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Abstract. In this paper, we classify Grothendieck dessins of X-shaped plane trees defined over the rationals.

1. Introduction

In [16], F. Pakovich studied special families of plane trees which featured the beautiful
arithmetic nature of Grothendieck dessins d’enfants. Among others, he closely looked at trees
with a single node joining three or four branches, and figured out how those Y-shaped, X-
shaped trees arise from Pell solutions of quartic models of elliptic curves. These trees raised
Grothendieck dessins of genus one, and their explicit description in terms of theta functions
have also been studied in loc. cit. and by L. Zapponi [21] in depth. A particularly interesting
result found in [16] Théorème 5 classifies all Y-shaped Q-rational trees into the mono-nodal
trivalent trees with branch length multiples of {1, 1, 1}, {1, 1, 2}, {1, 2, 2} and {1, 1, 3}, after
elaborate combination of classics of Abel’s elliptic function theory and a modern theorem of
B. Mazur on rational torsion of elliptic curves. The proof given in loc. cit., however, partly
relied on an unpublished work of M. Magot still staying unavailable in literatures (e.g., [10]
2.5.6; [17] p.150). This situation urged us to execute such a process of computation through
our own individual resources.

The purpose of this paper is to report our line work using mainly Maple [11], which
yielded results for both Y- and X-shaped cases. Especially for the latter shape, we obtained
the following

THEOREM 1.1. The X-shaped plane trees defined over Q are only mono-nodal trees
with 4 branches having length multiples of (1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 1, 3), (1, 1, 2, 2),
(1, 2, 1, 2), (1, 2, 1, 5), (1, 2, 2, 2), (1, 2, 4, 2), (1, 3, 1, 3), (1, 5, 1, 5) and (1, 5, 13, 5) up to
cyclic permutations.
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Figure A

We shall say a mono-nodal tree to be primitive if the branch lengths have no nontrivial
common divisors. Figure A illustrates our “child’s drawings” (following spirit of [5]) for all
primitive Q-rational mono-nodal trees of X- or Y-shape.

The construction of this paper is as follows: In §2, we review a basic diagram that de-
scribes relationship between X-, Y-shaped Shabat polynomials and Belyi functions on quartic
affine models of elliptic curves. In §3, we summarize a continued fraction algorithm comput-
ing units of the affine rings of elliptic curves, and in §4, we discuss conditions for those units
to supply our desired dessins. In §5, we search all possible moduli parameters to satisfy that
condition and conclude the above result. We also complement a remark that the compositions
with Chebyshev polynomials cover all X-, Y-shaped trees defined over Q.

2. Pakovich diagram

We here quickly review the notion of Belyi functions and Shabat polynomials. A Belyi

function on a nonsingular projective curve X over C is a finite morphism β : X → P1
C

whose branch locus BRβ contains at most three points of P1(C). We say that β has genus
g if the genus of X is g . Once BRβ is normalized to lie in {0, 1,∞}, the inverse image

Dβ := β−1([0, 1]) of the unit segment [0, 1] ⊂ P1(C) gives rise to a certain connected graph
on the Riemann surface X(C), which is called the (Grothendieck) dessin associated to β. It
is known that the topological type of the dessin Dβ ⊂ X(C) determines the equivalence class

of β as a cover over P1. Given a topological graph on an oriented surface, it is, in general,

difficult to obtain an explicit algebraic model of a Belyi function β : X → P1 supplying
the graph as a dessin. If β has genus zero and is totally ramified over ∞ ∈ BRβ , then
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β : P1
x → P1

t is realized by a polynomial P(x) ∈ C[x] (called the Shabat polynomial) so that
t = β(x) = P(x). In this case, the dessin Dβ is a tree on the complex x-plane. By definition,
a Shabat polynomial is a polynomial in one variable with at most two critical values. We
are also interested in rationality questions on Grothendieck dessins, e.g., to estimate (resp.
to determine) fields of definition (resp. the field of moduli) of a given Belyi pair (X, β), or
to know which type of graph on a topological surface can be realized by such a pair defined
over Q. There are a number of interesting works by many authors concerning these questions
(e.g., [4], [10], [15], [16], [17], [21]). In particular, it is worth mentioning that, in the tree case
considered in this paper, the problem of distinction between the field of moduli and minimal
fields of definition does not occur according to a result of J.-M. Couveignes [4] (cf. [10,
Theorem 2.4.12]).

