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Abstract. We generalize the quantum double construction of subfactors to that from arbitrary flat connections
on 4-partite graphs and call it the mixed quantum double construction. If all the four graphs of the original 4-
partite graph are connected, it is easy to see that this construction produces Ocneanu’s asymptotic inclusion of both
subfactors generated by the original flat connection horizontally and vertically. The construction can be applied
for example to the non-standard flat connections which appear in the construction of the Goodman-de la Harpe-
Jones subfactors or to those obtained by the composition of flat part of any biunitary connections as in N. Sato’s
paper [40]. An easy application shows that the asymptotic inclusions of the Goodman-de la Harpe-Jones subfactors
are isomorphic to those of the Jones subfactors of type An except for the cases of orbifold type. If two subfactors
A ⊂ B and A ⊂ C have common A-A bimodule systems, we can construct a flat connection in general. Then by
applying our construction to the flat connection, we obtain the asymptotic inclusion of both A ⊂ B and A ⊂ C. We
also discuss the case when the original 4-partite graph contains disconnected graphs and give some such examples.
General phenomena when disconnected graphs appear are explained by using bimodule systems.

1. Introduction

Since V. F. R. Jones initiated the index theory of subfactors [21] and found his celebrated
polynomial invariant for knots and links [22], substantial progress has been made in studies
on relation among subfactor theory, quantum groups, 3-dimensional topology, topological
quantum field theory, algebraic quantum field theory and conformal field theory etc.

A. Ocneanu’s paragroup theory plays an important role as a part of study on those rela-
tions among subfactor theory and other fields of mathematics and mathematical physics. We
refer to the book [12] (and references therein) for the basics of subfactor theory, paragroup
theory and their relations to other fields mentioned above. See also [10], [24, 26, 27, 28, 29]
for surveys in this area of researches.

In his theory of paragroups, A. Ocneanu introduced an asymptotic inclusion for a sub-
factor [34, 35] as an analogue of the quantum double construction in the theory of quantum
groups [3]. Some other constructions such as central sequence subfactors [35], Longo-Rehren
inclusions [31] and symmetric enveloping algebras [39] are also known as an analogue of
quantum double construction. The relation among these constructions are studied in [32, 33].
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The asymptotic inclusion for a subfactor N ⊂ M is a subfactor M ∨ (M ′ ∩ M∞) ⊂
M∞, where N ⊂ M = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ M∞ = ∨∞

n=0 Mn is the Jones tower.
The simplest examples of the asymptotic inclusions are subfactors generated by commuting
squares of two-sided sequence of Jones projections;

〈e−n, . . . , e−1, e1, . . . , en〉 ⊂ 〈e−n−1, . . . , e−1, e1, . . . , en+1〉
∩ ∩

〈e−n, . . . , e−1, e0, e1, . . . , en〉 ⊂ 〈e−n−1, . . . , e−1, e0, e1, . . . , en+1〉 .

Here Jones projections {ei}i∈Z satisfy the following relations;

eiei±1ei = β−2ei , for i ∈ Z ,

eiej = ej ei , whenever |i − j | 
= 2 ,

where β = 2 cos(π/N). The indices of these subfactors were first computed by M. Choda [2].
It is easy to see that the above subfactors are isomorphic to the asymptotic inclusion of Jones
subfactor with the principal graph An because the commuting square

M ′−k ∩ M0 ∨ M ′
0 ∩ Mk ⊂ M ′−k−1 ∩ M0 ∨ M ′

0 ∩ Mk+1

∩ ∩
M ′−k ∩ Mk ⊂ M ′−k−1 ∩ Mk+1 ,

generates the asymptotic inclusion for an enough large k. Here we used the notation M ⊃
N = M−1 ⊃ M−2 ⊃ · · · for a downward basic construction (tunnel construction).

J. Erlijman [4, 5] generalized the above examples to the case of two-sided sequence
of generators {gi}i∈Z of Hecke algebra of type A,B,C,D and showed that the following
commuting squares produce the asymptotic inclusion for the Hecke algebra subfactors of
type A,B,C,D of H. Wenzl [42, 43]:

〈g−n, . . . , g−1, g1, . . . , gn〉 ⊂ 〈g−n−1, . . . , g−1, g1, . . . , gn+1〉
∩ ∩

〈g−n, . . . , g−1, g0, g1, . . . , gn〉 ⊂ 〈g−n−1, . . . , g−1, g0, g1, . . . , gn+1〉 .

The author generalized her construction to a fusion algebra with quantum 6j -symbols
which produce periodic commuting squares in [15] and proved that our construction pro-
duces the asymptotic inclusion for the subfactor generated by the original periodic commuting
square. By applying our result in the case of fusion algebras of SU(n)k WZW models, which
is the same as Hecke algebra subfactors of type A of H. Wenzl [42], we got the same result as
in [5].

