Generalized Lambda Functions and Modular Function Fields of Principal Congruence Subgroups

Noburo ISHII

Osaka Prefecture University

(Communicated by S. Nakano)

Abstract. Let N be a positive integer greater than 1. We define a modular function of level N which is a generalization of the elliptic modular lambda function. We show this function and the modular invariant function j generate the modular function field with respect to the principal congruence subgroup of level N. Further we study its values at imaginary quadratic points.

1. Introduction

For a positive integer N, let $\Gamma(N)$ be the principal congruence subgroup of level N of $SL_2(\mathbb{Z})$, thus,

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \mid a - 1 \equiv b \equiv c \equiv 0 \mod N \right\}.$$

We denote by A(N) the modular function field with respect to $\Gamma(N)$. For an element τ of the complex upper half plane, we denote by L_{τ} the lattice of **C** generated by 1 and τ and by $\wp(z; L_{\tau})$ the Weierstrass \wp -function relative to the lattice L_{τ} . Let $e_i(i = 1, 2, 3)$ be the 2-division points of the group $\mathfrak{E}_{\tau} = \mathbf{C}/L_{\tau}$. The elliptic modular lambda function $\lambda(\tau)$ is defined by

$$\lambda(\tau) = \frac{\wp(e_1; L_{\tau}) - \wp(e_3; L_{\tau})}{\wp(e_2; L_{\tau}) - \wp(e_3; L_{\tau})}.$$

The function λ generates A(2) and is used instead of the modular invariant function $j(\tau)$ to parametrize elliptic curves. Further $2^4\lambda$ is integral over $\mathbb{Z}[j]$ (see [6] 18, §6). Note that $e_3 = e_1 + e_2$. In the case the genus of A(N) is not 0, thus $N \ge 6$, A(N) has at least two generators. It is well known that A(N) is a Galois extension over $\mathbb{C}(j)$ with the Galois group $\mathrm{SL}_2(\mathbb{Z})/\{\pm E_2\}\Gamma(N)$, where E_2 is a unit matrix. Therefore A(N) is generated by a function over $\mathbb{C}(j)$. Henceforth let $N \ge 2$. For the group $\mathfrak{E}_{\tau}[N]$ of N-division points of \mathfrak{E}_{τ} , there exists

Received April 25, 2013; revised July 3, 2013

²⁰¹⁰ Mathematics Subject Classification: 11F03; 11G15

Key words and phrases: modular function field, generator, lambda function

an isomorphism φ_{τ} of the group $\mathbb{Z}/N\mathbb{Z} \oplus \mathbb{Z}/N\mathbb{Z}$ to $\mathfrak{E}_{\tau}[N]$ given by $\varphi_{\tau}((r, s)) \equiv (r\tau + s)/N$ mod L_{τ} . If $\{Q_1, Q_2\}$ is a basis of $\mathbb{Z}/N\mathbb{Z} \oplus \mathbb{Z}/N\mathbb{Z}$, then $\{\varphi_{\tau}(Q_1), \varphi_{\tau}(Q_2)\}$ is a basis of $\mathfrak{E}_{\tau}[N]$. In this article, we consider a modular function associated with a basis of the group $\mathfrak{E}_{\tau}[N]$ which is a generalization of $\lambda(\tau)$, defined by

$$\Lambda(\tau; Q_1, Q_2) = \frac{\wp(\varphi_{\tau}(Q_1); L_{\tau}) - \wp(\varphi_{\tau}(Q_1 + Q_2); L_{\tau})}{\wp(\varphi_{\tau}(Q_2); L_{\tau}) - \wp(\varphi_{\tau}(Q_1 + Q_2); L_{\tau})}.$$
(1)

For $N \neq 6$, we shall show that $\Lambda(\tau; Q_1, Q_2)$ generates $\Lambda(N)$ over $\mathbf{C}(j)$. In the case N = 6, $\Lambda(\tau; Q_1, Q_2)$ is not a generator of $\Lambda(6)$ over $\mathbf{C}(j)$, for any basis $\{Q_1, Q_2\}$ (see Remark 3.4). For N, let us define an integer C_N as follows. Put $C_2 = 2^4$. Let N > 2. If $N = p^m$ is a power of a prime number p, then put

$$C_N = \begin{cases} p^2 & \text{if } p = 2, 3, \\ p & \text{if } p > 3. \end{cases}$$

