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Abstract. A trajectory-harps is made of a trajectory for a Kähler magnetic field Bκ and an associated variation
of geodesics, and a trajectory-horn is made of a geodesic and an associated variation of trajectories. On a Hadamard
Kähler manifold M we study thickness and string-angles of trajectory-harps, and study tube-lengths and tube-angles
of trajectory-horns. As an application of these we show that two distinct points on the compactification of M with
geometric ideal boundary can be joined by a trajectory for Bκ if the strength |κ| is less than the upper bound of
sectional curvatures of M.

1. Introduction

On a Kähler manifold M we have a canonical closed 2-form BJ induced by the complex
structure J , which is called the Kähler form. We say constant multiples of this form to be
Kähler magnetic fields (cf. [1]). Generally, a closed 2-form on a Riemannian manifold is
said to be a magnetic field because it can be regarded as a generalization of static magnetic
fields on a Euclidean 3-space (see [8, 13]). We call a smooth curve γ on M parameterized by
its arclength a trajectory for a Kähler magnetic field Bκ = κBJ if it satisfies the differential
equation ∇γ̇ γ̇ = κJ γ̇ . When κ = 0, the magnetic field B0 = 0 is the trivial magnetic field
and its trajectories are geodesics. Hence we may say that trajectories for Kähler magnetic
fields are perturbations of geodesics. In this sense the authors consider that properties of
trajectories for Kähler magnetic fields show features of the underlying Kähler manifold just
like geodesics do (cf. [9, 12]).

In order to study behavior of trajectories the second author defined trajectory-harps in
[5]. A trajectory-harp is made of a trajectory and geodesics joining each point of this trajec-
tory and its origin. Since a trajectory-harp gives a variation of geodesics, by applying Rauch’s
comparison theorem, he gave an estimate of its string-lengths, the length of geodesic seg-
ments joining two points of the trajectory. In this paper, we study more on trajectory-harps
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on a Hadamard Kähler manifold. A Hadamard manifold is a simply connected complete Rie-
mannian manifold of nonpositive sectional curvature. On this manifold, if the strength |κ | of
a Kähler magnetic field Bκ is not greater than the square root of the infimum of the absolute
values of sectional curvatures, every trajectory for Bκ is unbounded. For a trajectory-harp
made by such a trajectory, we give an estimate of the distance between this trajectory and
each string of this harp. Also, we define trajectory-horns in this paper. A trajectory-horn is
made of a geodesic and trajectories joining each point of this geodesic and its origin. We give
estimates of arclength of each trajectory-segment joining two points of this geodesic and of
the angle between two trajectory-segments at the origin.

As an application we study asymptotic behavior of trajectories. For a Hadamard man-
ifold M we can define its ideal boundary ∂M as the set of asymptotic classes of geodesic
half-lines. Since the ideal boundary inherits properties of the outside of some compact subset
of the manifold by definition, the geometry of the ideal boundary shows some properties of
the manifold itself (see [6, 7, 11] for example). In this sense we are interested in whether tra-
jectories show some properties of the underlying Kähler manifold in connection with its ideal
boundary. In this paper we show that trajectories have the same properties as for geodesics
when the strength of a Kähler magnetic field is less than the absolute value of the upper bound
of sectional curvatures of the underlying manifold.

2. Trajectory-harps

Let (M, J ) be a Hadamard Kähler manifold with complex structure J . We denote by
BJ its Kähler form. We consider Kähler magnetic fields, which are closed 2-forms given
as constant multiples of the Kähler form. Since M is complete, every trajectory for Kähler
magnetic fields is defined on the whole line R. A trajectory-harp in this paper consists of a
trajectory half-line and geodesics. Given a trajectory half-line γ : [0,∞) → M for a Kähler
magnetic field Bκ = κBJ (κ ∈ R) on M , which is the restriction of a trajectory to the interval
[0,∞), we define a variation αγ : [0,∞)×R → M of geodesics by the following conditions:

i) αγ (t, 0) = γ (0);
ii) when t = 0, the curve s �→ αγ (0, s) is the geodesic of initial vector γ̇ (0);

iii) when t > 0, the curve s �→ αγ (t, s) is the geodesic of unit speed joining γ (0) and
γ (t).

We call this the trajectory-harp associated with γ . We denote by �γ (t) the distance

d
(
γ (0), γ (t)

)
between γ (0) and γ (t), and set δγ (t) = 〈

γ̇ (t),
∂αγ

∂s

(
t, �γ (t)

)〉
. We call �γ (t)

and δγ (t) the string-length and the string-cosine of this trajectory-harp at t , respectively.

