The Defects of Power Series in the Unit Disk with Hadamard Gaps

Narufumi TSUBOI
Tokyo Institute of Techonology
(Communicated by K. Matsuzaki)

Abstract

We show a sufficient condition for the defect $\delta(0, f)$ of an analytic function $f(z)=1+\sum_{k=1}^{\infty} c_{k} z^{n_{k}}$ in the unit disk with Hadamard gaps to vanish. As a consequence, we find that such $f(z)$ whose characteristic function is sufficiently large has no finite defective value.

1. Introduction

Let

$$
\begin{equation*}
f(z)=1+\sum_{k=1}^{\infty} c_{k} z^{n_{k}} \tag{1.1}
\end{equation*}
$$

be a power series convergent in the open disk $\{|z|<R\}(0<R \leq+\infty)$ with gaps, i.e. the sequence $n_{1}<n_{2}<\cdots<n_{k}<\cdots$ diverges rapidly as $k \rightarrow \infty$. The study of value distribution of gap series (1.1) has a long history. Let $f(z)$ given by (1.1) be an entire function. Fejér ([2]) proved that if $\left\{n_{k}\right\}$ satisfies

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{n_{k}}<+\infty \tag{1.2}
\end{equation*}
$$

then the image $f(\mathbf{C})$ equals \mathbf{C}. A strictly increasing sequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ of positive integers with (1.2) is called a Fejér gap sequence. Biernacki ([1]) improved this theorem: $f(z)$ given by (1.1) with Fejèr gaps (1.2) has no finite Picard exceptional value, i.e. $f(z)$ assumes every finite complex value $a \in \mathbf{C}$ infinitely often. Then detailed studies of value distribution of gap series have been done in terms of Nevanlinna theory.

According to [6], we introduce the notations of Nevanlinna theory. Let $f(z)$ given by (1.1) be analytic in $\{|z|<R\}(0<R \leq+\infty)$. We define the characteristic function $T(r, f)$ by

$$
T(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta \quad(0 \leq r<R)
$$

where

$$
\log ^{+} x=\max \{\log x, 0\} .
$$

We define the proximity function $m(r, a)=m(r, a, f)$ by

$$
m(r, a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+} \frac{1}{\left|f\left(r e^{i \theta}\right)-a\right|} d \theta \quad(0 \leq r<R, a \in \mathbf{C}) .
$$

If $T(r, f) \rightarrow+\infty$ as $r \rightarrow R$, then the $\operatorname{defect} \delta(a, f)$ of $f(z)$ at a is defined by

$$
\delta(a, f)=\liminf _{r \rightarrow R} \frac{m(r, a)}{T(r, f)} .
$$

If $a \in \mathbf{C}$ satisfies $\delta(a, f)>0$, then a is called a finite defective value of $f(z)$.
Let $n(r, a)=n(r, a, f)$ be the number of a-point of $f(z)$ in the open disk $\{|z|<r\}$ counting multiplicity. We define the counting function $N(r, a)=N(r, a, f)$ by

$$
N(r, a)=\int_{0}^{r} \frac{n(t, a)}{t} d t \quad(0 \leq r<R) .
$$

The first main theorem of Nevanlinna states that

$$
T(r, f)=m(r, a)+N(r, a)+O(1),
$$

so that we have

$$
\delta(a, f)=1-\limsup _{r \rightarrow R} \frac{N(r, a)}{T(r, f)} .
$$

It has to be mentioned particularly that Murai ([12]) showed that an entire function $f(z)$ given by (1.1) with Fejér gaps (1.2) has no finite defective value, i.e. the Nevanlinna defect $\delta(a, f)$ of $f(z)$ vanishes for arbitrary $a \in \mathbf{C}$. Since there are, of course, many entire functions having finite defective value whose Taylor expansions are not Fejér gap series (e.g. $\exp z$), the problems of value distribution of entire functions with gaps were solved in a sense.

We shall be concerned with only the case where the convergent radius of $f(z)$ given by (1.1) equals 1 in the present paper. Unlike the case of entire functions, no relationship between the value distribution of $f(z)$ in the unit disk $\mathbf{D}=\{|z|<1\}$ and Fejér gap condition (1.2) has been ever known. However, if $\left\{n_{k}\right\}_{k=1}^{\infty}$ satisfies

$$
\begin{equation*}
n_{k+1} / n_{k} \geq q \tag{1.3}
\end{equation*}
$$

for some $q>1$, then several results about the value distribution of $f(z)$ have been established. A sequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ of positive integers satisfying (1.3) is called a Hadamard gap sequence. It is obvious that a Hadamard gap sequence is a Fejér gap sequence. The Hadamard gap condition (1.3) was introduced in [5] and Hadamard there proved that $f(z)$ given by (1.1) with (1.3) whose convergent radius is 1 has the unit circle $\{|z|=1\}$ as its natural boundary. Fuchs ([3]) proved that if an analytic function $f(z)$ in \mathbf{D} given by (1.1) with Hadamard gaps
(1.3) satisfies

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left|c_{k}\right|>0 \tag{1.4}
\end{equation*}
$$

then $f(z)$ assumes zero infinitely often in D. Murai ([10]) improved this theorem: under the same conditions, the Nevanlinna defect $\delta(0, f)$ of $f(z)$ at 0 vanishes. More precisely he showed that if (and only if)

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|c_{k}\right|^{2}=+\infty \tag{1.5}
\end{equation*}
$$

then the Nevanlinna characteristic function $T(r, f)$ diverges as $r \rightarrow 1$ and if we assume (1.4), then the proximity function $m(r, 0)$ is bounded as $r \rightarrow 1$ through a suitable sequence of r. Remark that these results yield that $f(z)$ given by (1.1) satisfying (1.3) and (1.4) has no finite defective value, that is, $\delta(a, f)$ vanishes for arbitrary $a \in \mathbf{C}$. (See Corollary of this paper.)

Now we turn to consider the case where

$$
\begin{equation*}
\lim _{k \rightarrow \infty} c_{k}=0 \tag{1.6}
\end{equation*}
$$

Murai ([11]) also showed that if an analytic function $f(z)$ in \mathbf{D} given by (1.1) with (1.3) and (1.6) is unbounded in \mathbf{D}, then $f(z)$ assumes zero infinitely often in \mathbf{D}. It is well known (Sidon [15]) that such $f(z)$ is unbounded in \mathbf{D} if and only if

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|c_{k}\right|=+\infty \tag{1.7}
\end{equation*}
$$

Therefore it is natural to ask whether for $f(z)$ given by (1.1) satisfying (1.3), (1.5) and (1.6), $\delta(0, f)=0$ holds or not. (Note that the conditions (1.5) and (1.6) imply (1.7), and the convergent radius of $f(z)$ given by (1.1) satisfying (1.3), (1.5) and (1.6) must be 1.) We shall study this problem and show a sufficient condition for $\delta(0, f)=0$ in the present paper. In particular, our main theorem and its corollary will show that if the coefficients $\left\{c_{k}\right\}$ of $f(z)$ satisfy

$$
\log K / \log \sum_{k=1}^{K}\left|c_{k}\right|^{2}=O(1)
$$

as $K \rightarrow \infty$, then $\delta(a, f)=0$ for any $a \in \mathbf{C}$.
ACKNOWLEDGMENT. The author would like to thank the referee for helpful comments on the presentation of this paper.

2. Notation and statement of results

We assume that $f(z)$ given by (1.1) satisfies (1.3), (1.5) and (1.6). Throughout the present paper 'const.' and $C(f)$ denote an absolute positive constant and a constant depending only on f respectively.

Before stating our theorems, we first show the existence of a certain sequence $0<R_{1}<$ $R_{2}<\cdots<1$ of radii for the function $f(z)=1+\sum c_{k} z^{n_{k}}$. We shall estimate $m(r, 0)$ on the circle $\left\{|z|=R_{l}\right\}$. The following lemma is an analogue of Lemma 9 in Murai [11].

