from Z+[X]. Moreover,
we assume that at least one of the polynomials a, b and c is non-constant since otherwise we
are in the integer case because it is not possible to extend triple {a, b, c} of constant polyno-
mials with non-constant polynomial d , which is easy to see by comparing leading coefficients
in equations (2). Therefore, deg(c) > 0. Then there exist r, s, t ∈ Z+[X] such that

ab − 1 = r2, ac − 1 = s2, bc − 1 = t2 . (1)

Letters r , s and t will always have this meaning in this paper. Let a0, b0, c0, r0, s0, t0

be the leading coefficients of the polynomials a, b, c, r, s, t , respectively. Then, from (1), we

have a0c0 = s2
0 and b0c0 = t2

0 . Hence, a0, b0, c0 must have the same sign, so there is no loss

of generality in assuming that a, b, c ∈ Z+[X]. Also, a0b0 is obviously a perfect square. We
can furthermore conclude that a and b cannot both be constants, because then a0b0 − 1 would
also be a perfect square and this is possible only for a = b = 1, and we do not allow equal
elements in the triple.

Assume that we can extend polynomial D(−1)-triple {a, b, c} to a D(−1; 1)-quadruple
with d ∈ Z+[X]. Then, there also exist x, y, z ∈ Z+[X] such that

ad + 1 = x2, bd + 1 = y2, cd + 1 = z2 . (2)

Notice that we can always construct the polynomials d± with the property that ad± + 1,
bd± + 1 and cd± + 1 are perfect squares. We give the construction in the following lemma
which was proved in [7].
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LEMMA 1. Let {a, b, c} be a polynomial D(−1)-triple and let (1) holds. Then, there
exist polynomials d±, u±, v±, w± ∈ Z[X] such that

ad± + 1 = (u±)2, bd± + 1 = (v±)2, cd± + 1 = (w±)2 . (3)

More precisely,

d± = −(a + b + c) + 2abc ± 2rst , (4)

u± = at ± rs, v± = bs ± rt, w± = cr ± st . (5)

An easy computation gives us

d+ · d− = (c − a − b − 2r)(c − a − b + 2r) . (6)

Furthermore, we have

c = a + b − d± + 2abd± ∓ 2ru±v± .

Let us for the rest of the paper denote

deg(a) = α, deg(b) = β and deg(c) = γ .

We have that α ≥ 0 and β > 0.

We first prove a gap principle, which is well known in the classical case and was also
used in considering polynomial variants of the problem of Diophantus (see e.g. [5, Lemma
4]).

LEMMA 2. Let {a, b, c} be a polynomial D(−1)-triple for which (1) holds and a <

b < c. Then c = a + b + 2r or γ ≥ deg(d−) + α + β, where d− is defined by (4).

PROOF. From (4), we conclude that deg(d+) = α + β + γ . Let deg(d−) ≥ 0. From
(6) and from the fact that a < b < c we get

deg(d+) + deg(d−) = deg((c − a − b)2 − (2r)2) ≤ 2γ

so deg(d−) ≤ γ −α −β. Since we have at most one constant in the polynomial D(−1)-triple
{a, b, c}, we conclude that deg(d−) < γ .

Now we have two possibilities.
1) If d− = 0, then from (6) we get c = a + b ± 2r . However, we cannot have c = a + b − 2r ,
because a < b < c. Therefore, c = a + b + 2r .
2) If d− �= 0, then γ ≥ deg(d−) + α + β. �

Notice that from Lemma 2 we either have that

γ ≥ α + β
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or c = a + b + 2r .

Eliminating d from (2), we obtain the following system of simultaneous Pellian equa-
tions:

az2 − cx2 = a − c , (7)

bz2 − cy2 = b − c . (8)

We will now describe the sets of solutions of equations (7) and (8). In the proof we follow the
strategy used in [4, Lemma 1], but also in numerous similar results on the solutions of Pellian
equations.