If N is not a power of a prime number, then put $C_N = 1$. We shall show that $C_N \Lambda(\tau; Q_1, Q_2)$ is integral over $\mathbb{Z}[j]$, and the value of $C_N \Lambda(\tau; Q_1, Q_2)$ at an imaginary quadratic point is an algebraic integer. Further if $N \neq 6$, then it generates a ray class field modulo N over a Hilbert class field. For the modular subgroups $\Gamma_1(N)$ and $\Gamma_0(N)$, we have obtained similar results by using generalized lambda functions of different types. See Remark 4.6 and for more details, refer to [4] and [5]. Throughout this article, we use the following notation:

For a function
$$f(\tau)$$
 and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}), f[A]_2$ and $f \circ A$ represent
 $f[A]_2 = f\left(\frac{a\tau + b}{c\tau + d}\right)(c\tau + d)^{-2}, \ f \circ A = f\left(\frac{a\tau + b}{c\tau + d}\right).$

The greatest common divisor of $a, b \in \mathbb{Z}$ is denoted by GCD(a, b). For an integral domain R, R((q)) represents the ring of formal Laurent series of a variable q with coefficients in R and R[[q]] is the power series ring of a variable q with coefficients in R. For $f, g \in R((q))$ and a positive integer m, the relation $f - g \in q^m R[[q]]$ is denoted by $f \equiv g \mod q^m$.

2. Auxiliary results

Let *N* be an integer greater than 1. Put $q = \exp(2\pi i \tau/N)$ and $\zeta = \exp(2\pi i/N)$. For an integer *x*, let {*x*} and $\mu(x)$ be the integers defined by the following conditions:

$$0 \le \{x\} \le \frac{N}{2}, \quad \mu(x) = \pm 1,$$

$$\begin{cases} \mu(x) = 1 & \text{if } x \equiv 0, N/2 \mod N, \\ x \equiv \mu(x)\{x\} \mod N & \text{otherwise.} \end{cases}$$

For a pair of integers (r, s) such that $(r, s) \neq (0, 0) \mod N$, consider a function

$$E(\tau; r, s) = \frac{1}{(2\pi i)^2} \wp\left(\frac{r\tau + s}{N}; L_\tau\right) - 1/12$$

on the complex upper half plane. Clearly,

$$E(\tau; r + aN, s + bN) = E(\tau; r, s) \text{ for any integers } a, b,$$

$$E(\tau; r, s) = E(\tau; -r, -s),$$
(2)

since $\wp(z; L_{\tau})$ is an even function. It follows that $E(\tau; r, s)$ is a modular form of weight 2 with respect to $\Gamma(N)$ from the transformation formula:

$$E(\tau; r, s)[A]_2 = E(\tau; ar + cs, br + ds), \text{ for } A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}).$$
(3)

Put $\omega = \zeta^{\mu(r)s}$ and $u = \omega q^{\{r\}}$. From proof of Lemma 1 of [3], the *q*-expansion of $E(\tau; r, s)$ is obtained as follows:

$$E(\tau; r, s) = \begin{cases} \frac{\omega}{(1-\omega)^2} + \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} n(\omega^n + \omega^{-n} - 2)q^{mnN} & \text{if } \{r\} = 0, \\ \sum_{n=1}^{\infty} nu^n + \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} n(u^n + u^{-n} - 2)q^{mnN} & \text{otherwise.} \end{cases}$$
(4)

Therefore $E(\tau; r, s) \in \mathbf{Q}(\zeta)[[q]]$. For an integer ℓ prime to N, let σ_{ℓ} be the automorphism of $\mathbf{Q}(\zeta)$ defined by $\zeta^{\sigma_{\ell}} = \zeta^{\ell}$. On a power series $f = \sum_{m} a_{m}q^{m}$ with $a_{m} \in \mathbf{Q}(\zeta)$, σ_{ℓ} acts by $f^{\sigma_{\ell}} = \sum_{m} a_{m}^{\sigma_{\ell}}q^{m}$. By (4),

$$E(\tau; r, s)^{\sigma_{\ell}} = E(\tau; r, s\ell).$$
⁽⁵⁾

If (r_1, s_1) and (r_2, s_2) are pairs of integers such that (r_1, s_1) , $(r_2, s_2) \neq (0, 0) \mod N$ and $(r_1, s_1) \neq (r_2, s_2)$, $(-r_2, -s_2) \mod N$, then $E(\tau; r_1, s_1) - E(\tau; r_2, s_2)$ is not 0 and has neither zeros nor poles on the complex upper half plane, because the function $\wp(z; L_{\tau}) - \wp((r_2\tau + s_2)/N; L_{\tau})$ has zeros (resp.poles) only at the points $z \equiv \pm (r_2\tau + s_s)/N$ (resp.0) mod L_{τ} . The next lemma and propositions are required in the following sections.

