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Abstract. On some connected sums of 4-manifolds with natural actions of finite groups, we use equivariant
Bauer-Furuta invariant to deduce the existence of solutions of Seiberg-Witten equations invariant under the group
actions.

For example, for any integer k ≥ 2 we show that the connected sum of k copies of a 4-manifold M with nontrivial
Bauer-Furuta invariant has a nontrivial Zk-equivariant Bauer-Furuta invariant for the obviously glued Spinc structure,
where the Zk -action cyclically permutes k summands of M. This contrasts with the fact that ordinary Bauer-Furuta
invariants of such connected sums are all trivial for any sufficiently large k, when b1(M) = 0.

1. Introduction

Let M be a smooth closed oriented Riemannian manifold of dimension 4 with a smooth
orientation-preserving isometric action of a finite group G. A second cohomology class of
M is called a G-monopole class if it arises as the first Chern class of a G-equivariant Spinc

structure s for which the Seiberg-Witten equations{
DAΦ = 0

F+
A = Φ ⊗ Φ∗ − |Φ|2

2 Id

admit a G-invariant solution (A,Φ) for every G-invariant Riemannian metric of M .
To detect a G-monopole class, there are two methods developed so far. The first one is a

G-monopole invariant obtained by the intersection theory on the G-monopole moduli space,
i.e., the space of G-invariant solutions of Seiberg-Witten equations modulo gauge transfor-
mations. The second one is G-equivariant Bauer-Furuta invariant, which is basically the

(G × S1)-equivariant stable cohomotopy class of the monopole map between appropriate
Hilbert manifolds given by Seiberg-Witten equations, just as the ordinary Bauer-Furuta in-

variant is the S1-equivariant stable cohomotopy class of the monopole map.
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While it is difficult to compute those invariants, unless the action is free, we were able
to exactly compute G-monopole invariants on some special types of connected sums in [8],
and we will compute their G-equivariant Bauer-Furuta invariants in this paper as a sequel. In
some cases, those invariants turn out to be nontrivial, although ordinary Bauer-Furuta invariant
vanishes.

The existence of a G-monopole class can be applied to Riemannian geometry such as
G-invariant Einstein metrics and G-Yamabe invariant of 4-manifolds, and some standard ap-
plications are dealt with in [7].

2. Equivariant Bauer-Furuta invariant

Let M be a smooth closed oriented 4-manifold. Suppose that a finite group G acts on M

smoothly preserving the orientation, and this action lifts to an action on a Spinc structure s of

M . Once there is a lifting, any other lifting differs from it by an element of Map(G×M,S1).
We fix a lifting and put a G-invariant Riemannian metric on M .

The corresponding spinor bundles W± are also G-equivariant, and we let Γ (W±)G be
the set of its G-invariant sections. When we put G as a superscript on the right shoulder of a
set, we always mean the subset consisting of its G-invariant elements. Thus A(W+)G is the

space of G-invariant connections on det(W+), which is identified as the space Γ (Λ1(M))G

of G-invariant 1-forms, and GG
o = Map((M, x0), (S

1, 1))G is the set of G-invariant based
gauge transformations for a base point x0 ∈ M . When M/G is disconnected, more base
points should be assigned so that GG

o ⊂ GG is a maximal subgroup acting freely on A(W+)G.
Thus the number of base points is exactly the number of connected components of M/G.

Let A0 ∈ A(W+)G. Just as

Pic(M) := (A0 + i ker d)/Go

for Go := Map((M, x0), (S
1, 1)) is a b1(M)-dimensional torus, one gets the quotient

PicG(M) := (A0 + i ker d)G/GG
o .

Since GG := Map(M, S1)G is equal to GG
o × S1, and any constant gauge transformation acts

trivially on connections, PicG(M) is well-defined independently of the choice of the base
point x0.

LEMMA 2.1. PicG(M) is diffeomorphic to a torus T b1(M)G of dimension b1(M)G :=
dim H 1(M; R)G, and also covers a torus T b1(M)G embedded in Pic(M).

PROOF. Here we need the condition that G is finite. Let A0 + α ∈ (A0 + i ker d)G.
If α ∈ Im d , namely α = df for some f ∈ Map(M, iR), then

α = df = d

(∑
h∈G h∗f
|G|

)
,
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and hence α ∈ d lnGG
o .

If [α] defines a nonzero element in H 1(M; iZ), then write α = d ln g for g ∈ Go, and

|G|α =
∑
h∈G

h∗d ln g = d ln
∏
h∈G

h∗g ∈ d lnGG
o .