J. Erlijman and H. Wenzl then generalized quantum double construction to quantum
multiple construction for subfactors arising from braid group representations [6, 7] and for
braided categories [8]. M. Asaeda [1] further generalized their quantum multiple construc-
tion to subfactors whose paragroup satisfies the generalized Yang-Baxter equation which is a
weaker condition than braidedness of the bimodule system.
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In this paper, we consider a generalization of the quantum double construction which is
different from either a generalization to periodic commuting squares or that to the quantum
multiple construction as we mentioned above. Here we generalize the quantum double con-
structions of subfactors to that from arbitrary flat connections on 4-partite graphs. We call it
the mixed quantum double construction. If all the four graphs of the original 4-partite graph
are connected, it is easy to see that this construction produces Ocneanu’s asymptotic inclusion
of both subfactors generated by the original flat connection horizontally and vertically. The
construction can be applied for example to the non-standard flat connections which appear in
the construction of Goodman-de la Harpe-Jones subfactors or to those obtained by the compo-
sition of flat part of any biunitary connections as in N. Sato’s paper [40]. The mixed quantum
double construction will also be used for a generalization of quantum multiple construction
of M. Asaeda in [18].

The paper is organized as follows.
In section 2 we give a brief review of Ocneanu’s asymptotic inclusion. We remark that

our definition of asymptotic inclusion is slightly different from Ocneanu’s original definition.
More precisely the original definition coincides with ours for the dual subfactor.

In section 3 we define the mixed quantum double construction from arbitrary flat con-
nections on 4-partite graphs and show that the construction produces Ocneanu’s asymptotic
inclusion of both subfactors generated by the original flat connection horizontally and verti-
cally if all the four graphs of the original 4-partite graph are connected. The non-standard flat
connections which appear in the construction of Goodman-de la Harpe-Jones subfactors are
given as the first fundamental examples.

In section 4 we explain that the bimodule systems of the mixed quantum double sub-
factors are described by Ocneanu’s surface bimodules in the same way as usual asymptotic
inclusions.

In section 5 we introduce another mixed quantum double construction which can be
defined from two subfactors A ⊂ B and A ⊂ C with the common A-A bimodule system.

In section 6 we give some examples in the case when all the four graphs of the original
4-partite graph are connected.

In section 7 we discuss the case when the original 4-partite graph contains disconnected
graphs and give some such examples. General phenomena when disconnected graphs appear
are explained by using bimodule systems.

2. Ocneanu’s asymptotic inclusion and quantum double construction of subfac-
tors

Let N ⊂ M be a subfactor of the hyperfinite II1 factor M with finite index and finite
depth, N = N0 ⊂ M = N1 ⊂ N2 ⊂ N2 ⊂ · · · ⊂ N∞ = ∨∞

n=0 Nn be the Jones tower and
M = N1 ⊃ N = N0 ⊃ N−1 ⊃ N−2 ⊃ · · · be the downward basic construction.

REMARK 2.1. The notations N ⊂ M = M0 ⊂ M1 ⊂ M2 ⊂ · · · (resp. M ⊃ N =
N0 ⊃ N1 ⊃ N2 ⊃ · · · ) are often used for the basic construction (Jones tower) (resp. a
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N ′ ∩ N∞ ⊂ N ′−1 ∩ N∞ ⊂ N ′−2 ∩ N∞ ⊂ · · · ⊂ N∞
∪ ∪ ∪ ∪
...

...
...

...

∪ ∪ ∪ ∪
N ′ ∩ N2 ⊂ N ′−1 ∩ N2 ⊂ N ′−2 ∩ N2 ⊂ · · · ⊂ N2

∪ ∪ ∪ ∪
N ′ ∩ N1 ⊂ N ′−1 ∩ N1 ⊂ N ′−2 ∩ N1 ⊂ · · · ⊂ N1 = M

∪ ∪ ∪ ∪
N ′ ∩ N ⊂ N ′−1 ∩ N ⊂ N ′−2 ∩ N ⊂ · · · ⊂ N0 = N

FIGURE 1. The commuting squares from the standard invariant of N ⊂ M

downward basic construction (a tunnel construction)), but we use {Ni}i≥0 for the tower and
{Ni}i≤0 for a choice of tunnels in this paper. We also use the notation N∞ = ∨∞

n=0 Nn instead

of M∞ = ∨∞
n=0 Mn.

The commuting squares constructed from the inclusions of finite dimensional C∗-
algebras {N ′

k ∩Nl} (k, l ∈ Z, k ≤ l) are called the standard invariant or the standard λ-lattice
of the subfactor N ⊂ M [37, 38]. We call the flat connection obtained from the standard
invariant the standard flat connection. Thanks to Popa’s classification theorem [37], the stan-
dard invariant generates N ⊂ M as in Figure 1 and it is a complete invariant for subfactors of
the hyperfinite II1 factor with finite index and finite depth. (More generally it is a complete
invariant for strongly amenable subfactors.)