Below, we will mainly consider Shabat polynomials normalized to have critical values
in {±1} (occasionally in {±t0} for some t0 ∈ Q) and relate them to Belyi functions of genus
one whose critical values are normalized in {0, u0,∞} for some u0 ∈ Q.

Let P(x) ∈ Q[x] be a Shabat polynomial of degree N with critical values ±1 such that
the inverse image of [−1, 1] forms a mono-nodal tree of X- or Y-shape. Regard t = P(x)

as representing a cover P : P1
x → P1

t , and introduce a double cover � : P1
u → P1

t by

t = �(u) := 1
2

(
u
u0

+ u0
u

)
branching at u = ±u0(∈ Q×). A basic observation of [16]

Théorème 2 (in the genus one case) is that the fiber product of P and � produces an elliptic

curve E : y2 = D(x) = x4 + ax3 + bx2 + cx + d and a Belyi function β : E → P1
u, both

defined over Q fitting in the commutative diagram:

P1
x

P

��

E

β

��

x��

P1
t P1

u�
��

(1)

with the following properties:

(1) The Belyi function u = β(x, y) = p(x) + q(x)y has critical values u = 0,∞, u0;

(2) β is a unit of the affine ring Q[x, y]/(y2−D(x)) and gives a solution to the Pell equation

p(x)2 − D(x)q(x)2 = u2
0;

(3) If ∞+ and ∞− are the two infinity points of E, then the difference ∞+ − ∞− gives a
torsion of E of order N .

One easily sees that P(x) = u−1
0 p(x) holds by combining the commutativity of (1) and the

property (2).
So our problem is reduced to finding a pair (E, β) with the above properties (1), (2), (3)

so that everything is defined over Q.
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3. Continued fractions

Let us now start with a quartic D(x) = x4 +ax3 +bx2 +cx+d ∈ Q[x] without multiple

zeros and an elliptic curve E : y2 = D(x) such that ∞+ − ∞− is of order N > 1. According
to Mazur’s theorem [12], we may assume 2 ≤ N ≤ 12 and N �= 11. To find a solution to the
Pell property p(x)2 − D(x)q(x)2 ∈ Q×, one can apply a continued fraction algorithm which
has explicitly been discussed, for example, in papers [1] (1980), [2] (1990) and [18] (2000).

It is convenient to work in the field Q((x−1)) of Laurent power series

f (x) = �f (x)	 +
∞∑

n=1

cn

xn
(cn ∈ Q)

where �f (x)	 ∈ Q[x] denotes the polynomial part of f (x). Define the degree function

deg : Q((x−1)) → N ∪ {∞} by associating to f the usual degree of �f 	 (as an element of

Q[x]). It induces a standard metric on Q((x−1)) by the norm |f | = 2deg(f ) (cf. [1] p.492). Set

δ(x) = �√D(x)	 = x2 + 1

2
ax + 1

2

(
b − a2

4

)
,

and construct a sequence of partial quotients a0 = 2δ(x), ai+1 = 1/(ai − �ai	) for i ≥ 0 so
as to obtain the identity:

δ(x) +√
D(x) = a0 + 1

a1 + 1

a2 + · · ·

.

For practical computation, it is also useful to introduce more sequences of complete
quotients {Fh} as well as of the associated quantities {Ph}, {Qh} (h ≥ 0) in the form

Fh = ah + 1

ah+1 + 1

· · ·

=: Ph + √
D

Qh

(
Qh|(D − P 2

h )
)
,

which are inductively produced from (P0,Q0, a0) = (δ(x), 1, 2δ(x)) and the rule⎧⎪⎪⎨
⎪⎪⎩

Ph+1 = ahQh − Ph ,

Qh+1 = D(x)−P 2
h+1

Qh
,

ah+1 =
⌊

Ph+1+P0
Qh+1

⌋
.

