Equivariant Bauer-Furuta invariants on Some Connected Sums of 4-manifolds

Chanyoung SUNG
Korea National University of Education
(Communicated by K. Ahara)

Abstract

On some connected sums of 4-manifolds with natural actions of finite groups, we use equivariant Bauer-Furuta invariant to deduce the existence of solutions of Seiberg-Witten equations invariant under the group actions.

For example, for any integer $k \geq 2$ we show that the connected sum of k copies of a 4-manifold M with nontrivial Bauer-Furuta invariant has a nontrivial \mathbf{Z}_{k}-equivariant Bauer-Furuta invariant for the obviously glued Spin^{c} structure, where the \mathbf{Z}_{k}-action cyclically permutes k summands of M. This contrasts with the fact that ordinary Bauer-Furuta invariants of such connected sums are all trivial for any sufficiently large k, when $b_{1}(M)=0$.

1. Introduction

Let M be a smooth closed oriented Riemannian manifold of dimension 4 with a smooth orientation-preserving isometric action of a finite group G. A second cohomology class of M is called a G-monopole class if it arises as the first Chern class of a G-equivariant Spin^{c} structure \mathfrak{s} for which the Seiberg-Witten equations

$$
\left\{\begin{array}{l}
D_{A} \Phi=0 \\
F_{A}^{+}=\Phi \otimes \Phi^{*}-\frac{|\Phi|^{2}}{2} \mathrm{Id}
\end{array}\right.
$$

admit a G-invariant solution (A, Φ) for every G-invariant Riemannian metric of M.
To detect a G-monopole class, there are two methods developed so far. The first one is a G-monopole invariant obtained by the intersection theory on the G-monopole moduli space, i.e., the space of G-invariant solutions of Seiberg-Witten equations modulo gauge transformations. The second one is G-equivariant Bauer-Furuta invariant, which is basically the $\left(G \times S^{1}\right)$-equivariant stable cohomotopy class of the monopole map between appropriate Hilbert manifolds given by Seiberg-Witten equations, just as the ordinary Bauer-Furuta invariant is the S^{1}-equivariant stable cohomotopy class of the monopole map.

While it is difficult to compute those invariants, unless the action is free, we were able to exactly compute G-monopole invariants on some special types of connected sums in [8], and we will compute their G-equivariant Bauer-Furuta invariants in this paper as a sequel. In some cases, those invariants turn out to be nontrivial, although ordinary Bauer-Furuta invariant vanishes.

The existence of a G-monopole class can be applied to Riemannian geometry such as G-invariant Einstein metrics and G-Yamabe invariant of 4-manifolds, and some standard applications are dealt with in [7].

2. Equivariant Bauer-Furuta invariant

Let M be a smooth closed oriented 4-manifold. Suppose that a finite group G acts on M smoothly preserving the orientation, and this action lifts to an action on a Spin^{c} structure \mathfrak{s} of M. Once there is a lifting, any other lifting differs from it by an element of $\operatorname{Map}\left(G \times M, S^{1}\right)$. We fix a lifting and put a G-invariant Riemannian metric on M.

The corresponding spinor bundles $W_{ \pm}$are also G-equivariant, and we let $\Gamma\left(W_{ \pm}\right)^{G}$ be the set of its G-invariant sections. When we put G as a superscript on the right shoulder of a set, we always mean the subset consisting of its G-invariant elements. Thus $\mathcal{A}\left(W_{+}\right)^{G}$ is the space of G-invariant connections on $\operatorname{det}\left(W_{+}\right)$, which is identified as the space $\Gamma\left(\Lambda^{1}(M)\right)^{G}$ of G-invariant 1-forms, and $\mathcal{G}_{o}^{G}=\operatorname{Map}\left(\left(M, x_{0}\right),\left(S^{1}, 1\right)\right)^{G}$ is the set of G-invariant based gauge transformations for a base point $x_{0} \in M$. When M / G is disconnected, more base points should be assigned so that $\mathcal{G}_{o}^{G} \subset \mathcal{G}^{G}$ is a maximal subgroup acting freely on $\mathcal{A}\left(W_{+}\right)^{G}$. Thus the number of base points is exactly the number of connected components of M / G.

Let $A_{0} \in \mathcal{A}\left(W_{+}\right)^{G}$. Just as

$$
\operatorname{Pic}(M):=\left(A_{0}+i \operatorname{ker} d\right) / \mathcal{G}_{o}
$$

for $\mathcal{G}_{o}:=\operatorname{Map}\left(\left(M, x_{0}\right),\left(S^{1}, 1\right)\right)$ is a $b_{1}(M)$-dimensional torus, one gets the quotient

$$
\operatorname{Pic}^{G}(M):=\left(A_{0}+i \operatorname{ker} d\right)^{G} / \mathcal{G}_{o}^{G} .
$$

Since $\mathcal{G}^{G}:=\operatorname{Map}\left(M, S^{1}\right)^{G}$ is equal to $\mathcal{G}_{o}^{G} \times S^{1}$, and any constant gauge transformation acts trivially on connections, $\mathrm{Pic}^{G}(M)$ is well-defined independently of the choice of the base point x_{0}.