Lemma 1. For the sequence $\left\{c_{k}\right\}$ with (1.5) and (1.6), Γ denotes the set of positive integers k satisfying $\left|c_{j}\right| n_{j}^{1 / 2} \leq\left|c_{k}\right| n_{k}^{1 / 2}$ for any $j \leq k$ and $\left|c_{k}\right| n_{k}^{-1 / 2} \geq\left|c_{j}\right| n_{j}^{-1 / 2}$ for any $j \geq k$. Then

$$
\sum_{k \in \Gamma}\left|c_{k}\right|=+\infty .
$$

Proof. Note that (1.5) and (1.6) imply

$$
\sum_{k=1}^{\infty}\left|c_{k}\right|=+\infty .
$$

Since many indices will be used, it is convenient to write $c(k)=c_{k}$ and $n(k)=n_{k}$. Let $\left\{k_{m}\right\}_{m=1}^{\infty}$ be the strictly increasing sequence of all positive integers satisfying $k_{1}=1$ and

$$
|c(k)| n(k)^{1 / 2} \leq\left|c\left(k_{m}\right)\right| n\left(k_{m}\right)^{1 / 2}
$$

for any $k \leq k_{m}$. For any $k \in\left[k_{m}, k_{m+1}\right)$, we have

$$
\left|c\left(k_{m}\right)\right| n\left(k_{m}\right)^{1 / 2} \geq|c(k)| n(k)^{1 / 2}
$$

so that we obtain

$$
|c(k)| \leq\left(n\left(k_{m}\right) / n(k)\right)^{1 / 2}\left|c\left(k_{m}\right)\right| \leq q^{\left(k_{m}-k\right) / 2}\left|c\left(k_{m}\right)\right| .
$$

Therefore we deduce that

$$
\begin{aligned}
\sum_{k=1}^{k_{M}-1}|c(k)|= & \sum_{m=1}^{M-1} \sum_{k=k_{m}}^{k_{m+1}-1}|c(k)| \\
& \leq \sum_{m=1}^{M-1} \sum_{k=k_{m}}^{k_{m+1}-1} q^{\left(k_{m}-k\right) / 2}\left|c\left(k_{m}\right)\right| \\
= & \sum_{m=1}^{M-1}\left|c\left(k_{m}\right)\right| \sum_{k=k_{m}}^{k_{m+1}-1} q^{\left(k_{m}-k\right) / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{1}{1-q^{-1 / 2}} \sum_{m=1}^{M-1}\left|c\left(k_{m}\right)\right| \\
= & \frac{q^{1 / 2}}{q^{1 / 2}-1} \sum_{m=1}^{M-1}\left|c\left(k_{m}\right)\right| .
\end{aligned}
$$

Let $\left\{k_{m_{l}}\right\}_{l=1}^{\infty}$ be the strictly increasing subsequence of $\left\{k_{m}\right\}_{m=1}^{\infty}$ consisting of all positive integers satisfying

$$
\left|c\left(k_{m_{l}}\right)\right| n\left(k_{m_{l}}\right)^{-1 / 2} \geq\left|c\left(k_{m}\right)\right| n\left(k_{m}\right)^{-1 / 2}
$$

for any $k_{m} \geq k_{m_{l}}$. It is trivial that $\sum_{k \in \Gamma}\left|c_{k}\right|=\sum_{l=1}^{\infty}\left|c\left(k_{m_{l}}\right)\right|$. For any $k_{m} \in\left(k_{m_{l}}, k_{m_{l+1}}\right]$, we have

$$
\left|c\left(k_{m}\right)\right| n\left(k_{m}\right)^{-1 / 2} \leq\left|c\left(k_{m_{l+1}}\right)\right| n\left(k_{m_{l+1}}\right)^{-1 / 2}
$$

so that we obtain

$$
\left|c\left(k_{m}\right)\right| \leq\left(n\left(k_{m}\right) / n\left(k_{m_{l+1}}\right)\right)^{1 / 2}\left|c\left(k_{m_{l+1}}\right)\right| \leq q^{\left(k_{m}-k_{m_{l+1}}\right) / 2}\left|c\left(k_{m_{l+1}}\right)\right| .
$$

Therefore we deduce that, with $m_{0}=0$,

$$
\begin{aligned}
\sum_{m=1}^{m_{L}}\left|c\left(k_{m}\right)\right| & =\sum_{l=0}^{L-1} \sum_{m=m_{l}+1}^{m_{l+1}}\left|c\left(k_{m}\right)\right| \\
& \leq \sum_{l=0}^{L-1} \sum_{m=m_{l}+1}^{m_{l+1}} q^{\left(k_{m}-k_{m_{l+1}}\right) / 2}\left|c\left(k_{m_{l+1}}\right)\right| \\
& =\sum_{l=0}^{L-1}\left|c\left(k_{m_{l+1}}\right)\right| \sum_{m=m_{l}+1}^{m_{l+1}} q^{\left(k_{m}-k_{m_{l+1}}\right) / 2} \\
& \leq \frac{1}{1-q^{-1 / 2}} \sum_{l=1}^{L}\left|c\left(k_{m_{l}}\right)\right| \\
& =\frac{q^{1 / 2}}{q^{1 / 2}-1} \sum_{l=1}^{L}\left|c\left(k_{m_{l}}\right)\right| .
\end{aligned}
$$

In the sequel,

$$
\sum_{k \in \Gamma}\left|c_{k}\right|=\sum_{l=1}^{\infty}\left|c\left(k_{m_{l}}\right)\right| \geq \lim _{L \rightarrow \infty}\left(\frac{q^{1 / 2}-1}{q^{1 / 2}}\right)^{2} \sum_{k=1}^{k\left(m_{L}\right)}\left|c_{k}\right|=+\infty .
$$

We complete the proof.
Here is an example for Lemma 1. Suppose that $\left|c_{k}\right|=1 / k^{p}(0<p \leq 1 / 2)$. Then it is
easy to see that, if K is sufficiently large,

$$
\left|c_{K}\right| \geq\left|c_{k}\right|
$$

for any $k \geq K$ and

$$
\left|c_{k}\right| n_{k}^{1 / 2} \leq\left|c_{K}\right| n_{K}^{1 / 2}
$$

for any $k \leq K$, so that Γ is the set of positive integers which is obtained by excluding a finite number of elements from the set of positive integers \mathbf{N}.

For the sake of simplicity, we write $\Gamma=\left\{k_{l}\right\}_{l=1}^{\infty}\left(k_{l}<k_{l+1}\right)$. It holds that

$$
\begin{align*}
\left|c_{k}\right| n_{k}^{1 / 2} & \leq\left|c_{k_{l}}\right| n_{k_{l}}^{1 / 2} \quad\left(k \leq k_{l}\right) \\
\left|c_{k_{l}}\right| n_{k_{l}}^{-1 / 2} & \geq\left|c_{k}\right| n_{k}^{-1 / 2} \quad\left(k_{l} \leq k\right) \tag{2.1}
\end{align*}
$$

Let $R_{l} \in(0,1)$ be defined by

$$
R_{l}=1-\frac{1}{n_{k_{l}}}
$$

As an immediate consequence, we have the following:

Lemma 2.

$$
\begin{equation*}
\left|\frac{\partial}{\partial \theta} f\left(R_{l} e^{i \theta}\right)\right| \leq C(f)\left|c_{k_{l}}\right| n_{k_{l}} . \tag{2.2}
\end{equation*}
$$

Proof. We obtain, by (2.1), that

$$
\begin{aligned}
\left|\frac{\partial}{\partial \theta} f\left(R_{l} e^{i \theta}\right)\right| & \leq \sum_{k=1}^{\infty}\left|c_{k}\right| n_{k} R_{l}^{n_{k}} \\
& =\sum_{k=1}^{k_{l}-1}\left|c_{k}\right| n_{k} R_{l}^{n_{k}}+\left|c_{k_{l}}\right| n_{k_{l}} R_{l}^{n_{k}}+\sum_{k=k_{l}+1}^{\infty}\left|c_{k}\right| n_{k} R_{l}^{n_{k}} \\
& =\sum_{k=1}^{k_{l}-1}\left(\left|c_{k}\right| n_{k}^{1 / 2}\right) n_{k}^{1 / 2} R_{l}^{n_{k}}+\left|c_{k_{l}}\right| n_{k_{l}} R_{l}^{n_{k}}+\sum_{k=k_{l}+1}^{\infty}\left(\left|c_{k}\right| n_{k}^{-1 / 2}\right) n_{k}^{3 / 2} R_{l}^{n_{k}} \\
& \leq\left|c_{k_{l}}\right| n_{k_{l}}^{1 / 2} \sum_{k=1}^{k_{l}-1} n_{k}^{1 / 2}+\left|c_{k_{l}}\right| n_{k_{l}}+\left|c_{k_{l}}\right| n_{k_{l}}^{-1 / 2} \sum_{k=k_{l}+1}^{\infty} n_{k}^{3 / 2} R_{l}^{n_{k}} .
\end{aligned}
$$