Ocneanu introduced the asymptotic inclusion M ∨ (M ′ ∩ M∞) ⊂ M∞ of a subfactor
N ⊂ M ([34, 35], [11], [12, Section 12.6]). It is known that the asymptotic inclusion becomes
a subfactor of the hyperfinite II1 factor with finite index and finite depth (See [12, Theorem
12.24, page 657]).

REMARK 2.2. As we mentioned above, Ocneanu’s original definition of the asymp-
totic inclusion is given by M ∨ (M ′ ∩ M∞) ⊂ M∞. But we refer to N ∨ (N ′ ∩ N∞) ⊂ N∞
as the asymptotic inclusion of a subfactor N ⊂ M in this paper. Hence the original definition
coincides with ours for the dual subfactor M ⊂ M1.

We now denote the algebras N ′−i ∩ Nj by Ai,j , then it is easy to see that the commuting
squares

An,n ⊂ An+1,n+1 ⊂ · · · −→ N∞
∪ ∪ ∪

An,0 ∨ A0,n ⊂ An+1,0 ∨ A0,n+1 ⊂ · · · −→ N ∨ (N ′ ∩ N∞)

generates the asymptotic inclusion N ∨ (N ′ ∩ N∞) ⊂ N∞. See also Figure 2.
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N ′ ∩ N∞ ⊂ N ′−1 ∩ N∞ ⊂ N ′−2 ∩ N∞ ⊂ · · · ⊂ N∞
∪ ∪ ∪ ∪
...

...
...

...

∪ ∪ ∪ ∪
A0,2 ⊂ A1,2 ⊂ A2,2 ⊂ · · · ⊂ N2

∪ ∪ ∪ ∪
A0,1 ⊂ A1,1 ⊂ A2,1 ⊂ · · · ⊂ M = N1

∪ ∪ ∪ ∪
A0,0 ⊂ A1,0 ⊂ A2,0 ⊂ · · · ⊂ N = N0

FIGURE 2. The commuting squares of the algebras Ai,j = N ′−i ∩ Nk

The procedure obtaining the asymptotic inclusion from a subfactor is called the quantum
double construction of subfactors.

3. Mixed quantum double construction of subfactors

In this section we define the mixed quantum double construction of subfactors which
is a generalization of quantum double construction of subfactors. We refer readers to [12]
for all the basic notions such as subfactors, bimodules, axioms of paragroups, string algebra
construction, flat connections, and so on. We use the terminology 4-partite graph which
means four bipartite graphs connected in a square shape as in Figure 3 on which a biunitary
connection W is defined. Here we remark that we have to choose and fix a distinguished
vertex ∗ of graph G1 as an initial vertex in order to define commuting squares from the string
algebra construction (See Figure 3).

Let W be a biunitary connection which is ∗-flat with respect to a given distinguished
vertex ∗ on a 4-partite graph as in Figure 3. Then we can construct a double sequence of finite
dimensional C∗-algebras Bi,j (i, j ≥ 0) by the string algebra construction as in Figure 4.
(See [12, Chapter 11] for the string algebra construction.)

We consider the subfactor T ⊂ S generated by the following commuting squares.

DEFINITION 3.1. We call a subfactor T ⊂ S generated by the commuting squares as
in Figure 5 the mixed quantum double subfactor arising from a ∗-flat connection W . The
procedure obtaining the mixed quantum double subfactor from a flat connection W is called
the mixed quantum double construction.

If a flat connection W is the standard one arising from a subfactor N ⊂ M , then Bi,j =
Ai,j = N−i

′ ∩ Nk holds. In this case the mixed quantum double construction coincides
with the usual quantum double construction. Hence it is a generalization of quantum double
construction of subfactors.
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∗

G3

G1

G2 G4W

FIGURE 3. A flat connection W on a 4-partite graph

P = P0 ⊂ Q = P1 ⊂ P2 ⊂ · · · ⊂ P∞ = N∞
∪ ∪ ∪ ∪
...

...
...

...

∪ ∪ ∪ ∪
B0,2 ⊂ B1,2 ⊂ B2,2 ⊂ · · · ⊂ N2

∪ ∪ ∪ ∪
B0,1 ⊂ B1,1 ⊂ B2,1 ⊂ · · · ⊂ M = N1

∪ ∪ ∪ ∪
B0,0 ⊂ B1,0 ⊂ B2,0 ⊂ · · · ⊂ N = N0

FIGURE 4. The commuting squares arising from a flat connection W

Bn,n ⊂ Bn+1,n+1 ⊂ · · · −→ S

∪ ∪ ∪
Bn,0 ∨ B0,n ⊂ Bn+1,0 ∨ B0,n+1 ⊂ · · · −→ T

FIGURE 5. The commuting squares which produce the mixed quantum double subfactor

THEOREM 3.2. Let W be a ∗-flat connection on a 4-partite graph as in Figure 3 and
let N ⊂ M (resp. P ⊂ Q) be a subfactor obtained by the string algebra construction hori-
zontally (resp. vertically) as in Figure 4. If all the graphs Gi (i = 1, 2, 3, 4) are connected,
then the mixed quantum double subfactor arising from the flat connection W is isomorphic to
the asymptotic inclusions of the both subfactors N ⊂ M and P ⊂ Q.