Lemma 2.1. \quad Pic $^{G}(M)$ is diffeomorphic to a torus $T^{b_{1}(M)^{G}}$ of dimension $b_{1}(M)^{G}:=$ $\operatorname{dim} H^{1}(M ; \mathbf{R})^{G}$, and also covers a torus $T^{b_{1}(M)^{G}}$ embedded in Pic (M).

Proof. Here we need the condition that G is finite. Let $A_{0}+\alpha \in\left(A_{0}+i \operatorname{ker} d\right)^{G}$. If $\alpha \in \operatorname{Im} d$, namely $\alpha=d f$ for some $f \in \operatorname{Map}(M, i \mathbf{R})$, then

$$
\alpha=d f=d\left(\frac{\sum_{h \in G} h^{*} f}{|G|}\right),
$$

and hence $\alpha \in d \ln \mathcal{G}_{o}^{G}$.
If $[\alpha]$ defines a nonzero element in $H^{1}(M ; i \mathbf{Z})$, then write $\alpha=d \ln \mathfrak{g}$ for $\mathfrak{g} \in \mathcal{G}_{o}$, and

$$
|G| \alpha=\sum_{h \in G} h^{*} d \ln \mathfrak{g}=d \ln \prod_{h \in G} h^{*} \mathfrak{g} \in d \ln \mathcal{G}_{o}^{G}
$$

Let $\left\{\left[\alpha_{i}\right] \mid i=1, \ldots, b_{1}(M)^{G}\right\}$ be a basis for a lattice $H^{1}(M ; i \mathbf{Z})^{G} \simeq \mathbf{Z}^{b_{1}(M)^{G}}$. For each [α_{i}], let n_{i} be the smallest positive number such that $n_{i} \alpha_{i} \in d \ln \mathcal{G}_{o}^{G}$. In fact, n_{i} must be an integer, and we let $n=\prod_{i=1}^{b_{1}(M)^{G}} n_{i}$.

If $b_{1}(M)^{G} \neq 0$, then $\operatorname{Pic}^{G}(M)$ is the obvious n-fold covering of the subtorus generated by those $\left[\alpha_{i}\right]$'s, and moreover the subtorus is embedded in $\operatorname{Pic}(M)=H^{1}(M ; \mathbf{R}) / H^{1}(M ; \mathbf{Z})$, because it is compact, and hence a closed subgroup. If $b_{1}(M)^{G}=0$, then obviously $\operatorname{Pic} c^{G}(M)$ is a point embedded in $\operatorname{Pic}(M)$.

Define infinite-dimensional Hilbert bundles \mathcal{E}^{G} and \mathcal{F}^{G} over Pic $^{G}(M)$ by

$$
\mathcal{E}^{G}:=\tilde{\mathcal{E}}^{G} / \mathcal{G}_{o}^{G}, \quad \text { and } \quad \mathcal{F}^{G}:=\tilde{\mathcal{F}}^{G} / \mathcal{G}_{o}^{G},
$$

where

$$
\begin{gathered}
\tilde{\mathcal{E}}^{G}:=\left(A_{0}+i \operatorname{ker} d\right)^{G} \times\left(\Gamma\left(W_{+}\right)^{G} \oplus \Gamma\left(\Lambda^{1} M\right)^{G} \oplus H^{0}(M)^{G}\right), \\
\tilde{\mathcal{F}}^{G}:=\left(A_{0}+i \operatorname{ker} d\right)^{G} \times \mathcal{U}^{G}
\end{gathered}
$$

for

$$
\mathcal{U}^{G}:=\Gamma\left(W_{-}\right)^{G} \oplus \Gamma\left(\Lambda_{+}^{2} M\right)^{G} \oplus \Gamma\left(\Lambda^{0} M\right)^{G} \oplus H^{1}(M)^{G},
$$

and \mathcal{G}_{o}^{G} are endowed with appropriate Sobolov norms, and \mathcal{G}_{o}^{G} acts nontrivially on the connection part $\left(A_{0}+i \operatorname{ker} d\right)^{G}$ and the spinor parts. Since \mathcal{G}_{o}^{G} actions are free, \mathcal{E}^{G} and \mathcal{F}^{G} are smooth Hilbert manifolds still endowed with (non-free) S^{1}-actions.