LEMMA 2.1. Let $k \in \mathbb{Z}$ and $\delta = \text{GCD}(k, N)$.

(i) For an integer ℓ , if ℓ is divisible by δ , then $(1 - \zeta^{\ell})/(1 - \zeta^{k}) \in \mathbb{Z}[\zeta]$.

(ii) If N/δ is not a power of a prime number, then $1 - \zeta^k$ is a unit of $\mathbb{Z}[\zeta]$.

PROOF. If ℓ is divisible by δ , then there exist an integer *m* such that $\ell \equiv mk \mod N$. Therefore $\zeta^{\ell} = \zeta^{mk}$ and $(1 - \zeta^{\ell})$ is divisible by $(1 - \zeta^k)$. This shows (i). Let p_i (i = 1, 2) be distinct prime factors of N/δ . Since $N/p_i = \delta(N/\delta p_i)$, $1 - \zeta^{N/p_i}$ is divisible by $1 - \zeta^{\delta}$. Therefore p_i (i = 1, 2) is divisible by $1 - \zeta^{\delta}$. This implies that $1 - \zeta^{\delta}$ is a unit. Because of $GCD(k/\delta, N/\delta) = 1, 1 - \zeta^k$ is also a unit.

The following propositions are immediate results of (4).

PROPOSITION 2.2. Let (r_i, s_i) (i = 1, 2) be as above. Assume that $\{r_1\} \leq \{r_2\}$. Put $\omega_i = \zeta^{\mu(r_i)s_i}$ and $u_i = \omega_i q^{\{r_i\}}$.

(i) *If* $\{r_1\} \neq 0$, *then*

$$E(\tau; r_1, s_1) - E(\tau; r_2, s_2) \equiv \sum_{n=1}^{N-1} n(u_1^n - u_2^n) + u_1^{-1}q^N - u_2^{-1}q^N \mod q^N.$$

(ii) If $\{r_1\} = 0$ and $\{r_2\} \neq 0$, then

$$E(\tau; r_1, s_1) - E(\tau; r_2, s_2) \equiv \frac{\omega_1}{(1 - \omega_1)^2} - \sum_{n=1}^{N-1} n u_2^n - u_2^{-1} q^N \mod q^N.$$

(iii) If $\{r_1\} = \{r_2\} = 0$, then

$$E(\tau; r_1, s_1) - E(\tau; r_2, s_2) \equiv \frac{(\omega_1 - \omega_2)(1 - \omega_1 \omega_2)}{(1 - \omega_1)^2 (1 - \omega_2)^2} \mod q^N.$$

PROPOSITION 2.3. Let the assumption and the notation be the same as in Proposition 2.2. Then

$$E(\tau; r_1, s_1) - E(\tau; r_2, s_2) = \theta q^{\{r_1\}} (1 + qh(q)),$$

where $h(q) \in \mathbb{Z}[\zeta][[q]]$ and θ is a non-zero element of $\mathbb{Q}(\zeta)$ defined as follows. In the case of $\{r_1\} = \{r_2\}$,

$$\theta = \begin{cases} \omega_1 - \omega_2 & \text{if } \{r_1\} \neq 0, N/2, \\ -\frac{(\omega_1 - \omega_2)(1 - \omega_1 \omega_2)}{\omega_1 \omega_2} & \text{if } \{r_1\} = N/2, \\ \frac{(\omega_1 - \omega_2)(1 - \omega_1 \omega_2)}{(1 - \omega_1)^2 (1 - \omega_2)^2} & \text{if } \{r_1\} = 0. \end{cases}$$

In the case of $\{r_1\} < \{r_2\},\$

$$\theta = \begin{cases} \omega_1 & \text{if } \{r_1\} \neq 0, \\ \frac{\omega_1}{(1-\omega_1)^2} & \text{if } \{r_1\} = 0. \end{cases}$$

3. Generalized lambda functions

For a basis $\{Q_1, Q_2\}$ of the group $\mathbb{Z}/N\mathbb{Z} \oplus \mathbb{Z}/N\mathbb{Z}$, let $\Lambda(\tau; Q_1, Q_2)$ be the function defined by (1). Henceforth, for an integer k prime to N, the function $\Lambda(\tau; (1, 0), (0, k))$ is