Hadamard gap condition (1.3) implies

$$
\left|c_{k_{l}}\right| n_{k_{l}}^{1 / 2} \sum_{k=1}^{k_{l}-1} n_{k}^{1 / 2}=\left|c_{k_{l}}\right| n_{k_{l}} \sum_{k=1}^{k_{l}-1}\left(\frac{n_{k}}{n_{k_{l}}}\right)^{1 / 2} \leq C(f)\left|c_{k_{l}}\right| n_{k_{l}}
$$

and

$$
\begin{aligned}
\left|c_{k_{l}}\right| n_{k_{l}}^{-1 / 2} \sum_{k=k_{l}+1}^{\infty} n_{k}^{3 / 2} R_{l}^{n_{k}} & =\left|c_{k_{l}}\right| n_{k_{l}} \sum_{k=k_{l}+1}^{\infty}\left(\frac{n_{k}}{n_{k_{l}}}\right)^{3 / 2}\left\{\left(1-\frac{1}{n_{k_{l}}}\right)^{n_{k_{l}}}\right\}^{\frac{n_{k}}{n_{k}}} \\
& \leq\left|c_{k_{l}}\right| n_{k_{l}} \sum_{k=k_{l}+1}^{\infty}\left(\frac{n_{k}}{n_{k_{l}}}\right)^{3 / 2} e^{-\frac{n_{k}}{n_{k_{l}}}} \\
& \leq\left|c_{k_{l}}\right| n_{k_{l}} \sum_{k=k_{l}+1}^{\infty}\left(\frac{n_{k_{l}}}{n_{k}}\right)^{1 / 2} \leq C(f)\left|c_{k_{l}}\right| n_{k_{l}}
\end{aligned}
$$

so that we have the required inequality.
To estimate

$$
m\left(R_{l}, 0\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+} \frac{1}{\left|f\left(R_{l} e^{i \theta}\right)\right|} d \theta
$$

we shall use the classical central limit theorem for Hadamard gap series, due to R. Salem and A. Zygmund ([14]). The author wishes to express his thanks to Prof. T. Murai, who suggested to use the central limit theorem to study the value-distribution of Hadamard gap series. For any Lebesgue measurable set $E \subset[0,2 \pi),|E|$ denotes its Lebesgue measure.

Lemma 3 ([14]). Suppose that $f(z)$ given by (1.1) satisfies (1.3), (1.5) and (1.6). Then, for any $y>0$, we have

$$
\frac{1}{2 \pi}\left|\left\{\theta \in[0,2 \pi):\left|f\left(r e^{i \theta}\right)\right| \leq y V(r)\right\}\right| \rightarrow 1-e^{-y^{2} / 2}(r \rightarrow 1)
$$

where

$$
V(r)=\left\{\frac{1}{2}\left(1+\sum_{k=1}^{\infty}\left|c_{k}\right|^{2} r^{2 n_{k}}\right)\right\}^{1 / 2}
$$

This lemma exhibits that the measure of the set

$$
\left\{\theta \in[0,2 \pi): \log ^{+} 1 /\left|f\left(R_{l} e^{i \theta}\right)\right|>0\right\}=\left\{\theta \in[0,2 \pi):\left|f\left(R_{l} e^{i \theta}\right)\right|<1\right\}
$$

is small for all sufficiently large l (for the sake of simplicity, we shall omit the phrase 'for all sufficiently large l^{\prime}).

We write

$$
E_{l}=\left\{\theta \in[0,2 \pi):\left|f\left(R_{l} e^{i \theta}\right)\right| \leq V\left(R_{l}\right) / \log V\left(R_{l}\right)\right\}
$$

The set E_{l} is represented as a finite disjoint union of closed intervals,

$$
E_{l}=\bigsqcup_{j} I_{j} \sqcup \bigsqcup_{j^{\prime}} I_{j^{\prime}},
$$

where each I_{j} contains a point z satisfying $|f(z)|=1$ and $I_{j^{\prime}}$ does not. We see, by Lemma 2 , that the inequality

$$
\begin{equation*}
\min _{j}\left|I_{j}\right| \geq 2 \pi /\left|c_{k_{l}}\right| n_{k_{l}}>2 \pi / n_{k_{l}} \tag{2.3}
\end{equation*}
$$

holds.
It is obvious that

$$
m\left(R_{l}, 0\right)=\sum_{j} \frac{1}{2 \pi} \int_{I_{j}} \log ^{+} \frac{1}{\left|f\left(R_{l} e^{i \theta}\right)\right|} d \theta
$$

so that we would like to calculate the 'localized' mean value

$$
\frac{1}{\left|I_{j}\right|} \int_{I_{j}} \log ^{+} \frac{1}{\left|f\left(R_{l} e^{i \theta}\right)\right|} d \theta
$$

In fact, the size of this value determines the defect $\delta(0, f)$.
We find, by (2.3), that there exists a positive integer α_{l} satisfying

$$
\begin{equation*}
2 \pi / n_{k_{l}} \leq 2 \pi / \alpha_{l} \leq \min _{j}\left|I_{j}\right| \tag{2.4}
\end{equation*}
$$

and define the set A_{l} by

$$
A_{l}=\left\{\alpha_{l} \in \mathbf{N}: 2 \pi / n_{k_{l}} \leq 2 \pi / \alpha_{l} \leq \min _{j}\left|I_{j}\right|\right\}
$$

For an $\alpha_{l} \in A_{l}, C_{j, l}$ denotes the set

$$
\begin{equation*}
C_{j, l}=\left\{n \in \mathbf{N}: I_{j} \cap\left[2(n-1) \pi / \alpha_{l}, 2 n \pi / \alpha_{l}\right] \neq \emptyset\right\} . \tag{2.5}
\end{equation*}
$$

Remark that (2.4) implies

$$
\begin{equation*}
\left|\bigcup_{n \in C_{j, l}}\left[2(n-1) \pi / \alpha_{l}, 2 n \pi / \alpha_{l}\right]\right| \leq 3\left|I_{j}\right| \tag{2.6}
\end{equation*}
$$

We can now state the following proposition, which is interesting in itself.
Proposition 1. Take a positive integer $\alpha_{l} \in A_{l}$. Suppose that n is a positive integer of $C_{j, l}$ and $S\left(\theta ; r_{1}, r_{2}\right)$ denotes the segment

$$
S\left(\theta ; r_{1}, r_{2}\right)=\left\{z \in \mathbf{D}: \arg z=\theta, r_{1} \leq|z| \leq r_{2}\right\}
$$

Then we obtain the following inequalities;

$$
\begin{align*}
& \frac{\alpha_{l}}{2 \pi} \int_{2(n-1) \pi / \alpha_{l}}^{2 n \pi / \alpha_{l}} \log ^{+} 1 /\left|f\left(R_{l} e^{i \theta}\right)\right| d \theta \\
& \quad \leq \text { const. } \frac{\alpha_{l}}{4 \pi} \int_{(2 n-3) \pi / \alpha_{l}}^{(2 n+1) \pi / \alpha_{l}} \log ^{+}\left|f\left(R_{l} e^{i \theta}\right)\right| d \theta \tag{2.7}\\
& \quad+\text { const. } \int_{0}^{R_{l}} \int_{(2 n-3) \pi / \alpha_{l}}^{(2 n+1) \pi / \alpha_{l}} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| \alpha_{l}^{2} r^{\alpha_{l} / 2-1} d \theta d r \\
& \quad+\text { const. } \min \left\{\log 1 /|f(z)|: z \in S\left((2 n-1) \pi / \alpha_{l} ; r_{l}^{1}, r_{l}^{2}\right)\right\}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n \in C_{j, l}} \int_{(2 n-3) \pi / \alpha_{l}}^{(2 n+1) \pi / \alpha_{l}} \log ^{+}\left|f\left(R_{l} e^{i \theta}\right)\right| d \theta \leq \text { const. }\left|I_{j}\right| \log V\left(R_{l}\right) \tag{2.8}
\end{equation*}
$$

where $r_{l}^{1}=1-3 / \alpha_{l}$ and $r_{l}^{2}=1-2 / \alpha_{l}$.
We will give a proof of Proposition 1 in the section 3. By this proposition, we can derive the following Proposition.

