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Abstract. We discuss the inverse Galois problem with normal basis, concerning Kummer theories for algebraic
tori, in the framework of group schemes. The unit group scheme of a group algebra plays an important role in this
article, as was pointed out by Serre [8]. We develop our argument not only over a field but also over a ring, considering
integral models of Kummer theories for algebraic tori.

Introduction

The inverse Galois problem is nowadays a very attractive topic and there is a vast accu-
mulation of results concerning the problem. We can divide the problem into two parts:
(A) Given a field k and a finite group Γ , examine the existence of Galois extensions of k with
Galois group Γ ;
(B) Given a field k and a finite group Γ , construct Galois extensions of k with Galois group
Γ .

The Kummer theory is the simplest example of affirmative solution for the inverse Galois
problem. It provides us with an explicit way to construct the cyclic extensions of degree n

when n is invertible in k and k contains all the n-th roots of unity. We have several manners
to establish the Kummer theory, and it would be the most elementary to verify the Kummer
theory by Lagrange resolvents. In [8, Ch.VI, 8] Serre formulated this method, combining the
normal basis theorem and the unit group scheme of a group algebra.

In the previous articles [10] and [11], we examined several theories of Kummer type,
including Kummer, Artin-Schreier, Artin-Schreier-Witt and Kummer-Artin-Schreier theories,
formulating Serre’s method as the sculpture problem and adding the embedding problem.
Now we explain briefly a point of our argument.

Let Γ be a finite group, and let U(Γ ) denote the unit group scheme of the group algebra
of Γ . (For the definition of U(Γ ), see Section 1.) It is the starting point of our argument that
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the morphism U(Γ )→ U(Γ )/Γ is a versal family of unramified Γ -extensions with normal
basis. That is to say, we have the following assertion:
(A) Let R be a ring, Γ a finite group and S/R an unramified Galois extension with Galois
group Γ . Then the Galois extension S/R has a normal basis if and only if there exist mor-
phisms Spec S → U(Γ ) and Spec R→ U(Γ )/Γ such that the diagram

Spec S −−−−→ U(Γ )
⏐
⏐
�

⏐
⏐
�

Spec R −−−−→ U(Γ )/Γ

is cartesian.
In [8, Ch.VI, 8] Serre established this assertion over a field, however, it is not difficult

to paraphrase his argument over a ring. Furthermore, it would be interesting to propose the
problem whether the following assertions hold true:
(Sculpture problem) Let Γ be a finite group and R a ring. Given an affine group R-scheme G

and an embedding i : Γ → G, there exists a commutative diagram

Γ −−−−→ U(Γ )R
⏐
⏐
��

⏐
⏐
�

Γ
i−−−−→ G .

(Embedding problem) Let Γ be a finite group and R a ring. Given an affine group R-scheme
G and an embedding i : Γ → G, there exists a commutative diagram

Γ
i−−−−→ G

⏐
⏐
��

⏐
⏐
�

Γ −−−−→ U(Γ )R .

If both the sculpture and embedding problems are affirmatively solved for i : Γ → G,
then the morphism G → G/Γ is a versal family over R of unramified Γ -extensions with
normal basis. In other words, we study the inverse Galois problem with normal basis in
the framework of group schemes, extracting the sculpture and embedding problems from the
inverse Galois problem.

In the previous works, we treated the sculpture and embedding problems concerning
(1) the Kummer theory ([10, Corollary 2.3]);
(2) the Kummer-Artin-Schreier theory ([10, Corollary 2.7]);
(3) the Artin-Schreier theory ([10, Corollary 2.10]);
(4) the quadratic-twisted Kummer theory of odd degree ([10, Corollary 3.6]);
(5) the quadratic-twisted Kummer theory of even degree ([10, Corollary 3.12]);
(6) the quadratic-twisted Kummer-Artin-Schreier theory ([10, Corollary 4.4]);
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(7) the Artin-Schreier-Witt theory ([11, Theorem 2.5]).

In this article, we study the sculpture and embedding problems concerning Kummer
theories for algebraic tori, on which Kida developed his arguments in [2] and [3] generalizing
the classical Kummer theory to describe the cyclic extensions of degree n of a field without
n-th roots of unity. We proceed our argument not only over a field but also over a ring,
considering integral models of Kummer theories for algebraic tori, while the base field is
restricted to be the rational number field Q. The following list shows which proposition
replies to which problem:

(1) Proposition 3.4: the sculpture problem concerning the Kummer theory for Weil re-
strictions;

(2) Theorem 3.6: the embedding problem concerning the Kummer theory for Weil re-
strictions;

(3) Propositions 4.3 and 4.4: the sculpture problem concerning the Kummer theory for
norm tori;

(4) Theorem 4.5: the embedding problem concerning the Kummer theory for norm tori;
(5) Proposition 6.4: the sculpture and embedding problems concerning integral models

of the Kummer theory for Weil restrictions;
(6) Proposition 6.11: the sculpture and embedding problems concerning integral models

of the Kummer theory for norm tori;
(7) Theorem 6.14: the sculpture and embedding problems concerning integral models of

the cyclotomic-twisted Kummer theory.

Now we explain the organization of this article briefly. In Section 1 we recall the sculp-
ture and embedding problems. In Section 2 we recall needed facts on algebraic tori and on
group algebras. In fact, Remark 2.10 is the key to Theorem 3.6, Remark 2.7 to Proposition 4.4,
and Remark 2.12 to Theorem 4.5. It is crucial that there exists an anti-equivalence between
algebraic tori and integral representations of the Galois group. This enables us to translate
freely many problems on algebraic tori into the language of rings and modules.

We treat the Kummer theory for Weil restrictions in Section 3, and the Kummer theory for
norm tori in Section 4. It would be worthwhile to remark that Proposition 3.4 and Proposition
4.4 reveal an evident difference between the Kummer theories for Weil restrictions and for
norm tori.

In Section 5 we mention the isogeny problem concerning Kummer theories for algebraic
tori, which is the main subject of Kida [2], [3]. We conclude the article, by discussing the
sculpture and embedding problems for analogues of norm tori in the Kummer-Artin-Schreier
theory in Section 6.

The author thanks the referees for their careful reading the manuscript.
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Notation

For a ring R (not necessarily commutative), R× denotes the multiplicative group of in-
vertible elements of R. A ring is assumed to be commutative unless otherwise mentioned.

For an A-algebra B, which is projective of finite type as A-module,
∏

B/A denotes the

Weil restriction functor with respect to the ring extension B/A.
We use the following notation.

Ga,A : the additive group scheme over A

Gm,A : the multiplicative group scheme over A

U(Γ ) : recalled in 1.3
∏(1)

B/A Gm,B : defined in 2.6
∏(1)

Z[ζ ]/Z G(λ) : defined in 6.7

χd : U(Γ )→∏

Z[ζd ]/ZGm,Z[ζd ] : defined in 2.1

G(λ) : recalled in 6.1
α(λ) : G(λ)→ Gm,A : recalled in 6.1

χ̃ : Ker[ε : U(Γ )→ Gm,Z] →∏

Z[ζ ]/Z G(λ) : defined in 6.3

s : U(Γ )→ Ker[ε : U(Γ )→ Gm,Z] : defined in 6.3

1. Sculpture problem and embedding problem

In this section we recall the sculpture and embedding problems, referring to the previous
articles [10] and [11] for details. We refer to [1] or [13] on formalisms of affine group schemes
and Hopf algebras.

1.1. As usual we denote by Gm = SpecZ[U, 1/U ] the multiplicative group scheme
and byGa = SpecZ[T ] the additive group scheme, respectively. The multiplication is defined
by U �→ U ⊗U , and the addition is defined by T �→ T ⊗ 1+ 1⊗ T .

1.2. Let Γ be a finite group. The functor R �→ R[Γ ] is represented by the ring scheme
A(Γ ) defined by

A(Γ ) = SpecZ[Tγ ; γ ∈ Γ ]
with

(a) the addition: Tγ �→ Tγ ⊗ 1+ 1⊗ Tγ ;
(b) the multiplication: Tγ �→∑

γ ′γ ′′=γ Tγ ′ ⊗ Tγ ′′ .

Put now

U(Γ ) = SpecZ

[

Tγ ,
1

ΔΓ

; γ ∈ Γ

]

,
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where ΔΓ = det(Tγ γ ′) denotes the determinant of the matrix (Tγ γ ′)γ,γ ′∈Γ (the group deter-

minant of Γ ). Then U(Γ ) is an open subscheme of A(Γ ), and the functor R �→ R[Γ ]× is
represented by the group scheme U(Γ ).

We also denote by Γ , for the abbreviation, the constant group scheme defined by
Γ . More precisely, Γ = SpecZΓ and the law of multiplication is defined by eγ �→
∑

γ ′γ ′′=γ eγ ′ ⊗ eγ ′′ . Here ZΓ denotes the functions from Γ to Z, and (eγ )γ∈Γ is a basis

of ZΓ over Z defined by

eγ (γ ′) =
{

1 (γ ′ = γ )

0 (γ ′ �= γ ) .

The canonical injection Γ → R[Γ ]× is represented by the homomorphism of group schemes
i : Γ → U(Γ ) defined by

Tγ �→ eγ : Z
[

Tγ ,
1

ΔΓ

]

→ ZΓ .

It is readily seen that Γ → U(Γ ) is a closed immersion. Moreover, the right multiplication
by γ ∈ Γ on U(Γ ) is defined by the automorphism γ : Tγ ′ �→ Tγ ′γ−1 of Z[Tγ , 1/ΔΓ ].

If Γ = {1}, then U(Γ ) is nothing but the multiplicative group scheme Gm,Z =
SpecZ[U, 1/U ].

DEFINITION 1.3. Let R be a ring, Γ a finite group and S an R-algebra. We shall say
that:
(1) S/R is an unramified Galois extension with Galois group Γ if Spec S has a structure of
right Γ -torsor over Spec R;
(2) an unramified Galois extension S/R with Galois group Γ has a normal basis if there exists
s ∈ S such that (γ s)γ∈Γ is a basis of R-module S.