(2)

It follows from [18] Proposition 3.1, that

deg(Ph) = 2, deg(Qh) ≤ 1 . (3)
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These quantities are also related with the continuants (ph, qh) ∈ Q[x]2, which are defined by(
p0

q0

)
=
(

δ

1

)
,

(
p1

q1

)
=
(

1 + δa1

a1

)
,

(
ph+2

qh+2

)
= ah+2

(
ph+1

qh+1

)
+
(

ph

qh

)

and satisfy the relations:

p2
h − Dq2

h = (−1)h+1Qh+1, (4)

phqh−1 − qhph−1 = (−1)h−1 , (5)(
ph ph−1

qh qh−1

)
=
(

δ 1
1 0

)(
a1 1
1 0

)
· · ·
(

ah 1
1 0

)
. (6)

Let n0 := N − 1, and set n1 := n0 if N is odd, and n1 := 2n0 if N is even. Then,
the sequence {a0, a1, . . . } has a quasi-period n0 and a period n1 with palindromic symmetry

as shown in [1] Corollary 4.4 and (4.6) (cf. also [18] Prop. 3.4). This means that p2
n0−1 −

Dq2
n0−1 = κ−1

0 (κ0 ∈ Q×), p2
n1−1 − Dq2

n1−1 = 1 and ah = an1−h (0 ≤ h ≤ n1). One can

then easily show by induction that

pkn1−1 + qkn1−1
√

D = (pn1−1 + qn1−1
√

D)k (7)

pn0+kn1−1 + qn0+kn1−1
√

D = (pn0−1 + qn0−1
√

D)(pn1−1 + qn1−1
√

D)k (8)

for each k ≥ 1. From this, it also follows that

deg(pkn0−1) = k · deg(pn0−1) (k ≥ 1) . (9)

LEMMA 3.1. If p, q ∈ Q[x] are solutions to p2 − Dq2 = κ−1 for some constant
κ ∈ Q×, then p = cpn, q = εcqn for some n ≥ 1, c ∈ Q× and ε ∈ {±1}.

PROOF. Suppose first that deg(p − √
Dq) ≤ deg(p + √

D), i.e., |p − √
Dq| ≤ |p +√

D|. Then, |q| < |2√
Dq| ≤ max{|p+√

Dq|, |p−√
D|} = |p+√

D| so that |p−√
Dq| =

|p + √
Dq|−1 < 1

|q| . The usual approximation theorem (cf. [1] (5.14)) implies then that

p = cpn, q = cqn for some n ≥ 1, c ∈ Q×. If deg(p − √
Dq) > deg(p + √

D), we may
argue in the same way with q replaced by −q , hence conclude the assertion. �

When N is even so that n1 = 2n0, the equality p2
n0−1 − Dq2

n0−1 = κ−1
0 implies

{κ0(p
2
n0−1 + Dq2

n0−1)}2 − D{2κ0pn0−1qn0−1}2 = 1. Then, using Lemma 3.1 and comparing

degrees (9), we find pn1−1 = ±κ0(p
2
n0−1 +Dq2

n0−1), qn1−1 = ±2εκ0pn0−1qn0−1 (ε ∈ {±1}),
or equivalently pn1−1 + qn1−1

√
D = ±κ0(pn0−1 + εqn0−1

√
D)2. Therefore, (7), (8) may be

summarized as:

pkn0−1 + qkn0−1
√

D = ck(pn0−1 + qn0−1
√

D)±k (k ≥ 1, ∃ ck ∈ Q×) . (10)

The following lemma will be useful. Recall that Chebyshev polynomials {Tk(X)},
{Uk(X)} of the 1st and 2nd kind are defined by cos kz = Tk(cos z), sin(k+1)z

sin z
= Uk(cos z).



788 HIROAKI NAKAMURA

LEMMA 3.2. If p2 − Dq2 = 1, then (p + q
√

D)k = Tk(p) + Uk−1(p)q
√

D.

PROOF. Straightforward by induction, using classical identities of Chebyshev poly-

nomials such as Tn+1(x) = xTn(x) − (1 − x2)Un−1(x), Un(x) = xUn−1(x) + Tn(x) for
n = 1, 2, . . . . �

REMARK 3.3. The Chebyshev polynomial Tk(x) is a Shabat polynomial whose dessin

T −1
k ([−1, 1]) is a segment graph [−1, 1] divided into k smaller segments. From this, we

easily see that the composition Tk(P (x)) of any Shabat polynomial P with Tk replaces each
edge of the dessin of P by a concatenation of k edges, as long as the critical values of P are
normalized to {±1}.