Let {[αi]|i = 1, . . . , b1(M)G} be a basis for a lattice H 1(M; iZ)G � Zb1(M)G . For each
[αi ], let ni be the smallest positive number such that niαi ∈ d lnGG

o . In fact, ni must be an

integer, and we let n = ∏b1(M)G

i=1 ni .

If b1(M)G �= 0, then PicG(M) is the obvious n-fold covering of the subtorus generated

by those [αi ]’s, and moreover the subtorus is embedded in Pic(M) = H 1(M; R)/H 1(M; Z),

because it is compact, and hence a closed subgroup. If b1(M)G = 0, then obviously PicG(M)

is a point embedded in Pic(M). �

Define infinite-dimensional Hilbert bundles EG and FG over PicG(M) by

EG := ẼG/GG
o , and FG := F̃G/GG

o ,

where

ẼG := (A0 + i ker d)G × (Γ (W+)G ⊕ Γ (Λ1M)G ⊕ H 0(M)G) ,

F̃G := (A0 + i ker d)G × UG

for

UG := Γ (W−)G ⊕ Γ (Λ2+M)G ⊕ Γ (Λ0M)G ⊕ H 1(M)G ,

and GG
o are endowed with appropriate Sobolov norms, and GG

o acts nontrivially on the con-

nection part (A0 + i ker d)G and the spinor parts. Since GG
o actions are free, EG and FG are

smooth Hilbert manifolds still endowed with (non-free) S1-actions.
The G-monopole map μG : EG → FG is an S1-equivariant continuous fiber-preserving

map defined as

[A,Φ, a, f ] �→ [A,DA+iaΦ, F+
A+ia − Φ ⊗ Φ∗ + |Φ|2

2
Id, d∗a + f, aharm] ,

which is fiberwisely the sum of a linear Fredholm operator denoted by LG and a (quadratic)
compact operator. Note that

(μG)−1(zero section of FG)/S1

is exactly the G-monopole moduli space. The important property that the inverse image of any
bounded set in FG is bounded follows directly from the corresponding boundedness property
of the ordinary monopole map μ : E → F with linear part L.
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Expressing the G-monopole map as an S1-equivariant stable cohomotopy class is almost
verbatim the same as ordinary Bauer-Furuta invariant, and we will omit the proof. The virtual
index bundle ind LG over PicG(M) is

ker(D)G − coker(D)G − H 2+(M)G ∈ KO(P icG(M)) ,

where D is the Spinc Dirac operator, and H 2+(M)G is the trivial bundle of rank b+
2 (M)G :=

dim H 2+(M; R)G. Note that ind LG can be represented as

E − F ∈ KO(P icG(M))

for some finite-dimensional vector bundles

F := PicG(M) × V ⊂ PicG(M) × UG , and E := (LG)−1(F ) ,

where we used a Hilbert bundle isomorphism

FG � PicG(M) × UG

over a compact space PicG(M).
With T H denoting the Thom space of a vector bundle H , define an S1-equivariant stable

cohomotopy group

π0
S1,UG(P icG(M); ind LG)(2.1)

as

colimU⊂UG[SU ∧ T E , SU ∧ T V ]S1
,

where U runs all finite dimensional real vector subspaces of UG transversal to V , and SU ∧
denotes the smash product with the one-point compactification of a vector space U .

Then our G-monopole map gives an element BF
G

M,s in the above stable cohomotopy
group, and let us call it “G-invariant Bauer-Furuta invariant” of a G-space (M, s). When G

is the trivial group {1}, BF
{1}
M,s is just equal to the ordinary Bauer-Furuta invariant BFM,s in

[1, 2]. Just as BFM,s, it is also independent of choice of a Riemannian metric on M and a

base point x0. Indeed for a one parameter family of base point x0, there is an isotopy of GG
o

in GG so that the homotopy class BF
G

M,s remains the same.

Also in the same way as BFM,s, BF
G

M,s can be viewed as the S1-equivariant homotopy

class of μG in the set of the S1-equivariant continuous fiber-preserving maps which differ
from μG by the fiberwise compact perturbations and have bounded inverse image for any
bounded subset in FG. (See [3].) An important fact for our purpose is the following:

THEOREM 2.2. If BF
G

M,s is nontrivial, then c1(s) is a G-monopole class.
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PROOF. This is a consequence of facts from functional analysis, and one can take the
proof in [5, Proposition 6] verbatim, which proves that c1(s) is a monopole class, if ordinary
Bauer-Furuta invariant BFM,s �= 0. �

The G-equivariant Bauer-Furuta invariant BFG
M,s first introduced by M. Szymik [9] (in

case of b1(M) = 0) is a little different. (See also [6].) For this we need the condition that
MG �= ∅ or b1(M) = 0, which will be always assumed whenever BFG

M,s appears.