Proposition 2. Suppose that there exist infinitely many $l \in \mathbf{N}$ such that, for an $\alpha_{l} \in$ A_{l}, the inequalities

$$
\begin{equation*}
\int_{0}^{R_{l}} \int_{(2 n-3) \pi / \alpha_{l}}^{(2 n+1) \pi / \alpha_{l}} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| \alpha_{l}^{2} r^{\alpha_{l} / 2-1} d \theta d r \leq C(f) \log V\left(R_{l}\right) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\min \left\{\log 1 /|f(z)|: z \in S\left((2 n-1) \pi / \alpha_{l} ; r_{l}^{1}, r_{l}^{2}\right)\right\} \leq C(f) \log V\left(R_{l}\right) \tag{2.10}
\end{equation*}
$$

hold for all $n \in \bigcup_{j} C_{j, l}$. Then $\delta(0, f)=0$.
Proof. Let l be a positive integer such that, for an $\alpha_{l} \in A_{l}$, the inequalities (2.9) and (2.10) hold for all $n \in \bigcup_{j} C_{j, l}$. (2.6), (2.9) and (2.10) imply that

$$
\sum_{n \in C_{j, l}} \frac{2 \pi}{\alpha_{l}} \int_{0}^{R_{l}} \int_{(2 n-3) \pi / \alpha_{l}}^{(2 n+1) \pi / \alpha_{l}} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| \alpha_{l}^{2} r^{\alpha_{l} / 2-1} d \theta d r \leq C(f)\left|I_{j}\right| \log V\left(R_{l}\right)
$$

and

$$
\sum_{n \in C_{j, l}} \frac{2 \pi}{\alpha_{l}} \min \left\{\log 1 /|f(z)|: z \in S\left((2 n-1) \pi / \alpha_{l} ; r_{l}^{1}, r_{l}^{2}\right)\right\} \leq C(f)\left|I_{j}\right| \log V\left(R_{l}\right)
$$

so that we have, by (2.7) and (2.8), that

$$
\begin{aligned}
\int_{I_{j}} \log ^{+} 1 /\left|f\left(R_{l} e^{i \theta}\right)\right| d \theta & \leq \sum_{n \in C_{j, l}} \int_{2(n-1) \pi / \alpha_{l}}^{2 n \pi / \alpha_{l}} \log ^{+} 1 /\left|f\left(R_{l} e^{i \theta}\right)\right| d \theta \\
& \leq C(f)\left|I_{j}\right| \log V\left(R_{l}\right)
\end{aligned}
$$

Therefore we obtain that

$$
\begin{equation*}
m\left(R_{l}, 0\right)=\sum_{j} \frac{1}{2 \pi} \int_{I_{j}} \log ^{+} 1 /\left|f\left(R_{l} e^{i \theta}\right)\right| d \theta \leq C(f)\left|E_{l}\right| \log V\left(R_{l}\right) \tag{2.11}
\end{equation*}
$$

Lemma 3 yields that, for any $\varepsilon>0$, the inequality

$$
\begin{equation*}
\left|E_{l}\right| \leq 2 \pi \varepsilon \tag{2.12}
\end{equation*}
$$

holds. We also know that

$$
\begin{equation*}
T(r, f) \geq C(f) \log V(r) \tag{2.13}
\end{equation*}
$$

holds for all sufficiently large $r \in[0,1)$ (Murai [10]).
We deduce, by (2.11), (2.12) and (2.13), that

$$
m\left(R_{l}, 0\right) / T\left(R_{l}, f\right) \leq C(f) \varepsilon
$$

Therefore we have

$$
\liminf _{l \rightarrow \infty} \frac{m\left(R_{l}, 0\right)}{T\left(R_{l}, f\right)} \leq C(f) \varepsilon
$$

which proves our proposition.
Fortunately, Hadamard gap condition (1.3) gives a certain upper bound for $\min \left\{\log 1 /|f(z)|: z \in S\left((2 n-1) \pi / \alpha_{l} ; r_{l}^{1}, r_{l}^{2}\right)\right\}$, which we shall show below.

Proposition 3. Suppose that $\alpha_{l}=n_{k_{l}}$. Then there exists an absolute positive constant l_{0} such that, for $l \geq l_{0}$,

$$
\begin{equation*}
\min \left\{\log 1 /|f(z)|: z \in S\left((2 n-1) \pi / \alpha_{l} ; r_{l}^{1}, r_{l}^{2}\right)\right\} \leq \log ^{+} 1 /\left|c_{k_{l}}\right|+C(f) \tag{2.14}
\end{equation*}
$$

holds for all $n \in \bigcup_{j} C_{j, l}$.
We will give a proof of Proposition 3 in the section 4. By this proposition, we can derive the following theorem.

THEOREM. Suppose that $f(z)$ given by (1.1) satisfies (1.3), (1.6) and

$$
\begin{equation*}
\log K / \log \sum_{k=1}^{K}\left|c_{k}\right|^{2}=O(1) \tag{2.15}
\end{equation*}
$$

as $K \rightarrow \infty$. Then $\delta(0, f)=0$.

Proof. We shall show that there exist infinitely many $l \in \mathbf{N}$ such that (2.9) and (2.10) of Proposition 2 hold for all $n \in \bigcup_{j} C_{j, l}$ with $\alpha_{l}=n_{k_{l}}$. Note that

$$
\begin{align*}
\sum_{k=1}^{\infty}\left|c_{k}\right| R_{l}^{n_{k}} & =\sum_{k=1}^{k_{l}}\left|c_{k}\right| R_{l}^{n_{k}}+\sum_{k=k_{l}+1}^{\infty}\left|c_{k}\right| n_{k}^{-1 / 2} n_{k}^{1 / 2} R_{l}^{n_{k}} \\
& \leq \sum_{k=1}^{k_{l}}\left|c_{k}\right|+\sum_{k=k_{l}+1}^{\infty}\left|c_{k_{l}}\right| n_{k_{l}}^{-1 / 2} n_{k}^{1 / 2} R_{l}^{n_{k}} \\
& =\sum_{k=1}^{k_{l}}\left|c_{k}\right|+\left|c_{k_{l}}\right| \sum_{k=k_{l}+1}^{\infty}\left(\frac{n_{k}}{n_{k_{l}}}\right)^{1 / 2}\left\{\left(1-\frac{1}{n_{k_{l}}}\right)^{n_{k_{l}}}\right\}^{\frac{n_{k}}{n_{k_{l}}}} \tag{2.16}\\
& \leq \sum_{k=1}^{k_{l}}\left|c_{k}\right|+\left|c_{k_{l}}\right| \sum_{k=k_{l}+1}^{\infty}\left(\frac{n_{k}}{n_{k_{l}}}\right)^{1 / 2} \exp \left(-\frac{n_{k}}{n_{k_{l}}}\right) \\
& \leq \sum_{k=1}^{k_{l}}\left|c_{k}\right|+C(f)
\end{align*}
$$

It holds similarly that

$$
\begin{equation*}
V\left(R_{l}\right)^{2} \leq \sum_{k=1}^{k_{l}}\left|c_{k}\right|^{2}+C(f) \tag{2.17}
\end{equation*}
$$

(2.15) and (2.17) yield that

$$
\frac{\log k_{l}}{\log V\left(R_{l}\right)}=\frac{\log k_{l}}{\log \sum_{k=1}^{k_{l}}\left|c_{k}\right|^{2}} \frac{\log \sum_{k=1}^{k_{l}}\left|c_{k}\right|^{2}}{\log V\left(R_{l}\right)}=O(1)
$$

as $l \rightarrow \infty$, so that we have

$$
\begin{equation*}
\log V\left(R_{l}\right) \geq C(f) \log k_{l} \tag{2.18}
\end{equation*}
$$