In particular, an unramified Galois extension S/R with Galois group Γ is called an
unramified cyclic extension of degree n if Γ is a cyclic group of order n.

EXAMPLE 1.4. Let S = Z[Tγ , 1/ΔΓ ; γ ∈ Γ ], and let R = SΓ denote the invariants
in S under the action of Γ . Then S/R is an unramified Galois extension with Galois group
Γ , and (Tγ−1)γ∈Γ is a normal basis of the Galois extension S/R.

1.5. The morphism U(Γ ) → U(Γ )/Γ is a versal family of unramified Γ -extension
with normal basis. That is to say, the following assertion holds true:
(A) Let R be a ring, Γ a finite group and S/R an unramified Galois extension with Galois
group Γ . Then the Galois extension S/R has a normal basis if and only if there exist mor-
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phisms Spec S → U(Γ ) and Spec R→ U(Γ )/Γ such that the diagram

Spec S −−−−→ U(Γ )
⏐
⏐
�

⏐
⏐
�

Spec R −−−−→ U(Γ )/Γ

is cartesian.

The assertion (A) implies the following assertions:

(B) Let R be a ring, G an affine group scheme and Γ a constant finite subgroup scheme
of G.

(1) Let S/R be an unramified Galois extension with Galois group Γ . Assume that there
exists a commutative diagram

Γ
i−−−−→ U(Γ )

⏐
⏐
��

⏐
⏐
�

Γ −−−−→ G .

Then, if the Galois extension S/R has a normal basis, there exist morphisms Spec S → G

and Spec R→ G/Γ such that the diagram

Spec S −−−−→ G
⏐
⏐
�

⏐
⏐
�

Spec R −−−−→ G/Γ

is cartesian.
(2) Let S/R be the unramified Galois extension with Galois group Γ defined by a carte-

sian diagram

Spec S −−−−→ G
⏐
⏐
�

⏐
⏐
�

Spec R −−−−→ G/Γ .

Assume that there exists a commutative diagram

Γ −−−−→ G
⏐
⏐
��

⏐
⏐
�

Γ
i−−−−→ U(Γ ) .

Then the Galois extension S/R has a normal basis.

It is now interesting to propose the problem whether the following assertions hold true:
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(1) Let Γ be a finite group and R a ring. Given an affine group R-scheme G and an
embedding i : Γ → G, there exists a commutative diagram

Γ −−−−→ U(Γ )R
⏐
⏐
��

⏐
⏐
�

Γ
i−−−−→ G .

(2) Let Γ be a finite group and R a ring. Given an affine group R-scheme G and an
embedding i : Γ → G, there exists a commutative diagram

Γ
i−−−−→ G

⏐
⏐
��

⏐
⏐
�

Γ −−−−→ U(Γ )R .

The problems shall be called respectively sculpture problem and embedding problem for
the embedding of group schemes i : Γ → G.

If both the sculpture and embedding problems are affirmatively solved for i : Γ → G,
then the morphism G → G/Γ is a versal family over R of unramified Γ -extension with
normal basis.

2. Algebraic tori

In this section we recall needed facts on algebraic tori and group algebras. We refer to
Demazure-Gabriel [1, Ch.IV, 1] concerning generalities on algebraic tori.

DEFINITION 2.1. Let A be a ring and Γ a finitely generated commutative group. Then
the group algebra A[Γ ] is a Hopf A-algebra equipped with the comultiplication γ �→ γ ⊗ γ .
Moreover, D(Γ )A = Spec A[Γ ] is a commutative group A-scheme. For example, if Γ = Z,
then D(Γ )A = Gm,A.

DEFINITION 2.2. Let A be a ring and V a group A-scheme of finite type. We say
that V is diagonalizable if there exists a finitely generated commutative group Γ such that
D(Γ )A is isomorphic to V . Furthermore, we say that V is of multiplicative type if there exists
an unramified Galois extension B/A such that V ⊗R B is a diagonalizable group B-scheme.
Then HomB−gr(VB,Gm,B) has a left action by Gal(B/A).

Let V be a group A-scheme of multiplicative type. Assume that Spec A is connected, and
let Π denote the fundamental group. Then HomA−gr(V ,Gm,A) has a continuous left action of
Π . The correspondence V �→ HomA−gr(V ,Gm,A) gives rise to an anti-equivalence between
the category of group A-schemes of multiplicative type and the category of discrete left Π-
modules, finitely generated as Z-module. We call the left Π-module HomA−gr(V ,Gm,A) the
character group of the group A-scheme V of multiplicative type. In particular, V is called an
algebraic torus if the character group of V is a free Z-module.
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EXAMPLE 2.3. Let A be a ring, B/A an unramified Galois extension and G =
Gal(B/A). Then the Weil restriction

∏

B/A Gm,B is an algebraic torus with character group

Z[G] (for example, see [13, Theorem 7.5]). Therefore, if Spec A is connected, we have

EndA−gr

(
∏

B/A

Gm,B

)

= (EndZ[G]Z[G])◦ = Z[G] .

Furthermore, let H be a subgroup of G, and put A′ = BH . Then the Weil restriction
∏

A′/A Gm,A′ is an algebraic torus with character group Z[G/H ].
NOTATION 2.4. Let G be a finite group. We define a homomorphism of left Z[G]-

modules εG : Z[G] → Z by
∑

g∈G
agg �→

∑

g∈G
ag .

We put

IG = Ker
[

εG : Z[G] → Z
]

.

Furthermore, let H be a subgroup of G. Then, tensoring Z[G]⊗Z[H ] with the exact
sequence of left Z[H ]-modules

0 −→ IH −→ Z[H ] εH−→ Z −→ 0 ,

we obtain an exact sequence of left Z[G]-modules

0 −→ Z[G] ⊗Z[H ] IH −→ Z[G] idG⊗εH−→ Z[G] ⊗Z[H ] Z −→ 0 .

(Here idG stands for the identity map of Z[G].) The correspondence g ⊗ 1 �→ [g] gives rise
to an isomorphism of left Z[G]-modules

Z[G] ⊗Z[H ] Z
∼−→ Z[G/H ] .

Under the identification Z[G]⊗Z[H ]Z
∼→ Z[G/H ], the map idG⊗εH : Z[G] → Z[G]⊗Z[H ]

Z is identified with the homomorphism of left Z[G]-modules Z[G] → Z[G/H ] defined by
∑

g∈G
agg �→

∑

g∈G
ag [g] .

Now define a homomorphism of left Z[G]-modules εG/H : Z[G/H ] → Z by
∑

γ∈G/H

aγ γ �→
∑

γ∈G/H

aγ .

Then we have εG = εG/H ◦ (idG ⊗ εH ). We put

IG/H = Ker
[

εG/H : Z[G/H ] → Z
]
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Then left Z[G]-module IG/H is a free Z-module with basis {γ − 1 ; γ ∈ G/H, γ �= 1}.
Now we define a homomorphism of right Z[G]-modules εH\G : Z[H\G] → Z by

∑

γ∈H\G
aγ γ �→

∑

γ∈H\G
aγ ,

and we put

IH\G = Ker
[

εH\G : Z[H\G] → Z
]

.

The right Z[G]-module IH\G is a free Z-module with basis {γ − 1 ; γ ∈ H\G, γ �= 1}.
DEFINITION 2.5. Let G be a finite group. We define a homomorphism of left Z[G]-

modules νG : Z→ Z[G] by

1 �→
∑

g∈G
g ,

and we put

JG = Coker
[

νG : Z→ Z[G]] .

The left Z[G]-module JG is a free Z-module with basis {[g] ; g ∈ G, g �= 1}.
Furthermore, let H be a subgroup of G. Then, tensoring Z[G]⊗Z[H ] with the exact

sequence of left Z[H ]-modules

0 −→ Z
νH−→ Z[H ] −→ JH −→ 0 ,

we obtain an exact sequence of left Z[G]-modules

0 −→ Z[G] ⊗Z[H ] Z
idG⊗νH−→ Z[G] −→ Z[G] ⊗Z[H ] JH −→ 0 .

Under the identification Z[G] ⊗Z[H ] Z
∼→ Z[G/H ], the map idG ⊗ νH : Z[G] ⊗Z[H ] Z →

Z[G] is identified with the homomorphism of left Z[G]-modules Z[G/H ] → Z[G] defined
by

∑

γ∈G/H

aγ γ �→
∑

γ∈G/H

aγ

(
∑

g∈γ
g

)

.

Now define a homomorphism of left Z[G]-modules νG/H : Z→ Z[G/H ] by

1 �→
∑

γ∈G/H

γ .

Then we have νG = (idG ⊗ νH ) ◦ νG/H . We put

JG/H = Coker
[

νG/H : Z→ Z[G/H ]] .
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The left Z[G]-module JG/H is a free Z-module with basis {[γ ] ; γ ∈ G/H, γ �= 1}.
Now we translate the statements of 2.5 into the language of algebraic tori.

DEFINITION 2.6. Let A be a ring, B/A an unramified Galois extension and G =
Gal(B/A). The the exact sequence of left Z[G]-modules

0 −→ Z
ν−→ Z[G] −→ JG −→ 0

defines an exact sequence of algebraic tori over A

0 −→
∏

B/A

(1)
Gm,B −→

∏

B/A

Gm,B

NrB/A−→ Gm,A −→ 0 .

The algebraic torus

∏

B/A

(1)
Gm,B = Ker

[

NrB/A :
∏

B/A

Gm,B → Gm,A

]

is called the norm torus associated to the unramified Galois extension B/A. If Spec A is
connected, we have

EndA−gr

(
∏

B/A

(1)
Gm,B

)

= (EndZ[G]JG)◦ = JG.