In the first case, we take the base point x0 in MG. Then the induced G-action is well-

defined on E := Ẽ/Go and F := F̃/Go, where

Ẽ := (A0 + i ker d) × (Γ (W+) ⊕ Γ (Λ1M) ⊕ H 0(M))

and

F̃ := (A0 + i ker d) × U
for

U := Γ (W−) ⊕ Γ (Λ2+M) ⊕ Γ (Λ0M) ⊕ H 1(M) .

The ordinary monopole map μ : E → F is (G × S1)-equivariant, and one takes its class in
the (G × S1)-equivariant stable homotopy group

π0
G×S1,U (P ic(M); ind L)(2.2)

to get BFG
M,s by using a trivialization F � Pic(M) × U .

If b1(M) = 0, then Pic(M) is a point, and hence regardless of the choice of x0, E and F
are canonically isomorphic to Γ (W+)⊕Γ (Λ1M)⊕H 0(M) and U respectively, on which the

G-action is well-defined, and hence enables us to get (G × S1)-equivariant stable homotopy

element BFG
M,s.

There is the obvious forgetful map from (2.2) to

π0
S1,U (P ic(M); ind L) ,

under which BFG
M,s gets mapped to BFM,s.

LEMMA 2.3. Let p̃1 : Ẽ → Ẽ/Go and p̃2 : F̃ → F̃/Go be the associated quotient

maps. If MG �= ∅ or b1(M)G = 0, then the obvious maps

p1 : EG → p̃1(ẼG) and p2 : FG → p̃2(F̃G)

are bijective, and PicG(M) is a submanifold of Pic(M).

PROOF. Since GG
o is a subgroup of Go, p1 and p2 are obviously surjective.
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To show that p1 is injective, suppose that [A1,Φ1, a1, f1] and [A2,Φ2, a2, f2] in EG are
equivalent under γ ∈ Go. Then

A1 = A2 − 2d ln γ , and Φ1 = γΦ2 .

By the first equality, d ln γ is G-invariant.
Let’s first consider the case when MG �= ∅. Let S be the subset of M where γ is G-

invariant. By the continuity of γ , S must be a closed subset. Since S contains MG �= ∅, S is
nonempty. It suffices to show that S is open. Let x0 ∈ S. Then we have that for any g ∈ G,

g∗ ln γ (x0) = ln γ (x0) , and g∗d ln γ = d ln γ ,

which implies that g∗ ln γ = ln γ on an open neighborhood of x0 on which g∗ ln γ and ln γ

are well-defined. By the compactness of G, there exists an open neighborhood of x0 on which
g∗ ln γ is well-defined for all g ∈ G, and ln γ is G-invariant. This proves the openness of S.

In case when b1(M)G = 0, a G-invariant closed 1-form d ln γ can be written as df for

f ∈ Map(M, iR). Again using the compactness of G, df = d
(∑

h∈G h∗f
|G|

)
, and so γ ∈ GG

o .

In the same way, one can show that p2 is injective.

Now it follows that PicG(M) becomes a submanifold of Pic(M). Namely, the n in
Lemma 2.1 is 1. �

Thus if MG �= ∅ or b1(M) = 0, then EG and FG are subsets of E and F respectively so
that we can think of the restriction of μ to EG, which is equal to μG. Letting ρ be the map
from (2.2) to (2.1) induced by restricting to its G-fixed point set, we have:

THEOREM 2.4. If MG �= ∅ or b1(M) = 0, then

ρ(BFG
M,s) = BF

G

M,s ,

and hence when BF
G

M,s is nontrivial, so is BFG
M,s.

As observed in [9], ρ is not injective in general.

When the G-action on M is free, BF
G

M,s is equal to BFM/G,s′ , where s′ is the Spinc

structure on M/G induced from s and its G-action. Under the further assumption that

b1(M) = 0, |G| is prime, and the dimension of Seiberg-Witten moduli space is zero, BFG
M,s

may be expressed as BFM,s and BFM/G,s′′ for all s′′ lifting to s. (See [9].) In general, it

is difficult to compute BFG
M,s as well as BFM,s itself. Therefore it is quite worthwhile to

compute BF
G

M,s when the G-action is not free.