LEMMA 3. Let (z, x) and (z, y) be solutions, with x, y, z in Z+[X], of (7) and (8)
respectively. Then there exist solutions (z0, x0) and (z1, y1), with z0, x0, z1, y1 in Z[X], of (7)
and (8), respectively such that

(i) the following inequalities are satisfied:

0 < x0, x2
0 ≤ a(c − a), z2

0 < c(c − a) , (9)

0 < y1, y2
1 ≤ b(c − b), z2

1 < c(c − b) , (10)

(ii) and there exist integers m,n ≥ 0 such that

z
√

a + x
√

c = (z0
√

a + x0
√

c)(2ac − 1 + 2s
√

ac)m , (11)

z
√

b + y
√

c = (z1
√

b + y1
√

c)(2bc − 1 + 2t
√

bc)n . (12)

PROOF. First observe that

(s + √
ac)2m = (s2 + ac + 2s

√
ac)m = (2ac − 1 + 2s

√
ac)m .

Multiplying that with the conjugate (s − √
ac)2m we obtain that

(s + √
ac)2m(s − √

ac)2m = (s2 − ac)2m = (−1)2m = 1 . (13)

Let us consider all pairs (z∗, x∗) of polynomials of the form

z∗√a + x∗√c = (z
√

a + x
√

c)(2ac − 1 + 2s
√

ac)m ,

where m ∈ Z and (z, x) is a solution of (7) in polynomials from Z+[X]. By (13) it is clear
that (z∗, x∗) satisfies (7) .

Let (2ac − 1 + 2s
√

ac)m = p + q
√

ac, where p, q ∈ Z[X]. We have

z∗√a + x∗√c = (zp + cxq)
√

a + (px + azq)
√

c .

Hence, x∗ = px + azq . We want to show that x∗ > 0. If m ≥ 0, then p, q > 0 so x∗ > 0.
If m < 0, then p > 0 and q < 0. If we assume that x∗ ≤ 0, then px ≤ −azq . Both sides
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in the previous inequality are positive so squaring we obtain p2x2 ≤ a2z2q2. From (13) we

conclude that p2 − acq2 = 1 and we further obtain x2 + x2q2ac ≤ q2a2z2. Therefore,

x2 ≤ q2a(az2 − cx2) = q2a(a − c) < 0 ,

which is a contradiction. So, we conclude that x∗ > 0.
Among all pairs (z∗, x∗), we choose a pair with the property that x∗ is minimal, and we

denote that pair by (z0, x0). We define polynomials z′ and x ′ by

z′√a + x ′√c = (z0
√

a + x0
√

c)(2ac − 1 − 2sε
√

ac) ,

where ε = 1 if z0 > 0 and ε = −1 if z0 < 0. From the minimality of x0 we conclude that

x ′ = x0(2ac − 1) − 2asz0ε ≥ x0 .

This leads to x0(ac − 1) ≥ as|z0|. Squaring this inequality, we get

x2
0 (ac − 1)2 ≥ a2s2z2

0 = a(ac − 1)(a − c + cx2
0) .

Finally, we can conclude that 0 < x0 and x2
0 ≤ a(c − a). The bound for |z0| follows from (7).

We proved that there is a solution (z0, x0) of (7), which satisfies (9), and an integer m ∈ Z
such that (11) holds. It remains to prove that m ≥ 0. Assume that m < 0. Then, as above, we
obtain z = z0p + x0cq (notice that in this case q < 0). Thus, from the condition z > 0, we
obtain z0p > −x0cq where both sides of inequality are positive. By squaring that inequality
and using the equation p2 − acq2 = 1, we obtain

z2
0 > x2

0c2q2 − acq2z2
0 = cq2(c − a) ≥ c(c − a) .