240

denoted by $\Lambda_k(\tau)$ to simplify the notation, thus,

$$\Lambda_{k}(\tau) = \frac{\wp(\tau/N; L_{\tau}) - \wp((\tau+k)/N; L_{\tau})}{\wp(k/N; L_{\tau}) - \wp((\tau+k)/N; L_{\tau})}
= \frac{E(\tau; 1, 0) - E(\tau; 1, k)}{E(\tau; 0, k) - E(\tau; 1, k)}.$$
(6)

PROPOSITION 3.1. Let $\{Q_1, Q_2\}$ be a basis of the group $\mathbb{Z}/N\mathbb{Z} \oplus \mathbb{Z}/N\mathbb{Z}$. Then there exist an integer k prime to N and a matrix $A \in SL_2(\mathbb{Z})$ such that

$$\Lambda(\tau; Q_1, Q_2) = \Lambda_k \circ A \, .$$

PROOF. Each basis $\{Q_1, Q_2\}$ of $\mathbb{Z}/N\mathbb{Z} \oplus \mathbb{Z}/N\mathbb{Z}$ is given by $\{(1, 0)B, (0, 1)B\}$ for $B \in \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$. It is easy to see that $B \equiv \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix} A \mod N$, for an integer k prime to N and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z})$. Therefore $Q_1 \equiv (a, b), Q_2 \equiv (ck, dk) \mod N$. Since $A_k(\tau) = \frac{E(\tau; 1, 0) - E(\tau; 1, k)}{2}$

$$\Lambda_k(\tau) = \frac{E(\tau; 1, 0) - E(\tau; 1, k)}{E(\tau; 0, k) - E(\tau; 1, k)},$$

by (3)

$$\Lambda_k \circ A = \frac{E(\tau; a, b) - E(\tau; a + ck, b + dk)}{E(\tau; ck, dk) - E(\tau; a + ck, b + dk)} = \Lambda(\tau; Q_1, Q_2).$$

Let $A(N)_{\mathbf{Q}(\zeta)}$ be the subfield of A(N) consisted of all modular functions having Fourier coefficients in $\mathbf{Q}(\zeta)$. By (4),

$$\Lambda(\tau; Q_1, Q_2) \in A(N)_{\mathbf{Q}(\zeta)}.$$
(7)

Theorem 3 of Chapter 6 of [6] shows that $A(N)_{\mathbf{Q}(\zeta)}$ is a Galois extension over $\mathbf{Q}(\zeta)(j)$ with Galois group $SL_2(\mathbf{Z})/\Gamma(N)\{\pm E_2\}$.

PROPOSITION 3.2. Let $N \neq 6$ and let k be an integer prime to N. Then

$$A(N)_{\mathbf{Q}(\zeta)} = \mathbf{Q}(\zeta)(\Lambda_k, j)$$

PROOF. By (5), $\Lambda_k^{\sigma_\ell} = \Lambda_{k\ell}$. If $A(N)_{\mathbf{Q}(\zeta)} = \mathbf{Q}(\zeta)(\Lambda_1, j)$, then we can write $\Lambda_{k^{-1}} = F(\Lambda_1, j)$ for a rational function F(X, Y) of X and Y with coefficients in $\mathbf{Q}(\zeta)$. By applying σ_k to this equality, we have $\Lambda_1 = F^{\sigma_k}(\Lambda_k, j)$, and $A(N)_{\mathbf{Q}(\zeta)} = \mathbf{Q}(\zeta)(\Lambda_k, j)$. Therefore we have only to prove the assertion in the case k = 1. Let k = 1 and H the invariant subgroup of Λ_1 in SL₂(**Z**). Since $\Lambda_1 \in A(N)_{\mathbf{Q}(\zeta)}$, it is sufficient to show $H \subset \Gamma(N)\{\pm E_2\}$. Let

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in H, \text{ thus, } A_1 \circ A = A_1. \text{ Then by (3) and (6),}$$
$$(E(\tau; a, b) - E(\tau; a + c, b + d))(E(\tau; 0, 1) - E(\tau; 1, 1))$$
$$= (E(\tau; c, d) - E(\tau; a + c, b + d))(E(\tau; 1, 0) - E(\tau; 1, 1)).$$
(8)