REMARK 2.7. Let G be a finite group and H be a subgroup of G. Then the correspon-
dence ϕ �→ ϕ(1) gives rise to a group isomorphism

HomZ[G](JG,Z[G/H ]) ∼−→ IG/H .

In particular, the correspondence ϕ �→ ϕ(1) gives rise to a group isomorphism

HomZ[G](JG,Z[G]) ∼−→ IG .

The statements of 2.7 are translated into the language of algebraic tori as follows.

REMARK 2.8. Let B be a ring, B/A an unramified Galois extension and G =
Gal(B/A). Let H be a subgroup of G and A′ = BH . Then, if Spec A is connected, we
obtain a group isomorphism

HomA−gr

(
∏

A′/A
Gm,A′,

∏

B/A

(1)
Gm,B

)

∼−→ IG/H

since
∏

A′/A Gm,A′ is an algebraic torus with character group Z[G/H ]. In particular, we

obtain a group isomorphism

HomA−gr

(
∏

B/A

Gm,B,
∏

B/A

(1)
Gm,B

)

∼−→ IG.
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REMARK 2.9. Let G be a group, H a subgroup of G and ϕ ∈
HomZ[G](Z[G/H ],Z[G]). Then ϕ(1) is expressed uniquely in the form of

ϕ(1) =
∑

γ∈H\G
aγ

(
∑

g∈γ
g

)

.

The correspondence

ϕ �→
∑

γ∈H\G
aγ γ

gives rise to a group isomorphism

HomZ[G](Z[G/H ],Z[G]) ∼−→ Z[H\G] .
In particular, idG ⊗ νH ∈ HomZ[G](Z[G/H ],Z[G]) corresponds to 1 ∈ Z[H\G].

Furthermore, if H is a normal subgroup of G, the isomorphism

HomZ[G](Z[G/H ],Z[G]) ∼→ Z[G/H ] is compatible with the right action of the group
algebra Z[G/H ]. Therefore any Z[G]-homomorphism of Z[G/H ] → Z[G] is expressed
uniquely in the form of

(idG ⊗ νH )α , α ∈ Z[G/H ] .

The statements of 2.9 are translated into the language of algebraic tori as follows.

REMARK 2.10. Let A be a ring, B/A an unramified Galois extension and G =
Gal(B/A). Let H be a subgroup of G and A′ = BH . Then, if Spec A is connected, we
obtain a group isomorphism

HomA−gr

(
∏

B/A

Gm,B,
∏

A′/A
Gm,A′

)

∼−→ Z[H\G] .

In particular, if H is a normal subgroup, any homomorphism
∏

B/A Gm,B → ∏

A′/A Gm,A′

are expressed uniquely in the form of

α ◦ NrB/A′ , α ∈ Z[G/H ] = EndA−gr

(
∏

A′/A
Gm,A′

)

.

REMARK 2.11. Let G be a finite group, H a subgroup of G and ϕ ∈
HomZ[G](Z[G/H ], JG). Then ϕ(1) is expressed uniquely in the form of

ϕ(1) =
∑

γ∈H\G
γ �=H

aγ

(
∑

g∈γ
g

)

.



838 NORIYUKI SUWA

The correspondence

ϕ �→
∑

γ∈H\G
aγ γ

gives rise to a group isomorphism

HomZ[G](Z[G/H ], JG)
∼−→ IH\G = Ker

[

εH\G : Z[H\G] → Z
]

.

In particular, if H is a normal subgroup of G, the isomorphism

HomZ[G](Z[G/H ], JG)
∼→ IG/H = Ker

[

εG/H : Z[G/H ] → Z
]

is compatible with
the right action of the group algebra Z[G/H ]. Therefore any Z[G]-homomorphism
Z[G/H ] → JG is expressed in the form of

π ◦ (idG ⊗ νH )α, α ∈ Z[G/H ] .
Here π : Z[G] → JG = Z[G]/Z denotes the canonical surjection.

Finally the statements of 2.11 are translated into the language of algebraic tori as follows.

REMARK 2.12. Let A be a ring, B/A an unramified Galois extension and G =
Gal(B/A). Let H be a subgroup of G and A′ = BH . Then, if Spec A is connected, we
obtain a group isomorphism

HomA−gr

(
∏

B/A

(1)
Gm,B,

∏

A′/A
Gm,A′

)

∼−→ IH\G = Ker
[

εH\G : Z[H\G] → Z
]

.

In particular, if H is a normal subgroup of G, any homomorphism
∏(1)

B/A Gm,B →
∏

A′/A Gm,A′ is expressed in the form of

α ◦ NrB/A′ , α ∈ Z[G/H ] = EndA−gr

(
∏

A′/A
Gm,A′

)

.

We conclude the section by mentioning the work of Mazur-Rubin-Silverberg [4].

NOTATION 2.13. Let A be a ring, B/A an unramified Galois extension and G =
Gal(B/A). Let R be a ring (not necessarily commutative), and let π : Z[G] → R be a
ring homomorphism. Then by restriction of scalars all the left R-modules can be considered
as left Z[G]-module. Then a group A-scheme of multiplicative type is defined for any left
R-module, finitely generated as Z-module.

For example, let ρ : G → GL(n,Z) be a linear representation of G over Z, and put
Rρ = Im[ρ : Z[G] → M(n,Z)]. We denote by Gm(ρ) the algebraic torus over A with
character group Rρ . If Spec A is connected, then we have EndA−grGm(ρ) = Rρ .
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REMARK 2.14. Let A be a ring, B/A an unramified Galois extension and G =
Gal(B/A). Let V be a commutative group A-scheme of finite type. Then a ring homo-
morphism

Z[G] = EndZ[G]Z[G] → EndA−gr

(
∏

B/A

VB

)

is defined. For an irreducible representation ρ of G, the twist Vρ of V by ρ is defined as is
described in Mazur-Rubin-Silverberg [4]. The twist of Gm,A by ρ is nothing but Gm(ρ).

In [4] their argument is developed for algebraic groups over a field, but it is not difficult
to paraphrase the argument on a ring. For example, the assertion of [4, Remark 5.11] holds
true for a ring.

THEOREM 2.15 (Mazur-Rubin-Silverberg). Let A be a ring, B/A an unramified
cyclic extension of degree m and G = Gal(B/A). Let V be a commutative group A-scheme
of finite type. Take a generator g of G and let ρ : G→ C× denote the character of G defined

by ρ(g) = e2πi/m. Then we have

Vρ =
⋂

A⊂A′�B

Ker

[

NrB/A′ :
∏

B/A

VB →
∏

A′/A
VA′

]

.

3. Kummer theory for Weil restrictions

In this section, n denotes a positive integer, Γ a cyclic group of order n and γ a generator

of Γ . We put ζ = ζn = e2πi/n and µn = {1, ζ, . . . , ζ n−1}.
3.1. Let R be ring. For a positive divisor d of n, we define a ring homomorphism

χd,R : R[Γ ] → R ⊗Z Z[ζd ] and a group homomorphism χd,R : R[Γ ]× → (R ⊗Z Z[ζd ])×
by

χd,R :
n−1
∑

k=0

akγ
k �→

n−1
∑

k=0

ak ⊗ ζ k
d .

The group homomorphism χd,R : R[Γ ]× → (R ⊗Z Z[ζd ])× is represented by a homomor-
phism of group schemes

χd : U(Γ )→
∏

Z[ζd ]/Z
Gm,Z[ζd ] .

Put

χ = (χd)d |n : U(Γ )→
∏

d |n

∏

Z[ζd ]/Z
Gm,Z[ζd ] .
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Then χ is an isomorphism of group schemes over Z[1/n]. Indeed, the inverse is given by

(αd)d |n �→ 1

n

n−1
∑

j=0

{
∑

d |n
TrR⊗ZZ[ζd ]/R(1⊗ ζ

−j

d )αd

}

γ j .

REMARK 3.2. Put G = Gal(Q(ζ )/Q). Then, as is mentioned in 2.3, the Weil re-
striction

(∏

Z[ζ ]/ZGm,Z[ζ ]
)⊗Z Z[1/n] is an algebraic torus over Z[1/n] with character group

Z[G] since Z[ζ, 1/n] is unramified over Z[1/n].
Furthermore, for each positive divisor d of n, put Gd = Gal(Q(ζd)/Q). Then Z[Gd ]

is considered as Z[G]-module through the canonical surjection Z[G] → Z[Gd ]. The Weil
restriction

(∏

Z[ζd ]/ZGm,Z[ζd ]
) ⊗Z Z[1/n] is an algebraic torus over Z[1/n] with character

groupZ[Gd ], and therefore U(Γ )Z[1/n] is an algebraic torus over Z[1/n]with character group
⊕

d |n Z[Gd ].
OBSERVATION 3.3. Let R be a ring. Then a group homomorphism ιR : Γ → (R ⊗Z

Z[ζ ])× is defined by γ �→ 1⊗ ζ . Furthermore, the homomorphism ιR : Γ → (R⊗Z Z[ζ ])×
is represented by a homomorphism of group schemes ι : Γ → ∏

Z[ζ ]/ZGm,Z[ζ ].

PROPOSITION 3.4. Let n be a positive integer.

(a) If n is odd, the homomorphism ι : Γ → ∏

Z[ζ ]/Z Gm,Z[ζ ] is an embedding of group

schemes. Furthermore, the diagram

Γ −−−−→ U(Γ )
∥
∥
∥

⏐
⏐
�χn

Γ −−−−→
ι

∏

Z[ζ ]/Z
Gm,Z[ζ ]

is commutative, that is to say, the sculpture problem is affirmatively solved over Z for the
embedding ι : Γ →∏

Z[ζ ]/ZGm,Z[ζ ].