This is in contradiction with (9), so we conclude that m ≥ 0.
The proof of the statement for the equation (8) is analogous. �

By Lemma 3, there exist a non-negative integer m and a solution (z0, x0) of (7) such that
(9) and (11) hold. Also, there exist a non-negative integer n and a solution (z1, y1) of (8) such
that (10) and (12) hold. Hence, z = vm = wn, where the binary recurrent sequences (vm)m≥0

and (wn)n≥0 are defined by

v0 = z0, v1 = (2ac − 1)z0 + 2scx0, vm+2 = (4ac − 2)vm+1 − vm , (14)

w0 = z1, w1 = (2bc − 1)z1 + 2tcy1, wn+2 = (4bc − 2)wn+1 − wn . (15)

3. Congruence Relations

From (14) and (15), by induction, we can easily prove the following lemma:

LEMMA 4. Let the sequences (vm) and (wn) be given by (14) and (15). Then, we have

vm ≡ (−1)mz0 (mod 2c), wn ≡ (−1)nz1 (mod 2c) .

Also, by induction on m and n, respectively, from (14) and (15) we obtain the following
information on the degrees of the elements of the above sequences.
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LEMMA 5. Let (vm) and (wn) be the sequences defined by (14) and (15). Then, for
m,n ≥ 1 we have

deg(vm) = (m − 1)(α + γ ) + deg(v1) ,

deg(wn) = (n − 1)(β + γ ) + deg(w1) .

The following lemma follows from Lemma 4 and estimates for initial values z0 and z1.

LEMMA 6. If the equation vm = wn has a solution, then (−1)mz0 = (−1)nz1.

Furthermore, it can easily be proved by induction, that the same congruence as in [6,

Lemma 2] are obtained by considering the sequences (vm) and (wn) modulo 8c2:

vm ≡ (−1)m(z0 − 2acm2z0 − 2csmx0) (mod 8c2) ,

wn ≡ (−1)n(z1 − 2bcn2z1 − 2ctny1) (mod 8c2) .

From the congruences and Lemma 6, it follows that if vm = wn and m ≡ n (mod 2), then

am2z0 + smx0 ≡ bn2z1 + tny1 (mod 4c) , (16)

while if m and n do not have the same parity, then

am2z0 + smx0 ≡ −bn2z1 − tny1 (mod 4c) . (17)

In order to prove Theorem 1, we will now compute the initial values of our sequences.

We are interested in sequences (vm) and (wn) such that z2 = v2
m = w2

n = cd + 1, where

d ∈ Z+[X]. This implies that v2
m ≡ 1 (mod c) and w2

n ≡ 1 (mod c). From Lemma 4 it
follows that

z2
0 ≡ 1 (mod c) .

Then, there exists

d0 = z2
0 − 1

c
∈ Z+[X] ∪ {0} .

From (7) and (8) we have

x2
0 = ad0 + 1 and y2

1 = bd0 + 1 . (18)

Furthermore, from (9), we have cd0 = z2
0 − 1 < c2, so

d0 < c .

Therefore, we can construct a polynomial d0 < c such that either d0 = 0 or {a, b, c; d0}
is a polynomial D(−1; 1)-quadruple. If the second condition of Theorem 1 is satisfied, then
it is easy to conclude that d0 = 0 or d0 = d−. Furthermore, if the first condition is satis-
fied, then we get the same from [8, Lemma 5]. We only have to notice that {ia, ib,−id0, ic}
is a polynomial D(1)-quadruple in Z[i][X] ⊂ C[X]. Then, from [8, Lemma 5] we get that
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{ia, ib,−id0, ic} cannot be irregular D(1)-quadruple. That implies that it is a regular quadru-
ple or that id0 = 0 or that some elements in quadruple are same. If it is a regular quadruple,
we have

−id0 = ia + ib + ic + 2ia · ib · ic − 2ir · is · it

and

d0 = −(a + b + c) + 2abc − 2rst = d− .