We obtain, by (2.16), that

$$
\log \sum_{k=1}^{\infty}\left|c_{k}\right| R_{l}^{n_{k}} \leq \log k_{l}+C(f)
$$

so that we have, by (2.18),

$$
\begin{aligned}
& \int_{0}^{R_{l}} \int_{(2 n-3) \pi / \alpha_{l}}^{(2 n+1) \pi / \alpha_{l}} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| \alpha_{l}^{2} r^{\alpha_{l} / 2-1} d \theta d r \\
& \quad \leq \int_{0}^{R_{l}} \int_{(2 n-3) \pi / \alpha_{l}}^{(2 n+1) \pi / \alpha_{l}} \log \left(1+\sum_{k=1}^{\infty}\left|c_{k}\right| R_{l}^{n_{k}}\right) \alpha_{l}^{2} r^{\alpha_{l} / 2-1} d \theta d r \\
& \quad \leq\left(\log k_{l}+C(f)\right) \int_{0}^{R_{l}} \int_{(2 n-3) \pi / \alpha_{l}}^{(2 n+1) \pi / \alpha_{l}} \alpha_{l}^{2} r^{\alpha_{l} / 2-1} d \theta d r \\
& \quad \leq C(f) \log V\left(R_{l}\right) .
\end{aligned}
$$

By Lemma 1, we find that there exist infinitely many $l \in \mathbf{N}$ such that

$$
\begin{equation*}
\left|c_{k_{l}}\right| \geq 1 / k_{l}^{2} . \tag{2.19}
\end{equation*}
$$

Let l be a positive integer satisfying (2.19) and $l \geq l_{0}$, where l_{0} is an absolute positive constant defined in the proof of Proposition 3. Then we deduce, by (2.18), that

$$
\begin{aligned}
\min \left\{\log 1 /|f(z)|: z \in S\left((2 n-1) \pi / \alpha_{l} ; r_{l}^{1}, r_{l}^{2}\right)\right\} & \leq \log ^{+} 1 /\left|c_{k_{l}}\right|+C(f) \\
& \leq 2 \log k_{l}+C(f) \\
& \leq C(f) \log V\left(R_{l}\right) .
\end{aligned}
$$

By Proposition 2, we complete the proof.
We apply our theorem to an example. Suppose that $\left|c_{k}\right|=1 / k^{p}(0<p<1 / 2)$. It is easy to see that these c_{k} satisfy the conditions of Theorem. In this situation, we have

$$
\begin{aligned}
& T\left(R_{l}\right) \geq \text { const. } \log V\left(R_{l}\right) \geq C(f) \log k_{l}, \\
& \int_{0}^{R_{l}} \int_{(2 n-3) \pi / \alpha_{l}}^{(2 n+1) \pi / \alpha_{l}} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| \alpha_{l}^{2} r^{\alpha_{l} / 2-1} d \theta d r \\
& \leq \log \left(1+\sum_{k=1}^{\infty}\left|c_{k}\right| R_{l}^{n_{k}}\right) \int_{0}^{R_{l}} \int_{(2 n-3) \pi / \alpha_{l}}^{(2 n+1) \pi / \alpha_{l}} \alpha_{l}^{2} r^{\alpha_{l} / 2-1} d \theta d r \\
& \leq C(f) \log k_{l}
\end{aligned}
$$

and

$$
\log ^{+} 1 /\left|c_{k_{l}}\right|+C(f) \leq p \log k_{l}+C(f) \leq C(f) \log k_{l}
$$

Therefore we deduce, by our theorem, that $\delta(0, f)=0$.
Corollary. Suppose that $f(z)$ given by (1.1) satisfies (1.3), (1.6) and (2.15). Then $f(z)$ has no finite defective value.

Proof. Let $a \in \mathbf{C}$. We define $f_{a}(z)$ by

$$
f_{a}(z)= \begin{cases}(f(z)-a) / c_{1} z^{n_{1}} & \text { if } a=1 \\ (f(z)-a) /(1-a) & \text { otherwise }\end{cases}
$$

It is obvious that $f_{a}(z)$ satisfies Hadamard gap condition (1.3) and $f_{a}(0)=1$. The coefficients of $f_{a}(z)$ satisfy (1.5), (1.6) and (2.15). Therefore our theorem implies $\delta\left(0, f_{a}\right)=0$, which yields $\delta(a, f)=0$.

3. Proof of Proposition 1

Our proof of Proposition 1 will be based on an extension of Poisson-Jensen formula, due to W. H. J. Fuchs ([4]) and V. P. Petrenko ([13]):

Lemma 4. Suppose that $g(z)$ is analytic in the closed sector

$$
\{z \in \mathbf{C}:|\arg z| \leq \pi / \alpha,|z| \leq R\}(\alpha>1) .
$$

Let $t \in(0, R)$ be a point on the real axis, where $g(t) \neq 0$. For $z \neq t, 1 / t$, define

$$
\Phi(R, t, z)=\log \left|\frac{R^{2}-t z}{R(z-t)}\right|-\log \frac{R^{2}+t|z|}{R(|z|+t)} .
$$

If we write

$$
\begin{aligned}
& I_{1}=I_{1}(R, t, \alpha)=\int_{0}^{R}\left(\int_{-\pi / \alpha}^{\pi / \alpha} \log \left|g\left(r e^{i \theta}\right)\right| d \theta\right) K_{1}(R, r, t, \alpha) d r, \\
& I_{2}=I_{2}(R, t, \alpha)=\int_{-\pi / \alpha}^{\pi / \alpha} \log \left|g\left(R e^{i \theta}\right)\right| K_{2}(R, \theta, t, \alpha) d \theta,
\end{aligned}
$$

where

$$
\begin{aligned}
& K_{1}(R, r, t, \alpha)=\frac{\alpha^{2}}{2 \pi} \frac{r^{\alpha-1} t^{\alpha}\left(R^{2 \alpha}-t^{2 \alpha}\right)\left(R^{2 \alpha}-r^{2 \alpha}\right)}{\left(r^{\alpha}+t^{\alpha}\right)^{2}\left(R^{2 \alpha}+r^{\alpha} t^{\alpha}\right)^{2}}, \\
& K_{2}(R, \theta, t, \alpha)=\frac{\alpha}{\pi} \frac{R^{\alpha} t^{\alpha}\left(R^{\alpha}-t^{\alpha}\right)(1+\cos \alpha \theta)}{\left(R^{\alpha}+t^{\alpha}\right)\left(R^{2 \alpha}+t^{2 \alpha}-2 R^{\alpha} t^{\alpha} \cos \alpha \theta\right)},
\end{aligned}
$$

then

$$
\begin{equation*}
\log |g(t)|=I_{1}+I_{2}-\sum_{a_{i}} \Phi\left(R^{\alpha}, t^{\alpha}, a_{i}^{\alpha}\right) \tag{3.1}
\end{equation*}
$$

where the summation is taken over the zeros $\left\{a_{i}\right\}$ of g which lie in the interior of the sector.
Proof of Proposition 1. We put $f_{n}(z)=f\left(e^{i 2(n-1) / \alpha l} z\right)$. Let t_{n} be a maximal point of $\log 1 /\left|f_{n}(t)\right|$ in $S\left(0 ; r_{l}^{1}, r_{l}^{2}\right)$. We now apply the above formula for the sector $\{z \in \mathbf{C}$:
$\left.|\arg z| \leq 2 \pi / \alpha_{l},|z| \leq R_{l}\right\}$. Elementary calculus gives us $K_{1} \geq 0, K_{2} \geq 0$ and $\Phi \geq 0$, so that we deduce, by (3.1), that

$$
\begin{aligned}
\log \left|f_{n}\left(t_{n}\right)\right| \leq & \int_{0}^{R_{l}}\left(\int_{-2 \pi / \alpha_{l}}^{2 \pi / \alpha_{l}} \log ^{+}\left|f_{n}\left(r e^{i \theta}\right)\right| d \theta\right) K_{1}\left(R_{l}, r, t_{n}, \alpha_{l} / 2\right) d r \\
& +\int_{-2 \pi / \alpha_{l}}^{2 \pi / \alpha_{l}} \log ^{+}\left|f_{n}\left(R_{l} e^{i \theta}\right)\right| K_{2}\left(R_{l}, \theta, t_{n}, \alpha_{l} / 2\right) d \theta \\
& -\int_{-2 \pi / \alpha_{l}}^{2 \pi / \alpha_{l}} \log ^{+} 1 /\left|f_{n}\left(R_{l} e^{i \theta}\right)\right| K_{2}\left(R_{l}, \theta, t_{n}, \alpha_{l} / 2\right) d \theta \\
\leq & \int_{0}^{R_{l}}\left(\int_{-2 \pi / \alpha_{l}}^{2 \pi / \alpha_{l}} \log ^{+}\left|f_{n}\left(r e^{i \theta}\right)\right| d \theta\right) K_{1}\left(R_{l}, r, t_{n}, \alpha_{l} / 2\right) d r \\
& +\int_{-2 \pi / \alpha_{l}}^{2 \pi / \alpha_{l}} \log ^{+}\left|f_{n}\left(R_{l} e^{i \theta}\right)\right| K_{2}\left(R_{l}, \theta, t_{n}, \alpha_{l} / 2\right) d \theta \\
& -\int_{-\pi / \alpha_{l}}^{\pi / \alpha_{l}} \log ^{+} 1 /\left|f_{n}\left(R_{l} e^{i \theta}\right)\right| K_{2}\left(R_{l}, \theta, t_{n}, \alpha_{l} / 2\right) d \theta
\end{aligned}
$$