The G-monopole map $\mu^{G}: \mathcal{E}^{G} \rightarrow \mathcal{F}^{G}$ is an S^{1}-equivariant continuous fiber-preserving map defined as

$$
[A, \Phi, a, f] \mapsto\left[A, D_{A+i a} \Phi, F_{A+i a}^{+}-\Phi \otimes \Phi^{*}+\frac{|\Phi|^{2}}{2} \mathrm{Id}, d^{*} a+f, a^{\text {harm }}\right]
$$

which is fiberwisely the sum of a linear Fredholm operator denoted by \mathfrak{L}^{G} and a (quadratic) compact operator. Note that

$$
\left.\left(\mu^{G}\right)^{-1} \text { (zero section of } \mathcal{F}^{G}\right) / S^{1}
$$

is exactly the G-monopole moduli space. The important property that the inverse image of any bounded set in \mathcal{F}^{G} is bounded follows directly from the corresponding boundedness property of the ordinary monopole map $\mu: \mathcal{E} \rightarrow \mathcal{F}$ with linear part \mathfrak{L}.

Expressing the G-monopole map as an S^{1}-equivariant stable cohomotopy class is almost verbatim the same as ordinary Bauer-Furuta invariant, and we will omit the proof. The virtual index bundle ind \mathfrak{L}^{G} over $\operatorname{Pic}^{G}(M)$ is

$$
\operatorname{ker}(D)^{G}-\operatorname{coker}(D)^{G}-\underline{H_{+}^{2}(M)^{G}} \in K O\left(\operatorname{Pic}^{G}(M)\right),
$$

where D is the Spin^{c} Dirac operator, and $\underline{H_{+}^{2}(M)^{G}}$ is the trivial bundle of rank $b_{2}^{+}(M)^{G}:=$ $\operatorname{dim} H_{+}^{2}(M ; \mathbf{R})^{G}$. Note that ind \mathfrak{L}^{G} can be represented as

$$
E-F \in K O\left(P^{G} c^{G}(M)\right)
$$

for some finite-dimensional vector bundles

$$
F:=\operatorname{Pic}^{G}(M) \times V \subset \operatorname{Pic}^{G}(M) \times \mathcal{U}^{G}, \quad \text { and } \quad E:=\left(\mathfrak{L}^{G}\right)^{-1}(F),
$$

where we used a Hilbert bundle isomorphism

$$
\mathcal{F}^{G} \simeq \operatorname{Pic}^{G}(M) \times \mathcal{U}^{G}
$$

over a compact space $\operatorname{Pic}^{G}(M)$.
With $T H$ denoting the Thom space of a vector bundle H, define an S^{1}-equivariant stable cohomotopy group

$$
\begin{equation*}
\pi_{S^{1}, \mathcal{U}^{G}}^{0}\left(\text { Pic }^{G}(M) ; \text { ind } \mathfrak{L}^{G}\right) \tag{2.1}
\end{equation*}
$$

as

$$
\operatorname{colim}_{U \subset \mathcal{U}^{G}}\left[S^{U} \wedge T E, S^{U} \wedge T V\right]^{S^{1}}
$$

where U runs all finite dimensional real vector subspaces of \mathcal{U}^{G} transversal to V, and $S^{U} \wedge$ denotes the smash product with the one-point compactification of a vector space U.

Then our G-monopole map gives an element $\overline{B F}_{M, \mathfrak{s}}^{G}$ in the above stable cohomotopy group, and let us call it " G-invariant Bauer-Furuta invariant" of a G-space (M, \mathfrak{s}). When G is the trivial group $\{1\}, \overline{B F_{M, 5}}\{1\}$ is just equal to the ordinary Bauer-Furuta invariant $B F_{M, \mathfrak{s}}$ in [1, 2]. Just as $B F_{M, \mathfrak{s}}$, it is also independent of choice of a Riemannian metric on M and a base point x_{0}. Indeed for a one parameter family of base point x_{0}, there is an isotopy of \mathcal{G}_{o}^{G} in \mathcal{G}^{G} so that the homotopy class $\overline{B F}_{M, \mathfrak{s}}^{G}$ remains the same.

Also in the same way as $B F_{M, \mathfrak{s}}, \overline{B F}{ }_{M, \mathfrak{s}}^{G}$ can be viewed as the S^{1}-equivariant homotopy class of μ^{G} in the set of the S^{1}-equivariant continuous fiber-preserving maps which differ from μ^{G} by the fiberwise compact perturbations and have bounded inverse image for any bounded subset in \mathcal{F}^{G}. (See [3].) An important fact for our purpose is the following:

THEOREM 2.2. If $\overline{B F}_{M, \mathfrak{s}}^{G}$ is nontrivial, then $c_{1}(\mathfrak{s})$ is a G-monopole class.

Proof. This is a consequence of facts from functional analysis, and one can take the proof in [5, Proposition 6] verbatim, which proves that $c_{1}(\mathfrak{s})$ is a monopole class, if ordinary Bauer-Furuta invariant $B F_{M, \mathfrak{s}} \neq 0$.

The G-equivariant Bauer-Furuta invariant $B F_{M, \mathfrak{s}}^{G}$ first introduced by M. Szymik [9] (in case of $b_{1}(M)=0$) is a little different. (See also [6].) For this we need the condition that $M^{G} \neq \emptyset$ or $b_{1}(M)=0$, which will be always assumed whenever $B F_{M, \mathfrak{s}}^{G}$ appears.