4. From Pell solution to Belyi function

Following the notation introduced in the previous section, let E be the elliptic curve de-

fined by y2 = D(x) with the difference of the two infinity points ∞+−∞− is torsion of order
N . For any given solution (p(x), q(x)) ∈ Q[x]2 to the Pell property p(x)2 − D(x)q(x)2 ∈
Q×, the function u = p(x) + q(x)y is a unit on E \ {∞±} whose divisor is of the form
÷(u) = d[∞+] − d[∞−] (the integer d being the degree of u). It follows that d is a mul-
tiple of N . By Lemma 3.1, p(x) = cpn(x), q(x) = εcqn(x) for some n ≥ 1, c ∈ Q× and
ε ∈ {±1}. The degree d of u = p(x) + q(x)y is then equal to deg(pn).

We first claim the following

PROPOSITION 4.1. The above n is of the form kn0 − 1 (k > 0).

PROOF. By the periodicity and the palindromic symmetry of the partial quotients
{ah}h≥0, this claim is equivalent to saying that Q1, . . . ,Qn0−1 are non-constant. Now, sup-

pose that the Pell property p2
h − Dq2

h = (−1)h+1Qh+1 ∈ Q× holds for some h ≥ 1. Then,

considering the divisor of ph +√
Dqh on E, we have N | deg(ph) as above. Assume moreover

that h > 0 is the smallest index giving p2
h − Dq2

h ∈ Q×. Then, by (4), Q1, . . . ,Qh are non-
constant; therefore follows from (2), (3) that deg(a1), . . . , deg(ah) ≤ 1. As deg(a0) = 2, (6)
implies that deg(ph) ≤ 2 + h. Therefore, we see N ≤ 2 + h, i.e., n0 − 1 ≤ h. This concludes
the claim Q1, . . . ,Qn0−1 are not constants. �

From the above discussion, we are now able to characterize the degree of initial Pell
solution (pn0−1, qn0−1) = (pN−2, qN−2) in terms of the order N of infinity points of E:

COROLLARY 4.2. deg(pn0−1) = N , deg(qn0−1) = N − 2.

PROOF. By Riemann-Roch, we know there does exist a unit of degree N which must
be attained by the least degree of deg(pkn0−1) (k > 0). �

Returning to any Pell solution (p(x), q(x)) ∈ Q[x]2, we see that the quotient p′(x)/q(x)

is a linear polynomial. Indeed, this follows from deg(p) = deg(q)+ 2 and 2pp′ = q(2q ′D +
qD′) which implies that q(x)|p′(x). Define x0 ∈ Q to be a unique solution to (p′/q)(x0) = 0.
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LEMMA 4.3. The rational number x0 defined above only depends on D(x) and not on

the choice of any solution (p(x), q(x)) to p(x)2 − D(x)q(x)2 ∈ Q×.

PROOF. By virtue of Proposition 4.1, the invariance of x0 is reduced to (7), (8) and
(10). �

The divisor div(p′/q) is of the form [Q1] + [Q2] − [∞+] − [∞−], where Q1 = Q2 if
and only if D(x0) = 0. This, applied to the differential du = (p′/q) · u · (dx/y), leads to the
identity:

div(du) = (d − 1)[∞+] − (d + 1)[∞−] + [Q1] + [Q2] .

Thus, in order for the function u = β(x, y) = p(x) + q(x)y to be a Belyi function, it is
necessary and sufficient that one of the following conditions holds:

(I): D(x0) = 0;
(II): D(x0) �= 0 and q(x0) = 0.

We easily see that u = p(x) + q(x)y gives a Belyi function on E with branch type [d, d, 3 ·
1d−3] in Case I and [d, d, 22 · 1d−4] in Case II, and that t = p(x) gives a Shabat polynomial
of shape Y in Case I, and of shape X in Case II.

The following lemma gives a criterion for these cases occur, especially a finite criterion
even for case (II):

LEMMA 4.4. Case (I), (II) occur only when pn1−1(x0) + qn1−1(x0)
√

D(x0) is a root
of unity in a quadratic field.