It is easy to see that

$$
\begin{aligned}
& K_{1}\left(R_{l}, r, t_{n}, \alpha_{l} / 2\right) \leq \text { const. } \alpha_{l}^{2} r^{\alpha_{l} / 2-1} \\
& K_{2}\left(R_{l}, \theta, t_{n}, \alpha_{l} / 2\right) \leq \text { const. } \frac{\alpha_{l}}{4 \pi}
\end{aligned}
$$

and

$$
\min \left\{K_{2}\left(R_{l}, \theta, t_{n}, \alpha_{l} / 2\right): \theta \in\left[-\pi / \alpha_{l}, \pi / \alpha_{l}\right]\right\} \geq \text { const. } \frac{\alpha_{l}}{2 \pi}
$$

so that we obtain

$$
\begin{aligned}
& \frac{\alpha_{l}}{2 \pi} \int_{-\pi / \alpha_{l}}^{\pi / \alpha_{l}} \log ^{+} 1 /\left|f_{n}\left(R_{l} e^{i \theta}\right)\right| d \theta \\
& \leq \text { const. } \frac{\alpha_{l}}{4 \pi} \int_{-2 \pi / \alpha_{l}}^{2 \pi / \alpha_{l}} \log ^{+}\left|f_{n}\left(R_{l} e^{i \theta}\right)\right| d \theta \\
& \quad+\text { const. } \int_{0}^{R_{l}} \int_{-\pi / \alpha_{l}}^{\pi / \alpha_{l}} \log ^{+}\left|f_{n}\left(r e^{i \theta}\right)\right| \alpha_{l}^{2} r^{\alpha_{l} / 2-1} d \theta d r \\
& \quad+\min \left\{\log 1 /\left|f_{n}(z)\right|: z \in S\left(0 ; r_{l}^{1}, r_{l}^{2}\right)\right\}
\end{aligned}
$$

which is equivalent to (2.7).
We proceed to show (2.8). We write $I_{j}=\left[\theta_{j}^{-}, \theta_{j}^{+}\right], \theta_{j}=\left(\theta_{j}^{+}+\theta_{j}^{-}\right) / 2$ and let \tilde{I}_{j} be the set

$$
\begin{equation*}
\tilde{I}_{j}=\left\{\theta \in[0,2 \pi):\left|\theta-\theta_{j}\right|<2\left|I_{j}\right|\right\} . \tag{3.2}
\end{equation*}
$$

Then we deduce, by (2.4), (2.5) and (3.2), that

$$
\sum_{n \in C_{j, l}} \int_{(2 n-3) \pi / \alpha_{l}}^{(2 n+1) \pi / \alpha_{l}} \log ^{+}\left|f\left(R_{l} e^{i \theta}\right)\right| d \theta \leq 2 \int_{\tilde{I}_{j}} \log ^{+}\left|f\left(R_{l} e^{i \theta}\right)\right| d \theta .
$$

Since $\log x$ is a convex function, we have, by Jensen's inequality, that

$$
\begin{aligned}
\frac{1}{\left|\tilde{I}_{j}\right|} \int_{\tilde{I}_{j}} \log ^{+}\left|f\left(R_{l} e^{i \theta}\right)\right| d \theta & \leq \frac{1}{\left|\tilde{I}_{j}\right|} \int_{\tilde{I}_{j}} \log \left(1+\left|f\left(R_{l} e^{i \theta}\right)\right|\right) d \theta \\
& \leq \log \left\{\frac{1}{\left|\tilde{I}_{j}\right|} \int_{\tilde{I}_{j}} 1+\left|f\left(R_{l} e^{i \theta}\right)\right| d \theta\right\}
\end{aligned}
$$

Regard $f\left(R_{l} e^{i \theta}\right)$ as a periodic function on \mathbf{R}. It is well known (Kochneff-Sagher-Zhou [8]) that

$$
\left\|f\left(R_{l} e^{i \theta}\right)\right\|_{B M O(\mathbf{R})} \leq C(f) V\left(R_{l}\right)
$$

so that

$$
\left\|1+\mid f\left(R_{l} e^{i \theta}\right)\right\|_{B M O(\mathbf{R})} \leq C(f) V\left(R_{l}\right) .
$$

If we assume that

$$
M_{j, l}=\frac{1}{\left|\tilde{I}_{j}\right|} \int_{\tilde{I}_{j}} 1+\left|f\left(R_{l} e^{i \theta}\right)\right| d \theta>V\left(R_{l}\right)^{3}
$$

holds for infinitely many l, then we obtain, by (3.2),

$$
\frac{1}{\left|\tilde{I}_{j}\right|}\left|\left\{\theta \in \tilde{I}_{j}:\left|\left(1+\left|\left(R_{l} e^{i \theta}\right)\right|\right)-M_{j, l}\right|>V\left(R_{l}\right)^{2}\right\}\right|>\frac{\left|I_{j}\right|}{\left|\tilde{I}_{j}\right|}=1 / 4 .
$$

On the other hand, the John-Nirenberg inequality ([7]) implies that

$$
\begin{aligned}
& \quad \frac{1}{\left|\tilde{I}_{j}\right|}\left|\left\{\theta \in \tilde{I}_{j}:\left|\left(1+\left|f\left(R_{l} e^{i \theta}\right)\right|\right)-M_{j, l}\right|>V\left(R_{l}\right)^{2}\right\}\right| \\
& \leq \text { const. } \exp \left\{-\operatorname{const} . V\left(R_{l}\right)^{2} / \| 1+\left|f\left(R_{l} e^{i \theta}\right)\right|| |_{B M O(\mathbf{R})}\right\} \\
& \leq \text { const. } \exp \left\{-C(f) V\left(R_{l}\right)\right\}
\end{aligned}
$$

These inequalities lead a contradiction, so that we have $M_{j, l} \leq V\left(R_{l}\right)^{3}$ and $\log M_{j, l} \leq$ const. $V\left(R_{l}\right)$. We complete the proof.

4. Proof of Proposition 3

We introduce an operator D, first appeared in Littlewood-Offord [9]. Suppose that $\psi(r)$ is a real C^{∞}-function on an interval $[a, b](a>0)$ and m is a non-negative integer. Then we
define $D(m) \psi(r)$ by

$$
D(m) \psi(r)=r^{m+1} \frac{d}{d r} \frac{\psi(r)}{r^{m}}
$$

For a finite set of non-negative integers $E=\left\{m_{1}, m_{2}, \ldots, m_{p}\right\}, D(E)$ is defined by

$$
\begin{equation*}
D(E)=D\left(m_{1}\right) D\left(m_{2}\right) \cdots D\left(m_{p}\right) \tag{4.1}
\end{equation*}
$$

It is obvious that $D(m) D(n) \psi(r)=D(n) D(m) \psi(r)$, so that (4.1) is well-defined.
LEMMA 5 (LEMMA 7 in [9]). Let $E=\left\{m_{1}, m_{2}, \ldots, m_{p}\right\}$ be a finite set of nonnegative integers. If

$$
|D(E) \psi(r)| \geq M
$$

for all r in $[a, b]$, then there exist $p+2$ numbers η satisfying

$$
a=\eta_{0}<\eta_{1}<\cdots<\eta_{p}<\eta_{p+1}=b
$$

and

$$
|\psi(r)| \geq \frac{M}{2^{p(p-1) / 2} p!} b^{-p}\left(\frac{a}{b}\right)^{m_{1}+\cdots+m_{p}} \Psi\left(r ; \eta_{0}, \ldots, \eta_{p+1}\right)
$$

where $\Psi\left(r ; \eta_{0}, \ldots, \eta_{p+1}\right)$ is the function on $[a, b]$ defined by

$$
\Psi\left(r ; \eta_{0}, \ldots, \eta_{p+1}\right)=\min \left\{\left(r-\eta_{i}\right)^{p},\left(\eta_{i+1}-r\right)^{p}\right\} \quad\left(r \in\left[\eta_{i}, \eta_{i+1}\right]\right)
$$