In the first case, we take the base point x_{0} in M^{G}. Then the induced G-action is welldefined on $\mathcal{E}:=\tilde{\mathcal{E}} / \mathcal{G}_{o}$ and $\mathcal{F}:=\tilde{\mathcal{F}} / \mathcal{G}_{o}$, where

$$
\tilde{\mathcal{E}}:=\left(A_{0}+i \operatorname{ker} d\right) \times\left(\Gamma\left(W_{+}\right) \oplus \Gamma\left(\Lambda^{1} M\right) \oplus H^{0}(M)\right)
$$

and

$$
\tilde{\mathcal{F}}:=\left(A_{0}+i \operatorname{ker} d\right) \times \mathcal{U}
$$

for

$$
\mathcal{U}:=\Gamma\left(W_{-}\right) \oplus \Gamma\left(\Lambda_{+}^{2} M\right) \oplus \Gamma\left(\Lambda^{0} M\right) \oplus H^{1}(M)
$$

The ordinary monopole map $\mu: \mathcal{E} \rightarrow \mathcal{F}$ is $\left(G \times S^{1}\right)$-equivariant, and one takes its class in the $\left(G \times S^{1}\right)$-equivariant stable homotopy group

$$
\begin{equation*}
\pi_{G \times S^{1}, \mathcal{U}}^{0}(P i c(M) ; \text { ind } \mathfrak{L}) \tag{2.2}
\end{equation*}
$$

to get $B F_{M, \mathfrak{s}}^{G}$ by using a trivialization $\mathcal{F} \simeq \operatorname{Pic}(M) \times \mathcal{U}$.
If $b_{1}(M)=0$, then $\operatorname{Pic}(M)$ is a point, and hence regardless of the choice of x_{0}, \mathcal{E} and \mathcal{F} are canonically isomorphic to $\Gamma\left(W_{+}\right) \oplus \Gamma\left(\Lambda^{1} M\right) \oplus H^{0}(M)$ and \mathcal{U} respectively, on which the G-action is well-defined, and hence enables us to get ($G \times S^{1}$)-equivariant stable homotopy element $B F_{M, \mathfrak{s}}^{G}$.

There is the obvious forgetful map from (2.2) to

$$
\pi_{S^{1}, \mathcal{U}}^{0}(P i c(M) ; \text { ind } \mathfrak{L})
$$

under which $B F_{M, \mathfrak{s}}^{G}$ gets mapped to $B F_{M, \mathfrak{s}}$.
LEMMA 2.3. Let $\tilde{p}_{1}: \tilde{\mathcal{E}} \rightarrow \tilde{\mathcal{E}} / \mathcal{G}_{o}$ and $\tilde{p}_{2}: \tilde{\mathcal{F}} \rightarrow \tilde{\mathcal{F}} / \mathcal{G}_{0}$ be the associated quotient maps. If $M^{G} \neq \emptyset$ or $b_{1}(M)^{G}=0$, then the obvious maps

$$
p_{1}: \mathcal{E}^{G} \rightarrow \tilde{p}_{1}\left(\tilde{\mathcal{E}}^{G}\right) \quad \text { and } \quad p_{2}: \mathcal{F}^{G} \rightarrow \tilde{p}_{2}\left(\tilde{\mathcal{F}}^{G}\right)
$$

are bijective, and $\operatorname{Pic}^{G}(M)$ is a submanifold of Pic($\left.M\right)$.
PROOF. Since \mathcal{G}_{o}^{G} is a subgroup of \mathcal{G}_{o}, p_{1} and p_{2} are obviously surjective.

To show that p_{1} is injective, suppose that $\left[A_{1}, \Phi_{1}, a_{1}, f_{1}\right]$ and $\left[A_{2}, \Phi_{2}, a_{2}, f_{2}\right]$ in \mathcal{E}^{G} are equivalent under $\gamma \in \mathcal{G}_{o}$. Then

$$
A_{1}=A_{2}-2 d \ln \gamma, \quad \text { and } \quad \Phi_{1}=\gamma \Phi_{2} .
$$

By the first equality, $d \ln \gamma$ is G-invariant.
Let's first consider the case when $M^{G} \neq \emptyset$. Let S be the subset of M where γ is G invariant. By the continuity of γ, S must be a closed subset. Since S contains $M^{G} \neq \emptyset, S$ is nonempty. It suffices to show that S is open. Let $x_{0} \in S$. Then we have that for any $g \in G$,

$$
g^{*} \ln \gamma\left(x_{0}\right)=\ln \gamma\left(x_{0}\right), \quad \text { and } \quad g^{*} d \ln \gamma=d \ln \gamma,
$$

which implies that $g^{*} \ln \gamma=\ln \gamma$ on an open neighborhood of x_{0} on which $g^{*} \ln \gamma$ and $\ln \gamma$ are well-defined. By the compactness of G, there exists an open neighborhood of x_{0} on which $g^{*} \ln \gamma$ is well-defined for all $g \in G$, and $\ln \gamma$ is G-invariant. This proves the openness of S.