PROOF. Supposing p2 − Dq2 = κ−1 ∈ Q×, set p̃ = κ(p2 + Dq2), q̃ = 2κpq so

that p̃2 − Dq̃2 = 1. Since q(x0)
√

D(x0) = 0 in either case, we find q̃(x0)
√

D(x0) = 0
and p̃(x0)

2 = 1. On the other hand, by applying Lemma 3.1 and taking into accounts the

degrees, we see that p̃ + q̃
√

D = (pn1−1 + qn1−1
√

D)k for some k ∈ Z. Hence the assertion
follows. �

5. Kubert family

Now, recall that the pairs (E, P ) of an elliptic curve E over Q and an N-torsion Q-
rational point P on it (2 ≤ N ≤ 12, N �= 11) are parametrized by Y1(N)(Q), the Q-rational
points of the genus 0 modular curve Y1(N). A convenient table for N ≥ 4 giving all such
pairs (E, P ) by means of a single rational parameter t is given in [6] Table 3 after a preceding
work of Kubert [8]. When N = 2 (resp. N = 3), the modular curve Y1(2) (resp. Y1(3)) is not
a curve (is a stack), and those pairs are given by two rational parameters (say, a and b). (See
e.g., [7] §4.2 and §4.4 for an account of derivation of such parametrization from Tate normal
forms; we however note that the Hessian family for N = 3 presented in loc. cit. parameterizes

only those (E, P ) with E : y2 + a1xy + a3y = x3, P = (0, 0) and with a3 ∈ Q×3). Then,
the Mordell transformation from cubics to quartics (sending two specific points to infinity;
cf., e.g., [14] §5.3) yields a universal family of quartics DN(x) = DN(x; a, b) (N = 2, 3),
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DN(x) = DN(x; t) (N = 4, ..., 12, N �= 11) with ∞+ − ∞− is of order N as follows:

D2(x) := x4 − 2 a x2 + a2 − 4 b (b �= 0) .

D3(x) := x4 − 8 a2 x2 + b x + 2 a (8 a3 − b) (b �= 0) .

D4(x) := x4 +
(

2 t − 1

2

)
x2 − 4 tx + t2 + 3

2
t + 1

16
.

D5(x) := x4 +
(

−1

2
t2 + 3 t − 1

2

)
x2 − 4 tx + 1

16
(t + 1)

(
t3 − 13 t2 + 19 t + 1

)
.

D6(x) := x4 +
(

3

2
t2 + 3 t − 1

2

)
x2 − 4 t (t + 1) x + 9

16
t4 + 1

4
t3 + 15

8
t2 + 5

4
t + 1

16
.

D7(x) := x4 +
(

−1

2
t4 + 3 t3 − 3

2
t2 − t − 1

2

)
x2 − 4 t2 (t − 1) x

+ 1

16

(
t2 − 3 t + 1

)(
t6 − 9 t5 + 14 t4 − 13 t3 − 2 t2 + 7 t + 1

)
.

D8(x) := x4 +
(
4 t4 + 4 t3 − 16 t2 + 8 t − 1

)
x2

2 t2
− 4 (2 t − 1) (t − 1) x

+ 16 t8 − 96 t7 + 336 t6 − 576 t5 + 536 t4 − 296 t3 + 96 t2 − 16 t + 1

16 t4
.

D9(x) := x4 −
(

t6 − 6 t5 + 9 t4 − 10 t3 + 6 t2 + 1

2

)
x2 − 4 t2 (t − 1)

(
t2 − t + 1

)
x

+ 1

16

(
t3 − 3 t2 + 4 t − 1

) · δ9(t) ,

where δ9(t) = t9 − 9 t8 + 23 t7 − 22 t6 + 14 t5 − 3 t4 − 5 t3 + 7 t2 − 4 t − 1 .

D10(x) := x4 −
(
4 t6 − 16 t5 + 8 t4 + 8 t3 − 4 t + 1

)
x2

2
(
t2 − 3 t + 1

)2 − 4
t3 (2 t − 1) (t − 1) x(

t2 − 3 t + 1
)2

+ δ12(t)

16
(
t2 − 3 t + 1

)4 ,

where δ12(t) = 16 t12 − 128 t11 + 448 t10 − 896 t9 + 1024 t8 − 416 t7 − 408 t6 + 608 t5

− 304 t4 + 48 t3 + 16 t2 − 8 t + 1 .