From Proposition 2.2 it follows:

$$E(\tau; 0, 1) - E(\tau; 1, 1) \equiv \theta - \zeta q - 2\zeta^2 q^2 \mod q^3,$$

$$E(\tau; 1, 0) - E(\tau; 1, 1) \equiv (1 - \zeta)q + 2(1 - \zeta^2)q^2 \mod q^3,$$
(9)

where $\theta = \zeta/(1-\zeta)^2$. By considering the order of *q*-series in the both side of (8), it follows from Proposition 2.3 that

$$\min(\{a\}, \{a+c\}) = \min(\{c\}, \{a+c\}) + 1.$$
(10)

This equality implies that $\{a\}, \{a + c\} \neq 0$. At first we shall show that $c \equiv 0 \mod N$. Let us assume that $\{c\} \neq 0$. We have three cases: (i) $\{a\} < \{a + c\}, (ii), \{a\} > \{a + c\}, (iii), \{a\} = \{a + c\}$. Let us consider the case (i). Then $\{c\} = \{a\} - 1 \neq 0$. Therefore $0 < \{a\}, \{c\} < \{a + c\} \leq N/2$. By comparing the coefficient of $q^{\{a\}}$ of q-series in the both side of (8), from Proposition 2.3 it follows that

$$\zeta^{\mu(a)b}\theta = \zeta^{\mu(c)d}(1-\zeta).$$

This gives $|1 - \zeta| = 1$, hence N = 6, which contradicts the assumption. In the case (ii), $\{c\} = \{a + c\} - 1$. Therefore $0 < \{c\} < \{a + c\} < \{a\} \le N/2$. An argument similar to that in the case (i) gives that N = 6. Now we deal with the case (iii). Put $\{c\} = t$. Then $\{a\} = \{a + c\} = t + 1 \le N/2$, and $t \ne 0$, N/2. Since $t \ne 0$, the equality $\{a\} = \{a + c\}$ implies that $c \equiv -2a \mod N$, $\mu(a) = -\mu(a + c)$. Therefore $t = 2\{a\}$ (resp. $N - 2\{a\}$) if $2\{a\} \le N/2$ (resp. $2\{a\} > N/2$). The equality $\{a\} = t + 1$ implies that $t = N - 2\{a\}$, thus N = 3t + 2. Hence $N \ge 5$ and $\{a\} \ne N/2$. From comparing the coefficient of q^{t+1} of q-series in the both side of (8), from Proposition 2.3 it follows that

$$\frac{\zeta}{(1-\zeta)^2}(\omega_1 - \omega_3) = (1-\zeta)\omega_2,$$
(11)

where $\omega_1 = \zeta^{\mu(a)b}, \omega_2 = \zeta^{\mu(c)d}, \omega_3 = \zeta^{\mu(a+c)(b+d)}$. Therefore,

$$\zeta \omega_1 \omega_2^{-1} \left(\frac{1 - \omega_3 \omega_1^{-1}}{1 - \zeta} \right) = (1 - \zeta)^2.$$

Let N = 5. Then $(1 - \zeta)$ is not a unit but by Lemma 2.1, $\left(\frac{1 - \omega_3 \omega_1^{-1}}{1 - \zeta}\right)$ is 0 or a unit. This gives a contradiction. Let $N \ge 6$. Then t > 1 and noting that t < N/2 - 1, 2t - 1, N - (t + 3),

242

the following congruences are obtained from Proposition 2.2:

$$E(\tau; a, b) - E(\tau; a + c, b + d) \equiv (\omega_1 - \omega_3)q^{t+1} \mod q^{t+3},$$

$$E(\tau; c, d) - E(\tau; a + c, b + d) \equiv \omega_2 q^t - \omega_3 q^{t+1} \mod q^{t+2}.$$
(12)

Therefore, comparing the coefficient of q^{t+2} of q-series in (8), we have:

 $\zeta(\omega_1 - \omega_3) = (1 - \zeta)\omega_3 - 2(1 - \zeta^2)\omega_2.$

From this, by using (11), it follows that $3 + \zeta^2 = \omega_3/\omega_2$. Therefore $|3 + \zeta^2| = 1$. However $|3 + \zeta^2| > 1$. This is a contradiction. Hence we obtain $c \equiv 0 \mod N$. From (10), it is deduced that $a \equiv d \equiv \pm 1 \mod N$. If necessary, by replacing A by -A, we can assume that $\begin{pmatrix} 1 & b \end{pmatrix}$

$$A = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}. \text{ By } (8),$$

(E(\tau; 1, b)-E(\tau; 1, b+1))(E(\tau; 0, 1) - E(\tau; 1, 1))
= (E(\tau; 0, 1) - E(\tau; 1, b+1))(E(\tau; 1, 0) - E(\tau; 1, 1)). (13)

By comparing the coefficients of q,

$$(\zeta^b - \zeta^{b+1})\theta = (1 - \zeta)\theta.$$

This implies that $\zeta^b = 1$. Hence we obtain $A \in \Gamma(N)$.