In case when $b_{1}(M)^{G}=0$, a G-invariant closed 1-form $d \ln \gamma$ can be written as $d f$ for $f \in \operatorname{Map}(M, i \mathbf{R})$. Again using the compactness of $G, d f=d\left(\frac{\sum_{h \in G} h^{*} f}{|G|}\right)$, and so $\gamma \in \mathcal{G}_{o}^{G}$. In the same way, one can show that p_{2} is injective.

Now it follows that $\operatorname{Pic}^{G}(M)$ becomes a submanifold of $\operatorname{Pic}(M)$. Namely, the n in Lemma 2.1 is 1 .

Thus if $M^{G} \neq \emptyset$ or $b_{1}(M)=0$, then \mathcal{E}^{G} and \mathcal{F}^{G} are subsets of \mathcal{E} and \mathcal{F} respectively so that we can think of the restriction of μ to \mathcal{E}^{G}, which is equal to μ^{G}. Letting ρ be the map from (2.2) to (2.1) induced by restricting to its G-fixed point set, we have:

THEOREM 2.4. If $M^{G} \neq \emptyset$ or $b_{1}(M)=0$, then

$$
\rho\left(B F_{M, \mathfrak{s}}^{G}\right)=\overline{B F}_{M, \mathfrak{s}}^{G},
$$

and hence when $\overline{B F}_{M, \mathfrak{s}}^{G}$ is nontrivial, so is $B F_{M, \mathfrak{s}}^{G}$.
As observed in [9], ρ is not injective in general.
When the G-action on M is free, $\overline{B F_{M, \mathfrak{s}}}$ is equal to $B F_{M / G, \mathfrak{s}^{\prime}}$, where \mathfrak{s}^{\prime} is the Spin ${ }^{c}$ structure on M / G induced from \mathfrak{s} and its G-action. Under the further assumption that $b_{1}(M)=0,|G|$ is prime, and the dimension of Seiberg-Witten moduli space is zero, $B F_{M, 5}^{G}$ may be expressed as $B F_{M, \mathfrak{s}}$ and $B F_{M / G, \mathfrak{s}^{\prime \prime}}$ for all $\mathfrak{s}^{\prime \prime}$ lifting to \mathfrak{s}. (See [9].) In general, it is difficult to compute $B F_{M, \mathfrak{s}}^{G}$ as well as $B F_{M, \mathfrak{s}}$ itself. Therefore it is quite worthwhile to compute $\overline{B F}_{M, \mathfrak{s}}^{G}$ when the G-action is not free.

3. Main Theorem

THEOREM 3.1. Let M and N be smooth closed oriented connected 4 -manifolds satisfying $b_{2}^{+}(M)>1$ and $b_{2}^{+}(N)=0$, and \bar{M}_{k} for any $k \geq 2$ be the connected sum $M \# \ldots \# M \# N$ where there are k summands of M.

Suppose that a finite group G with $|G|=k$ acts effectively on N in a smooth orientationpreserving way, and that N admits a Riemannian metric of positive scalar curvature invariant under the G-action and a G-equivariant Spin ${ }^{c}$ structure \mathfrak{s}_{N} with $c_{1}^{2}\left(\mathfrak{s}_{N}\right)=-b_{2}(N)$.

Define a G-action on \bar{M}_{k} induced from that of N permuting k summands of M glued along a free orbit in N, and let $\overline{\mathfrak{s}}$ be the Spinc structure on \bar{M}_{k} obtained by gluing \mathfrak{s}_{N} and a Spinc structure \mathfrak{s} of M.

Then for any G-action on $\overline{\mathfrak{s}}$ induced from the above G-action on \bar{M}_{k},

$$
\overline{B F}_{\bar{M}_{k}, \overline{\mathfrak{s}}}^{G}=B F_{M, \mathfrak{s}} \wedge \overline{B F}_{N, \mathfrak{s}_{N}}^{G},
$$

and when $b_{1}(N)^{G}=0$,

$$
\overline{B F}_{\bar{M}_{k}, \overline{\mathfrak{s}}}^{G}=B F_{M, \mathfrak{s}} .
$$

If $B F_{M, \mathfrak{s}}$ is nontrivial, so is $\overline{B F}_{\bar{M}_{k}, \bar{s}}^{G}$.
Proof. Let $\tilde{M}_{k}=N \cup \amalg_{i=1}^{k}\left(M \cup S^{4}\right)$ be the disjoint union of N and k-copies of $M \cup S^{4}$, and endow it with a Spin^{c} structure $\tilde{\mathfrak{s}}$ which is \mathfrak{s}_{N} on N, \mathfrak{s} on each M, and the trivial Spin ${ }^{c}$ structure \mathfrak{s}_{0} on each S^{4}. Then ($\left.\tilde{M}_{k}, \tilde{\mathfrak{s}}\right)$ has an obvious G-action induced from the G action on $\overline{\mathfrak{s}}$ in a unique way. (Here G acts on $\amalg_{i=1}^{k} S^{4}$ by the obvious permutation, and on its Spin c structure as induced from the action on $\overline{\mathfrak{s}}$ over the cylindrical gluing regions.)