These satisfy d
dt

�γ (t) = δγ (t). In [4] the second author gave a comparison theorem on

trajectory-harps. For a negative c and a constant κ with |κ | ≤ √|c|, we define a function
�κ(·; c) : [0,∞) → [0,∞) by the following relation:

√|c|−κ2 sinh 1
2

√|c| �κ(t; c) = √|c| sinh 1
2

√|c|−κ2 t, when |κ | <
√|c| ,(2.1)
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2 sinh 1
2

√|c| �κ(t; c) = √|c| t , when κ = ±√|c| .(2.2)

Also, we define a function δκ(·; c) : [0,∞) → (0, 1] by

δκ(t; c) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√|c| − κ2 cosh
(√|c| − κ2 t/2

)

√
|c| cosh2(√|c| − κ2 t/2

) − κ2
, when |κ | <

√|c| ,

2
√|c|t2 + 4

, when κ = ±√|c| .

Since one can easily check that d
dt

�κ(t; c) = δκ(t; c) > 0, we see that �κ(·; c) is monotone
increasing. Denoting by τκ(·; c) the inverse function of �κ(·; c), we have the following.

PROPOSITION 1 ([4]). Suppose sectional curvatures of a Hadamard manifold M sat-

isfy RiemM ≤ c < 0 for some constant c. For each trajectory-harp αγ for a Kähler magnetic

field Bκ with |κ | ≤ √|c|, its string length and string cosine satisfy �γ (t) ≥ �κ(t; c) and

δγ (t) ≥ δκ

(
τκ

(
�γ (t); c

); c
)

for t ≥ 0. In particular, every trajectory half-line for Bκ with

|κ | ≤ √|c| is unbounded.

For a trajectory-harp αγ , we denote the geodesic segment αγ (t, ·) : [0, �γ (t)] → M by

σ t
γ and call it the harp-string at γ (t). First, we estimate angles between two harp-strings at

the origin and show that every trajectory-harp has a limit string.

THEOREM 1. Let M be a Hadamard Kähler manifold of sectional curvature RiemM ≤
c < 0. If |κ | ≤ √|c|, then for every trajectory half-line γ for Bκ its trajectory-harp αγ has a

limit limt→∞
∂αγ

∂s
(t, 0) ∈ Uγ(0)M of initial vectors of harp-strings in the unit tangent space.

PROOF. We set Zt(s) = ∂αγ

∂s
(t, s), which is a Jacobi field along the geodesic s �→

αγ (t, s). By Rauch’s comparison theorem on Jacobi fields, if RiemM ≤ c < 0 we have

‖Zt (s)‖ ≥ ‖∇ ∂αγ
∂s

Zt (0)‖ × (
1/

√|c| ) sinh
√|c| t . On the other hand, as αγ

(
t; �γ (t)

) = γ (t),

we have γ̇ (t) = Zt

(
�γ (t)

)+δγ (t)
∂αγ

∂s

(
t; �γ (t)

)
, which shows that ‖Zt

(
�γ (t)

)‖2 = 1−δγ (t)2.
Thus we have

‖∇ ∂αγ
∂s

Zt (0)‖ ≤
√|c| ‖Zt

(
�γ (t)

)‖
sinh

√|c| �γ (t)
<

√|c|
sinh

√|c| �γ (t)
≤

√|c|
sinh

√|c| �κ(t; c)
.
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When |κ | <
√|c|, by the relation (2.1), we have

1√|c| sinh
√|c| �κ(t; c)

= 2
√|c|−κ2

sinh
1

2

√
|c|−κ2 t

√
|c|

|c|−κ2
sinh2 1

2

√
|c|−κ2 t + 1

>
1

√|c|−κ2
sinh

√
|c|−κ2 t ,

we therefore obtain
∫ t2

t1

∥
∥
∥
∥∇ ∂αγ

∂t

∂αγ

∂s
(t, 0)

∥
∥
∥ dt =

∫ t2

t1

∥
∥
∥
∥∇ ∂αγ

∂s

Zt (0)

∥
∥
∥
∥ dt ≤

∫ t2

t1

√|c|−κ2

sinh
√|c|−κ2 t

dt

for all t2 > t1 > 0. When κ = ±√|c|, by (2.2) we have sinh
√|c| �κ(t; c) =√|c| t√(|c|/4)t2 + 1 > |c|t2/2. We hence obtain

∫ t2

t1

∥
∥∥
∥∇ ∂αγ

∂t

∂αγ

∂s
(t, 0)

∥
∥∥
∥ dt =

∫ t2

t1

∥
∥∥
∥∇ ∂αγ

∂s

Zt (0)

∥
∥∥
∥ dt <

∫ t2

t1

2√|c| t2
dt .

Since we have

�
(

∂αγ

∂s
(t1, 0),

∂αγ

∂s
(t2, 0)

)
≤

∫ t2

t1

∥
∥
∥
∥∇ ∂αγ

∂t

∂αγ

∂s
(t, 0)

∥
∥
∥
∥ dt ,

and have
∫ ∞

1 (sinh
√|c|−κ2 t)−1 dt < ∞ and

∫ ∞
1 t−2 dt < ∞, we find that the limit

limt→∞ ∂αγ

∂s
(t, 0) ∈ Uγ(0)M exists. �

We shall call the geodesic half-line σγ with initial vector limt→∞ ∂αγ

∂s
(t, 0) the limit

harp-string of a trajectory harp αγ .