(b) If n is even, the homomorphism ι : Γ → (∏

Z[ζ ]/ZGm,Z[ζ ]
) ⊗Z Z[1/2] is an embedding

of group schemes over Z[1/2]. Furthermore, the diagram

Γ −−−−→ U(Γ )Z[1/2]
∥
∥
∥

⏐
⏐
�χn

Γ −−−−→
ι

(
∏

Z[ζ ]/Z
Gm,Z[ζ ]

)

⊗Z Z[1/2]

is commutative, that is to say, the sculpture problem is affirmatively solved over Z[1/2] for
the embedding ι : Γ → (∏

Z[ζ ]/ZGm,Z[ζ ]
)⊗Z Z[1/2].
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PROOF. Let R be a ring, and let i, j ∈ Z. Then 1⊗ζ i, 1⊗ζ j ∈ R⊗ZZ[ζ ] are linearly
dependent over R if and only if ζ i = ±ζ j . Therefore the equality 1 ⊗ ζ i = 1 ⊗ ζ j holds

true if and only if ζ i = ζ j , or ζ i = −ζ j and 2 = 0 in R. Then ιR : Γ → (R ⊗Z Z[ζ ])× is
injective if n is odd or if n is even and 2 �= 0 in R. This implies the assertions of (a) and (b).

REMARK 3.5. There exists uniquely i(g) ∈ (Z/nZ)× such that g(ζ ) = ζ i(g) for each
g ∈ G = Gal(Q(ζ )/Q). As is well known, the correspondence g �→ i(g) gives rise to a group

isomorphism Gal(Q(ζ )/Q)
∼→ (Z/nZ)×. Moreover, we denote by Z/nZ(1) the left Z[G]-

module Z/nZ equipped with the action (g, l) �→ i(g)l. Then the constant group scheme Γ

over Z[1/n] is a group scheme of multiplicative type with character group Z/nZ(1). The
embedding of group schemes of multiplicative type i : Γ → (∏

Z[ζ ]/ZGm,Z[ζ ]
) ⊗Z Z[1/n]

induces the Z[G]-homomorphism ηn : Z[G] → Z/nZ(1), which is defined by 1 �→ 1
mod n.

As is remarked in 3.2, the group scheme U(Γ )Z[1/n] is an algebraic torus over
Z[1/n] with character group ⊕d |nZ[Gd ]. Furthermore, 1 �→ n/d mod n defines a Z[G]-
homomorphism ηd : Z[Gd ] → Z/nZ(1). The homomorphism of the character groups corre-
sponding to the embedding i : Γ → U(Γ )Z[1/n] is defined by

η =
∑

d |n
ηd :

⊕

d |n
Z[Gd ] → Z/nZ(1) .

THEOREM 3.6. Let n be an integer≥ 2. Then the following conditions are equivalent.
(a) The embedding problem is affirmatively solved over Z[1/n] for the embedding Γ →

∏

Z[ζ ]/Z Gm,Z[ζ ].
(b) The embedding problem is affirmatively solved over Q for the embedding Γ →

∏

Z[ζ ]/Z Gm,Z[ζ ].
(c) For each positive divisor d of n, the map NrQ(ζn)/Q(ζd) induces a surjection µn → µd .

PROOF. (a)⇒(b) Clear. (b)⇒(c) By the assumption, there exists a homomorphism of
group scheme σ :∏Q(ζ )/QGm,Q(ζ )→ U(Γ )Q such that the diagram

Γ −−−−→
∏

Q(ζn)/Q

Gm,Q(ζn)

⏐
⏐
��

⏐
⏐
�σ

Γ −−−−→ U(Γ )Q

is commutative. Now let d be a positive divisor n. Then the homomorphism of group schemes

χd : U(Γ )Q→
∏

Q(ζd )/Q

Gm,Q(ζd)
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induces a surjection Γ → µd , and therefore the homomorphism

χd ◦ σ :
∏

Q(ζn)/Q

Gm,Q(ζn)→
∏

Q(ζd)/Q

Gm,Q(ζd )

induces a surjection Γ = µn → µd . As is remarked in 2.10, any homomorphism
∏

Q(ζn)/QGm,Q(ζn)→∏

Q(ζd )/QGm,Q(ζd) is expressed uniquely in the form of

α ◦ NrQ(ζn)/Q(ζd), α ∈ EndQ−gr

(
∏

Q(ζd )/Q

Gm,Q(ζd)

)

.

Put χd ◦ σ = α ◦NrQ(ζn)/Q(ζd). Then α induces a surjection µd → µd . Moreover α induces a
bijection of µd to µd since µd is a finite group. Therefore NrQ(ζn)/Q(ζd) induces a surjection
of µn to µd .

(c)⇒(a) By the assumption, for each positive divisor d of n, there exists an integer ld such

that NrQ(ζn)/Q(ζd)(ζ
ld
n ) = ζd . Furthermore, putting

σ = ((NrZ(ζn)/Z(ζd))
ld )d |n :

∏

Z[ζn]/Z
Gm,Z[ζn] →

∏

d |n

∏

Z[ζd ]/Z
Gm,Z(ζd) ,

we obtain a commutative diagram of group schemes over Z[1/n]

Γ −−−−→
(

∏

Z[ζn]/Z
Gm,Z[ζn]

)

⊗Z Z[1/n]
⏐
⏐
��

⏐
⏐
�σ

Γ −−−−→ U(Γ )Z[1/n] =
(

∏

d |n

∏

Z[ζd ]/Z
Gm,Z[ζd ]

)

⊗Z Z[1/n]

.

EXAMPLE 3.7. If n is even ≥ 4, the embedding problem is negatively solved over Q
for the embedding Γ →∏

Z[ζ ]/ZGm,Z[ζ ].
Indeed, NrQ(ζn)/Q(ζ2) : µn → µ2 = {±1} is not surjective since NrQ(ζn)/Q(ζ ) = 1.

EXAMPLE 3.8. For n = 15, the embedding problem is affirmatively solved over
Z[1/n] for the embedding Γ →∏

Z[ζ ]/ZGm,Z[ζ ].
Indeed, NrQ(ζ15)/Q(ζ3) : µ15 → µ3 and NrQ(ζ15)/Q(ζ5) : µ15 → µ5 are both surjective

since NrQ(ζ15)/Q(ζ3)(ζ15) = ζ−1
3 and NrQ(ζ15)/Q(ζ5)(ζ15) = ζ−1

5 .

EXAMPLE 3.9. For n = 21, the embedding problem is negatively solved over Q for
the embedding Γ →∏

Z[ζ ]/ZGm,Z[ζ ].
Indeed, NrQ(ζ21)/Q(ζ3) : µ21→ µ3 is not surjective since NrQ(ζ21)/Q(ζ3)(ζ21) = 1.
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EXAMPLE 3.10. Let p be a prime number > 2, and put n = pr . Then the embedding
problem is affirmatively solved over Z[1/p] for the embedding Γ →∏

Z[ζ ]/ZGm,Z[ζ ].
Indeed, let R be a Z[1/p]-algebra. Then the group homomorphism

(

R⊗Z[1/p]Z[ζpr,1/p])×→R[Γ ]× :a �→ 1

pr

pr−1
∑

j=0

{ r∑

l=0

TrR⊗ZZ[ζpl ]/R
(

ζ
−j

pl NrR⊗ZZ[ζpr ]/R⊗ZZ[ζpl ]a
)
}

γ j

is represented by a homomorphism of group schemes

σ :
(

∏

A/Z

Gm,A

)

⊗Z Z[1/p] → U(Γ )Z[1/p] .

We obtain a commutative diagram of group schemes

Γ −−−−→
(

∏

Z[ζpr ]/Z
Gm,Z[ζpr ]

)

⊗Z Z[1/p]
⏐
⏐
��

⏐
⏐
�σ

Γ −−−−→ U(Γ )Z[1/p] =
( r

∏

l=0

∏

Z[ζ
pl ]/Z

Gm,Z[ζ
pl ]

)

⊗Z Z[1/p]

since NrQ(ζpr )/Q(ζ
pr−1 )ζpr = ζpr−1 .

4. Kummer theory for norm tori

In this section, n denotes a positive integer, Γ a cyclic group of order n and γ a generator

of Γ . We put ζ = ζn = e2πi/n.

NOTATION 4.1. Let R be a ring. The map Nr : Z[ζ ] → Z induces a homomorphism of
multiplicative groups Nr : (R⊗Z Z[ζ ])× → R×. The homomorphism Nr : (R⊗Z Z[ζ ])× →
R× is represented by a homomorphism of group schemes

Nr :
∏

Z[ζ ]/Z
Gm,Z[ζ ] → Gm,Z .

Put now
∏

Z[ζ ]/Z

(1)
Gm,Z[ζ ] = Ker[Nr :

∏

Z[ζ ]/Z
Gm,Z[ζ ] → Gm,Z] .

Then the homomorphism of group schemes Γ → ∏

Z[ζ ]/ZGm,Z[ζ ] is factorized as

Γ −→
∏

Z[ζ ]/Z

(1)
Gm,Z[ζ ]

inclusion−→
∏

Z[ζ ]/Z
Gm,Z[ζ ]
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since NrQ(ζ )/Qζ = 1.

REMARK 4.2. Put G = Gal(Q(ζ )/Q). As is remarked in 2.6,
(∏(1)

Z[ζ ]/ZGm,Z[ζ ]
)⊗Z

Z[1/n] is an algebraic torus over Z[1/n] with character group JG = Z[G]/Z.

PROPOSITION 4.3. If n is odd ≥ 3, the sculpture problem is affirmatively solved over

Z[1/n] for the embedding Γ → ∏(1)
Z[ζ ]/ZGm,Z[ζ ].

PROOF. There exists g ∈ G = Gal(Q(ζ )/Q) such that g(ζ ) = ζ 2 since n is odd.
Defining a homomorphism of Z[G]-modules ξ : JG = Z[G]/Z→ Z[G] by [1] �→ g − 1, we
obtain a commutative diagram of Z[G]-modules

Z/nZ(1) ←−−−−
η

Z[G]
�
⏐
⏐�

�
⏐
⏐ξ

Z/nZ(1) ←−−−−
η

JG

,

and therefore a commutative diagram of group schemes over Z[1/n]
Γ −−−−→

∏

Z[ζ ]/Z
Gm,Z[ζ ]

⏐
⏐
��

⏐
⏐
�ξ̃

Γ −−−−→
∏

Z[ζ ]/Z

(1)
Gm,Z[ζ ]

.