If id0 = 0, then it is obvious that d0 = 0. Finally, because the quadruple is from Z[i][X]
(where in general the squares cannot differ by 1), the only possibility to have the same el-
ements is when a = 1 and d0 = −1. But, then {a, b, c; d0} is obviously not a D(−1; 1)-
quadruple in Z[X]. Thus, we conclude that d0 ∈ {0, d−}.

From cd0 + 1 = z2
0, we have the first possibility that d0 = 0 and then

1.) z0 = ±1.
The second possibility is that d0 = d−. Then, using (3), we obtain

2.) z0 = ±(cr − st).

4. Proof of Theorem 1

In this section we will finish the proof of the main theorem.

Let us consider the case 1.) first. Using (9), (10) and (18), for d0 = 0 we obtain that
x0 = 1 and y1 = 1. Let a = A2DXα +· · · , b = B2DXβ +· · · and c = C2DXγ +· · · , where
A, B, C, D are positive integers. We will consider several subcases depending on degrees of
the polynomials a, b and c.

1. a) Let β < γ . From (16), for m ≡ n (mod 2), we have

±am2 + sm ≡ ±bn2 + tn (mod 4c) .

In this case we obtain that ±am2 + sm = ±bn2 + tn, so we conclude that α = β. Similarly,
from (17) we have the same result for m �≡ n (mod 2). Then, by Lemma 5, we get that m = n.
Hence, ±m(a − b) = t − s. Multiplying that with t + s, we obtain ∓m(b − a)(t + s) =
t2 − s2 = c(b − a). Finally, we have

∓m(t + s) = c ,

which contradicts β < γ .

1. b) Assume that α < β = γ . By Lemma 2 we have that if c �= a + b + 2r , then
γ ≥ deg(d−) + α + β and d− �= 0. In this case a and d− are both constant polynomials.

Also, d− = μ2D for some positive integer μ, because the leading coefficient of bd− + 1 is
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a perfect square. Then we have that ad− + 1 and ad− are both perfect squares, which is not
possible. Therefore c = a + b + 2r . This yields s = a + r and t = b + r . Then, if m ≡ n

(mod 2), from (16) we have

±am2 + am + rm ≡ ±bn2 + bn + rn (mod 4c) .

From b ≡ −a − 2r (mod c), we have

a(±m2 ± n2 + n + m) = r(∓2n2 − n − m) .

Since α < β, both sides of this equation are equal to 0. Therefore, m = n = 0, which yields
d = 0, or m = n = 1 which implies z0 = z1 = −1. Then, z = v1 = w1 = 1 + 2rc. From
that we obtain

d = 4r(a + r)(b + r) = −(a + b + c) + 2abc + 2rst = d+ .

In case m �≡ n (mod 2), from (17) we get m = ∓2n2 + n which contradicts the assumption
about parities of m and n.

1. c) Assume now that α = β = γ . By Lemma 2 we have that c = a + b + 2r . From
(14), (15) and Lemma 5 we conclude that m = n. From (16), we obtain

(±m2 + m)(a − b) ≡ 0 (mod 4c) . (19)

If ±m2 + m �= 0, then k(b − a) = l(a + b + 2r), where k, l ∈ Z, k �= l and k �= 0.
From that, it follows (k − l)b − (k + l)a = 2lr . Squaring this, using (1), we further get

(k − l)2b2 − 2(k2 + l2)ab + (k + l)2a2 = −4l2. We finally have

((k − l)2b − (k + l)2a)(b − a) = −4l2 .

By comparing the leading coefficients of the polynomials on both hand sides of the previous
equation, we obtain 4kl = 0, which is not possible.

Let us now consider the case 2.) Using (9), (10) and (18), for d0 = d− we obtain that
x0 = at − rs and y1 = bs − rt . If β = γ , then c = a + b + 2r , as we already concluded
using Lemma 2. In that case st − cr = 1, so z0 = ±1 which was already solved. Therefore,
we may assume that β < γ .