REMARK 1. As we have

2
√|c|−κ2

sinh
1

2

√
|c|−κ2 t > t and

|c|
|c|−κ2 sinh2 1

2

√
|c|−κ2 t + 1 >

|c|
4

t2 ,

the proof of Theorem 1 shows that under the same assumption for every trajectory harp αγ

for Bκ we have � ( ∂αγ

∂s
(t1, 0),

∂αγ

∂s
(t2, 0)

) ≤ (
2/

√|c| ) ∫ t2
t1

t−2 dt for all t2 > t1 > 0. Hence

we have

�
(

∂αγ

∂s
(t1, 0),

∂σγ

∂s
(0)

)
≤ 2√|c|

∫ ∞

t1

t−2 dt

for each t1 > 0.
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Next we study “thickness” of a trajectory-harp (cf. [5]). Given a trajectory-harp αγ

associated with a trajectory γ for Bκ , we set Γ t
γ = {

αγ (τ, s)
∣∣ 0 ≤ τ ≤ t, 0 ≤ s ≤ �γ (t)

}

and Γγ = ⋃
t>0 Γ t

γ . We call Γγ the body of αγ . For a smooth curve γ , we denote by U(γ ; r)

the tube
{
p ∈ M

∣
∣ d(p, γ ) ≤ r

}
of radius r around it.

THEOREM 2. Let M be a Hadamard Kähler manifold whose sectional curvatures sat-

isfy RiemM ≤ c < 0, and let κ be a real number with |κ | <
√|c|. We put ρ(κ; c) =

|κ |π/(
2
√|c|(|c| − κ2)

)
. Then for each trajectory half-line γ for Bκ , the following properties

hold.

(1) At each t > 0, the harp-sector Γ t
γ at t is contained in the tube U

(
σ s

γ , ρ(κ; c)
)

around

the string σ t
γ .

(2) The body Γγ is contained both in the tube U
(
γ, ρ(κ; c)

)
around γ and in the tube

U
(
σγ , ρ(κ; c)

)
around the limit harp-string σγ .

PROOF. Since �′
γ = δγ , we see by Proposition 1 that �γ is monotone increasing. We

denote by τγ the inverse function of �γ . In order to show the assertion we are enough to
estimate the length of a curve t �→ αγ (t, �) (τγ (�) ≤ t < ∞) for an arbitrary positive �.

We take a trajectory γ̂ for Bκ on a complex hyperbolic space CH 1(c) of constant holo-
morphic sectional curvature c, and take the trajectory-harp α̂γ̂ : [0,∞) × R → CH 1(c)

associated with γ̂ . We then find that its string-length is given by �κ(t; c) and its string-cosine

is given by δκ(t; c). We put Zt(s) = ∂αγ

∂t
(t, s) and Ẑt (s) = ∂α̂γ̂

∂t
(t, s), which are Jacobi fields

along geodesics s �→ αγ (t, s) and s �→ α̂γ̂ (t, s), respectively. By Proposition 1 we have

∥
∥Zt

(
�γ (t)

)∥∥2 = 1 − δγ (t)2 ≤ 1 − δκ

(
τκ

(
�γ (t); c

); c
)2 = ∥

∥Ẑτκ (�γ (t);c)
(
�γ (t)

)∥∥2
.

Since s �→ ‖Zt (s)‖/‖Ẑτκ (�γ (t);c)(s)‖ is monotone increasing by Rauch’s comparison theo-

rem, we find ‖Zt(s)‖ ≤ ‖Ẑτκ (�γ (t);c)(s)‖ for 0 ≤ s ≤ �γ (t). If we put u = τκ

(
�γ (t); c

)
, we

have du
dt

= δγ (t)
/
δκ

(
τκ

(
�γ (t); c

); c
) ≥ 1, because τκ(·; c) is the inverse function of �κ(·; c).

Thus, by taking a positive r so that �γ (r) = �, we obtain

(the length of the curve t �→ αγ (t, �)) =
∫ ∞

r

‖Zt(�)‖ dt

≤
∫ ∞

r

‖Ẑτκ (�γ (t);c)(�)‖ dt ≤
∫ ∞

τκ (�;c)
‖Ẑu(�)‖ du .

As the Jacobi field Ẑu on CH 1 satisfies

‖Ẑu(s)‖ =
∥
∥
∥∇ ∂α̂γ̂

∂s

Ẑu(0)

∥
∥
∥ × 1√|c| sinh

√|c| s = 1√|c|
∥
∥
∥
∥∇ ∂α̂γ̂

∂u

∂α̂γ̂

∂s
(u, 0)

∥
∥
∥
∥ sinh

√|c| s ,
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we have

(the length of the curve t �→ αγ (t, �))

≤ 1√|c| sinh
√|c| �

∫ ∞

τκ (�;c)

∥
∥
∥
∥∇ ∂α̂γ̂

∂u

∂α̂γ̂

∂s
(u, 0)

∥
∥
∥
∥ du

= 1√|c| sinh
√|c| � lim

u→∞
�
(

∂α̂γ̂

∂s
(u, 0),

∂α̂γ̂

∂s

(
τκ(�; c), 0

)
)

.