PROOF. From the flatness assumption, the horizontal algebra Bm,0 and the vertical al-
gebra B0,n in Figure 4 commute [12, Theorem 11.17]. Then the standard flatness argument
(including Ocneanu’s compactness argument [12, Section 11.4] and Popa’s classification the-
orem [37, Theorem 5.1.1]) shows that Bm,0 = P ′ ∩ Pm, B0,n = N ′ ∩ Nn (for n,m ≥ 0),
P = N ′ ∩ N∞ and N = P ′ ∩ P∞ hold. Hence it is easy to see that the commuting squares in
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Figure 5 generates a subfactor isomorphic to (N ∨ (N ′ ∩ N∞) ⊂ N∞) = (P ∨ (P ′ ∩ P∞) ⊂
P∞). �

The following corollary is immediate from the theorem.

COROLLARY 3.3. Let us use the same notations W , N ⊂ M and P ⊂ Q as in the
above theorem. If all the graphs Gi (i = 1, 2, 3, 4) are connected, then the asymptotic
inclusions of N ⊂ M is isomorphic to that of P ⊂ Q, i.e., (N ∨ (N ′ ∩ N∞) ⊂ N∞) ∼=
(P ∨ (P ′ ∩ P∞) ⊂ P∞).

EXAMPLE 3.4. The Goodman-de la Harpe-Jones subfactors (abbreviated as GHJ sub-
factors) [13] are a well-known series of irreducible subfactors most of which have indices
greater than 4. They are constructed from the commuting squares arising from the embed-
dings of type A string algebras into other string algebras of type ADE. (See [12, Chapter 11]
for the construction of GHJ subfactors from a viewpoint of string algebra embedding. See
also [17], where the (dual) principal graphs and their fusion rules are computed in all cases.)
It is easy to see that the biunitary connections corresponding to these commuting squares are
∗-flat [12, Section 11.6, page 593]. Here ∗ represents the endpoint of Dynkin diagram An. So
it follows from the flatness that if the graph G2 of the 4-partite graph is connected it becomes
the principal graph of the GHJ subfactor. By applying the mixed quantum double construction
to these flat connections, we obtain subfactors which are isomorphic to both the asymptotic
inclusions of the GHJ subfactors and those of the Jones subfactors of type An. Hence the
asymptotic inclusions of GHJ subfactors are isomorphic to those of the Jones subfactors of
type An by Corollary 3.3.

REMARK 3.5. Though it is not explicitly written in [41], Corollary 3.3 can also be
proved by using Sato’s theorem [41, Theorem 2.3], general theory on the bimodule structure of
the asymptotic inclusion ([12, Section 12.6] and [30, Appendix A]) and Popa’s classification
theorem [37]. But our method is more direct and easier to see. Actually Corollary 3.3 can be
proved without using Sato’s theorem and it is almost obvious from our construction.

4. The bimodule systems of the mixed quantum double subfactors

In this section we explain that the bimodule systems of the mixed quantum double sub-
factors are described by Ocneanu’s surface bimodules in the same way as usual asymptotic
inclusions. We refer readers to [12, Section 12.6] for the notion of Ocneanu’s surface bimod-
ules.

Let NhM (resp. P kQ) be the generator open string bimodule of N ⊂ M (resp. P ⊂ Q)
constructed from a given flat connection W . (See [34, page 133] and [41, Definition 2.1]
for the definition of the open string bimodule.) Note that NhM is constructed in horizontal
direction and P kQ in vertical direction. So the generator bimodule P kQ corresponds to the
opposite subfactor P opp ⊂ Qopp because of the difference of the directions. Then from
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FIGURE 6. The bimodules arising from the mixed quantum double subfactor T ⊂ S

Sato’s theorem [41, Theorem 2.3], we have N-N bimodule system NMN from NhM and P -
P bimodule system PMP from P kQ in common, i.e., NMN = PMP holds. Now we put

h̃ = N(h · h̄)N and k̃ = P (k · k̄)P . Here h̄ (resp. k̄) is the conjugate bimodule of h (resp.
k). Then T -T , T -S and S-S bimodules arising from the mixed quantum double subfactor
T ⊂ S are described by surface bimodules as in Figure 6. Where the bimodules x, y and z are
taken from NMN(= PMP ) and pi is a minimal projection in the tube algebra Tube(NMN ).
See [11], [12, Section 12.6] and [30] for more details of this kind of figures.