Proof of Proposition 3. Let θ_{k} be the argument $\arg c_{k}$ in $[0,2 \pi), n_{0}=0$ and $c_{0}=1$. Then we can write

$$
f\left(r e^{i \theta}\right)=\sum_{k=0}^{\infty}\left|c_{k}\right| e^{i \theta_{k}} r^{n_{k}} e^{i n_{k} \theta}
$$

Taking a $\theta \in[0,2 \pi)$ to be fixed, we consider the function $\psi_{l}(r)=\psi_{l}(r, \theta)$ defined by

$$
\begin{aligned}
\psi_{l}(r) & =\mathfrak{R}\left[e^{-i\left(\theta_{k_{l}}+n_{k_{l}} \theta\right)} \sum_{k=0}^{\infty}\left|c_{k}\right| e^{i \theta_{k}} r^{n_{k}} e^{i n_{k} \theta}\right] \\
& =\Re\left[\sum_{k=0}^{k_{l}-1}+\left|c_{k_{l}}\right| r^{n_{k_{l}}}+\sum_{k=k_{l}+1}^{\infty}\right] \\
& =\Re\left[\sum_{k=0}^{k_{l}-1}\right]+\left|c_{k_{l}}\right| r^{n_{k_{l}}}+\mathfrak{R}\left[\sum_{k=k_{l}+1}^{\infty}\right]
\end{aligned}
$$

It is obvious that $\left|\psi_{l}(r)\right| \leq\left|f\left(r e^{i \theta}\right)\right|$.

Let $E_{l}^{-}=\left\{n_{0}, \ldots, n_{s+1}\right\}$ and $E_{l}^{+}=\left\{n_{k_{l}+1}, \ldots, n_{k_{l}+t}\right\}$ be the set of non-negative integers, where

$$
s=\min \left\{\sigma \geq 0: \frac{1}{q^{\sigma+1}-1} \leq \frac{1}{108}\left\{\prod_{n=1}^{\infty}\left(1-\frac{1}{q^{n}}\right)\right\}^{2}\right\}
$$

and

$$
t=\min \left\{\tau \geq 1: x^{s+\tau+3} \exp (-2 x) \leq x^{-(s+1)} \quad\left(x \geq q^{\tau+1}\right)\right\}
$$

Note that both s and t are constants depending only on f.
Now we proceed to estimate $\left|D\left(E_{l}^{-} \cup E_{l}^{+}\right) \psi_{l}(r)\right| \quad\left(r \in\left[r_{l}^{1}, r_{l}^{2}\right]\right)$. Let l_{0} be defined by

$$
l_{0}=\min \left\{l \in \mathbf{N}:\left(1-3 / n_{k_{l}}\right)^{n_{k_{l}} / 3} \geq 1 / 3\right\}
$$

Then we obtain, for any $l \geq l_{0}$, by (2.1), the following inequalities:

$$
\begin{aligned}
& \quad\left|D\left(E_{l}^{-} \cup E_{l}^{+}\right)\right| c_{k_{l}}\left|r^{n_{k_{l}}}\right| \\
& =\left|c_{k_{l}}\right|\left(n_{k_{l}}-n_{0}\right) \cdots\left(n_{k_{l}}-n_{s+1}\right)\left(n_{k_{l}+1}-n_{k_{l}}\right) \cdots\left(n_{k_{l}+t}-n_{\left.k_{l}\right)}\right) r^{n_{k_{l}}} \\
& =\left|c_{k_{l}}\right| n_{k_{l}}^{s+2}\left(1-\frac{n_{0}}{n_{k_{l}}}\right) \cdots\left(1-\frac{n_{s+1}}{n_{k_{l}}}\right) \\
& \quad \times n_{k_{l}+1} \cdots n_{k_{l}+t}\left(1-\frac{n_{k_{l}}}{n_{k_{l}+1}}\right) \cdots\left(1-\frac{n_{k_{l}}}{n_{k_{l}+t}}\right) r^{n_{k_{l}}} \\
& \geq\left|c_{k_{l}}\right| n_{k_{l}}^{s+2}\left\{\prod_{n=1}^{\infty}\left(1-\frac{1}{q^{n}}\right)\right\}^{n_{k_{l}+1} \cdots n_{k_{l}+t}\left\{\prod_{n=1}^{\infty}\left(1-\frac{1}{q^{n}}\right)\right\}\left\{\left(1-\frac{3}{n_{k_{l}}}\right)^{n_{k_{l} / 3}}\right\}^{3}} \\
& \geq \\
& \geq \\
& \frac{1}{27}\left\{\prod_{n=1}^{\infty}\left(1-\frac{1}{q^{n}}\right)\right\}^{2}\left|c_{k_{l}}\right| n_{k_{l}}^{s+2} n_{k_{l}+1} \cdots n_{k_{l}+t}, \\
& \quad \leq \sum_{k=s+2}^{k_{l}-1}\left|c_{k}\right|\left(n_{k}-n_{0}\right) \cdots\left(n_{k}-n_{s+1}\right)\left(n_{k_{l}+1}-n_{k}\right) \cdots\left(n_{k_{l}+t}-n_{k}\right) \\
& \left.\left.\quad \leq n_{k_{l}+1}^{-} \cdots n_{k_{l}+t}^{+}\right) \sum_{k=s+2}^{k_{l}-1}\left(\left|c_{k}\right| n_{k}\right) n_{k}^{s+1}\right] \mid \\
& \quad \leq\left|c_{k_{l}}\right| n_{k_{l}} n_{k_{l}+1} \cdots n_{k_{l}+t}^{k_{l}-1} \sum_{k=s+2}^{n_{k}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left|c_{k_{l}}\right| n_{k_{l}}^{s+2} n_{k_{l}+1} \cdots n_{k_{l}+t} \sum_{k=s+2}^{k_{l}-1}\left(\frac{n_{k}}{n_{k_{l}}}\right)^{s+1} \\
& \leq\left|c_{k_{l}}\right| n_{k_{l}}^{s+2} n_{k_{l}+1} \cdots n_{k_{l}+t} \sum_{k=s+2}^{k_{l}-1} q^{(s+1)\left(k-k_{l}\right)} \\
& \leq \frac{1}{q^{s+1}-1}\left|c_{k_{l}}\right| n_{k_{l}}^{s+2} n_{k_{l}+1} \cdots n_{k_{l}+t} \\
& \leq \frac{1}{108}\left\{\prod_{n=1}^{\infty}\left(1-\frac{1}{q^{n}}\right)\right\}^{2}\left|c_{k_{l}}\right| n_{k_{l}}^{s+2} n_{k_{l}+1} \cdots n_{k_{l}+t}
\end{aligned}
$$