Just as the ordinary monopole maps shown in [2], the stable cohomotopy class of the disjoint union of G-monopole maps is equal to the smash product \wedge of those, and hence

$$
\begin{aligned}
\overline{B F}_{\tilde{M}_{k}, \tilde{\mathfrak{s}}}^{G} & =\overline{B F}_{\mathrm{U}_{i=1}^{k}\left(M \cup S^{4}\right), \mathrm{L}_{i=1}^{k}\left(\mathfrak{s} \amalg \mathfrak{s}_{0}\right)}^{G} \wedge \overline{B F}_{N, \mathfrak{s}_{N}}^{G} \\
& =B F_{M \cup S^{4}, \mathfrak{s} \amalg \mathfrak{s}_{0}} \wedge \overline{B F}_{N, \mathfrak{s}_{N}}^{G} \\
& =B F_{M, \mathfrak{s}} \wedge B F_{S^{4}, \mathfrak{s}_{0}} \wedge{\overline{B F_{N, \mathfrak{s}_{N}}^{G}}}^{G} \\
& =B F_{M, \mathfrak{s}} \wedge \overline{B F}_{N, \mathfrak{s}_{N}}^{G},
\end{aligned}
$$

where we used the fact that $B F_{S^{4}, \mathfrak{s}_{0}}$ is just $[i d] \in \pi_{S^{1}}^{0}(\mathrm{pt}) \cong \mathbf{Z}$, which was shown in [2].
A surgery following S. Bauer [2] turns \tilde{M}_{k} into the union of \bar{M}_{k} and k-copies of $S^{4} \amalg S^{4}$. In the notations of [2], for $X=X_{1} \cup X_{2} \cup X_{3}=\tilde{M}_{k}$, we take

$$
\begin{gathered}
X_{1}=N=\left(N-\amalg_{i=1}^{k} D^{4}\right) \cup\left(\amalg_{i=1}^{k} D^{4}\right), \\
X_{2}=\amalg_{i=1}^{k} M=\left(\amalg_{i=1}^{k} D^{4}\right) \cup\left(\amalg_{i=1}^{k}\left(M-D^{4}\right)\right), \\
X_{3}=\amalg_{i=1}^{k} S^{4}=\left(\amalg_{i=1}^{k} D^{4}\right) \cup\left(\amalg_{i=1}^{k} D^{4}\right),
\end{gathered}
$$

and

$$
\tau=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)
$$

where X_{3} is needed to make τ an even permutation so that "the gluing map V " of Hilbert bundles along the necks is well-defined continuously. After interchanging the second half parts of X_{i} 's by τ, we get

$$
X^{\tau}=X_{1}^{\tau} \cup X_{2}^{\tau} \cup X_{3}^{\tau}=\bar{M}_{k} \cup\left(\amalg_{i=1}^{k} S^{4}\right) \cup\left(\amalg_{i=1}^{k} S^{4}\right)
$$

as desired. ${ }^{1}$
Most importantly, we perform the above surgery from \tilde{M}_{k} to $\bar{M}_{k} \cup \amalg_{i=1}^{2 k} S^{4}$ in a G invariant way, and also "the gluing map V " from the Hilbert bundles $\mathcal{E}^{G}, \mathcal{F}^{G}$ on $\operatorname{Pic}{ }^{G}\left(\tilde{M}_{k}\right)$ to the Hilbert bundles on $\operatorname{Pic}{ }^{G}\left(\bar{M}_{k} \cup \amalg_{i=1}^{2 k} S^{4}\right)$ in a G-invariant way. The homotopy of the ordinary monopole map of \tilde{M}_{k} shown in [2] can also be done in a G-invariant way. Then those G-monopole maps of \tilde{M}_{k} and $\bar{M}_{k} \cup \amalg_{i=1}^{2 k} S^{4}$ are conjugate via "the gluing map V " up to G-invariant homotopy. Therefore their stable cohomotopy classes are equal so that