Here, by use of the inequality 2θ/π ≤ sin θ for 0 ≤ θ ≤ π/2 and the addition theorem in
trigonometry, and by (2.1), we have

lim
u→∞

�
(

∂α̂γ̂

∂s
(u, 0),

∂α̂γ̂

∂s

(
τκ(�; c), 0

)) = lim
u→∞

{
cos−1 δκ(u; c) − cos−1 δκ

(
τκ(�; c); c

)}

≤ π

2
sin

{
cos−1

√
(|c|−κ2)/|c| − cos−1 δκ

(
τκ(�; c); c

)}

= |κ |π√|c| − κ2

2|c| cosh 1
2

√|c| �

{√

sinh2 1

2

√|c| � + |c|
|c| − κ2 − sinh

1

2

√|c| �
}

= |κ |π
2
√|c| − κ2 cosh 1

2

√|c| � × 1
√

sinh2 1
2

√|c| � + |c|
|c|−κ2 + sinh 1

2

√|c| �

≤ |κ |π
2
√|c| − κ2

× 1

sinh
√|c| � .

Therefore we obtain

(the length of the curve t �→ αγ (t, �)) ≤ |κ |π/
(
2
√|c|(|c| − κ2)

)
,

and get the conclusion. �

REMARK 2. In view of the above proof, under the same condition as in Theorem 2, for

every trajectory-harp αγ we have d
(
σ

t1
γ (s), σ

t2
γ (s)

) ≤ |κ |π/
(
2
√|c|(|c| − κ2)

)
for 0 < t1 < t2

and 0 < s ≤ �γ (t1). Trivially, this guarantees d
(
σ t

γ (s), σγ (s)
) ≤ |κ |π/

(
2
√|c|(|c| − κ2)

)
for

t > 0 and 0 < s ≤ �γ (t).

3. Trajectory-horns

In order to study the behavior of trajectories we need also to study a family of trajectories
associated with a given geodesic. A smooth map β : R × (−ε, ε) → M on a Kähler manifold
M is said to be a variation of trajectories for a Kähler magnetic field Bκ if for each s ∈ (−ε, ε)

the curve t → β(t, s) is a trajectory for Bκ .
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Let M be a Hadamard Kähler manifold whose sectional curvatures satisfy RiemM ≤ c <

0 with some constant c. It was shown in [5] that when |κ | ≤ √|c| for given distinct two points
p, q ∈ M there exists a unique trajectory for Bκ which goes from p to q . Given a geodesic
half-line σ : [0,∞) → M of unit speed we define a variation βκ

σ : [0,∞) × R → M of

trajectories for Bκ with |κ | ≤ √|c| by the following condition:

i) βκ
σ (s, 0) = σ(0);

ii) when s = 0, the curve t �→ βκ
σ (0, t) is the trajectory for Bκ with initial vector σ̇ (0);

iii) when s > 0, the curve t �→ βκ
σ (s, t) is the trajectory for Bκ joining σ(0) and σ(s).

We call this the trajectory-horn for Bκ associated with σ . We denote by rσ,κ (s) the arc-
length of the trajectory segment βκ

σ (s, ·) from σ(0) to σ(s), and call it the Bκ -tube-length

at s. Trivially we have rσ,κ(s) ≥ s. We set εσ,κ(s) = 〈
σ̇ (s),

∂βκ
σ

∂t

(
s, rσ,κ (s)

)〉
and call it

the Bκ -tube-cosine at σ(s). If we denote by γs the trajectory t �→ βκ
σ (s, t), we see that

εσ,κ

(
�γs (t)) = δγs (t). For a negative c and a constant κ with |κ | ≤ √|c|, we define a function

εκ(s; c) : [0,∞) → (0, 1] by

εκ(s; c) =
√

1 − κ2

|c| tanh2
√|c|

2
s .

We note that εκ(s; c) = δκ

(
τκ(s; c); c

)
holds. Thus, as a consequence of Proposition 1, we

have the following.

PROPOSITION 2. Let σ be a geodesic on a Hadamard Kähler manifold M whose sec-

tional curvatures satisfy RiemM ≤ c < 0 for some constant c. We take the trajectory-horn βκ
σ

for Bκ with |κ | ≤ √|c| which is associated with σ . We then have the following:
(1) Its Bκ -tube-length satisfies s ≤ rσ,κ (s) ≤ τκ(s; c);
(2) Its Bκ -tube-cosine satisfies εσ,κ(s) ≥ εκ(s; c) for s ≥ 0.

PROOF. By Proposition 1 we find that t �→ �γs (t) is monotone increasing. We denote
by τγs the inverse function of �γs .

(1) By Proposition 1, we have

�κ

(
τκ(s; c); c

) = s = �γs

(
rσ,κ(s)

) ≥ �κ

(
rσ,κ (s); c

)
.