Note that the description and figures of M∞-M∞ bimodules of the asymptotic inclusions
M ∨ (M ′ ∩ M∞) ⊂ M∞ in [11] and [12, Section 12.6] are incorrect. The mistakes found
in [11] and [12, Section 12.6] were fixed in [30]. See [30, Appendix A] for the details.

From these descriptions of the bimodule systems, we can also confirm that Theorem 3.2
holds, i.e., (T ⊂ S) ∼= (N ∨ (N ′ ∩ N∞) ⊂ N∞) ∼= (P ∨ (P ′ ∩ P∞) ⊂ P∞) because they
have the same paragroup (i.e., standard invariant). See the proof of Theorem 2.3 in [15]. The
same argument also works for the proof of Theorem 3.2.

5. From two subfactors A ⊂ B and A ⊂ C with the common A-A bimodule system
to the mixed quantum double construction

Let A ⊂ B and A ⊂ C be two subfactors of the hyperfinite II1 factor with finite indices
and finite depths. In this section, we assume that A ⊂ B and A ⊂ C have the common A-
A bimodule system and we consider the mixed quantum double construction from such two
subfactors. It is known from paragroup theory that we can construct a flat connection W on a
4-partite graph as in Figure 7 from any two subfactors A ⊂ B and A ⊂ C with the common
A-A bimodule system (See [25, Proposition 4.3]).

We give a brief outline of the general procedure below. For the complete proof, see the
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FIGURE 7. A flat connection W on a 4-partite graph
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A∗A

BBA

ABA

ACC

BB ⊗A CC

AB ⊗A CC

ACA

BB ⊗A CA

AB ⊗A CA

BBA⊗·

ABB⊗·

BBA⊗·

·⊗ACC ·⊗CCA ·⊗ACC

FIGURE 8. Double sequence of bimodules (1)

argument in pages 489–491 and Proposition 4.3 in [25].
First we take a trivial bimodule AAA. We denote AAA by A∗A. At each step we draw

a new bimodule to the right by tensoring ACC and CCA from the right alternately and also
draw a bimodule upward by tensoring BBA and ABB from the left alternately. Thus we get a
double sequence of bimodules as in Figure 8.

Take endomorphism spaces of the bimodules in Figure 8, then we get an increasing
double sequence of finite dimensional C∗-algebras as follows.

...
...

...

∪ ∪ ∪
End(AAA) ⊂ End(AB ⊗A CC) ⊂ End(AB ⊗A CA) ⊂ · · ·

∪ ∪ ∪
End(BBA) ⊂ End(BB ⊗A CC) ⊂ End(BB ⊗A CA) ⊂ · · ·

∪ ∪ ∪
End(AAA) ⊂ End(ACC) ⊂ End(ACA) ⊂ · · ·
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This double sequence forms commuting squares with the period two. Thus we get a 4-partite
graph and a biunitary connection on the graph. From general paragroup theory, we know that
this biunitary connection becomes A∗A-flat connection.

Thanks to Popa’s classification theorem [37, Theorem 5.1.1] and Proposition 4.3 in [25],
these commuting squares generate a subfactor isomorphic to A ⊂ B in horizontal direction
and a subfactor isomorphic to Aopp ⊂ Copp in vertical direction. Here Aopp represents the
opposite von Neumann algebra of A.

Hence by applying the mixed quantum double construction to the flat connection, we
obtain the asymptotic inclusions of both subfactors A ⊂ B and A ⊂ C. So we can apply
our construction to any two subfactors A ⊂ B and A ⊂ C with the common A-A bimodule
system in this way. We call this construction the mixed quantum double construction from
A ⊂ B and A ⊂ C.

REMARK 5.1. If two subfactors A ⊂ B and A ⊂ C are identical, then the mixed
quantum double construction coincides with the usual quantum double construction for the
subfactor (A ⊂ B) = (A ⊂ C).

EXAMPLE 5.2. Let N ⊂ M be a subfactor of the hyperfinite II1 factor M with finite
index and finite depth, N = N0 ⊂ M = N1 ⊂ N2 ⊂ N2 ⊂ · · · ⊂ N∞ = ∨∞

n=0 Nn be the
Jones tower. Then for any k, l ≥ 1, the mixed quantum double construction from N ⊂ Nk

and N ⊂ Nl produces the same subfactor as the asymptotic inclusions of N ⊂ M , i.e.,
N ∨ (N ′ ∩ N∞) ⊂ N∞.

THEOREM 5.3. Let A ⊂ B and C ⊂ D be inclusions of the hyperfinite II1 factor with
finite indices and finite depths. If A-A bimodule system arising from A ⊂ B coincides with
C-C bimodule system from C ⊂ D (or Copp-Copp bimodule system from Copp ⊂ Dopp), then
the asymptotic inclusions of A ⊂ B is isomorphic to that of C ⊂ D.