$$
\begin{aligned}
\overline{B F}_{\tilde{M}_{k}, \tilde{\mathfrak{s}}}^{G} & =\overline{B F}_{\bar{M}_{k} \cup \amalg_{i=1}^{2 k} S^{4}, \overline{\mathfrak{s}} \amalg \mathfrak{s}_{0}}^{G} \\
& =\overline{B F}_{\bar{M}_{k}, \overline{\mathfrak{s}}}^{G} \wedge \overline{B F}_{\amalg_{i=1}^{2 k} S^{4}, \mathfrak{s}_{0}}^{G} \\
& =\overline{B F}_{\bar{M}_{k}, \overline{\mathfrak{s}}}^{G} \wedge B F_{S^{4} \amalg S^{4}, \mathfrak{s}_{0}} \\
& =\overline{B F}_{\bar{M}_{k}, \overline{\mathfrak{s}}}^{G} \wedge B F_{S^{4}, \mathfrak{s}_{0}} \wedge B F_{S^{4}, \mathfrak{s}_{0}} \\
& =\overline{B F}_{\bar{M}_{k}, \overline{\mathfrak{s}}}^{G}
\end{aligned}
$$

where we again used that $B F_{S^{4}, \mathfrak{s}_{0}}=[i d]$.
Therefore we obtained

$$
\overline{B F}_{\bar{M}_{k}, \overline{\mathfrak{s}}}^{G}=B F_{M, \mathfrak{s}} \wedge \overline{B F}_{N, \mathfrak{s}_{N}}^{G}
$$

and it gets equal to $B F_{M, \mathfrak{s}}$ in case of $b_{1}(N)^{G}=0$ by the following lemma:
Lemma 3.2. If $b_{1}(N)^{G}=0$, then $\overline{B F}_{N, \mathfrak{s}_{N}}^{G}$ is the class of the identity map

$$
[i d] \in \pi_{S^{1}}^{0}(p t) \cong \mathbf{Z}
$$

Proof. The method of proof is basically the same as the ordinary Bauer-Furuta invariant in [2].

First, we need to show that the G-index of the Spin^{c} Dirac operator is zero. Take a G-invariant metric of positive scalar curvature on N. Using the homotopy invariance of a

[^0]G-index, we compute the index at a G-invariant connection A_{0} whose curvature 2-form is harmonic and hence anti-self-dual.

Applying the Weitzenböck formula with the fact that the scalar curvature of N is positive, and the curvature 2 -form is anti-self-dual, we get zero kernel. Now then from the vanishing of the ordinary index given by $\left(c_{1}^{2}-\tau(N)\right) / 8$, the cokernel must be also zero. In particular, we have vanishing of G-invariant kernel and cokernel, implying that the G-index is zero.

Then along with $b_{1}(N)^{G}=b_{2}^{+}(N)^{G}=0$, we conclude that $\overline{B F}_{N, \mathfrak{s}_{N}}^{G}$ belongs to $\pi_{S^{1}}^{0}(\mathrm{pt})$ which is isomorphic to $\pi_{s t}^{0}(\mathrm{pt})=\mathbf{Z}$ by the isomorphism induced by restriction to the S^{1}-fixed point set on which the G-monopole map is just the linear isomorphism:

$$
\begin{gathered}
L_{m+1}^{2}\left(\Lambda^{1} N\right)^{G} \times H^{0}(N)^{G} \rightarrow L_{m}^{2}\left(\Lambda_{+}^{2} N\right)^{G} \times L_{m}^{2}\left(\Lambda^{0} N\right)^{G} \times H^{1}(N)^{G} \\
(a, c) \mapsto\left(d^{+} a, d^{*} a+c, a^{\text {harm }}\right),
\end{gathered}
$$

because it has no kernel and cokernel. This completes the proof.
Now let's consider the case of $b_{1}(N)^{G} \geq 1$. Again the G-index bundle of the Spin ${ }^{c}$ Dirac operator over $\operatorname{Pic}{ }^{G}(N)$ is zero so that $\overline{B F_{N, \mathfrak{s}_{N}}^{G}}$ belongs to $\pi_{S^{1}}^{0}\left(T^{b_{1}(N)^{G}}\right)$.

Following [5], we consider the restriction map

$$
\sigma: \pi_{S^{1}}^{0}\left(T^{b_{1}(N)^{G}}\right) \rightarrow \pi_{S^{1}}^{0}(\mathrm{pt})
$$

to the fiber over a point in $\operatorname{Pic}^{G}(N)$. By the same method as the above lemma, $\sigma\left(\overline{B F}_{N, \mathfrak{s}_{N}}^{G}\right)$ is just the identity map. Then the restriction of $\overline{B F}_{\bar{M}_{k}, \overline{\mathfrak{s}}}^{G}=\overline{B F}_{\tilde{M}_{k}, \tilde{\mathfrak{s}}}^{G}$ to

$$
\operatorname{Pic}^{G}\left(\amalg_{i=1}^{k}\left(M \cup S^{4}\right)\right) \times\{\mathrm{pt}\} \subset \operatorname{Pic}^{G}\left(\tilde{M}_{k}\right)=\operatorname{Pic}^{G}\left(\bar{M}_{k}\right)
$$

is given by

$$
B F_{M, \mathfrak{s}} \wedge \sigma\left(\overline{B F}_{N, \mathfrak{s}_{N}}^{G}\right)=B F_{M, \mathfrak{s}} .
$$

It is obvious that $\overline{B F_{M_{k}}, \overline{\mathfrak{s}}} G$ is nontrivial, when $\sigma\left(\overline{B F}_{\bar{M}_{k}, \overline{\mathfrak{s}}}^{G}\right)$ is nontrivial, which completes the proof.