As �κ(·, c) is monotone increasing, we get the first assertion.
(2) By definition of εσ,κ we have

εσ,κ(s) = δγs

(
τγs (s)

) ≥ δκ

(
τκ (�γs (τγs (s)); c); c) = δκ

(
τκ (s; c); c

) = εκ(s; c)

and get the conclusion. �

We here study embouchure angles of trajectory horns. A vector field Y along a trajectory
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γ for Bκ is said to be a normal magnetic Jacobi field if it satisfies
{∇γ̇ ∇γ̇ Y − κJ

(∇γ̇ Y
) + R(Y, γ̇ )γ̇ = 0 ,

〈∇γ̇ Y, γ̇ 〉 = 0 .

Variations of trajectories induce normal magnetic Jacobi fields, and for each normal magnetic
Jacobi field there exists a variation of trajectories which induces this field (see [2]). For a nor-
mal magnetic Jacobi field Y along a trajectory γ , we denote by Y � its component orthogonal
to γ̇ . We have the following result which corresponds to Rauch’s comparison theorem.

PROPOSITION 3 ([3]). Let Bκ be a Kähler magnetic field with |κ | ≤ √|c| on a Kähler

manifold M whose sectional curvatures satisfy RiemM ≤ c < 0 for some constant c. Then,
every normal magnetic Jacobi field Y with Y (0) = 0 along a trajectory γ for Bκ satisfies

⎧
⎨

⎩

‖Y �(t)‖ ≥ ‖∇γ̇ Y �(0)‖ × 1√
|c|−κ2

sinh
√|c|−κ2 t , when |κ | <

√|c|,
‖Y �(t)‖ ≥ ‖∇γ̇ Y �(0)‖ t , when κ = ±√|c| .

For a trajectory-horn βκ
σ , we denote the trajectory segment βκ

σ (s, ·) : [0, rσ,κ(s)] → M

by γ s
σ,κ and call it the horn-tube at σ(s). We estimate angles between two horn-tubes at the

origin and show that every trajectory-horn has a limit tube.

THEOREM 3. Let M be a Hadamard Kähler manifold whose sectional curvatures sat-

isfy RiemM ≤ c < 0 for some constant c. If |κ | <
√|c|, then for every geodesic half-line σ

of unit speed its trajectory-horn βκ
σ for Bκ satisfies

�
(

∂βκ
σ

∂t
(s1, 0),

∂βκ
σ

∂t
(s2, 0)

)
≤

∫ s2

s1

√|c| − κ2

sinh
√|c| − κ2 s

ds

for all s2 > s1 > 0. In particular, it has a limit lims→∞ ∂βκ
σ

∂t
(s, 0) ∈ Uβ(0,0)M of initial

vectors of horn-tubes.

PROOF. As we have σ(s) = β
(
s, rσ,κ (s)

)
we see σ̇ (s) = Ys

(
rσ,κ(s)

) +
r ′
σ,κ (s)γ̇s

(
rσ,κ(s)

)
, where γs denotes the trajectory t �→ β(s, t) and Ys(t) = ∂βκ

σ

∂s
(s, t). This

shows that Y
�
s

(
rσ,κ(s)

) = σ̇ (s) − εσ,κ(s)γ̇s

(
rσ,κ(s)

)
. We hence obtain ‖Y �

s

(
rσ,κ(s)

)‖2 =
1 − εσ,κ(s)

2. Since βκ
σ (s, 0) = βκ

σ (0, 0) we have Ys(0) = 0. This leads us to ∇ ∂βκ
σ

∂t

Ys(0) =
∇ ∂βκ

σ
∂t

Y
�
s (0). Therefore, by use of Proposition 3, we obtain

∥∥∇ ∂βκ
σ

∂t

Ys(0)
∥∥ ≤

√|c| − κ2 ‖Y �
s

(
rσ,κ(s)

)‖
sinh

√|c| − κ2 rσ,κ (s)
≤

√|c| − κ2

sinh
√|c| − κ2 s

.
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Since we have

�
(

∂βκ
σ

∂t
(s1, 0),

∂βκ
σ

∂t
(s2, 0)

)
≤

∫ s2

s1

∥
∥
∥∇ ∂βκ

σ
∂s

Ys(0)

∥
∥
∥ ds ,

we get the estimate.

By the estimate we have � ( ∂βκ
σ

∂t
(s1, 0),

∂βκ
σ

∂t
(s2, 0)

) ≤ 4 exp
(−√|c| − κ2s1/2

)
for s2 >

s1 ≥ 1/
√|c| − κ2. As Uβκ

σ (0,0)M is compact we get the conclusion. �

We shall call the trajectory half-line γ κ
σ with initial vector lims→∞ ∂βκ

σ

∂t
(s, 0) the limit

horn-tube of a trajectory-horn βκ
σ .

We have a similar estimate on embouchure angles of trajectory-horns for B±√|c| on a

Hadamard manifold M satisfying RiemM ≤ c < 0. But our estimate on tube-lengths from
below is too rough to get some properties on trajectory-horns for B±√|c|.