2. a) Let us first assume that α = β < γ . From (14), (15) and Lemma 5 we conclude that
m = n. It is obvious if m ≡ n (mod 2). However, if m �≡ n (mod 2), we have deg(v1) = 2γ

and deg(w1) = α + γ or vice versa. In both cases, Lemma 5 implies that m = n ± 1 and
α = 0 which is not possible because it would imply that β = α = 0. Now, from (16), using
(1), we have

∓astm2 + astm + rm ≡ ∓bstn2 + bstn + rn (mod c) .
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Multiplying that with 2st , we obtain

∓2(am(m ∓ 1) − bn(n ∓ 1)) ≡ 2rst (n − m) (mod c) . (20)

Since m = n,

∓2m(m ∓ 1)(a − b) = 0 . (21)

This can only hold for m = n = 0, which leads to d = d−, or m = n = 1, where from (21)
we first conclude that z0 = cr − st and then, z = v1 = w1 = cr + st , and finally d = d+.

2. b) Suppose that α < β < γ . First, from (4) we see that it holds

−2rst ≡ d− + a + b (mod c) . (22)

From Lemma 2 we have that deg(d−) + α + β ≤ γ . Then, since α + β > 0, it follows that
deg(d−) < γ . Let us now separate the cases depending on the degree of d−.

Assume first that deg(d−) < β and m ≡ n (mod 2). In this case, from (20), using (22),
and by comparing the leading coefficients, we obtain that ±2n(n ∓ 1) = m − n. Hence,

m = n ± 2n(n ∓ 1) =
{−2n2 − n ,

2n2 − n ,
(23)

where the first possibility holds for z0 = cr − st < 0 and the second for z0 = −cr + st > 0.
Both cases can hold for m = n = 0. This leads to d = d−. The first case can only hold in this
situation, since otherwise we obtain m < 0 which is not possible. For the second case, from
(14) and (15) we obtain that

deg(v1) = 2γ + α − β

2
,

deg(w1) = 2γ + β − α

2
.

From that and Lemma 5, we furthermore obtain

deg(vm) = 2γ + α − β

2
+ (m − 1)(α + γ ) ,

deg(wn) = 2γ + β − α

2
+ (n − 1)(β + γ ) .

Therefore, for vm = wn, it follows that

m(α + γ ) = n(β + γ ) . (24)

From that, for n ≥ m ≥ 1, we obtain a contradiction. So n < m or m = n = 0. Moreover,
we have m = 2n2 − n, so (2n − 1)(α + γ ) = (β + γ ) and (2n − 2)(γ + α) = β − α. This
can only hold for n = 1, but then, from (23), we obtain m = 1 which is not possible. In case
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that m �≡ n (mod 2), from

∓2(am(m ∓ 1) − bn(n ± 1)) ≡ −2rst (m + n) (mod c) , (25)

using (22) and by comparing the leading coefficients, we obtain that ±2n(n ± 1) = m + n

which is in contradiction with the assumption about parities of m and n.

If deg(d−) > β and if m �≡ n (mod 2) from (25), by using (22), and by comparing the
leading coefficients, we have m + n = 0 which leads to contradiction. On the other hand, if
m ≡ n (mod 2), then from (20) and (22) we obtain 0 = m − n or m = n. In this case, from
(20) we get that ∓2m(m ∓ 1)(a − b) = 0. This is possible only for m = 0 or m = 1. For
m = n = 0 we have d = d−. The case m = n = 1 is not possible if z0 > 0, as we have
already shown. For z0 = cr − st , we have z = v1 = w1 = cr + st and then d = d+.