PROOF. Applying the mixed quantum double construction for A ⊂ B and C ⊂ D (or
Copp ⊂ Dopp), we get the result by Corollary 3.3. �

REMARK 5.4. Theorem 5.3 can be proved again by using general theory on the bi-
module structure of the asymptotic inclusion ([12, Section 12.6] and [30, Appendix A]) and
Popa’s classification theorem ([37]). See also Remark 3.5.

6. Examples in the case of connected graphs

In this section we give some examples of the mixed quantum double subfactors in the
case when all the four graphs of the original 4-partite graph are connected.

EXAMPLE 6.1 (The flat connections which generate GHJ subfactors [13], [17]:). As
is already mentioned in Example 3.4, the flat connections which generate GHJ subfactors
have been known for the first non-trivial examples of non-standard flat connections. Here
a non-standard flat connection means a flat connection which is not obtained from the
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L

K

W

FIGURE 9. a K-L biunitary connection W

standard invariant of any subfactor. In these cases, the mixed quantum double subfactors are
isomorphic to the asymptotic inclusions of the Jones subfactors of type An.

Let us consider a biunitary connection on a 4-partite graph with the upper graph L and
the lower graph K as in Figure 9. We call such a connection a K-L biunitary connection.

The most fundamental and important cases are those when both K and L are among
ADE Dynkin diagrams. Here we call such K-L connections inter-Dynkin connections for
short. A. Ocneanu has classified all irreducible inter-Dynkin connections and showed many
applications of his classification result [36]. (See also [16] for more detailed exposition of
Ocneanu’s theory of double triangle algebras and its applications.) We remark that GHJ sub-
factors can be considered as those generated by irreducible A-L inter-Dynkin connections.

EXAMPLE 6.2 (D16-E8 flat connection [19]:). GHJ subfactors are constructed from
the commuting squares arising from the embeddings of type A string algebras into other
string algebras of type ADE. So the construction can be generalized by considering embed-
dings of type D string algebras into type E string algebras. Then the subfactors obtained by
the embeddings are constructed from inter-Dynkin connections of type D-E. We call such
subfactors generalized GHJ subfactors of type D-E. Among D7-E6, D10-E7 and D16-E8

inter-Dynkin connections, it turned out that only D16-E8 connections are flat. The author
computed the (dual) principal graphs of generalized GHJ subfactor of type D16-E8 in [19].
The mixed quantum double subfactors from these D16-E8 flat connections are all isomorphic
to the asymptotic inclusions of the D16 subfactor.

We give an example of the (dual) principal graph of a generalized GHJ subfactor of type
D16-E8 in Figures 10.

EXAMPLE 6.3 (The composite flat connections [40]:). Let W be a biunitary connec-
tion and N ⊂ M a subfactor generated by the string algebras arising from the connection W

as in Figures 11 and 12. N. Sato [40] showed that any connection obtained by the composition
of an arbitrary biunitary connection W and its flat part Wf as in Figures 13 and 14 is ∗N -flat if
the subfactor N ⊂ M as in Figure 11 has finite depth. See also Figure 15 for the commuting
squares arising from a connection W and its flat part Wf . Here the vertex ∗N of the graph H1

in Figure 14 corresponds to that of N ′ ∩ N . Many non-standard flat connections are obtained
in this way. So we can apply the mixed quantum double construction to them.
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FIGURE 10. The (dual) principal graph of generalized GHJ(Dw0+E )

∗G1

G2

G3

G4

G1

W

· · · −→

· · · −→

M

∪
N

FIGURE 11. A subfactor N ⊂ M generated by a biunitary connection W

P = P0 ⊂ Q = P1 ⊂ P2 ⊂ · · ·
∪ ∪ ∪
...

...
...

...

∪ ∪ ∪ ∪
B0,2 ⊂ B1,2 ⊂ B2,2 ⊂ · · · ⊂ N2

∪ ∪ ∪ ∪
B0,1 ⊂ B1,1 ⊂ B2,1 ⊂ · · · ⊂ M = N1

∪ ∪ ∪ ∪
B0,0 ⊂ B1,0 ⊂ B2,0 ⊂ · · · ⊂ N = N0

FIGURE 12. The commuting squares arising from a flat connection W

EXAMPLE 6.4 (D10-E7 flat connection [40]:). It is known that E7 biunitary connec-
tions are not flat. D. E. Evans and Y. Kawahigashi showed that the flat part of E7 connection is
D10 [9]. The composite flat connection is given as an example of an application of N. Sato’s
theorem [40]. The graphs H1, G1 and their composite graph as in Figures 14 are given in
Figures 16 and 17, where H1 ∼= D10 and G1 ∼= E7. Application of the mixed quantum double
construction to this flat connection yield a subfactor isomorphic to the asymptotic inclusions
of the D10 subfactor.