D12(x) := x4 +
(
12 t8 − 120 t7 + 336 t6 − 468 t5 + 372 t4 − 168 t3 + 36 t2 − 1

)
x2

2 (t − 1)6

− 4
t (2 t − 1)

(
3 t2 − 3 t + 1

)(
2 t2 − 2 t + 1

)
x

(t − 1)4
+ δ16(t)

16 (t − 1)12
,

where δ16(t) = 144 t16 − 576 t15 + 2112 t14 − 9696 t13 + 34016 t12 − 82176 t11 + 141936 t10

− 181984 t9 + 177240 t8 − 132528 t7 + 76096 t6 − 33208 t5 + 10760 t4

− 2480 t3 + 376 t2 − 32 t + 1 .
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Table B (N = 2)

N b x0
[XY-type]

j (E)

Elliptic Curve E : y2 = D(x)

/ Shabat polynomial p(x)

2 − 0
X(1,1,1,1)

j = 1728

y2 = D(x) = x4 − 4 b (b ∈ Q×)

p(x) − 1 = − 1
2b

x4

p(x) + 1 = − 1
2b

(
x4 − 4 b

)

2 a2 0
X(1,2,1,2)

j = 211

3

y2 = D(x) = x4 − 2 a x2 − 3 a2 (a ∈ Q×)

p(x) − 2 a = −
(
x2+a

)(
x2−2a

)2
a2

p(x) + 2 a = − x4
(
x2−3a

)
a2

2 a2

2 0
X(1,3,1,3)

j = 27

y2 = D(x) = x4 − 2 ax2 − a2 (a ∈ Q×)

p(x) − 1 = 2
(
x4−2 ax2−a2

)(
x2−a

)2
a4

p(x) + 1 = 2 x4
(
x2−2 a

)2
a4

2 a2

3 0
X(1,5,1,5)

j = 0

y2 = D(x) = x4 − 2 ax2 − 1
3 a2 (a ∈ Q×)

p(x) − 1 = − 27
2

x4
(
x2−2 a

)2(
x2−a

)2
a6

p(x) + 1 = − 1
2

(
3 x4−6 ax2−a2

)(
3 x4−6 ax2+2 a2

)2
a6

For each of the above DN(x), we can compute quantities associated with the con-
tinued fraction expansion of

√
DN(x) of §3 so as to obtain Pell solutions (pn0−1, qn0−1),

(pn1−1, qn1−1) and x0 from the linear equation (p′
ni−1/qni−1)(x0) = 0 (i = 0, 1) (cf. also

Lemma 4.3). Note that these contain the moduli parameter t (or a, b when N = 2, 3).
Now, consider the equation DN(x0) = 0. Using a computer algebra system (e.g., Maple),

one can factorize DN(x0) as a polynomial of moduli parameter(s) so as to find rational zeros,
if any, from linear factors. Each of such a moduli parameter gives a Belyi function of type (I)
and hence a mono-nodal tree of shape Y.

To enumerate X-shaped cases, we employ Lemma 4.4 and search for moduli param-

eters for which pn1−1(x0) + qn1−1(x0)
√

D(x0) ∈ { ± 1,±√−1, ±1±√−3
2

}
(all possible

roots of unity inside the quadratic number fields). In practice, it suffices to solve equations

qn1−1(x0) = 0, pn1−1(x0) = 0, pn1−1(x0) = ± 1
2 , pn1−1(x0) = ±1 respectively in Q[t] (or in

Q[a, b] when N = 2, 3). The process ends anyway after a finite number of steps and leads to
finitely many moduli parameters corresponding to the desired dessins.

Each of Table B (N = 2, N = 3 and N ≥ 4) summarizes our computation by Maple for
the X- and Y-shaped dessins of the smallest degrees in each moduli parameter distinguished in
the above way. We found no rational solutions from DN(x) for N = 8, 9, 10, 12. Among the
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Table B (N = 3)

N b x0
[XY-type]

j (E)

Elliptic Curve E : y2 = D(x)

/ Shabat polynomial p(x)

3 − 0
Y{1,1,1}

j = 0

y2 = D(x) = x4 + b x (b ∈ Q×)

p(x) − 1 = 2 x3
b

p(x) + 1 = 2
(
x3+b

)
b

3 512 a3
27

2a
3

X(1,1,1,3)

j = 33·73

23

y2 = D(x) = x4 − 8 a2x2 + 512
27 a3x − 592

27 a4 (a ∈ Q×)

p(x) − 1 = 27
(
x−2 a

)(
27 x3+54 ax2−108 a2x+296 a3)(x+2 a

)2
32768 a6

p(x) + 1 =
(
3 x+10 a

)2(3 x−2 a
)4

32768 a6

3 1024 a3
27

2a
3

X(1,2,4,2)

j = 32·233

26

y2 = D(x) = x4 − 8 a2x2 + 1024
27 a3x − 1616

27 a4 (a ∈ Q×)