We have gotten the conclusion, combining the above diagram with the commutative diagram
of group schemes over Z[1/n]

Γ −−−−→ U(Γ )
⏐
⏐
��

⏐
⏐
�χn

Γ −−−−→
∏

Z[ζ ]/Z
Gm,Z[ζ ]

.

PROPOSITION 4.4. If n is even ≥ 4, the sculpture problem is negative over Q for the

embedding problem Γ → ∏(1)
Z[ζ ]/ZGm,Z[ζ ].

PROOF. Assume that there exists a commutative diagram of group schemes over Q

Γ −−−−→ U(Γ )Q
⏐
⏐
��

⏐
⏐
�ξ̃

Γ −−−−→
∏

Q(ζ )/Q

(1)
Gm,Q(ζ )

.
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Then we obtain a commutative diagram of Z[G]-modules

Z/nZ(1)
η←−−−−

⊕

d |n
Z[Gd ]

�
⏐
⏐�

�
⏐
⏐ξ

Z/nZ(1) ←−−−−
ηn

JG

.

Now we define ξd : JG → Z[Gd ] by

ξ = (ξd)d |n : JG −→
⊕

d |n
Z[Gd ] .

As is remarked in 2.7, for each positive divisor d of n, we have

Im ξd ⊂ IGd = Ker[ε : Z[Gd ] → Z] .
Moreover, i(g) ∈ Z/nZ is odd for each g ∈ G since n is even. This implies that
(n/2)ηd(ξd(1)) = 0 for each positive divisor d of n since IGd is generated by g−1 (g ∈ Gd).
Hence the homomorphism of Z[G]-modules η ◦ ξ : JG → ⊕

d |n Z[Gd ] → Z/nZ(1) is not

surjective. However, this contradicts the commutativity of the above diagram.

THEOREM 4.5. Let n be an integer ≥ 3. Then the embedding problem is affirma-

tively solved over Z[1/n] for Γ → ∏(1)
Z[ζ ]/ZGm,Z[ζ ] if and only if the embedding problem is

affirmatively solved over Z[1/n] for Γ → ∏

Z[ζ ]/ZGm,Z[ζ ].

PROOF. We can verify the if-part, weaving the embedding

Γ −→
∏

Z[ζ ]/Z

(1)
Gm,Z[ζ ] −→

∏

Z[ζ ]/Z
Gm,Z[ζ ]

into the commutative diagram

Γ −−−−→
∏

Z[1/n,ζ ]/Z[1/n]
Gm,Z[1/n,ζ ]

⏐
⏐
��

⏐
⏐
�ξ̃

Γ −−−−→ U(Γ )Z[1/n]

.

We now prove the only if-part. By the assumption, there exists a homomorphism of
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group schemes σ :∏(1)
Q(ζ )/QGm,Q(ζ ) → U(Γ )Q such that the diagram

Γ −−−−→
∏

Q(ζn)/Q

(1)
Gm,Q(ζn)

⏐
⏐
��

⏐
⏐
�σ

Γ −−−−→ U(Γ )Q

is commutative. Let d be a positive divisor of n. Then the homomorphism of group schemes

χd : U(Γ )Q→
∏

Q(ζd )/Q

Gm,Q(ζd)

induces a surjection Γ → µd , and therefore, the homomorphism of group schemes

χd ◦ σ :
∏

Q(ζn)/Q

(1)
Gm,Q(ζn) →

∏

Q(ζd )/Q

Gm,Q(ζd)

induces also a surjection Γ = µn → µd . As is mentioned in 2.12, the homomorphism of
group schemes of χd ◦ σ :∏Q(ζn)/QGm,Q(ζn) →∏

Q(ζd )/QGm,Q(ζd) is expressed in the form

of

α ◦ NrQ(ζn)/Q(ζd), α ∈ EndQ−gr

(
∏

Q(ζd )/Q

Gm,Q(ζd)

)

.

Then α induces a surjection µd → µd . Therefore the map NrQ(ζn)/Q(ζd) induces a surjection
µn → µd . It follows from Theorem 3.6 that the embedding problem is affirmatively solved
over Z[1/n] for Γ →∏

Z[ζ,1/n]/Z[1/n]Gm,Z[ζ,1/n].

5. Isogeny problem

5.1. Let Γ be a cyclic group of order n. It is an interesting problem to ask if the
constant group scheme Γ is isomorphic over Z[1/n] to the kernel of an endomorphism of
∏

Z[ζ ]/Z Gm,Z[ζ ] or
∏(1)

Z[ζ ]/ZGm,Z[ζ ], which shall be called isogeny problem. Here ζ = e2πi/n.

Put now G = Gal(Q(ζ )/Q). Then the isogeny problem for Γ → ∏

Z[ζ ]/ZGm,Z[ζ ] or

Γ →∏(1)
Z[ζ ]/ZGm,Z[ζ ] is equivalent to the question whether the kernel of the surjective Z[G]-

homomorphism η : Z[G] → Z/nZ(1) or η : JG → Z/nZ(1) is a principal ideal, respec-
tively. Evidently, if the isogeny problem is affirmatively solved for Γ → ∏

Z[ζ ]/ZGm,Z[ζ ],

then the isogeny problem is affirmatively solved also for Γ →∏(1)
Z[ζ ]/ZGm,Z[ζ ].

The isogeny problem for Weil restrictions is studied in [3], and the isogeny problem
for norm tori in [2]. More precisely, let k be a subfield of Q(ζ ) or Fp(ζ ) with (n, p) = 1,
where ζ is a primitive n-th root of unity. Put K = k(ζn) and G = Gal(K/k). In [3] Kida
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examined, when G is cyclic, the isogeny problem for the embedding Γ → ∏

K/k Gm,K . It

would be remarkable that he has gotten affirmative answers in the cases of k = Q and n =
3, 5, 7, 11. In [2] Kida examined the isogeny problem for the embedding Γ → ∏(1)

K/k Gm,K

when G is cyclic and the embedding Γ →∏

K/k Gm,K is factorized as Γ →∏(1)
K/k Gm,K →

∏

K/k Gm,K .

It would be remarkable also that, if G is cyclic of prime order l with (l, n) = 1 and
NrK/kζ = 1, the isogeny problems are equivalent for Γ → ∏

K/k Gm,K and for Γ →
∏(1)

K/k Gm,K (cf. [3, Proposition 4.1]).

Now we consider another kind of isogeny problem.

5.2. Let p denote a prime number > 2, Γ a cyclic group of order p, γ a generator of

Γ and ζ = e2πi/p.
Put G = Gal(Q(ζ )/Q), and let g be a generator of G. Define a character ρ : G→ C×

by ρ(g) = e2πi/(p−1). Then we have Im[ρ : Z[G] → C] = Z[ζp−1]. Let Gm(ρ) denote the
algebraic torus over Z[1/p] with character group Z[ζp−1]. Then, by the theorem of Mazur-
Rubin-Silverberg (recalled as Theorem 2.15), we have

Gm(ρ) =
(

⋂

Q⊂K⊂Q(ζ )
K �=Q(ζ )

Ker

[

NrZ(ζ )/OK
:

∏

Z[ζ ]/Z
Gm,Z[ζ ] →

∏

OK/Z

Gm,OK

])

⊗Z Z[1/p] .

Here OK stands for the ring of integers in K .
The embedding Γ → (

∏

Z[ζ ]/ZGm,Z[ζ ])⊗Z Z[1/p] is factorized as

Γ −→ Gm(ρ) −→
(

∏

Z[ζ ]/Z
Gm,Z[ζ ]

)

⊗Z Z[1/p]

since NrQ(ζ )/K(ζ ) = 1 for any subextension K �= Q(ζ ) of Q(ζ )/Q. The isogeny problem for
the embedding Γ → Gm(ρ) is equivalent to the question whether a prime ideal of Z[ζp−1]
over p is principal.

Swan [12] established a criterion for rationality of the function field of the homogeneous
space U(Γ )Q/Γ : if a prime ideal of Z[ζp−1] over p is not principal, then U(Γ )Q/Γ is not
rational as an algebraic variety over Q. In [12] Swan showed the cases p = 47, 113, 233
as counterexamples for the Noether problem on rationality of invariant fields, which are also
counterexamples for the isogeny problem for Γ → Gm(ρ).

Here are a few examples. We owe Kida [3, Example 4.3 and Example 4.4] the results
concerning the isogeny problem for Weil restrictions, though modifying the isogenies slightly.

EXAMPLE 5.3. p = 5, ζ = e2πi/5.
Define g ∈ Gal(Q(ζ )/Q) by g(ζ ) = ζ 2. Then G = Gal(Q(ζ )/Q) is generated by g .

Moreover, define a Z[G]-homomorphism η : Z[G] → Z/5Z(1) by g �→ 2 mod 5. Then η
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is surjective. Furthermore, a sequence of Z[G]-modules

0 −→ Z[G] 1+g−g3

−→ Z[G] η−→ Z/5Z(1) −→ 0

is exact. We obtain also exact sequences of Z[G]-modules

0 −→ JG
2+2g+g2

−→ JG
η−→ Z/5Z(1) −→ 0

and

0 −→ OK
1+2g−→ OK

η−→ Z/5Z(1) −→ 0 ,

noting that JG = Z[G]/(g4 + g3 + g2 + g + 1) and OK = Z[G]/(g2 + 1).

EXAMPLE 5.4. p = 7, ζ = e2πi/7.
Define g ∈ Gal(Q(ζ )/Q) by g(ζ ) = ζ 3. Then G = Gal(Q(ζ )/Q) is generated by g .