and

$$
\begin{aligned}
&\left|D\left(E_{l}^{-} \cup E_{l}^{+}\right) \Re\left[\sum_{k=k_{l}+1}^{\infty}\right]\right| \\
& \leq \sum_{k=k_{l}+t+1}^{\infty}\left|c_{k}\right|\left(n_{k}-n_{0}\right) \cdots\left(n_{k}-n_{s+1}\right)\left(n_{k}-n_{k_{l}+1}\right) \cdots\left(n_{k}-n_{k_{l}+t}\right) r^{n_{k}} \\
& \leq \sum_{k=k_{l}+t+1}^{\infty}\left|c_{k}\right| n_{k}^{s+t+2} r^{n_{k}} \\
&= \sum_{k=k_{l}+t+1}^{\infty}\left|c_{k}\right| n_{k}^{-1} n_{k}^{s+t+3} r^{n_{k}} \\
& \leq\left|c_{k_{l}}\right| n_{k_{l}}^{-1} \sum_{k=k_{l}+t+1}^{\infty} n_{k}^{s+t+3} r^{n_{k}} \\
&=\left|c_{k_{l}}\right| n_{k_{l}}^{s+t+2} \sum_{k=k_{l}+t+1}^{\infty}\left(\frac{n_{k}}{n_{k_{l}}}\right)^{s+t+3} r^{n_{k}} \\
& \leq\left|c_{k_{l}}\right| n_{k_{l}}^{s+t+2} \sum_{k=k_{l}+t+1}^{\infty}\left(\frac{n_{k}}{n_{k_{l}}}\right)^{s+t+3}\left\{\left(1-\frac{2}{n_{k_{l}}}\right)^{n_{k_{l}} / 2}\right\}^{\frac{2 n_{k}}{n_{k}}} \\
& \leq\left|c_{k_{l}}\right| n_{k_{l}}^{s+t+2} \sum_{k=k_{l}+t+1}^{\infty}\left(\frac{n_{k}}{n_{k_{l}}}\right)^{s+t+3} \exp \left(-\frac{2 n_{k}}{n_{k_{l}}}\right) \\
& \leq\left|c_{k_{l}}\right| n_{k_{l}}^{s+t+2} \sum_{k=k_{l}+t+1}^{\infty}\left(\frac{n_{k_{l}}}{n_{k}}\right)^{s+1}
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left|c_{k_{l}}\right| n_{k_{l}}^{s+t+2} \sum_{k=k_{l}+t+1}^{\infty} q^{\left(k_{l}-k\right)(s+1)} \\
& \leq \frac{1}{q^{s+1}-1}\left|c_{k_{l}}\right| n_{k_{l}}^{s+t+2} \\
& \leq \frac{1}{108}\left\{\prod_{n=1}^{\infty}\left(1-\frac{1}{q^{n}}\right)\right\}^{2}\left|c_{k_{l}}\right| n_{k_{l}}^{s+t+2}
\end{aligned}
$$

These inequalities yield that

$$
\left|D\left(E_{l}^{-} \cup E_{l}^{+}\right) \psi_{l}(r)\right| \geq \frac{1}{54}\left\{\prod_{n=1}^{\infty}\left(1-\frac{1}{q^{n}}\right)\right\}^{2}\left|c_{k_{l}}\right| n_{k_{l}}^{s+2} n_{k_{l}+1} \cdots n_{k_{l}+t},
$$

for all $r \in\left[r_{l}^{1}, r_{l}^{2}\right]$.
Therefore, by Lemma 5, there exist $(s+t+4)$-numbers

$$
r_{l}^{1}=1-3 / n_{k_{l}}=\eta_{0}<\eta_{1}<\cdots<\eta_{s+t+2}<\eta_{s+t+3}=1-2 / n_{k_{l}}=r_{l}^{2}
$$

such that

$$
\begin{aligned}
\left|\psi_{l}(r)\right| \geq & \frac{1}{54}\left\{\prod_{n=1}^{\infty}\left(1-\frac{1}{q^{n}}\right)\right\}^{2}\left|c_{k_{l}}\right| n_{k_{l}}^{s+2} n_{k_{l}+1} \cdots n_{k_{l}+t} \\
& \times \frac{1}{2^{(s+t+2)(s+t+1) / 2}(s+t+2)!}\left(1-2 / n_{k_{l}}\right)^{-(s+t+2)} \\
& \times\left(\frac{1-3 / n_{k_{l}}}{1-2 / n_{k_{l}}}\right)^{n_{0}+\cdots+n_{s+1}+n_{k_{l}+1}+\cdots+n_{k_{l}+t}} \Psi\left(r ; \eta_{0}, \ldots, \eta_{s+t+3}\right) .
\end{aligned}
$$

Since $\log ^{+} a b \leq \log ^{+} a+\log ^{+} b(a, b>0)$, we have

$$
\begin{aligned}
\log ^{+} 1 /\left|\psi_{l}(r)\right| \leq & \log ^{+} 1 /\left|c_{k_{l}}\right| \\
& +\log ^{+} 1 / n_{k_{l}}^{s+2} n_{k_{l}+1} \cdots n_{k_{l}+t} \Psi\left(r ; \eta_{0}, \ldots, \eta_{s+t+3}\right) \\
& +C(f) \\
\leq & \log ^{+} 1 /\left|c_{k_{l}}\right| \\
& +\log ^{+} 1 / n_{k_{l}}^{s+t+2} \Psi\left(r ; \eta_{0}, \ldots, \eta_{s+t+3}\right) \\
& +C(f)
\end{aligned}
$$

so that we obtain

$$
\begin{aligned}
& \min \left\{\log 1 / \mid \psi_{l}(r): r_{l}^{1} \leq r \leq r_{l}^{2}\right\} \\
\leq & \frac{1}{r_{l}^{2}-r_{l}^{1}} \int_{r_{l}^{1}}^{r_{l}^{2}} \log ^{+} 1 /\left|\psi_{l}(r)\right| d r
\end{aligned}
$$

$$
\begin{aligned}
\leq & \log ^{+} 1 /\left|c_{k_{l}}\right| \\
& +\frac{1}{r_{l}^{2}-r_{l}^{1}} \int_{r_{l}^{1}}^{r_{l}^{2}} \log ^{+} 1 / n_{k_{l}}^{s+t+2} \Psi\left(r ; \eta_{0}, \ldots, \eta_{s+t+3}\right) d r \\
& +C(f) \\
\leq & \log ^{+} 1 /\left|c_{k_{l}}\right| \\
& +(s+t+2) \sum_{i=1}^{s+t+2} \frac{1}{r_{l}^{2}-r_{l}^{1}} \int_{r_{l}^{1}}^{r_{l}^{2}} \log ^{+} 1 / n_{k_{l}}\left|r-\eta_{i}\right| d r \\
& +C(f) \\
\leq & \log ^{+} 1 /\left|c_{k_{l}}\right|+C(f) .
\end{aligned}
$$

This inequality yields (2.14). We complete the proof.

References

[1] M. Biernacki, Sur les équations algébriques contenant des paramètres arbitaires, Bull. Int. Acd. Polon. Sci. Lett. Sér. A: Sci. Math. (III), (1927), 542-685.
[2] L. FEJÉR, Über die Wurzel vom kleinsten absoluten Betrage einer algebraishen Gleichung, Math. Ann. 65 (1908), 413-423.
[3] W. H. J. Fuchs, On the zeros of power series with Hadamard gaps, Nagoya Math. J. 29 (1967), 167-174.
[4] W. H. J. Fuchs, Topics in Nevanlinna theory, Proc. NRL Conference on Classical Function Theory, Math. Res. Center, Naval Research Laboratory, Washington, D.C., 1970, 1-32.
[5] J. Hadamard, Essai sur l'étude des fonctions données par leur développement de Taylor, J. Math. 8 (1892), 101-186.
[6] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs (1964).
[7] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426.
[8] E. Kochneff, Y. Sagher and K. Zhou, BMO estimates for lacunary series, Arkiv för Matematik 28 (1990), 301-310.
[9] J. E. Littlewood and A. C. OfFORD, On the distribution of zeros and a-values of a random integral function (2), Ann. of Math. 49 (1948), 885-952.
[10] T. Murai, Sur la distribution des valeurs des séries lacunaires, J. London Math. Soc. (2) 21 (1980), 93-110.
[11] T. Murai, The value-distribution of lacunary series and a conjecture of Paley, Ann. Inst. Fourier, Grenoble 31-1 (1981), 135-156.
[12] T. Murai, The deficiency of entire function with Fejér gaps, Ann. Inst. Fourier, Grenoble 33-3 (1983), 39-58.
[13] V. P. Petrenko, Growth of meromorphic functions of finite order, Math. USSR Izv. 3 (1969), 391-431.
[14] R. SALEM and A. ZYGMUND, On lacunary trigonometric series, Proc. Nat. Acad. Sci. 33 (1947), 333-338.
[15] S. Sidon, Verallgemeinerung eines Satzes über die absolute Konvergenz von Fourier-reihen mit Lücken, Math. Ann. 97 (1927), 675-676.

Present Address:

CAE Strategy Department Engineering Technology Division, JSOL Corporation, 2-5-24, HARUMI, CHUO-KU, TOKYO 104-0053, JAPAN.
e-mail: tsuboi.narufumi@jsol.co.jp