p(x) − 1 = 243
(
x−2 a

)(
x+2 a

)2(9 x3+18 ax2−36 a2x+184 a3)2
33554432 a9

p(x) + 1 =
(
27 x3+54 ax2−108 a2x+808 a3)(3 x+10 a

)2(3 x−2 a
)4

33554432 a9

3 1024 a3
81

2a
3

X(1,2,1,5)

j = 34·53

26

: y2 = D(x) = x4 − 8 a2x2 + 1024
81 a3x − 752

81 a4 (a ∈ Q×)

p(x) − 1 = 729
(
x−2 a

)(
x+2 a

)2(3 x+10 a
)2(3 x−2 a

)4
33554432 a9

p(x) + 1 =
(
81 x3+162 ax2−324 a2x+376 a3)λ(x)2

33554432 a9 ,

where λ(x) = 81 x3 + 162 ax2 − 324 a2x − 392 a3 .

produced Belyi functions on elliptic curves, those of degrees(= deg p(x)) up to 7 in this table
coincide with those found in an earliest publication of Birch [3], and in subsequent works
by Tsunogai et al. ([19]; [9], [20]). The Belyi function of degree 24 giving X(1,5,13,5) was
discussed in [13] from a viewpoint of the present paper.

Finally, we shall remark that all X-,Y-shaped mono-nodal trees defined over Q are ob-
tained from Table B by composition with Chebyshev polynomials (cf. Remark 3.3). Suppose

that a pair (p, q) ∈ Q[x]2 with p2 − Dq2 = κ−1 ∈ Q× provides such a tree, i.e., satisfies the
condition (I) or (II) of §4. Then, by the above discussion, we may assume D(x) is equal to
some DN(x) (N ∈ {2, . . . , 10, 12}) with special moduli parameters t (or, a, b) given in Table
B. Note first that, in either case of (I), (II), we have q(x0)

2D(x0) = 0, so that p(x0)
2 = κ−1.

Hence, writing κ = λ2 (λ ∈ Q×) and replacing p, q by λp, λq respectively, we may assume

p2 − Dq2 = 1. This argument works also for the primitive (i.e., the smallest degree) solution

pνn0−1(x)2−qνn0−1(x)2D(x) = κ−1
0 = λ−2

0 to (I), (II) given in Table B with the same moduli
parameter.

In each entry of Table B, the last column indicates the corresponding quartic D(x) as

well as the factorizations of (pνn0−1(x) ± λ−1
0 ) ∈ Q[x] that reflect properties of the Shabat

polynomial λ0 pνn0−1(x). Take the sign of λ0 so that (pνn0−1(x)−λ−1
0 ) has the unique factor

of multiplicity 3 or 4.
Now, by Lemma 3.1 and Proposition 4.1, we see that there exist κ ∈ N, c ∈ Q× and
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Table B (N ≥ 4)

N t x0
[XY-type]

j (E)

Elliptic Curve E(Cremona Symbol) : y2 = D(x)

/ Shabat polynomial p(x)

4 − 9
16

1
4

Y{1,1,2}

j = 2·473

38

E(48a6) : y2 = D(x) = x4 − 13
8 x2 + 9

4 x − 119
256

p(x) − 3
2 = − 1

144
(
16 x2 − 24 x + 17

)(
4 x + 5

)2
p(x) + 3

2 = − 1
144 (4 x + 7) (4 x − 1)3

4 − 3
16

1
4

X(1,5,13,5)

j = 23·233

34

E(96a4) : y2 = D(x) = x4 − 7
8 x2 + 3

4 x − 47
256

p(x) − 1 = − 1
161243136

(
4 x + 5

)2(4 x + 1
)2(4 x − 1

)4
λ(x)2 · μ(x)2,

where λ(x) = 256 x4 + 256 x3 − 96 x2 − 16 x + 77,

μ(x) = 256 x4 + 256 x3 − 96 x2 − 16 x + 41.

p(x) + 1 = − 1
161243136

(
256 x4 − 224 x2 + 192 x − 47

)
×(16 x2 + 16 x + 1

)2
ν(x)2

where ν(x) = 65536 x8 + 131072 x7 + 16384 x6 − 57344 x5

+22016 x4 + 24064 x3 − 7616 x2 − 1312 x + 1249.