3. Main Theorem

THEOREM 3.1. Let M and N be smooth closed oriented connected 4-manifolds satis-

fying b+
2 (M) > 1 and b+

2 (N) = 0, and M̄k for any k ≥ 2 be the connected sum M# . . . #M#N

where there are k summands of M .
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Suppose that a finite group G with |G| = k acts effectively on N in a smooth orientation-
preserving way, and that N admits a Riemannian metric of positive scalar curvature invariant

under the G-action and a G-equivariant Spinc structure sN with c2
1(sN) = −b2(N).

Define a G-action on M̄k induced from that of N permuting k summands of M glued
along a free orbit in N , and let s̄ be the Spinc structure on M̄k obtained by gluing sN and a
Spinc structure s of M .

Then for any G-action on s̄ induced from the above G-action on M̄k ,

BF
G

M̄k,s̄
= BFM,s ∧ BF

G

N,sN
,

and when b1(N)G = 0,

BF
G

M̄k,s̄
= BFM,s .

If BFM,s is nontrivial, so is BF
G

M̄k,s̄
.

PROOF. Let M̃k = N ∪ �k
i=1(M ∪ S4) be the disjoint union of N and k-copies of

M ∪ S4, and endow it with a Spinc structure s̃ which is sN on N , s on each M , and the trivial

Spinc structure s0 on each S4. Then (M̃k, s̃) has an obvious G-action induced from the G-

action on s̄ in a unique way. (Here G acts on �k
i=1S

4 by the obvious permutation, and on its
Spinc structure as induced from the action on s̄ over the cylindrical gluing regions.)

Just as the ordinary monopole maps shown in [2], the stable cohomotopy class of the
disjoint union of G-monopole maps is equal to the smash product ∧ of those, and hence

BF
G

M̃k,s̃
= BF

G

�k
i=1(M∪S4),�k

i=1(s�s0)
∧ BF

G

N,sN

= BFM∪S4,s�s0
∧ BF

G

N,sN

= BFM,s ∧ BFS4,s0
∧ BF

G

N,sN

= BFM,s ∧ BF
G

N,sN
,

where we used the fact that BFS4,s0
is just [id] ∈ π0

S1(pt) ∼= Z, which was shown in [2].

A surgery following S. Bauer [2] turns M̃k into the union of M̄k and k-copies of S4 �S4.

In the notations of [2], for X = X1 ∪ X2 ∪ X3 = M̃k , we take

X1 = N = (N − �k
i=1D

4) ∪ (�k
i=1D

4) ,

X2 = �k
i=1M = (�k

i=1D
4) ∪ (�k

i=1(M − D4)) ,

X3 = �k
i=1S

4 = (�k
i=1D

4) ∪ (�k
i=1D

4) ,
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and

τ =
(

1 2 3
2 3 1

)
,

where X3 is needed to make τ an even permutation so that “the gluing map V ” of Hilbert
bundles along the necks is well-defined continuously. After interchanging the second half
parts of Xi ’s by τ , we get

Xτ = Xτ
1 ∪ Xτ

2 ∪ Xτ
3 = M̄k ∪ (�k

i=1S
4) ∪ (�k

i=1S
4)

as desired.1

Most importantly, we perform the above surgery from M̃k to M̄k ∪ �2k
i=1S

4 in a G-

invariant way, and also “the gluing map V ” from the Hilbert bundles EG,FG on PicG(M̃k)

to the Hilbert bundles on PicG(M̄k ∪ �2k
i=1S

4) in a G-invariant way. The homotopy of the

ordinary monopole map of M̃k shown in [2] can also be done in a G-invariant way. Then

those G-monopole maps of M̃k and M̄k ∪�2k
i=1S

4 are conjugate via “the gluing map V ” up to
G-invariant homotopy. Therefore their stable cohomotopy classes are equal so that

BF
G

M̃k,s̃
= BF

G

M̄k∪�2k
i=1S

4,s̄�s0

= BF
G

M̄k,s̄
∧ BF

G

�2k
i=1S

4,s0

= BF
G

M̄k,s̄
∧ BFS4�S4,s0

= BF
G

M̄k,s̄
∧ BFS4,s0

∧ BFS4,s0

= BF
G

M̄k,s̄
,

where we again used that BFS4,s0
= [id].

Therefore we obtained

BF
G

M̄k,s̄
= BFM,s ∧ BF

G

N,sN
,

and it gets equal to BFM,s in case of b1(N)G = 0 by the following lemma:

LEMMA 3.2. If b1(N)G = 0, then BF
G

N,sN
is the class of the identity map

[id] ∈ π0
S1(pt) ∼= Z .