Moreover, define a Z[G]-homomorphism η : Z[G] → Z/7Z(1) by g �→ 3 mod 7. Then η

is surjective. Furthermore, a sequence of Z[G]-modules

0 −→ Z[G] −g+g
3+g4

−→ Z[G] η−→ Z/7Z(1) −→ 0

is exact. We obtain also exact sequences of Z[G]-modules

0 −→ JG
−g+g3+g4

−→ JG
η−→ Z/7Z(1) −→ 0

and

0 −→ OK
1−2g−→ OK

η−→ Z/7Z(1) −→ 0 ,

noting that JG = Z[G]/(g6 + g5 + g4 + g3 + g2 + g + 1) and OK = Z[G]/(g2 − g + 1).

6. Kummer-Artin-Schreier theory

In this section, p denotes a prime number and Γ = {1, γ , . . . , γ p−1} a cyclic group of
order p. First we recall the Kummer-Artin-Schreier sequence (cf. [14], [7]).

NOTATION 6.1. Let A be a ring and λ ∈ A. A commutative group A-scheme G(λ) is
defined by

G(λ) = Spec A

[

T ,
1

1+ λT

]

with multiplication

T �→ T ⊗ 1+ 1⊗ T + λT ⊗ T .
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Furthermore, a homomorphism of group A-schemes

α(λ) : G(λ) = Spec A

[

T ,
1

1+ λT

]

→ Gm,A = Spec A

[

U,
1

U

]

is defined by

U �→ 1+ λT .

If λ is invertible in A, then α(λ) is an isomorphism. On the other hand, if λ is not invertible

in A, then G(λ) ⊗A A0 is nothing but the additive group scheme Ga,A0 . Here A0 denotes the
residue ring A/(λ).

Hereafter we put ζ = e2πi/p, λ = ζ − 1 and A = Z[ζ ].
6.2. A homomorphism of group Z[ζ ]-scheme

Ψ : G(λ) = Spec A

[

T ,
1

1+ λT

]

→ G(λp) = Spec A

[

T ,
1

1+ λpT

]

is defined by

T �→ (1+ λT )p − 1

λp
.

It is readily seen that Ker[Ψ : G(λ) → G(λp)] is isomorphic to the constant group scheme
Z/pZ. Moreover, the diagram of group A-schemes with exact raws

0 −−−−→ Z/pZ −−−−→ G(λ) Ψ−−−−→ G(λp) −−−−→ 0
⏐
⏐
�

⏐
⏐
�α(λ)

⏐
⏐
�α(λp)

0 −−−−→ µp,Z[ζ ] −−−−→ Gm,Z[ζ ] −−−−→
p

Gm,Z[ζ ] −−−−→ 0

is commutative. Hence the sequence

[0 −→ Z/pZ −→ G(λ) Ψ−→ G(λp) −→ 0] ⊗Z[ζ ] Q(ζ )

is isomorphic to the Kummer sequence

0 −→ µp,Q(ζ ) −→ Gm,Q(ζ )
p−→ Gm,Q(ζ ) → 0 .

On the other hand, we have Fp = Z[ζ ]/(λ). Moreover, the sequence

[0 −→ Z/pZ −→ G(λ) Ψ−→ G(λp) −→ 0] ⊗Z[ζ ] Fp

is nothing but the Artin-Schreier sequence

0 −→ Z/pZ −→ Ga,Fp

F−1−→ Ga,Fp −→ 0
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since {(1+ λT )p − 1}/λp ≡ T p − T mod λ.
To sum up, the exact sequence

0 −→ Z/pZ −→ G(λ) Ψ−→ G(λp) −→ 0

unifies the Kummer and Artin-Schreier sequences (cf. [14], [7], [5]).

Now we examine the sculpture and embedding problems for the Weil restriction
∏

Z[ζ ]/Z G(λ).

6.3. For simplicity, we put

χ = χp : U(Γ )→
∏

Z[ζ ]/Z
Gm,Z[ζ ]

and

ε = χ1 : U(Γ )→ Gm,Z .

Let R be a ring. Then the homomorphism χ induces a homomorphism of multiplicative
groups

R[Γ ]× → (R ⊗Z Z[ζ ])× :
p−1
∑

k=0

akγ
k �→

p−1
∑

k=0

ak ⊗ ζ k ,

and the homomorphism ε induces a homomorphism of multiplicative groups

R[Γ ]× → R× :
p−1
∑

k=0

akγ
k �→

p−1
∑

k=0

ak .

All the elements of Ker[ε : R[Γ ]× → R×] are expressed uniquely in the form of

1+ a1(γ − 1)+ a2(γ
2 − 1)+ · · · + ap−1(γ

p−1 − 1) (a1, a2, . . . , ap−1 ∈ R) .

The homomorphism χ : Ker[ε : U(Γ )→ Gm,Z] → ∏

Z[ζ ]/ZGm,Z[ζ ] is factorized as

Ker[ε : U(Γ )→ Gm,Z] χ̃−→
∏

Z[ζ ]/Z]
G(λ)

∏

Z[ζ ]/Z α(λ)

−→
∏

Z[ζ ]/Z
Gm,Z[ζ ] .

Indeed, the homomorphism of group schemes χ : Ker[ε : U(Γ ) → Gm,Z] →
∏

Z[ζ ]/Z Gm,Z[ζ ] gives a homomorphism of multiplicative groups

R[Γ ]× → (R ⊗Z Z[ζ ])× : 1+
p−1
∑

k=1

ak(γ
k − 1) �→ 1+

p−1
∑

k=1

ak ⊗ (ζ k − 1) .
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By the definition of G(λ), we have

p−1
∑

k=1

ak ⊗ ζ k − 1

ζ − 1
∈ G(λ)(R ⊗Z Z[ζ ])

and

∏

Z[ζ ]/Z
α(λ) :

p−1
∑

k=1

ak ⊗ ζ k − 1

ζ − 1
�→ 1+ (1⊗ λ)

(p−1
∑

k=1

ak ⊗ ζ k − 1

ζ − 1

)

= 1+
p−1
∑

k=1

ak ⊗ (ζ k − 1) .

It is readily seen that the constant group scheme Γ is contained in Ker[ε : U(Γ ) →
Gm,Z] and

χ̃(γ k) = 1⊗ ζ k − 1

ζ − 1

for each k. Furthermore χ̃ : Ker[ε : U(Γ ) → Gm,Z] −→ ∏

Z[ζ ]/Z] G(λ) is an isomorphism

of group schemes. Indeed, the inverse of χ̃ is defined by

p−1
∑

k=1

ak ⊗ ζ k − 1

ζ − 1
�→

(

1−
p−1
∑

k=1

ak

)

+
p−1
∑

k=1

akγ
k

Moreover, define a homomorphism of group schemes

s : U(Γ )→ Ker[ε : U(Γ )→ Gm,Z]
by

p−1
∑

k=0

akγ
k �→

p−1
∑

k=0

akγ
k
/ p−1

∑

k=0

ak .

Then s gives a splitting of the exact sequence

0 −→ Ker[ε : U(Γ )→ Gm,Z] i−→ U(Γ )
ε−→ Gm,Z −→ 0 .

Therefore we obtain the following assertions:

PROPOSITION 6.4. Both the sculpture and embedding problems are affirmatively

solved over Z for the embedding Γ →∏

Z[ζ ]/Z G(λ). Indeed, the diagrams

Γ −−−−→ U(Γ )
∥
∥
∥

⏐
⏐
�χ̃◦s

Γ −−−−→
∏

Z[ζ ]/Z
G(λ)
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and

Γ −−−−→
∏

Z[ζ ]/Z
G(λ)

∥
∥
∥

⏐
⏐
�i◦χ̃−1

Γ −−−−→ U(Γ )

are commutative.

Now we describe the homomorphism
∏

Z[ζ ]/Z α(λ) : ∏Z[ζ ]/Z G(λ) → ∏

Z[ζ ]/Z Gm,Z[ζ ]
more precisely.

6.5. Description of U(Γ ). Put

Δp(T0, T1, . . . , Tp−1) = ΔΓ (T0, T1, . . . , Tp−1) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

T0 T1 . . . Tp−1

T1 T2 . . . T0
...

...
. . .

...

Tp−1 T0 . . . Tp−2

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Then we have

Δp(T0, T1, . . . , Tp−1) = (−1)(p−1)/2
p−1
∏

j=0

(T0 + ζ jT1 + ζ 2jT2 + · · · + ζ (p−1)jTp−1) .

Furthermore, we have

U(Γ ) = SpecZ

[

T0, T1, . . . , Tp−1,
1

Δp(T0, T1, . . . , Tp−1)

]

.

The multiplication is defined by

Ti �→
∑

j+k≡i
mod p

Tj ⊗ Tk (1 ≤ i ≤ p − 1) .

6.6. Description of
∏

Z[ζ ]/ZGm,Z[ζ ]. Let R be a ring. Then all the elements of R ⊗Z

Z[ζ ] are expressed uniquely in the form of

a1 ⊗ ζ + a2 ⊗ ζ 2 + · · · + ap−1 ⊗ ζ p−1 (a1, a2, . . . , ap−1 ∈ R)

since {ζ, ζ 2, . . . , ζ p−1} is a basis of Z[ζ ] over Z.
Put now

Np(X1,X2, . . . , Xp−1) =
p−1
∏

j=1

(p−1
∑

k=1

ζ jkXk

)

.
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Then Np(X1,X2, . . . , Xp−1) ∈ Z[X1,X2, . . . , Xp−1]. Furthermore,

p−1
∑

k=1

ak ⊗ ζ k ∈ (R ⊗Z Z[ζ ])× ⇔ Np(a1, a2, . . . , ap−1) ∈ R× .

Hence we obtain

∏

Z[ζ ]/Z
Gm,Z[ζ ] = SpecZ

[

X1,X2, . . . , Xp−1,
1

Np(X1,X2, . . . , Xp−1)

]

,

where the multiplication is given by

Xi �→ −
∑

j+k≡0
mod p

Xj ⊗Xk +
∑

j+k≡i
mod p

Xj ⊗Xk (1 ≤ i ≤ p − 1) .