5 4
3

1
6

Y{1,2,2}

j = − 2693

210·35

E(150a3) : y2 = D(x) = x4 + 47
18 x2 − 16

3 x + 1057
1296

p(x) − 1 = − 1
27648

(
36 x2 + 48 x + 151

)(
6 x − 1

)3
p(x) + 1 = − 1

27648
(
6 x − 7

)(
36 x2 + 36 x + 89

)2

5 − 1
3

1
3

Y{1,1,3}

j = 5·212

35

E(75c1) : y2 = D(x) = x4 − 14
9 x2 + 4

3 x − 23
81

p(x) − 1 = − 1
54
(
27 x3 + 9 x2 − 39 x + 23

)(
3 x + 2

)2
p(x) + 1 = − 1

54 (3 x + 4)2 (3 x − 1)3

5 8 − 1
2

X(1,1,1,2)

j = 5·2113

215

E(50b2) : y2 = D(x) = x4 − 17
2 x2 − 32 x − 1503

16

p(x) − 1 = − 1
4096

(
8 x3 + 36 x2 + 94 x + 167

)(
2 x − 7

)2
p(x) + 1 = − 1

4096 (2 x − 9)(2 x + 1)4

6 − 25
9

1
3

X(1,1,2,2)

j = 113·19793

3·23·512

E(90c7) : y2 = D(x) = x4 + 74
27 x2 − 1600

81 x + 9523
243

p(x) − 10
3 = 9

160000
(
9 x2 + 30 x + 89

)(
3 x − 1

)4
p(x) + 10

3 = 1
480000

(
27 x2 − 90 x + 107

)(
27 x2 + 72 x + 173

)2

7 5 − 1
2

X(1,2,2,2)

j = 7·33·20993

214·57

E(490k2) : y2 = D(x) = x4 + 39
2 x2 − 400 x − 59279

16

p(x) − 1 = − 1
51200000

(
2 x + 11

)(
8 x3 − 36 x2 + 278 x − 3051

)2
p(x) + 1 = − 1

51200000
(
8 x3 − 44 x2 + 398 x − 5389

)(
2 x + 1

)4

ε = ±1 such that p = cpκn0−1, q = cεqκn0−1, and find that both of the above ν and κ

belong to the set M := {k ∈ N | qkn0−1(x0)
2D(x0) = 0}. On the other hand, by virtue of §3

(10), it is not difficult to see that the set M is a principal submonoid of N× generated by ν.
Indeed, the point to see this assertion is to show that if k, l ∈ M and k > l then k − l ∈ M .

But (10) and the Pell properties of pmn0−1 + qmn0−1
√

D (m = k, l) imply that p(k−l)n0−1 +
q(k−l)n0−1

√
D is a constant multiple of (pkn0−1 + qkn0−1

√
D)(pln0−1 + qln0−1

√
D). Not-

ing then that
√

D(x) �∈ Q[x], we also see that q(k−l)n0−1
√

D is a constant multiple of

(pkn0−1qln0−1 + pln0−1qkn0−1)
√

D. Specializing x = x0 leads to the assertion. Thus, one
finds d ∈ N such that κ = dν. This together with Lemma 3.2 concludes that p(x) is given by
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the Chebyshev composition Td(λ0pνn0−1(x)). This also shows that the lengths of the arms of
the mono-nodal tree of p(x) are d times those of pνn0−1(x).

EXAMPLE. Let N = 6 so that n0 = 5 and n1 = 10, and consider the case X(1, 1, 2, 2).
In this case, Table B gives the quartic

D(x) = D6(x) = x4+ 74

27
x2 − 1600

81
x+ 9523

243
= 1

243

(
27 x2−90 x+107

)(
9 x2+30 x+89

)
.

The continued fraction algorithm produces a first Pell solution (p(x), q(x)) = (p4(x), q4(x))

with p(x)2 − D(x)q(x)2 = 100
9 . Putting λ0 = u−1

0 = 3
10 , we obtain a Belyi function

β(x, y) = p(x) + q(x)y on the elliptic curve E : y2 = D(x) fitting into the Pakovich
diagram (1). Figure B topologically illustrates the corresponding dessins, where solid lines
indicate the segment t ∈ [−1, 1] and its inverse image for the dessin of Shabat polynomial
P(x) = λ0p(x), and dashed lines indicate the segment u ∈ [0, u0] and its inverse image for
the dessin of the Belyi function β. The elliptic curve E is developed into the “wallpaper”
uniformization where a period lattice is indicated by dotted lines.

Figure B
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