PROOF. The method of proof is basically the same as the ordinary Bauer-Furuta invari-
ant in [2].

First, we need to show that the G-index of the Spinc Dirac operator is zero. Take a
G-invariant metric of positive scalar curvature on N . Using the homotopy invariance of a

1The gluing theorem 2.1 of [2] was stated when each Xi is connected with one gluing neck, but the proof also
works well without this assumption. For more details, readers are referred to [2].
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G-index, we compute the index at a G-invariant connection A0 whose curvature 2-form is
harmonic and hence anti-self-dual.

Applying the Weitzenböck formula with the fact that the scalar curvature of N is positive,
and the curvature 2-form is anti-self-dual, we get zero kernel. Now then from the vanishing

of the ordinary index given by (c2
1 − τ (N))/8, the cokernel must be also zero. In particular,

we have vanishing of G-invariant kernel and cokernel, implying that the G-index is zero.

Then along with b1(N)G = b+
2 (N)G = 0, we conclude that BF

G

N,sN
belongs to π0

S1(pt)

which is isomorphic to π0
st (pt) = Z by the isomorphism induced by restriction to the S1-fixed

point set on which the G-monopole map is just the linear isomorphism:

L2
m+1(Λ

1N)G × H 0(N)G → L2
m(Λ2+N)G × L2

m(Λ0N)G × H 1(N)G

(a, c) �→ (d+a, d∗a + c, aharm) ,

because it has no kernel and cokernel. This completes the proof. �

Now let’s consider the case of b1(N)G ≥ 1. Again the G-index bundle of the Spinc

Dirac operator over PicG(N) is zero so that BF
G

N,sN
belongs to π0

S1(T
b1(N)G).

Following [5], we consider the restriction map

σ : π0
S1(T

b1(N)G) → π0
S1(pt)

to the fiber over a point in PicG(N). By the same method as the above lemma, σ(BF
G

N,sN
)

is just the identity map. Then the restriction of BF
G

M̄k,s̄
= BF

G

M̃k,s̃
to

PicG(�k
i=1(M ∪ S4)) × {pt} ⊂ PicG(M̃k) = PicG(M̄k)

is given by

BFM,s ∧ σ(BF
G

N,sN
) = BFM,s .

It is obvious that BF
G

M̄k,s̄
is nontrivial, when σ(BF

G

M̄k,s̄
) is nontrivial, which completes the

proof. �

COROLLARY 3.3. Let M be a smooth closed oriented 4-manifold with b1(M) = 0
and M̄k for k ≥ 2 be the k-fold connected sum M# . . . #M . Suppose that BFM,s is nontrivial

for a Spinc structure s, and s̄ denotes the glued Spinc structure on M̄k as before. Then there

exists an integer K > 0 such that for any integer k ≥ K , BFM̄k,s̄
is trivial but BF

Zk

M̄k ,s̄
is not

trivial for a smooth Zk-action.

PROOF. As shown in Theorem 4.4 of [8], S4 admits a smooth Zk-action with nonempty
fixed point set, which satisfies the conditions for N in Theorem 3.1. Thus by applying the
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above theorem, we have that BF
Zk

M̄k,s̄
for any integer k > 0 is nontrivial, and so is BF

Zk

M̄k ,s̄
by

Theorem 2.4.
But by the result of [4], there must exist an integer K > 0 such that for any integer

k ≥ K , BFM̄k,s̄
is trivial. �

REMARK. For example, one can take M in the above corollary to be

lX#mCP 2 ,

where X is a K3 surface, and integers l and m satisfy that 1 ≤ l ≤ 4, and m ≥ 0. �

4. Examples of N

More examples of such N in Theorem 3.1 are given in Theorem 4.4 of [8], where those
examples have Zk-actions which are free or have fixed points. Here, we will present some
non-cyclic actions.

Take N to be S1 ×S3, and G to be any finite group with a smooth orientation-preserving
effective action on S3. By the spherical space form conjecture which follows from the ge-
ometrization theorem proven by G. Perelman, such G action is conjugate to a subgroup of

SO(4), and so S3 has a G-invariant metric of positive scalar curvature. Since the frame bun-
dle of N is trivial, the G action can be lifted to its spin bundle which is also trivial. Such trivial

Spinc structure obviously satisfy c2
1 = −b2(N) = 0. One can take those G actions either free

or with fixed points.
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