Given a trajectory-horn βκ
σ for Bκ associated with a geodesic half-line σ of unit speed,

we set Σσ,κ = {
βκ

σ (s, t)
∣
∣ s ≥ 0, 0 ≤ t ≤ rσ,κ(s)

}
and call it the body of βκ

σ . By Theorem 2
we have the following.

PROPOSITION 4. Let M be a Hadamard Kähler manifold whose sectional curvatures

satisfy RiemM ≤ c < 0, and let κ be a real number with |κ | <
√|c|. For each geodesic half-

line σ of unit speed, the body Σσ,κ of a trajectory-horn for Bκ on M is contained in the tube

U
(
γ κ
σ ; ρ(κ; c)

)
around the limit horn-tube γ κ

σ , where ρ(κ; c) = |κ |π/
(
2
√|c|(|c| − κ2)

)
.

PROOF. For each trajectory t �→ βκ
σ (s, t), the geodesic σ can be regarded as a string

of the trajectory-harp associated with this trajectory, which we denote by γs . By Remark 2,

we have d
(
γs(t), σ

(
�γs (t)

)) ≤ |κ |π/
(
2
√|c|(|c| − κ2)

)
. As γ κ

σ (t) = lims→∞ γs(t), we have

d
(
γ κ
σ (t), σ

(
�γ κ

σ
(t)

)) ≤ |κ |π/
(
2
√|c|(|c| − κ2)

)
, and get the conclusion. �

4. Asymptotic behavior of trajectory half-lines

For a Hadamard manifold M , its (geometric) ideal boundary ∂M is defined as the set
of all asymptotic classes of geodesic half-lines of unit speed. Here, two geodesic half-lines
σ1, σ2 : [0,∞) → M of unit speed on M is said to be asymptotic to each other if the distance
function t �→ d

(
σ1(t), σ2(t)

)
is uniformly bounded. For a geodesic half-line σ of unit speed

we denote by σ(∞) its asymptotic class, and call it its point at infinity. When a geodesic
half-line σ of unit speed is contained in an asymptotic class z ∈ ∂M (i.e. σ(∞) = z), we
say that this σ joins σ(0) and z. On the union M ∪ ∂M a topology which is called the
cone topology is introduced. We briefly recall its definition. For a point p ∈ M and two
points x1, x2 ∈ M ∪ ∂M , we take geodesic segments or geodesic half-lines joining p and
xi (i = 1, 2). We denote them by σ1, σ2, where we set their parameters as γi(0) = p. We set
� p(x1, x2) = � (

γ̇1(0), γ̇2(0)
)
. For z ∈ ∂M , we take an arbitrary point p ∈ M and positive
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numbers R, ε, set Vp(z; R, ε) = {
x ∈ M ∪ ∂M

∣∣ �
p(x, z) < ε, d(x, p) > R

}
, and consider

the family of such sets as the fundamental neighborhood system at z. On M we use its original
topology. As M is nonpositively curved, the function t �→ d

(
σ1(t), σ2(t)

)
for two geodesic

half-lines of unit speed is a convex function. Therefore we see that every exponential map
expp : TpM → M induces a bijection ∂expp : UpM → ∂M (see [10]). With the cone
topology this induced map is a homeomorphism.

In this section we study limit points of trajectory half-lines. Since trajectories for Kähler
magnetic fields can be regarded as perturbations of geodesics, it is natural to consider that
they have similar properties as of geodesics. The authors are interested in the relationship the
maximum of strengths of Kähler magnetic fields whose trajectories have similar properties as
of geodesics and sectional curvatures of the underlying Kähler manifold.

Let M be a Hadamard Kähler manifold whose sectional curvatures satisfy RiemM ≤ c <

0. We take a Kähler magnetic field Bκ of strength |κ | ≤ √|c|. For each trajectory half-line γ

for Bκ , Proposition 1 guarantees limt→∞ �γ (t) = ∞, hence Theorem 1 shows that γ has its
point at infinity γ (∞) := limt→∞ γ (t) ∈ ∂M and that it coincides with the point σγ (∞) at
infinity of the limit harp-string σγ of the trajectory-harp associated with γ . Our goal in this
section is the following.

THEOREM 4. Let M be a Hadamard Kähler manifold of sectional curvature RiemM ≤
c < 0. We take a Kähler magnetic field Bκ on M with |κ | ≤ √|c|.

(1) For arbitrary points p ∈ M and z ∈ ∂M , there exists a trajectory γ satisfying
γ (0) = p and limt→∞ γ (t) = z. Moreover when |κ | <

√|c|, such a trajectory is
uniquely determined.

(2) When |κ | <
√|c|, for arbitrary distinct points z, w ∈ ∂M , there exists a trajectory

γ satisfying limt→−∞ γ (t) = z and limt→∞ γ (t) = w.