EXAMPLE 6.5 (The composite flat connections arising from inter-Dynkin connec-
tions [20]:). The author computed the flat part of all inter-Dynkin connections in [20]. So
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N ′ ∩ Nk+1 ⊂ B0,k+1 ⊂ B1,k+1

∪ ∪ ∪
N ′ ∩ Nk ⊂ B0,k ⊂ B1,k

FIGURE 13. Composition of the commuting squares and their flat parts

∗N

H2

H3

H1
∗G1

G3

G2

G1

G4Wf W

FIGURE 14. Composite flat connection Wf · W

R ⊂ P = P0 ⊂ Q = P1 ⊂ P2 ⊂ · · ·
∪ ∪ ∪ ∪
...

...
...

...
...

∪ ∪ ∪ ∪ ∪
N ′ ∩ N2 ⊂ B0,2 ⊂ B1,2 ⊂ B2,2 ⊂ · · · ⊂ N2

∪ ∪ ∪ ∪ ∪
N ′ ∩ N1 ⊂ B0,1 ⊂ B1,1 ⊂ B2,1 ⊂ · · · ⊂ M = N1

∪ ∪ ∪ ∪ ∪
N ′ ∩ N ⊂ B0,0 ⊂ B1,0 ⊂ B2,0 ⊂ · · · ⊂ N = N0

FIGURE 15. The commuting squares arising from a connection W and its flat part Wf

a lot of composite flat connections have been obtained. Applying the mixed quantum double
construction to these examples yield subfactors isomorphic to the asymptotic inclusions of
ADE subfactors and those of dual (generalized) GHJ subfactors. We can determine which
asymptotic inclusion is obtained in each case from the computation in [20]. See [20] for more
details.

7. Examples in the case of disconnected graphs

We show some examples of the mixed quantum double subfactors in the case when 4-
partite graphs contain some disconnected graphs.
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∗

D10

E7

FIGURE 16. The horizontal graph in the composite flat connection of an E7 connection

∗

FIGURE 17. The composite horizontal graph

THEOREM 7.1. Let W be a flat connection on a 4-partite graph as in Figure 3. Sup-
pose that the graphs G1 and G3 are connected but that G2 and G4 are not necessarily con-
nected. Let N ⊂ M be a subfactor obtained by the string algebra construction horizontally as
in Figure 4. Then the mixed quantum double subfactor arising from the flat connection W is
isomorphic to the asymptotic inclusions of the subfactor N ⊂ M , i.e. N ∨ (N ′ ∩N∞) ⊂ N∞.

PROOF. We remark that von Neumann algebras Pk (k ≥ 1) in Figure 4 do not become
factors in general due to the disconnectedness of the graphs G2 and G4. But we know B0,n =
N ′ ∩ Nn and P = N ′ ∩ N∞ still hold in this case. Hence the commuting squares in Figure 5
generates a subfactor isomorphic to N ∨ (N ′ ∩ N∞) ⊂ N∞. �

EXAMPLE 7.2 (Orbifold flat connections [23], [14]:). In the case of A2n+1-Dn+2

inter-Dynkin connections, if we choose the vertex ∗D of Dn+2 as in Figure 18 for the GHJ
construction, disconnected graphs appear in graphs G2 and G4. All the connected compo-
nent of G2 and G4 are isomorphic to the Dynkin diagram A3. (See [17] for some examples
of the graphs G2 and G4.) It is the principal graph of the horizontally generated GHJ sub-
factor N ⊂ M with index two. So all the GHJ subfactors in these cases are isomorphic to
R ⊂ R � Z2, where R is the hyperfinite II1 factor. Application of the mixed quantum double
construction to these connections yields the asymptotic inclusion of the subfactor R ⊂ R�Z2,
which becomes again index two subfactor. Hence the mixed quantum double subfactor is also
isomorphic to R ⊂ R � Z2 in these cases.
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∗D

· · ·D2n−1

∗D

· · ·D2n

FIGURE 18. The distinguished vertex ∗D

� � �

� � �

� � �

�

�

�

�

�

�

�

�

�

· · ·

· · ·

· · ·

...
...

...

C∗C

Bh̄C

Chh̄C

CkD

Bh̄kD

Chh̄kD

Ckk̄C

Bh̄kk̄C

Chh̄kk̄C

B h̄A⊗·

AhB⊗·

B h̄A⊗·

·⊗CkD ·⊗Dk̄C ·⊗CkD

FIGURE 19. Double sequence of bimodules (2)

EXAMPLE 7.3 (General case: fusion rule subalgebras:). Let A ⊂ B and C ⊂ D be
two subfactors of the hyperfinite II1 factor with finite indices and finite depths. Suppose that
the A-A bimodule system AMA from A ⊂ B is a subsystem of the C-C bimodule system

CMC from C ⊂ D, i.e., AMA ⊂ CMC holds. We take the generator bimodule AhB (resp.