Corollary 3.3. Let M be a smooth closed oriented 4 -manifold with $b_{1}(M)=0$ and \bar{M}_{k} for $k \geq 2$ be the k-fold connected sum $M \# \ldots \# M$. Suppose that $B F_{M, \mathfrak{s}}$ is nontrivial for a Spin ${ }^{c}$ structure \mathfrak{s}, and $\overline{\mathfrak{s}}$ denotes the glued Spin ${ }^{c}$ structure on \bar{M}_{k} as before. Then there exists an integer $K>0$ such that for any integer $k \geq K, B F_{\bar{M}_{k}, \overline{\mathfrak{s}}}$ is trivial but $B F_{\bar{M}_{k}, \overline{\mathfrak{s}}}^{\mathbf{Z}_{k}}$ is not trivial for a smooth \mathbf{Z}_{k}-action.

Proof. As shown in Theorem 4.4 of [8], S^{4} admits a smooth \mathbf{Z}_{k}-action with nonempty fixed point set, which satisfies the conditions for N in Theorem 3.1. Thus by applying the
above theorem, we have that $\overline{B F} \bar{M}_{k}, \overline{\mathfrak{s}}$, for any integer $k>0$ is nontrivial, and so is $B F_{\bar{M}_{k}, \overline{\mathfrak{s}}}^{\mathbf{Z}_{k}}$ by Theorem 2.4.

But by the result of [4], there must exist an integer $K>0$ such that for any integer $k \geq K, B F_{\bar{M}_{k}, \overline{\mathfrak{s}}}$ is trivial.

REMARK. For example, one can take M in the above corollary to be

$$
l X \# m \overline{\mathbf{C P}}_{2}
$$

where X is a K3 surface, and integers l and m satisfy that $1 \leq l \leq 4$, and $m \geq 0$.

4. Examples of N

More examples of such N in Theorem 3.1 are given in Theorem 4.4 of [8], where those examples have \mathbf{Z}_{k}-actions which are free or have fixed points. Here, we will present some non-cyclic actions.

Take N to be $S^{1} \times S^{3}$, and G to be any finite group with a smooth orientation-preserving effective action on S^{3}. By the spherical space form conjecture which follows from the geometrization theorem proven by G. Perelman, such G action is conjugate to a subgroup of $S O(4)$, and so S^{3} has a G-invariant metric of positive scalar curvature. Since the frame bundle of N is trivial, the G action can be lifted to its spin bundle which is also trivial. Such trivial Spin^{c} structure obviously satisfy $c_{1}^{2}=-b_{2}(N)=0$. One can take those G actions either free or with fixed points.

ACKnOWLEDGMENT. The author would like to give thanks to God, and appreciate the anonymous referee's critical remarks.

References

[1] S. Bauer and M. Furuta, A stable cohomotopy refinement of Seiberg-Witten invariants: I, Invent. Math. 155 (2004), 1-19.
[2] S. BaUER, A stable cohomotopy refinement of Seiberg-Witten invariants: II, Invent. Math. 155 (2004), 21-40.
[3] S. BAUER, Refined Seiberg-Witten invariants, In: Different faces of geometry, International Mathematical Series Vol. 3 (2004), 1-46.
[4] M. Furuta, Y. Kametani and N. Minami, Nilpotency of the Bauer-Furuta stable homotopy Seiberg-Witten invariants, Geom. \& Top. Mono. 10 (2007), 147-154.
[5] M. Ishida and C. LeBrun, Curvature, connected Sums, and Seiberg-Witten Theory, Comm. Anal. Geom. 11 (2003), 809-836.
[6] N. NAKAMURA, Bauer-Furuta invariants under \mathbf{Z}_{2}-actions, Math. Z. 262 (2009), 219-233.
[7] C. SUNG, G-monopole classes, Ricci flow, and Yamabe invariants of 4-manifolds, Geom. Dedicata 169 (2014), 129-144.
[8] C. SUNG, G-monopole invariants on some connected sums of 4-manifolds, Geom. Dedicata 178 (2015), 7593.
[9] M. SZYMIK, Bauer-Furuta invariants and Galois symmetries, Quarterly J. Math. 63 (2012) no. 4, 1033-1054.

Present Address:

Department of Mathematics Education,
Korea National University of Education,
250 TAESEONGTABYEON-RO, GANGNAE-MYEON,
Heundeok-gu, Cheonguu-si, Chungbuk 28173,
Korea(ROK).
e-mail: cysung@kias.re.kr

[^0]: ${ }^{1}$ The gluing theorem 2.1 of [2] was stated when each X_{i} is connected with one gluing neck, but the proof also works well without this assumption. For more details, readers are referred to [2].