For a Kähler magnetic field Bκ on a Kähler manifold M , we define the magnetic expo-
nential map Bκexpp : TpM → M at a point p ∈ M by

Bκexpp(w) =
{

γw/‖w‖(w), if w �= 0p ,

p, if w = 0p .

Here, for a unit tangent vector u ∈ UpM we denote by γu the trajectory for Bκ of initial vector
u. It is clear that when κ = 0 it is the ordinary exponential map expp at p. As we mentioned

before, if M is a Hadamard Kähler manifold whose sectional curvatures satisfy RiemM ≤
c < 0 and |κ | ≤ √|c|, it is known that the magnetic exponential map Bκexpp : TpM → M

is bijective (see [4]). Since every trajectory half-line has its point at infinity, we see that the
magnetic exponential map Bκexpp at p induces a map ∂Bκexpp : UpM � v �→ γv(∞) ∈
∂M . Our first assertion in Theorem 4 is equivalent to the assertion that this map is surjective
when |κ | ≤ √|c| and is bijective when |κ | <

√|c|. We shall study induced maps step by step.
First, we study the image of the induced map ∂Bκexpp.
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PROPOSITION 5. Let M be a Hadamard Kähler manifold whose sectional curvatures

satisfy RiemM ≤ c < 0. If |κ | ≤ √|c|, the induced map ∂Bκexpp : UpM → ∂M is
surjective.

PROOF. We take an arbitrary z ∈ ∂M and choose a geodesic ray σ : [0,∞) → M

satisfying σ(0) = p and σ(∞) = z. First we study the case |κ | <
√|c|. We consider

the trajectory-horn βκ
σ for Bκ associated with σ . By Theorem 3 we have its limit horn-

tube γ κ
σ . For this trajectory for Bκ we take the associated trajectory-harp. Then it has limit

harp-string σγ κ
σ

by Theorem 1. By Remark 2 and by the proof of Proposition 4 we find that

d
(
σ(t), σγ κ

σ
(t)

) ≤ |κ |π/
√|c|(|c| − κ2). Hence we find σ = σγ κ

σ
and γ κ

σ (∞) = σ(∞) = z.

Thus we obtain that ∂Bκexpp is surjective when |κ | <
√|c|.

Next we study the case κ = ±√|c|. We take a sequence {κj }∞j=1 satisfying limj→∞ κj =
κ and |κj | <

√|c|. Considering the trajectory-horn β
κj
σ for Bκj associated with σ we

take its limit horn-tube γj := γ
κj
σ . As we see above, the limit harp-string σγj of the

trajectory-harp αγj associated with γj coincides with σ . Therefore by Remark 1 we have

� ( ∂αγj

∂s
(T , 0), ∂σ

∂s
(0)

) ≤ (
2/

√|c| ) ∫ ∞
T t−2 dt for every T > 0.

Since Uσ(0)M is compact we have a convergent subsequence {γ̇ji (0)}∞i=1. We denote
by γ∞ the trajectory for Bκ with initial vector limi→∞ γ̇ji (0). We shall show γ∞(∞) =
z. We take the trajectory-harp αγ∞ associated with γ∞. By perturbation theory we see

limi→∞ γji (T ) = γ∞(T ) for each T . We therefore have limi→∞
∂αγji

∂s
(T , 0) = ∂αγ∞

∂s
(T , 0),

and hence obtain

�
(

∂αγ∞
∂s

(T , 0),
∂σ

∂s
(0)

)
≤ 2√|c|

∫ ∞

T

t−2 dt .

As limt→∞ �γ∞(t) = ∞ by Proposition 1, this estimate shows that γ∞(∞) = σ(∞) = z.
Thus we get the conclusion also in this case. �

When a Hadamard Kähler manifold M satisfies RiemM ≤ c < 0, for a constant κ

with |κ | ≤ √|c|, we can define a map Φκ
p : UpM → UpM by v �→ σ̇γv (0), where γv

denotes the trajectory for Bκ with initial vector v and σγv the limit harp-string of the trajectory-
harp associated with γv . This map satisfies γv(∞) = σΦκ

p(v)(∞). On the other hand, when

|κ | <
√|c|, by the proof of Proposition 5, we can define a map Ψ κ

p : UpM → UpM by

v �→ γ̇ κ
σv

(0), where σv denotes the geodesic with σ̇v(0) = v and γ κ
σv

the limit horn-tube of the
trajectory-horn for Bκ associated with σv . This map satisfies σv(∞) = γΨ κ

p (v)(∞). We shall

use these maps to study the induced map ∂Bκexpp.

Next, we study the injective property of the induced map ∂Bκexpp.

PROPOSITION 6. Let M be a Hadamard Kähler manifold whose sectional curvatures

satisfy RiemM ≤ c < 0. If |κ | <
√|c|, the induced map ∂Bκexpp : UpM → ∂M is injective.
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PROOF. In order to show the assertion we are enough to show that the map Φκ
p :

UpM → UpM is injective. As usual, for a unit tangent vector v ∈ UM we denote by σv

the geodesic with σ̇v(0) = v and by γv the trajectory for Bκ with γ̇v(0) = v.
We consider the composition Φκ

p ◦ Ψ κ
p : UpM → UpM . For v ∈ UpM we put w =

Ψ κ
p (v), u = Φκ

p ◦ Ψ κ
p (v). We then have σv(∞) = γw(∞) = σu(∞). As ∂expp : UpM →

∂M is bijective, we find that v = u, which means that Φκ
p ◦ Ψ κ

p is the identity. Thus, to show

that Φκ
p is injective we only need to show that Ψ κ

p is surjective.