THEOREM 3.3. Let $\{Q_1, Q_2\}$ be a basis of the group $\mathbb{Z}/N\mathbb{Z} \oplus \mathbb{Z}/N\mathbb{Z}$. Then $A(N)_{\mathbb{Q}(\zeta)} = \mathbb{Q}(\zeta)(\Lambda(\tau; Q_1, Q_2), j)$.

PROOF. By Proposition 3.1, there exists an integer k prime to N and an element $A \in$ SL₂(**Z**) such that $\Lambda(\tau; Q_1, Q_2) = \Lambda_k \circ A$. Since $\Gamma(N)$ is a normal subgroup of SL₂(**Z**), the assertion is deduced from (7) and Proposition 3.2.

REMARK 3.4. Let N = 6. Then the matrix $M = \begin{pmatrix} 3 & 11 \\ 1 & 4 \end{pmatrix} \notin \Gamma(6)$ fixes the function $\Lambda_1(\tau)$. This fact is proved as follows. Let us consider the function

$$\begin{split} F(\tau) &= (E(\tau;1,0) - E(\tau;1,1))[M]_2(E(\tau;0,1) - E(\tau;1,1)) \\ &- (E(\tau;0,1) - E(\tau;1,1))[M]_2(E(\tau;1,0) - E(\tau;1,1)) \\ &= (E(\tau;3,1) - E(\tau;2,3))(E(\tau;0,1) - E(\tau;1,1)) \\ &- (E(\tau;1,4) - E(\tau;2,3))(E(\tau;1,0) - E(\tau;1,1)) \,. \end{split}$$

Here we used (2) and (3). Then F is a cusp form of weight 4 with respect to $\Gamma(6)$. If $F \neq 0$, then F has 24 zeros in the fundamental domain. See [7], III-6, Proposition 10. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$. Then the order of F at the cusp $a/c = A(i\infty)$ is greater

than or equal to minimum of two integers $\min(\{3a + c\}, \{2a + 3c\}) + \min(\{c\}, \{a + c\})$ and $\min(\{a + 4c\}, \{2a + 3c\}) + \min(\{a\}, \{a + c\})$. It is easy to see that *F* has at least 22 zeros at cusps other than $i\infty$ and the coefficient of q^2 of the *q*-expansion of *F* is 0. This shows that *F* has at least 25 zeros. Hence F = 0.

4. Values of $\Lambda(\tau; Q_1, Q_2)$ at imaginary quadratic points

In this section, we study values of $\Lambda(\tau; Q_1, Q_2)$ at imaginary quadratic points. In the case N = 2, it is well known that $2^4 \lambda$ is integral over $\mathbf{Z}[j]$. For example see [6] 18, §6. We shall consider the case N > 2.

LEMMA 4.1. Let k be an integer prime to N and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$. Let A_k be a matrix of $SL_2(\mathbb{Z})$ such that $A_k \equiv \begin{pmatrix} a & bk^{-1} \\ ck & d \end{pmatrix} \mod N$. Then

$$\Lambda_k \circ A = (\Lambda_1 \circ A_k)^{\sigma_k} \, .$$

PROOF. Let $A_k = \begin{pmatrix} t & u \\ v & w \end{pmatrix}$. Then

$$(\Lambda_1 \circ A_k)^{\sigma_k} = \frac{E(\tau; t, uk) - E(\tau; t + v, (u + w)k)}{E(\tau; v, wk) - E(\tau; t + v, (u + w)k)}$$
$$= \frac{E(\tau; a, b) - E(\tau; a + ck, b + dk)}{E(\tau; ck, dk) - E(\tau; a + ck, b + dk)}$$
$$= \Lambda_k \circ A .$$

PROPOSITION 4.2. Let N > 2 and k be an integer prime to N. Then for any $A \in SL_2(\mathbb{Z}), (1 - \zeta^k)^3 \Lambda_k \circ A \in \mathbb{Z}[\zeta]((q)).$