CkD) of the subfactor A ⊂ B (resp. C ⊂ D) and consider similar construction of double
sequence of bimodules as in Section 5. That is, we take first a trivial bimodule CCC denoted

by C∗C , then we draw a new bimodule to the right by tensoring CkD and Dk̄C from the right
alternately and draw a bimodule upward by tensoring Bh̄A and AhB from the left alternately.

Here Bh̄A (resp. Dk̄C) is the conjugate bimodule of AhB (resp. CkD). Thus we get a double
sequence of bimodules as in Figure 19.

Take endomorphism spaces of the bimodules in Figure 19, we get a double sequence of
finite dimensional C∗-algebras which forms commuting squares as in Figures 20 and 21.

Thus we obtain a 4-partite graph and a C∗C-flat biunitary connection on the graph in the
same way as Section 5. Here we note that the vertical graphs in Figure 19 are disconnected in
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...
...

...

∪ ∪ ∪
End(Chh̄C) ⊂ End(Chh̄kD) ⊂ End(Chh̄kk̄C) ⊂ · · ·

∪ ∪ ∪
End(Bh̄C) ⊂ End(Bh̄kD) ⊂ End(Bh̄kk̄C) ⊂ · · ·

∪ ∪ ∪
End(CCC) ⊂ End(CkD) ⊂ End(Ckk̄C) ⊂ · · ·

FIGURE 20. Double sequence of endomorphism spaces

P = P0 ⊂ Q = P1 ⊂ P2 ⊂ · · · ⊂ P∞ = N∞
∪ ∪ ∪ ∪
...

...
...

...

∪ ∪ ∪ ∪
B0,2 ⊂ B1,2 ⊂ B2,2 ⊂ · · · ⊂ N2

∪ ∪ ∪ ∪
B0,1 ⊂ B1,1 ⊂ B2,1 ⊂ · · · ⊂ M = N1

∪ ∪ ∪ ∪
B0,0 ⊂ B1,0 ⊂ B2,0 ⊂ · · · ⊂ N = N0

FIGURE 21. The commuting squares arising from endomorphism spaces of the bimodules

general. Actually the connected components of the vertical graphs are the coset fusion graphs
by the generator AhB . Hence the von Neumann algebras Pk (k ≥ 1) in Figure 21 do not
become factors in general.

By applying the mixed quantum double construction to the flat connection, we obtain a
subfactor which is isomorphic to the asymptotic inclusions of a subfactor A ⊂ B. We call this
construction the mixed quantum double construction from A ⊂ B and C ⊂ D.

EXAMPLE 7.4 (E±
6 subsystem in the even part of the dual GHJ subfactors of type E6:).

There are two mutually complex conjugate E6 biunitary connections. Here we denote them

by E±
6 . The (dual) principal graph of the GHJ subfactor of type E6 corresponding to the

vertex e0 as in Figure 22 is given in Figure 24. Let A ⊂ B be the dual GHJ subfactors of type
E6 and C ⊂ D be one of the E±

6 subfactor. The A-A bimodule system arising from A ⊂ B

is given by the even vertices of the left hand side of Figure 26 (see [17]). Therefore the A-A
bimodule system contains C-C bimodule system from C ⊂ D as a subsystem. So we can
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e0

e1

e2

e3 e5

e4

FIGURE 22. The label of vertices of the Dynkin diagram E6

e0

e1

e2

e3

e4

e5 e7

e6

FIGURE 23. The label of vertices of the Dynkin diagram E8

FIGURE 24. The (dual) principal graph of GHJ(E6, ∗ = e0)

apply the previous construction in Example 7.3 and the mixed quantum double subfactor is
isomorphic to the asymptotic inclusions of E±

6 subfactor.

EXAMPLE 7.5 (E±
8 subsystem in the even part of the dual GHJ subfactors of type E8:).

Similarly to the E6 connections, there are two mutually complex conjugate E8 biunitary

connections. We denote them by E±
8 . The (dual) principal graph of the GHJ subfactor of type

E8 corresponding to the vertex e0 as in Figure 23 is given in Figure 25. Let A ⊂ B be the

dual GHJ subfactors of type E8 and C ⊂ D be one of the E±
8 subfactor. The A-A bimodule

system arising from A ⊂ B is given by the even vertices of the right hand side of Figure 26
(see [17]). By applying the construction in Example 7.3, we get the mixed quantum double
subfactor which is isomorphic to the asymptotic inclusions of E±

8 subfactor.
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FIGURE 25. The (dual) principal graph of the GHJ subfactor corresponding to (E8, ∗ = e0)



MIXED QUANTUM DOUBLE CONSTRUCTION OF SUBFACTORS 615

FIGURE 26. The fusion graphs of all K-K connections for K = E6 and E8
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