Given v ∈ UpM and an arbitrary positive t , we consider the trajectory-horn βt :
[0,∞) × R → M for Bκ associated with the geodesic σt which joins p = γv(0) and
γv(t). Hence u �→ βt(s, u) is the trajectory for Bκ joining p = σt (0) and σt (s). We

denote by rt (s) the tube-length of βt at s and set ws
t = ∂βt

∂u
(s, 0) ∈ UpM . By Propo-

sition 1 we see rt (s) ≤ τκ(s; c). Thus we have a subsequence {tj }∞j=1 depending on s

which satisfies that both {ws
tj
}∞j=1

(⊂ UpM
)

and {rtj (s)}∞j=1

(⊂ R
)

converge. We set

ws∞ = limj→∞ ws
tj

and r∞(s) = limj→∞ wtj (s). On the other hand, by Theorem 1, we

find that limt→∞ σ̇t (0) = Φκ
p(v), hence find that limt→∞ σt (s) = σΦκ

p(v)(s) for each s. As

σt (s) = βt

(
s, rt (s)

)
we obtain that

σΦκ
p(v)(s) = lim

j→∞ γws
tj

(
rtj (s)

) = γws∞
(
r∞(s)

)
.

This shows that each γws∞ is a tube of the trajectory-horn associated with σΦκ
p(v). By Proposi-

tion 3 we have

� (ws
t , v) ≤

∫ �γv (t)

s

√|c| − κ2

sinh
√|c| − κ2ξ

dξ

for s ≤ �γv (t), hence obtain

� (ws∞, v) ≤
∫ ∞

s

√|c| − κ2

sinh
√|c| − κ2ξ

dξ < ∞ .

Thus we find that lims→∞ ws∞ = v and get Ψ κ
p

(
Φκ

p(v)
) = v. This shows that Ψ κ

p is surjective

or more precisely shows that Ψ κ
p ◦ Φκ

p is the identity. We therefore get the conclusion. �

By Propositions 5, 6, we get the first assertion of Theorem 4.

REMARK 3. (1) We take an arbitrary geodesic half-line σ of unit speed emanating
from p ∈ M . The condition Φκ

p ◦ Ψ κ
p = Id means that for the limit horn-tube γ κ

σ

of the trajectory-horn for Bκ associated with σ the limit harp-string σγ κ
σ

of its
trajectory-harp is σ .

(2) We take an arbitrary trajectory half-line γ for Bκ which is emanating from p ∈ M .
The condition Ψ κ

p ◦Φκ
p = Id means that for the limit harp-string σγ of the trajectory-

harp associated with γ the limit horn-tube γ κ
σγ

of its trajectory-horn is γ .
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Finally we show the second assertion of Theorem 4. Given two distinct points z,w ∈ ∂M

in the ideal boundary of a Hadamard Kähler manifold M with RiemM ≤ c < 0, we take a
geodesic σ satisfying z = limt→−∞ σ(t) and w = limt→∞ σ(t). Given a Kähler magnetic
field Bκ with |κ | <

√|c|, for each positive s we take a trajectory γs for Bκ joining σ(−s)

and σ(s). We take the parameter of γs so that γs(0) = σ(−s) and γs(ts) = σ(s) with some
positive ts . As a restriction of σ is a harp-string of the trajectory-harp αγs associated with γs

for each s, Remark 2 guarantees the following:

1) If we take positive rs satisfying s = �γs (rs), we have d
(
σ(0), γs(rs)

)
<

|κ |π/
(
2
√|c|(|c|−κ2)

)
;

2) For 0 ≤ t ≤ ts we have d
(
γs(t), σ

) ≤ |κ |π/
(
2
√|c|(|c|−κ2)

)
.

We take the geodesic ball B of radius |κ |π/
√|c|(|c|−κ2) centered at σ(0). As γs(rs) ∈ B,

we can choose a monotone increasing sequence {sj }∞j=1 so that it satisfies limj→∞ sj =
∞ and that

{
γ̇sj (rsj )

}
j

⊂ UM|B converges. We denote by γ∞ the trajectory whose

initial is limj→∞ γ̇sj (rsj ). By perturbation theory of differential equations we see that

Bκexpp is smooth with respect to p. Therefore, we find d
(
γ∞(t), σ

)
is not greater than

|κ |π/
(
2
√|c|(|c|−κ2)

)
for each t . This shows that limt→−∞ γ∞(t) = z and limt→∞ γ∞(t) =

w. This completes the proof of the second assertion of Theorem 4.
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