PROOF. By Lemma 4.1, we have only to prove the assertion in the case k = 1. Put $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Proposition 2.3 shows that $E(\tau; a, b) - E(\tau; a + c, b + d) = \theta_1 q^{t_1} (1 + h_1(q))$, $E(\tau; c, d) - E(\tau; a + c, b + d) = \theta_2 q^{t_2} (1 + h_2(q))$.
(14)

where t_i are non-negative integers, θ_i are non-zero elements of $\mathbf{Q}(\zeta)$ and $h_i \in \mathbf{Z}[\zeta][[q]]$ (i = 1, 2). This shows $\Lambda_k \circ A = \omega f(q)$, where $\omega = \theta_1/\theta_2$ and $f \in \mathbf{Z}[\zeta]((q))$. Therefore it is sufficient to prove that $(1 - \zeta)^3 \omega \in \mathbf{Z}[\zeta]$. By Proposition 2.3, if min $(\{a\}, \{a + c\}) \neq 0$ and $\{c\} \neq \{a+c\}$, then $\theta_1, \theta_2^{-1} \in \mathbf{Z}[\zeta]$. Therefore $\omega \in \mathbf{Z}[\zeta]$. Let $\{c\} = \{a+c\}$. If $\mu(c) = \mu(a+c)$, then $a \equiv 0 \mod N$. This implies that GCD(c, N) = 1 and $\{a\} = 0 < \{c\} = \{a + c\} < N/2$. Therefore

$$\theta_1 = \zeta^b / (1 - \zeta^b)^2, \theta_2 = \zeta^{\mu(c)d} - \zeta^{\mu(c)(b+d)},$$

and $\omega = \zeta^{\ell}/(1-\zeta^{b})^{3}$ for an integer ℓ . Since GCD(b, N) = 1, by (i) of Lemma 2.1, $(1-\zeta)^{3}\omega \in \mathbb{Z}[\zeta]$. Let $\mu(c) = -\mu(a+c)$. Then $a \equiv -2c \mod N$. Since GCD(a, c) = 1, GCD(c, N) = 1. It follows that $\{c\} \neq 0, N/2$ and $\{a\}, \{a+c\} \neq 0$. Therefore $\theta_{1} \in \mathbb{Z}[\zeta]$ and $\theta_{2} = \zeta^{\mu(c)d}(1-\zeta^{-\mu(c)(b+2d)})$. Let GCD(b+2d, N) = D, then $b \equiv -2d \mod D$, $a \equiv -2c \mod D$. It follows that $1 = ad - bc \equiv 0 \mod D$. This shows b+2d is prime to N. Lemma 2.1 shows that $(1-\zeta)\omega \in \mathbb{Z}[\zeta]$. Let min $(\{a\}, \{a+c\}) = 0$ and $\{a+c\} \neq \{c\}$. Then $\{a+c\} = 0$ and $\{a\}, \{c\} \neq 0$. Therefore $0 = \{a+c\} < \{a\}, \{c\}, \text{and } \theta_{1} = \theta_{2}$, thus $\omega = 1$.

Let
$$C_2 = 2^4$$
 and for $N > 2$ put

$$C_N = \begin{cases} p^2 & \text{if } N = p^{\ell}(p = 2, 3), \\ p & \text{if } N = p^{\ell}(p : \text{a prime number} > 3), \\ 1 & \text{if } N \text{ is not a power of a prime number} \end{cases}$$

COROLLARY 4.3. Let N > 2 and k be an integer prime to N. Then $C_N \Lambda_k \circ A \in \mathbb{Z}[\zeta]((q))$ for any $A \in SL_2(\mathbb{Z})$.

PROOF. Lemma 2.1 implies that $C_N/(1 - \zeta^k)^3 \in \mathbb{Z}[\zeta]$. The assertion follows from Proposition 4.2.

THEOREM 4.4. Let $\{Q_1, Q_2\}$ be a basis of the group $\mathbb{Z}/N\mathbb{Z} \oplus \mathbb{Z}/N\mathbb{Z}$. Then the function $C_N \Lambda(\tau; Q_1, Q_2)$ is integral over $\mathbb{Z}[j]$. Further Let θ be an element of the complex upper half plane such that $\mathbb{Q}(\theta)$ is an imaginary quadratic field. Then $C_N \Lambda(\theta; Q_1, Q_2)$ is an algebraic integer.