The homomorphism of group schemes

χ = χp : U(Γ ) = SpecZ

[

T0, T1, . . . , Tp−1,
1

Δp(T0, T1, . . . , Tp−1)

]

−→
∏

Z[ζ ]/Z
Gm,Z[ζ ] = SpecZ

[

X1,X2, . . . , Xp−1,
1

Np(X1,X2, . . . , Xp−1)

]

is defined by

Xi �→ Ti − T0 (1 ≤ i ≤ p − 1) .

Furthermore, the homomorphism of group schemes

Nr :
∏

Z[ζ ]/Z
Gm,Z[ζ ] = SpecZ

[

X1,X2, . . . , Xp−1,
1

Np(X1,X2, . . . , Xp−1)

]

→ Gm,Z = SpecZ

[

U,
1

U

]

is defined by

U �→ Np(X1,X2, . . . , Xp−1) .

Hence we obtain
∏

Z[ζ ]/Z

(1)
Gm,Z[ζ ] = SpecZ[X1,X2, . . . , Xp−1]/(Np(X1,X2, . . . , Xp−1)− 1) .

6.7. Description of
∏

Z[ζ ]/Z G(λ). Let R be a ring. Then all the elements of R ⊗Z Z[ζ ]
are expressed uniquely in the form of
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a1 ⊗ 1+ a2 ⊗ (1+ ζ )+ · · · + ap−1 ⊗ (1+ ζ + · · · + ζ p−2)

= a1 ⊗ ζ − 1

ζ − 1
+ a2 ⊗ ζ 2 − 1

ζ − 1
+ · · · + ap−1 ⊗ ζ p−1 − 1

ζ − 1
(a1, a2, . . . , ap−1 ∈ R)

since {1, 1+ ζ, . . . , 1+ ζ + · · · + ζ p−2} is a basis of Z[ζ ] over Z. Noting that

1⊗1+(1⊗λ)

{p−1
∑

i=1

ai⊗ζ i−1

ζ−1

}

=1⊗1+
p−1
∑

i=1

ai⊗(ζ i−1)=
p−1
∑

i=1

(−1+a1+· · ·+2ai+· · ·+ap−1)⊗ζ i ,

we can verify that:

p−1
∑

k=1

ak ⊗ ζ k − 1

ζ − 1
∈ G(λ)(R ⊗Z Z[ζ ]) ⇔

Np(−1+2a1+a2+ · · · +ap−1,−1+a1+2a2+ · · · +ap−1, . . . ,−1+a1+a2 + · · · +2ap−1)∈R× .

Put now

F(X1,X2, . . . , Xp−1) =
Np(−1+2X1+X2+ · · · +Xp−1,−1+X1+2X2+ · · · +Xp−1, . . . ,−1+X1+X2+ · · · +2Xp−1) .

Then we have

F(X1,X2, . . . , Xp−1) ≡ 1 mod p .

Indeed, by the definition of Np(X1,X2, . . . , Xp−1) and F(X1,X2, . . . , Xp−1), we ob-
tain

F(X1,X2, . . . , Xp−1) =
p−1
∏

j=1

{

1+
p−1
∑

k=1

(ζ k − 1)Xk

}

.

This implies that

F(X1,X2, . . . , Xp−1) ≡ 1 mod λ .

Therefore we obtain the result, noting that F(X1,X2, . . . , Xp−1) ∈ Z[X0,X1, . . . , Xp−1].
Define Ñp(X1,X2, . . . , Xp−1) ∈ Z[X1,X2, . . . , Xp−1] by

F(X1,X2, . . . , Xp−1) = 1+ pÑp(X1,X2, . . . , Xp−1) .

Then we arrive at the assertion:

p−1
∑

k=1

ak ⊗ ζ k − 1

ζ − 1
∈ G(λ)(R ⊗Z Z[ζ ]) ⇔ 1+ pÑp(a1, a2, . . . , ap−1) ∈ R× .
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Hence we obtain

∏

Z[ζ ]/Z
G(λ) = SpecZ

[

X1,X2, . . . , Xp−1,
1

1+ pÑp(X1,X2, . . . , Xp−1)

]

,

where the multiplication is defined by

Xi �→ Xi ⊗ (1− X1 −X2 − · · · −Xp−1)+ (1− X1 −X2 − · · · −Xp−1)⊗Xi

+
∑

j+k≡i
mod p

Xj ⊗Xk(1 ≤ i ≤ p − 1) .

The homomorphism of group schemes

∏

Z[ζ ]/Z
α(λ) :

∏

Z[ζ ]/Z
G(λ) = SpecZ

[

X1,X2, . . . , Xp−1,
1

1+ pÑp(X1,X2, . . . , Xp−1)

]

−→
∏

Z[ζ ]/Z
Gm,Z[ζ ] = SpecZ

[

X1,X2, . . . , Xp−1,
1

Np(X1,X2, . . . , Xp−1)

]

is defined by

Xi �→ Xi + (−1+X1 +X2 + · · · +Xp−1) (1 ≤ i ≤ p − 1) .

The homomorphism
∏

Z[ζ ]/Z α(λ) is isomorphic over Z[1/p]. Indeed, the inverse is given by

Xi �→ Xi + 1

p
(1−X1 − · · · −Xp−1) (1 ≤ i ≤ p − 1) .

Furthermore, the homomorphism

χ̃ ◦ s : U(Γ ) = SpecZ

[

T0, T1, . . . , Tp−1,
1

Δp(T0, T1, . . . , Tp−1)

]

→
∏

Z[ζ ]/Z
G(λ) = SpecZ

[

X1,X2, . . . , Xp−1,
1

1+ pÑp(X1,X2, . . . , Xp−1)

]

is defined by

Xj �→ Tj/(T0 + T1 + · · · + Tp−1) (j = 1, 2, . . . , p − 1) ,

and the homomorphism

i ◦ χ̃−1 :
∏

Z[ζ ]/Z
G(λ) = SpecZ

[

X1,X2, . . . , Xp−1,
1

1+ pÑp(X1,X2, . . . , Xp−1)

]
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→ U(Γ ) = SpecZ

[

T0, T1, . . . , Tp−1,
1

Δp(T0, T1, . . . , Tp−1)

]

is defined by

Tj �→
{

1−X1 − . . .−Xp−1 (j = 0)

Xj (j > 0)
.

EXAMPLE 6.8. Here are a few examples of Np and Ñp.

(1) In the case of p = 3, we have

Np(X1,X2) = X2
1 −X1X2 + X2

2

and

Ñp(X1,X2) = −X1 −X2 +X2
1 +X1X2 +X2

2 .

(2) In the case of p = 5, we have

Np(X1,X2,X3,X4)

=(X4
1 +X4

2 +X4
3 +X4

4)− (X3
1X2 +X3

2X4 +X3
4X3 +X3

3X1)

− (X1X
3
2 +X2X

3
4 +X4X

3
3 +X3X

3
1)− (X3

2X3 + X3
4X1 +X3

3X2 +X1
2X4)

+ (X2
1X

2
2 +X2

2X
2
4 +X2

4X2
3 + X2

3X
2
1)+ (X2

1X
2
4 +X2

2X
2
3)

+ 2(X2
1X2X3 +X2

2X4X1 + X2
4X3X2 +X2

3X1X4)

+ 2(X1X2X
2
3 +X2X4X

2
1 + X4X3X

2
2 +X3X1X

2
4)

− 3(X1X
2
2X3 +X2X

2
4X1 + X4X

2
3X2 + 3X3X

2
1X4)−X1X2X3X4

and

Ñp(X1,X2,X3,X4)

=− (X1 +X2 + X4 +X3)+ 2(X2
1 +X2

2 +X2
4 +X2

3)

+ 4(X1X2 +X2X4 + X4X3 +X3X1)+ 3(X1X4 +X2X3)

− 2(X3
1 +X3

2 +X3
4 +X3

3)− 6(X2
1X2 +X2

2X4 +X2
4X3 + X2

3X1)

− 5(X1X
2
2 +X2X

2
4 + X4X

2
3 +X3X

2
1)− 3(X2

2X3 +X2
4X1 +X2

3X2 +X2
1X4)

− 9(X1X2X3 +X2X4X1 +X4X3X2 +X3X1X4)

+ (X4
1 + X4

2 + X4
4 +X4

3)+ 4(X2
1X

2
2 +X2

2X
2
4 +X2

4X2
3 + X2

3X
2
1)+ (X2

1X
2
4 +X2

2X
2
3)

+ 2(X1X
3
2 +X2X

3
4 + X4X

3
3 +X3X

3
1)+ (X3

2X3 +X3
4X1 + X3

3X2 +X3
1X4)

+ 3(X3
1X2 +X3

2X4 + X3
4X3 +X3

3X1)
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+ 7(X2
1X2X3 + X2

2X4X1 +X2
4X3X2 +X2

3X1X4)

+ 4(X1X
2
2X3 + X2X

2
4X1 +X4X

2
3X2 +X3X

2
1X4)

+ 6(X1X2X
2
3 + X2X4X

2
1 +X4X3X

2
2 +X3X1X

2
4)+ 11X1X2X3X4.

We conclude the article, by mentioning the sculpture and embedding problems for the
analogues of norm tori in the Kummer-Artin-Schreier theory.

6.9. Put G = Gal(Q(ζ )/Q), and let g be a generator G. Let R be a ring. Then a
homomorphism of multiplicative group gR : (R ⊗Z Z[ζ ])× → (R ⊗Z Z[ζ ])× is defined by
r ⊗ a �→ r ⊗ g(a). The homomorphism gR : (R⊗Z Z[ζ ])× → (R⊗Z Z[ζ ])× is represented
by a homomorphism of group schemes g :∏Z[ζ ]/ZGm,Z[ζ ] →∏

Z[ζ ]/ZGm,Z[ζ ].
Now we describe the endomorphism g of

∏

Z[ζ ]/ZGm,Z[ζ ] in terms of Hopf algebras.