Suppose finally that deg(d−) = β. Since s2t2 ≡ 1 (mod c), there exists c1 ∈ Q[X] \ {0}
such that deg(c1) ≥ γ

2 , c1|c and

st ≡ ±1 (mod c1) . (26)

From Lemma 2 we obtain that β ≤ γ−α
2 . Now we consider congruences (20) and (25)

modulo c1 and we use (26). That way we obtain, in each case, the congruence modulo c1 with

the polynomial of degree equal to α+β
2 on the right hand side and on the left hand side the

polynomial of degree equal to β. If β <
γ
2 , we have a contradiction, except for ±2n(n∓1) =

0, in the first case, and ±2n(n ± 1) = 0 in the other, which leads to the conclusion that n = 0
or n = 1 in both cases. For n = 0, we conclude from (20) and (26), and similarly from (25),
that m = 0, which for the same parity case leads to the conclusion that d = d−, and in the
other case to an obvious contradiction. Analogously, for n = 1 it follows that m = 1, in the
same parity case, which leads to d = d+, and in the case m �≡ n (mod 2) we get m = −1
(m+n = 0), which is not possible. We are now left with the possibility that β = γ

2 i.e. α = 0.
To a polynomial D(−1)-pair {a, b} we can again associate a Pellian equation

at2 − bs2 = b − a , (27)

which gives all extensions of the pair {a, b} to the polynomial D(−1)-triple {a, b, c}. More-
over, if we denote with (t0, s0) the fundamental solution of the equation (27), we can associate
a linear recurrent sequence to the pair {a, b}. We have t = t̃ν , where the binary recurrence
sequence (̃tν)ν≥0 is defined by

t̃0 = t0, t̃1 = (2ab − 1)t0 + 2rbs0, t̃ν+2 = (4ab − 2)̃tν+1 − t̃ν .

Also, similarly as in the proof of Lemma 3, we obtain that |t0| < b. Since in this case α = 0

and β = γ
2 , we must have deg(t) = 3β

2 . It is easy to prove that t̃v ≡ (−1)vt0(mod b). On the

other hand, from bc − 1 = t2 and using the previous congruence we have t2
0 ≡ −1(mod b) so

we conclude β
2 ≤ deg(t0) ≤ β. We can prove by induction that deg(̃tv) = (v − 1)(α + β) +
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deg(̃t1) for v ≥ 1 which leads to the conclusion that the only possibility is deg(t0) = β
2 . It

actually follows from the fact that β ≤ deg(̃t1) ≤ 2β which yields deg(̃t2) ≥ 2β >
3β
2 , so the

only possibility for t is t = t1. Then, deg(̃t1) = 3β
2 and deg(t0) = β

2 (we have to notice that

((2ab−1)2t2
0 −4r2b2s2

0 ) is of degree 3β in this case). Now from (27) we get that deg(s0) = 0

and ac0 = s2
0 + 1 is a constant. In that case ac0 must also be a square since {a, b, c0} is also

a polynomial D(−1)-triple. This is possible only for a = c0 = 1. Therefore, we have s0 = 0

and t0 = √
b − 1 = r . Then, all the solutions t of (27) satisfy the following linear recurrences

t̃0 = r, t̃1 = (2ab − 1)r, t̃ν+2 = (4ab − 2)̃tν+1 − t̃ν

and we are interested in those t = t̃ν for which deg(t) = 3β
2 . We conclude that t = t̃1 and

then we get c = 4b2 − 8b + 5. Using (3) and (5), we finally obtain that d− = b − 2. Now,
from (20) and (25), using (22), and by comparing the leading coefficients, we obtain that
±2n(n ∓ 1) = 2(m − n) in the case m ≡ n (mod 2), and ±2n(n ± 1) = 2(m + n) if m �≡ n

(mod 2). In the second case, we get m = ±n2 which is contradiction with the assumption
about parity. On the other hand, in the first case we have

m = n ± n(n ∓ 1) =
{ −n2 ,

n2 ,
(28)

where the first possibility holds for z0 = cr − st < 0 and the second for z0 = −cr + st > 0.
Both cases hold for m = n = 0. This leads to d = d−. The first case can only hold in this
situation, since otherwise we obtain m < 0, which is not possible. For the second case, for
vm = wn, from (24), it follows that

2n2β = 3nβ .

It is obviously not possible for positive integer n. It finishes the proof of Theorem 1.
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