PROOF. For N = 2, the assertion has been already proved. Let N > 2. For an integer *k* prime to *N*, let us consider a polynomial of *X*:

$$\Psi_k(X) = \prod_A (X - C_N \Lambda_k \circ A)$$

where A runs over all representatives of $SL_2(\mathbf{Z})/\Gamma(N)\{\pm E_2\}$. Then each coefficient of $\Psi_k(X)$ is belong to $\mathbf{Z}[\zeta]((q))$ and is $SL_2(\mathbf{Z})$ -invariant, and has no poles in the complex half plane. Therefore $\Psi_k(X)$ is a monic polynomial with coefficients in $\mathbf{Z}[\zeta][j]$. Since $C_N \Lambda_k \circ A$ is a root of $\Psi_k(X) = 0$, $C_N \Lambda_k \circ A$ is integral over $\mathbf{Z}[\zeta][j]$. From Proposition 3.1 and the fact that $\mathbf{Z}[\zeta][j]$ is integral over $\mathbf{Z}[j]$, it follows that $C_N \Lambda(\tau; Q_1, Q_2)$ is integral over $\mathbf{Z}[j]$. Since $j(\theta)$ is an algebraic integer (see [1], Theorem 10.23) and $C_N \Lambda(\theta; Q_1, Q_2)$ is integral over $\mathbf{Z}[j(\theta)]$, $C_N \Lambda(\theta; Q_1, Q_2)$ is an algebraic integer.

THEOREM 4.5. Let $N \neq 6$ and $\{Q_1, Q_2\}$ be a basis of the group $\mathbb{Z}/N\mathbb{Z} \oplus \mathbb{Z}/N\mathbb{Z}$. Let θ be an element of the complex upper half plane such that $\mathbb{Z}[\theta]$ is the maximal order of

an imaginary quadratic field K. Then the ray class field \mathfrak{R}_N of K modulo N is generated by $\Lambda(\theta; Q_1, Q_2)$ and ζ over the Hilbert class field $K(j(\theta))$ of K.

PROOF. The assertion is deduced from Theorems 1, 2 of [2] and Theorem 3.3. \Box

REMARK 4.6. Let k and ℓ be integers such that $0 < k \neq \ell < N/2$, $GCD(k + \ell, N) = 1$. We consider a function

$$\Lambda_{k,\ell}^*(\tau) = \frac{\wp(\frac{k}{N}; L_{\tau}) - \wp(\frac{k+\ell}{N}; L_{\tau})}{\wp(\frac{\ell}{N}; L_{\tau}) - \wp(\frac{k+\ell}{N}; L_{\tau})}$$

This is a modular function with respect to the group

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbf{Z}) \mid a - 1 \equiv c \equiv 0 \mod N \right\}.$$

In Corollary 1 of [4] we show that $\Lambda_{k,\ell}^*$ and *j* generate the function field rational over $\mathbf{Q}(\zeta)$ with respect to $\Gamma_1(N)$. Let the notation be the same as in Theorem 4.5. From Corollary 3 and Theorem 4 of [4], we obtain that \mathfrak{R}_N is generated by $\Lambda_{k,\ell}^*(\theta)$ and ζ over the Hilbert class field of *K* and that $\Lambda_{k,\ell}^*(\theta)$ is an algebraic integer under an additional assumption $\text{GCD}(k(k + 2\ell), N) = 1$.

References

- [1] D. Cox, *Primes of the form* $x^2 + ny^2$, A Wiley-Interscience Publication, John Wiley and Sons, Inc., New York, 1989.
- [2] A. GEE, Class invariants by Shimura's reciprocity law, J. Théor. Nombres Bordeaux 11 (1999), 45–72.
- [3] N. ISHIDA and N. ISHII, Generators and defining equation of the modular function field of the group $\Gamma_1(N)$, Acta Arith. **101**.4 (2002), 303–320.
- [4] N. ISHII, Special values of generalized λ functions at imaginary quadratic points, Ramanujan J. 33 (2014), 121–130, DOI 10.1007/s11139-013-9463-5.
- [5] N. ISHII and M. KOBAYASHI, Singular values of some modular functions, Ramanujan J. 24 (2011), 67–83, DOI 10.1007/s11139-010-9249-y.
- [6] S. LANG, *Elliptic Functions*, Addison-Wesley, London, 1973.
- [7] A. OGG, Modular forms and Dirichlet Series, Benjamin, 1969.
- [8] G. SHIMURA, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami-Shoten and Princeton University Press, 1971.

Present Address: 8–155 SHINOMIYA-KOGANEDUKA, YAMASHINA-KU, KYOTO, 607–8022 JAPAN. *e-mail:* Noburo.Ishii@ma2.seikyou.ne.jp