Take an integer i(g) so that g(ζ ) = ζ i(g). Then the homomorphism

g :
∏

Z[ζ ]/Z
Gm,Z[ζ ] = SpecZ

[

X1,X2, . . . , Xp−1,
1

Np(X1,X2, . . . , Xp−1)

]

→
∏

Z[ζ ]/Z
Gm,Z[ζ ] = SpecZ

[

X1,X2, . . . , Xp−1,
1

Np(X1,X2, . . . , Xp−1)

]

is defined by

Xj �→ Xi(g)−1j (j = 1, 2, . . . , p − 1) .

Here i(g)−1j stands for the integer l ∈ {1, 2, . . . , p − 1} such that i(g)l ≡ j mod p.

Furthermore, for θ ∈ Z[G], an endomorphism θ of
∏

Z[ζ ]/ZGm,Z[ζ ] is defined since the

group law of
∏

Z[ζ ]/ZGm,Z[ζ ] is commutative. More explicitly, let

θ =
p−2
∑

k=0

nkg
k ∈ Z[G] ,

and let R be a ring. Then the homomorphism of multiplicative groups θR : (R ⊗Z Z[ζ ])× →
(R ⊗Z Z[ζ ])× is given by

θR(r ⊗ α) =
p−2
∏

k=0

(

r ⊗ gk(α)
)nk .

6.10. Now define a morphism of affine schemes

g :
∏

Z[ζ ]/Z
G(λ) = SpecZ

[

X1,X2, . . . , Xp−1,
1

1+ pÑp(X1,X2, . . . , Xp−1)

]
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→
∏

Z[ζ ]/Z
G(λ) = SpecZ

[

X1,X2, . . . , Xp−1,
1

1+ pÑp(X1,X2, . . . , Xp−1)

]

by

Xj �→ Xi(g)−1j (j = 1, 2, . . . , p − 1) .

Then it is verified without difficulty that g :∏Z[ζ ]/Z G(λ) →∏

Z[ζ ]/Z G(λ) is a homomorphism

of group schemes. Furthermore, the diagram
∏

Z[ζ ]/Z
G(λ) g−−−−→

∏

Z[ζ ]/Z
G(λ)

∏

Z[ζ ]/Z α(λ)

⏐
⏐
�

⏐
⏐
�

∏

Z[ζ ]/Z α(λ)

∏

Z[ζ ]/Z
Gm,Z[ζ ] −−−−→

g

∏

Z[ζ ]/Z
Gm,Z[ζ ]

is commutative.
More generally, for θ ∈ Z[G], an endomorphism θ of

∏

Z[ζ ]/Z G(λ) is defined since the

group law of
∏

Z[ζ ]/Z G(λ) is commutative. Furthermore, the diagram

∏

Z[ζ ]/Z
G(λ) θ−−−−→

∏

Z[ζ ]/Z
G(λ)

∏

Z[ζ ]/Z α(λ)

⏐
⏐
�

⏐
⏐
�

∏

Z[ζ ]/Z α(λ)

∏

Z[ζ ]/Z
Gm,Z[ζ ] −−−−→

θ

∏

Z[ζ ]/Z
Gm,Z[ζ ]

is commutative.

EXAMPLE 6.11. Assume that p > 2. Put

ν = 1+ g + · · · + gp−1 ∈ Z[G]
and

∏

Z[ζ ]/Z

(1)G(λ) = Ker
[

ν :
∏

Z[ζ ]/Z
G(λ)→

∏

Z[ζ ]/Z
G(λ)

]

.
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Then we obtain a commutative diagram with exact raws

0 −−−−→
∏

Z[ζ ]/Z

(1)G(λ) −−−−→
∏

Z[ζ ]/Z
G(λ) ν−−−−→

∏

Z[ζ ]/Z
G(λ)

⏐
⏐
�

⏐
⏐
�

∏

Z[ζ ]/Z α(λ)

⏐
⏐
�

∏

Z[ζ ]/Z α(λ)

0 −−−−→
∏

Z[ζ ]/Z

(1)
Gm,Z[ζ ] −−−−→

∏

Z[ζ ]/Z
Gm,Z[ζ ] −−−−→

ν

∏

Z[ζ ]/Z
Gm,Z[ζ ]

.

The induced homomorphism
∏

Z[ζ ]/Z α(λ) : ∏(1)
Z[ζ ]/Z G(λ) → ∏(1)

Z[ζ ]/ZGm,Z[ζ ] is isomorphic

over Z[1/p].
We have also

∏

Z[ζ ]/Z

(1)G(λ) = SpecZ[X1,X2, . . . , Xp−1]/(Ñp(X1,X2, . . . , Xp−1)) ,

where the multiplication is defined by

Xi �→ Xi ⊗ (1− X1 −X2 − · · · −Xp−1)+ (1− X1 −X2 − · · · −Xp−1)⊗Xi

+
∑

j+k≡i
mod p

Xj ⊗Xk(1 ≤ i ≤ p − 1).

It is worthwhile to remark that
∏

Z[ζ ]/Z
(1)G(λ) is smooth over Z, while

∏

Z[ζ ]/Z
(1)
Gm,Z[ζ ] is

not smooth at the locus (p).

PROPOSITION 6.12. Assume that p > 2. Then both the sculpture and embedding

problems are affirmatively solved over Z for the embedding Γ → ∏

Z[ζ ]/Z
(1)G(λ).

PROOF. The embedding problem for Γ →∏

Z[ζ ]/Z
(1)G(λ) is affirmatively solved since

the embedding problem for Γ →∏

Z[ζ ]/Z G(λ) is affirmatively solved.

Now we prove that the sculpture problem for Γ → ∏

Z[ζ ]/Z
(1)G(λ) is affirmatively

solved. Put σ = g − 1 ∈ Z[G]. Then the homomorphism σ : ∏Z[ζ ]/Z G(λ) → ∏

Z[ζ ]/Z G(λ)

is factorized as
∏

Z[ζ ]/Z
G(λ) σ−→

∏

Z[ζ ]/Z

(1)G(λ) inclusion−→
∏

Z[ζ ]/Z
G(λ)

since νσ = (1+ g+· · ·+ gp−2)(1− g) = 0 in Z[G]. Moreover, σ induces an automorphism
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of Γ since σ = g − 1 : γ �→ γ i(g)−1. Hence we obtain a commutative diagram

Γ −−−−→
∏

Z[ζ ]/Z
G(λ)

⏐
⏐
��

⏐
⏐
�σ

Γ −−−−→
∏

Z[ζ ]/Z

(1)G(λ)

,

and therefore, a commutative diagram

Γ −−−−→ U(Γ )
⏐
⏐
��

⏐
⏐
�σ

Γ −−−−→
∏

Z[ζ ]/Z

(1)G(λ)

,

combining with the commutative diagram

Γ −−−−→ U(Γ )
∥
∥
∥

⏐
⏐
�χ̃◦s

Γ −−−−→
∏

Z[ζ ]/Z
G(λ)

.

EXAMPLE 6.13. Assume that p > 2. For each positive divisor d of p−1 (d �= p−1),
put

νd = 1+ gd + g2d + · · · + g(p−1)−d ∈ Z[G] .
Put

Gp =
⋂

d |(p−1)
d �=p−1

Ker

[

νd :
∏

Z[ζ ]/Z
G(λ)→

∏

Z[ζ ]/Z
G(λ)

]

.

Then Gp ⊗Z Z[1/p] is an algebraic torus over Z[1/p] with character group Z[ζp−1] as is
remarked in 5.2.

THEOREM 6.14. Assume that p > 2. Then both the sculpture and embedding prob-
lems are affirmatively solved over Z for the embedding Γ → Gp.

PROOF. The embedding problem for Γ → Gp is affirmatively solved since the em-

bedding problem for Γ →∏

Z[ζ ]/Z G(λ) is affirmatively solved.
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Now we prove that the sculpture problem for Γ → Gp is affirmatively solved. Put

σ̃ =
∏

d |(p−1)
d �=p−1

Φd(g) ∈ Z[G] ,

where Φd(T ) denotes the d-th cyclotomic polynomial. Then the homomorphism σ̃ :
∏

Z[ζ ]/Z G(λ)→∏

Z[ζ ]/Z G(λ) is factorized as

∏

Z[ζ ]/Z
G(λ) σ̃−→ Gp

inclusion−→
∏

Z[ζ ]/Z
G(λ)

since

νd σ̃ =
{

∏

d ′|(p−1)

d�d ′

Φd ′(g)

}{
∏

d ′|(p−1)

d ′ �=p−1

Φd ′(g)

}

= 0 in Z[G]

for all positive divisor d of p − 1 (d �= p − 1). Moreover, σ̃ induces an automorphism of Γ .
Indeed, put

F(T ) =
∏

d |(p−1)
d �=p−1

Φd(T ) .

Then we have in Fp[T ]
F(T ) =

∏

a∈F×p
the order of a �= p − 1

(T − a) .

Moreover, i(g) is a primitive root of Fp. Then we have F(i(g)) �= 0 in Fp. Then σ̃ (ζ ) =
ζF(i(g)) �= 1.

Hence we obtain a commutative diagram

Γ −−−−→
∏

Z[ζ ]/Z
G(λ)

⏐
⏐
��

⏐
⏐
�σ̃

Γ −−−−→ Gp

,

and therefore, a commutative diagram

Γ −−−−→ U(Γ )
⏐
⏐
��

⏐
⏐
�σ

Γ −−−−→ Gp

,
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combining with the commutative diagram

Γ −−−−→ U(Γ )
∥
∥
∥

⏐
⏐
�χ̃◦s

Γ −−−−→
∏

Z[ζ ]/Z
G(λ)

.
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